JP4997700B2 - Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP4997700B2
JP4997700B2 JP2004360142A JP2004360142A JP4997700B2 JP 4997700 B2 JP4997700 B2 JP 4997700B2 JP 2004360142 A JP2004360142 A JP 2004360142A JP 2004360142 A JP2004360142 A JP 2004360142A JP 4997700 B2 JP4997700 B2 JP 4997700B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360142A
Other languages
Japanese (ja)
Other versions
JP2006172753A (en
Inventor
賢治 志塚
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004360142A priority Critical patent/JP4997700B2/en
Publication of JP2006172753A publication Critical patent/JP2006172753A/en
Application granted granted Critical
Publication of JP4997700B2 publication Critical patent/JP4997700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池正極材料として用いられるリチウムニッケルマンガン系複合酸化物粉体及びその製造方法と、このリチウムニッケルマンガン系複合酸化物粉体を用いたリチウム二次電池用正極、並びにこのリチウム二次電池用正極を備えるリチウム二次電池に関する。   The present invention relates to a lithium nickel manganese composite oxide powder used as a lithium secondary battery positive electrode material, a method for producing the same, a positive electrode for a lithium secondary battery using the lithium nickel manganese composite oxide powder, and The present invention relates to a lithium secondary battery including a positive electrode for a lithium secondary battery.

リチウム二次電池は、エネルギー密度及び出力密度等に優れ、小型、軽量化に有効であるため、ノート型パソコン、携帯電話、ハンディビデオカメラ等の携帯機器の電源として、その需要は急激な伸びを示している。また、リチウム二次電池は電気自動車や電力のロードレベリング等の電源としても注目されている。   Lithium secondary batteries are excellent in energy density and output density, and are effective in reducing the size and weight. Therefore, the demand for lithium secondary batteries as a power source for portable devices such as notebook computers, mobile phones, and handy video cameras is growing rapidly. Show. Lithium secondary batteries are also attracting attention as power sources for electric vehicles and power load leveling.

現在、リチウム二次電池用の正極活物質材料としては、スピネル構造を有するリチウムマンガン系複合酸化物、層状リチウムニッケル系複合酸化物、層状リチウムコバルト系複合酸化物が用いられている。これらのリチウム含有複合酸化物を用いたリチウム二次電池は、いずれも特性面で利点と欠点を有する。即ち、スピネル構造を有するリチウムマンガン系複合酸化物は、安価かつ合成が比較的容易であり、電池とした時の安全性に優れる一方、容量が低く、高温特性(サイクル、保存)が劣る。層状リチウムニッケル系複合酸化物は、容量が高く、高温特性に優れる反面、合成が難しく、電池とした時の安定性に劣り、保管にも注意を要する等の欠点を抱えている。層状リチウムコバルト系複合酸化物は、合成が容易かつ電池性能バランスが優れているため、携帯機器用の電源として広く用いられているが、安全性が不十分な点や高コストである点が大きな欠点となっている。   Currently, lithium manganese composite oxides, layered lithium nickel composite oxides, and layered lithium cobalt composite oxides having a spinel structure are used as positive electrode active material materials for lithium secondary batteries. All of the lithium secondary batteries using these lithium-containing composite oxides have advantages and disadvantages in terms of characteristics. That is, a lithium manganese composite oxide having a spinel structure is inexpensive and relatively easy to synthesize, and is excellent in safety when used as a battery, but has a low capacity and inferior high-temperature characteristics (cycle and storage). Layered lithium-nickel composite oxides have high capacity and excellent high-temperature characteristics, but are difficult to synthesize, have poor stability when used as batteries, and have drawbacks such as requiring careful storage. Layered lithium cobalt-based composite oxides are widely used as power sources for portable devices because they are easy to synthesize and have an excellent balance of battery performance. However, they are not sufficient in safety and costly. It is a drawback.

こうした現状において、これらの正極活物質材料が抱える欠点を克服又は極力低減することができ、かつ電池性能バランスに優れる活物質材料の有力候補として、層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物が提案されている。特に近年における低コスト化要求、安全化要求の高まりの中で、双方の要求に応え得る正極活物質材料として有望視されている。ただし、その低コスト化及び安全性の程度は、組成比、特にNi/Mn/Co比率によって変化する。中でも、低コスト化及び高安全性化の観点から特に優れた組成比として、Ni:Mn:Co=x:y:1−x−y(x、yはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1を満たす数を表わす。)で表わされる比率のものが知られている。   Under such circumstances, lithium nickel manganese cobalt-based composite oxides having a layered structure are possible candidates for active material materials that can overcome or reduce as much as possible the drawbacks of these positive electrode active material materials and are excellent in battery performance balance. Proposed. In particular, in recent years, demands for cost reduction and safety are increasing, and therefore, they are regarded as promising as positive electrode active material materials that can meet both requirements. However, the cost reduction and the degree of safety vary depending on the composition ratio, particularly the Ni / Mn / Co ratio. Among these, Ni: Mn: Co = x: y: 1-xy (x and y are 0.20 ≦ x ≦ 0, respectively) as a particularly excellent composition ratio from the viewpoint of cost reduction and safety enhancement. 55, 0.20 ≦ y ≦ 0.60, and a number satisfying 0.50 ≦ x + y ≦ 1) are known.

しかしながら、このような低コストかつ安全性が高い組成範囲の層状リチウムニッケルマンガンコバルト系複合酸化物を正極材料として使用したリチウム二次電池は、充放電容量や出力特性等の電池本来の性能が低下するため、実用化に際しては電池性能の向上のために更なる改良が必要であった。   However, lithium secondary batteries using layered lithium nickel manganese cobalt-based composite oxides with such a low cost and high safety composition range as the positive electrode material have reduced battery performance such as charge / discharge capacity and output characteristics. Therefore, further improvement is necessary for practical use in order to improve battery performance.

従来、安全性の比較的高い上述の組成領域のリチウムニッケルマンガンコバルト系複合酸化物について電池性能の改善を図った技術として、特許文献1に記載の技術が挙げられる。この技術は、リチウム/遷移金属(ニッケル、マンガン、コバルト)比率を1よりも若干大きくすることにより、充放電容量を低下させることなく、レート特性や出力特性等の電池性能を改善したものである。   Conventionally, as a technique for improving the battery performance of the lithium nickel manganese cobalt-based composite oxide having the above-described composition region having relatively high safety, a technique described in Patent Document 1 can be cited. This technology improves the battery performance such as rate characteristics and output characteristics without lowering the charge / discharge capacity by slightly increasing the lithium / transition metal (nickel, manganese, cobalt) ratio from 1. .

しかしながら、特許文献1に記載の技術では、リチウム/遷移金属(ニッケル、マンガン、コバルト)比率の増加に伴って、得られるリチウムニッケルマンガンコバルト系複合酸化物の塩基性(pH)が高くなってしまう。正極材料の塩基性(pH)が高くなると、ガス発生による電池の膨れが発生しやすくなったり、保存特性が低下する等の課題が指摘されている(非特許文献1参照)。にもかかわらず、特許文献1にはこのような塩基性(pH)の上昇を抑えるための対策について、何も記載されていない。   However, in the technique described in Patent Document 1, the basicity (pH) of the obtained lithium nickel manganese cobalt-based composite oxide increases with an increase in the lithium / transition metal (nickel, manganese, cobalt) ratio. . When the basicity (pH) of the positive electrode material is increased, problems such as a tendency of battery swelling due to gas generation and a decrease in storage characteristics have been pointed out (see Non-Patent Document 1). Nevertheless, Patent Document 1 describes nothing about measures for suppressing such an increase in basicity (pH).

また、上述の組成範囲のリチウムニッケルマンガンコバルト系複合酸化物に硫黄成分を含有させて電池性能の改善を図った技術として、特許文献2及び特許文献3に記載の技術が挙げられる。   Moreover, the technique of patent document 2 and patent document 3 is mentioned as a technique which made the lithium nickel manganese cobalt type complex oxide of the above-mentioned composition range contain a sulfur component and aimed at the improvement of battery performance.

しかしながら、これら特許文献2及び特許文献3に記載の技術は、電池性能の向上効果が十分でなかったり、上述した様な塩基性(pH)の上昇に伴う課題を有していた。   However, the techniques described in Patent Literature 2 and Patent Literature 3 have problems in improving battery performance or have problems associated with an increase in basicity (pH) as described above.

特開2002−110167号公報JP 2002-110167 A 特開2001−6672号公報Japanese Patent Laid-Open No. 2001-6672 特開2003−297360号公報JP 2003-297360 A INTERNATIONAL MEETING ON LITHIUM BATTERIES、11th MEETING、ABSTRACT No.371、2002年INTERNATIONAL MEETING ON LITHIUM BATTERIES, 11th MEETING, ABSTRACT No.371, 2002

以上の背景から、上述する特定の組成範囲のリチウムニッケルマンガンコバルト系複合酸化物粉体について、低コスト化と電池性能の向上を図りつつ、同時に塩基性(pH)の上昇を抑え、安全性や保存性の向上をも達成することが求められていた。   From the above background, the lithium nickel manganese cobalt based composite oxide powder having the specific composition range described above, while reducing costs and improving battery performance, at the same time, suppressing the increase in basicity (pH), It has been required to achieve improvement in storage stability.

本発明は上述の課題に基づいてなされたものであり、その目的は、リチウム二次電池正極材料として使用した場合に、低コスト化や電池性能の向上を図りつつ、同時に塩基性(pH)の上昇を抑え、安全性や保存性の向上をも達成することが可能な、リチウムニッケルマンガン系複合酸化物粉体及びその製造方法と、このリチウムニッケルマンガン系複合酸化物粉体を用いたリチウム二次電池用正極、並びにこのリチウム二次電池用正極を用いたリチウム二次電池を提供することを目的とする。   The present invention has been made on the basis of the above-mentioned problems. The object of the present invention is to reduce the cost and improve the battery performance when used as a positive electrode material for a lithium secondary battery, and at the same time, the basic (pH). Lithium-nickel-manganese composite oxide powder capable of suppressing an increase and achieving improved safety and storage stability, a method for producing the same, and a lithium nickel-manganese composite oxide powder using the lithium-nickel-manganese composite oxide powder It aims at providing the positive electrode for secondary batteries, and the lithium secondary battery using this positive electrode for lithium secondary batteries.

本発明者らは、鋭意検討の結果、限定された組成範囲(上述のニッケル/マンガン/コバルト比率)のリチウムニッケルマンガンコバルト系複合酸化物において、リチウム/遷移金属(ニッケル、マンガン、コバルト)の原子比率を1よりも高い所定の範囲内に設定し、且つ、所定濃度の硫黄成分を並存させることにより、リチウム二次電池正極材料として用いた場合に、低コスト化や電池性能の向上を図りつつ、同時に塩基性(pH)の上昇を抑え、安全性や保存性の向上をも達成することが可能になることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that lithium / transition metal (nickel, manganese, cobalt) atoms in a lithium nickel manganese cobalt based composite oxide having a limited composition range (the above-mentioned nickel / manganese / cobalt ratio). When the ratio is set within a predetermined range higher than 1 and a sulfur component having a predetermined concentration coexists, when used as a positive electrode material for a lithium secondary battery, cost reduction and battery performance improvement are achieved. At the same time, it has been found that it is possible to suppress the increase in basicity (pH) and to achieve improvement in safety and storage stability, and the present invention has been completed.

即ち、本発明の趣旨は、下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、含有炭素濃度が0.012質量%以下であることを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体に存する(請求項1)。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
また、本発明の別の趣旨は、上記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、40MPaの圧力で圧密した時の体積抵抗率が5×105Ω・cm以下であることを特徴とする、リチウム二次電池正
極材料用リチウムニッケルマンガン系複合酸化物粉体に存する(請求項2)。
また、本発明の別の趣旨は、上記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、一次粒子が凝集して二次粒子を形成してなるとともに、嵩密度が1.5g/cm3以上であることを特徴とする、リチ
ウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体に存する(請求項3)。
また、本発明の別の趣旨は、上記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、一次粒子が凝集して二次粒子を形成してなるとともに、平均一次粒子径が0.1μm以上、3μm以下であることを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体に存する(請求項4)
た、本発明の別の趣旨は、上記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、一次粒子が凝集して二次粒子を形成してなるとともに、二次粒子の90%積算径が5μm以上、30μm以下であることを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体に存する(請求項)。
That is, the gist of the present invention is the composition represented by the following formula (I), the sulfur concentration is 0.06% by mass or more and 0.35% by mass or less, and the carbon content is 0.012% by mass. It exists in the lithium nickel manganese type complex oxide powder for lithium secondary battery positive electrode materials characterized by the following (claim 1).
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
Another purpose of the present invention is to have the composition represented by the above formula (I), and when the contained sulfur concentration is 0.06% by mass or more and 0.35% by mass or less, and compacted at a pressure of 40 MPa. The volume resistivity of the lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material is 5 × 10 5 Ω · cm or less (claim 2).
Another object of the present invention is to have a composition represented by the above formula (I), have a sulfur content of 0.06% by mass to 0.35% by mass, and primary particles are aggregated to form The present invention resides in a lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material characterized by forming secondary particles and having a bulk density of 1.5 g / cm 3 or more (Claim 3). .
Another object of the present invention is to have a composition represented by the above formula (I), have a sulfur content of 0.06% by mass to 0.35% by mass, and primary particles are aggregated to form The present invention resides in a lithium nickel manganese based composite oxide powder for a positive electrode material for a lithium secondary battery, characterized by forming secondary particles and having an average primary particle size of 0.1 μm or more and 3 μm or less. 4).
Also, another purpose of the present invention has a composition represented by the formula (I), containing a sulfur concentration of 0.06 mass% or more and 0.35 mass% or less, and aggregated primary particles A lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material, characterized by forming secondary particles and having a 90% cumulative diameter of secondary particles of 5 μm or more and 30 μm or less. (Claim 5 ).

ここで、式(I)において、Mn/Ni原子比率を表わすy/xが、0.95≦y/x≦1.5であることが好ましい(請求項)。
また、含有硫黄成分が硫酸塩化合物からなることが好ましい(請求項)。
また、BET比表面積が0.2m2/g以上、1.5m2/g以下であることが好ましい(請求項)。
Here, in the formula (I), y / x representing the Mn / Ni atomic ratio is preferably 0.95 ≦ y / x ≦ 1.5 (claim 6 ).
Moreover, it is preferable that a contained sulfur component consists of a sulfate compound (Claim 7 ).
Further, the BET specific surface area is preferably 0.2 m 2 / g or more and 1.5 m 2 / g or less (claim 8 ).

また、本発明の別の趣旨は、上記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であるリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体を製造する方法であって、ニッケル化合物、マンガン化合物、及び硫酸塩化合物、並びに必要に応じて用いられるコバルト化合物を、液体媒体中で平均粒径0.3μm以下まで粉砕し、均一に分散させたスラリーを噴霧乾燥して、一次粒子が凝集して二次粒子を形成してなる粉体とした後、該粉体をリチウム化合物と十分に混合し、該混合物を酸素含有ガス雰囲気中で焼成することを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体の製造方法に存する(請求項)。 Another object of the present invention is lithium for a lithium secondary battery positive electrode material having a composition represented by the above formula (I) and having a sulfur concentration of 0.06% by mass to 0.35% by mass. A method for producing a nickel-manganese composite oxide powder, wherein a nickel compound, a manganese compound, a sulfate compound, and a cobalt compound used as needed are averaged in a liquid medium to an average particle size of 0.3 μm or less After the pulverized and uniformly dispersed slurry is spray-dried to obtain a powder obtained by agglomerating primary particles to form secondary particles, the powder is sufficiently mixed with a lithium compound, and the mixture is and firing in an oxygen-containing gas atmosphere, it consists in the manufacturing method of a lithium secondary battery positive electrode material for the complex oxide powder (claim 9).

また、本発明の別の趣旨は、集電体と、該集電体上に形成された正極活物質層とを少なくとも備え、正極活物質層が、上述のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体と、結着剤とを少なくとも含有することを特徴とする、リチウム二次電池用正極に存する(請求項10)。 Another purpose of the present invention is to provide at least a current collector and a positive electrode active material layer formed on the current collector, and the positive electrode active material layer is lithium nickel for a positive electrode material for a lithium secondary battery described above. a manganese-based composite oxide powder, characterized in that it contains at least a binder, lies in the positive electrode for a lithium secondary battery (claim 10).

また、本発明の更に別の趣旨は、リチウムを吸蔵・放出可能な正極及び負極と、リチウム塩を含有する非水電解質とを少なくとも備えたリチウム二次電池であって、該正極が上述のリチウム二次電池用正極であることを特徴とする、リチウム二次電池に存する(請求項11)。 Still another object of the present invention is a lithium secondary battery comprising at least a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a lithium salt, wherein the positive electrode is the above-described lithium It exists in the lithium secondary battery characterized by being a positive electrode for secondary batteries (Claim 11 ).

本発明のリチウムニッケルマンガン系複合酸化物粉体は、リチウム二次電池正極材料として用いた場合に、電池性能の向上を図りつつ、同時に塩基性(pH)の上昇を抑えることができる。よって、安価で電池性能に優れるとともに、安全性や保存性にも優れたリチウム二次電池が提供される。   When the lithium nickel manganese based composite oxide powder of the present invention is used as a positive electrode material for a lithium secondary battery, it can suppress an increase in basicity (pH) while improving battery performance. Therefore, a lithium secondary battery that is inexpensive and excellent in battery performance, as well as in safety and storage stability is provided.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、本発明はこれらの説明の内容に特定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is specified by the contents of these descriptions. It is not a thing.

〔I.リチウムニッケルマンガン系複合酸化物粉体〕
本発明のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体(以下、適宜「リチウムニッケルマンガン系複合酸化物粉体」という。)は、下記式(I)で
表わされる組成を有する。
[I. Lithium nickel manganese composite oxide powder)
The lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material of the present invention (hereinafter referred to as “lithium nickel manganese based composite oxide powder” as appropriate) has a composition represented by the following formula (I). .

Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦
0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y and z are 0.20 ≦ x ≦ 0.55 and 0.20 ≦ y ≦, respectively.
It represents a number satisfying 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0.55. )

式(I)において、xの値は、通常0.20以上、好ましくは0.25以上、より好ま
しくは0.30以上、最も好ましくは0.325以上であり、また、通常0.55以下、好ましくは0.50以下、より好ましくは0.45以下、最も好ましくは0.425以下である。この範囲の下限を下回ると電池容量が低くなる虞があり、この範囲の上限を超えると安全性が低下しやすくなる。
In the formula (I), the value of x is usually 0.20 or more, preferably 0.25 or more, more preferably 0.30 or more, most preferably 0.325 or more, and usually 0.55 or less, Preferably it is 0.50 or less, more preferably 0.45 or less, and most preferably 0.425 or less. If the lower limit of this range is not reached, the battery capacity may be reduced, and if the upper limit of this range is exceeded, the safety tends to decrease.

yの値は、通常0.20以上、好ましくは0.25以上、より好ましくは0.30以上、最も好ましくは0.325以上であり、また、通常0.60以下、好ましくは0.55以下、より好ましくは0.50以下、最も好ましくは0.475以下である。この範囲の下限を下回ると、貯蔵安定性が低下して劣化しやすくなり、この範囲の上限を超えると異相が生成しやすくなったり、電池性能の低下を招きやすくなる。   The value of y is usually 0.20 or more, preferably 0.25 or more, more preferably 0.30 or more, most preferably 0.325 or more, and usually 0.60 or less, preferably 0.55 or less. More preferably, it is 0.50 or less, and most preferably 0.475 or less. Below the lower limit of this range, the storage stability tends to be degraded and deteriorated, and when the upper limit of this range is exceeded, heterogeneous phases are likely to be generated and battery performance is likely to be degraded.

x+yの値は、通常0.50以上、好ましくは0.55以上、より好ましくは0.60以上、最も好ましくは0.65以上であり、また、1以下、好ましくは0.95以下、より好ましくは0.90以下、最も好ましくは0.85以下である。この値は低い方が電池性能が向上するので好ましいが、この範囲の下限を下回ると、電池とした時の安全性が損なわれる虞がある。   The value of x + y is usually 0.50 or more, preferably 0.55 or more, more preferably 0.60 or more, most preferably 0.65 or more, and 1 or less, preferably 0.95 or less, more preferably Is 0.90 or less, and most preferably 0.85 or less. A lower value is preferable because the battery performance is improved, but if the value is below the lower limit of this range, the safety of the battery may be impaired.

zの値は、通常0.02以上、好ましくは0.03以上、より好ましくは0.04以上、更に好ましくは0.05以上、最も好ましくは0.06以上であり、また、通常0.55以下、好ましくは0.45以下、より好ましくは0.30以下、最も好ましくは0.15以下である。この範囲の下限を下回ると導電性が低下する虞があり、この範囲の上限を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これを使用したリチウム二次電池の性能低下を招く虞がある。   The value of z is usually 0.02 or more, preferably 0.03 or more, more preferably 0.04 or more, still more preferably 0.05 or more, most preferably 0.06 or more, and usually 0.55. In the following, it is preferably 0.45 or less, more preferably 0.30 or less, and most preferably 0.15 or less. If the lower limit of this range is not reached, the conductivity may decrease, and if the upper limit of this range is exceeded, the amount of substitution with transition metal sites becomes too large and the battery capacity becomes low. There is a risk of performance degradation.

上記式(I)の組成範囲において、Li/(Ni+Mn+Co)モル比が定比である1
に近い程pH値が低くなるが、一方で電池とした時のレート特性や出力特性も低くなってしまうという傾向が見られ、逆にLi/(Ni+Mn+Co)モル比が定比より大きくなる程電池とした時のレート特性や出力特性は高くなるが、一方でpH値も高くなってしまうという傾向が見られる。本発明は、とりわけこの相反する傾向を打破すべく鋭意検討を行なった結果、完成されたものであり、上述の様にLi/(Ni+Mn+Co)モル比を定比より大きくしつつも、後述の様に硫黄成分を所定の濃度で含有させることにより、pH値を低減させることが可能である。
In the composition range of the above formula (I), the Li / (Ni + Mn + Co) molar ratio is a constant ratio.
The pH value becomes lower as the value becomes closer to the value, but on the other hand, there is a tendency that the rate characteristic and output characteristic when the battery is used are also lowered, and conversely, the battery becomes higher as the Li / (Ni + Mn + Co) molar ratio becomes larger than the constant ratio. However, there is a tendency that the pH value is also increased. The present invention has been completed as a result of intensive studies to overcome this contradictory tendency, and as described above, the Li / (Ni + Mn + Co) molar ratio is larger than the constant ratio as described above. It is possible to reduce the pH value by containing a sulfur component at a predetermined concentration.

なお、式(I)において、酸素量の原子比は便宜上2と記載しているが、多少の不定比
性があってもよい。
In the formula (I), the atomic ratio of the oxygen amount is described as 2 for convenience, but there may be some non-stoichiometry.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体は、その構造内に置換元素Mが導入されても良い。置換元素Mとしては、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn、Nb、Zr、Mo、W、及びSnからなる群より選択される、一種又は二種以上の元素が挙げられる。置換元素Mの含有濃度は特に制限されないが、通常5量%以下、好ましくは3量%以下、更に好ましくは2量%以下である。この範囲を上回ると、充放電容量等の電池性能が低下する虞がある。 Moreover, the substitutional element M may be introduced into the structure of the lithium nickel manganese based composite oxide powder of the present invention. Examples of the substitution element M include one or more elements selected from the group consisting of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, Zr, Mo, W, and Sn. . Although concentration of the substitutional element M is not particularly limited, usually 5 mass% or less, preferably 3 mass% or less, still more preferably not more than 2 mass%. If this range is exceeded, battery performance such as charge / discharge capacity may be reduced.

本発明のリチウムニッケルマンガン系複合酸化物粉体は、含有硫黄濃度(この値を以下、適宜「S値」という。)が0.06量%以上、0.35量%以下であることを特徴とする。中でも、その下限は、好ましくは0.10量%以上、更に好ましくは0.15量%以上、最も好ましくは0.18量%以上であり、また、その上限は、好ましくは0.30量%以下、更に好ましくは0.25量%以下、最も好ましくは0.23量%以下である。この範囲の下限を下回ると、電池とした時のガス発生による膨れが増大したり、安全性が低下する虞があり、この範囲の上限を上回ると、充放電容量等の電池性能が低下する虞がある。 It complex oxide powder of the present invention, the content of sulfur concentration (this value or less, suitably referred to as "S value".) 0.06 mass% or more, 0.35 mass% or less It is characterized by. Among them, the lower limit is preferably 0.10 mass% or more, more preferably 0.15 mass% or more, most preferably 0.18 mass% or more, and the upper limit thereof is preferably 0. 30 mass% or less, more preferably 0.25 mass% or less, and most preferably not more than 0.23 mass%. If the lower limit of this range is not reached, there may be an increase in blistering due to gas generation when the battery is made or the safety may be reduced. If the upper limit of this range is exceeded, battery performance such as charge / discharge capacity may be reduced. There is.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体は、特に安全性及び貯蔵安定性向上の観点から、Mn/Ni原子比率を表わすy/xの値が、通常0.95以上、好ましくは1以上、また、電池容量の観点から、通常1.5以下、中でも1.3以下、更には1.1以下の範囲であることが好ましい。   In addition, the lithium nickel manganese composite oxide powder of the present invention has a y / x value representing an Mn / Ni atomic ratio of usually 0.95 or more, particularly from the viewpoint of improving safety and storage stability. From the viewpoint of battery capacity, it is usually 1.5 or less, preferably 1.3 or less, and more preferably 1.1 or less.

本発明のリチウムニッケルマンガン系複合酸化物粉体において、含有硫黄成分の存在形態は特に制限されないが、硫酸塩の形態で存在していることが好ましい。特に、後述の製造方法(本発明の製造方法)により製造したリチウムニッケルマンガン系複合酸化物粉体について、後述の硫黄分析により求めた含有硫黄濃度から、当該硫黄を全て硫酸イオン由来と仮定した数値と、イオンクロマトグラフィーにより分析した硫酸イオン濃度とがよく一致することから、本発明のリチウムニッケルマンガン系複合酸化物粉体中の硫黄は、概ね硫酸塩として存在すると考えられ、従ってS値は、特に硫酸塩化合物の含有量についての情報を示すものとみなすことができる。   In the lithium nickel manganese composite oxide powder of the present invention, the presence form of the contained sulfur component is not particularly limited, but it is preferably present in the form of a sulfate. In particular, for the lithium nickel manganese based composite oxide powder produced by the production method described later (the production method of the present invention), a numerical value assuming that all the sulfur is derived from sulfate ions from the contained sulfur concentration obtained by sulfur analysis described later. And the sulfate ion concentration analyzed by ion chromatography agree well, it is considered that the sulfur in the lithium nickel manganese composite oxide powder of the present invention is generally present as a sulfate, and therefore the S value is In particular, it can be regarded as indicating information about the content of sulfate compounds.

硫酸塩化合物を含有するリチウムニッケルマンガン系複合酸化物粉体を得るには、活物質原料の一部として硫酸塩化合物を用いてもよいし、これとは別に硫酸塩化合物を加えてもよい。また、焼成反応によって硫酸塩を生成する化合物を用いてもよい。硫酸塩化合物を導入する方法は限定されないが、活物質原料を混合する段階で加えるのが好ましい。   In order to obtain a lithium nickel manganese composite oxide powder containing a sulfate compound, a sulfate compound may be used as part of the active material raw material, or a sulfate compound may be added separately. Moreover, you may use the compound which produces | generates a sulfate by baking reaction. The method for introducing the sulfate compound is not limited, but it is preferably added at the stage of mixing the active material raw materials.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体は、含有炭素濃度(この値を以下、適宜「C値」という。)が、通常0.012量%以下、好ましくは0.010量%以下、更に好ましくは0.008量%以下である。この上限を超えると、電池とした時のガス発生による膨れが増大したり、電池性能が低下する虞がある。 Moreover, the complex oxide powder of the present invention, the carbon concentration (this value or less, as "C value" hereinafter.) Is usually 0.012 mass% or less, preferably 0.010 quality the amount%, more preferably not more than 0.008 mass%. When this upper limit is exceeded, there is a possibility that swelling due to gas generation when the battery is produced increases or battery performance deteriorates.

後述の製造方法(本発明の製造方法)により製造したリチウムニッケルマンガン系複合酸化物粉体について、後述の炭素分析により求めた含有炭素濃度から、当該炭素を全て炭酸イオン由来と仮定した数値と、イオンクロマトグラフィーにより分析した炭酸イオン濃度とがよく一致することから、本発明のリチウムニッケルマンガン系複合酸化物粉体中の炭素は概ね炭酸塩として存在すると考えられ、従って、C値は、炭酸化合物、特に炭酸リチウムの付着量についての情報を示すものとみなすことができる。   For the lithium nickel manganese composite oxide powder produced by the production method described later (the production method of the present invention), from the contained carbon concentration determined by the carbon analysis described later, a numerical value assuming that all the carbon is derived from carbonate ions, Since the carbonate ion concentration analyzed by ion chromatography is in good agreement, it is considered that the carbon in the lithium nickel manganese composite oxide powder of the present invention is generally present as a carbonate. In particular, it can be regarded as indicating information about the amount of lithium carbonate deposited.

なお、リチウムニッケルマンガン系複合酸化物粉体のS値及びC値は、例えば、後述の実施例の欄で示す測定方法、即ち、酸素気流中燃焼(高周波加熱炉式)−赤外吸収法による測定で求めることができる。   The S value and C value of the lithium nickel manganese based composite oxide powder are determined by, for example, the measurement method shown in the column of Examples described later, that is, combustion in an oxygen stream (high-frequency heating furnace type) -infrared absorption method. It can be determined by measurement.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体を40MPaの圧力で圧密した時の体積抵抗率の値は、通常5×105Ω・cm以下、好ましくは2×105Ω・cm以下、より好ましくは1×105Ω・cm以下、特に好ましくは2×104Ω・cm以下である。体積抵抗率がこの上限を超えると、電池とした時のレート特性や低温特性などが低下する虞がある。体積抵抗率の下限は、通常5×101Ω・cm以上、好ましくは1×102Ω・cm以上、更に好ましくは5×102Ω・cm以上、最も好ましくは1×103Ω・cm以上である。体積抵抗率がこの下限を下回ると、電池とした時の安全性などが低下する虞がある。 The volume resistivity value when the lithium nickel manganese composite oxide powder of the present invention is compacted at a pressure of 40 MPa is usually 5 × 10 5 Ω · cm or less, preferably 2 × 10 5 Ω · cm or less. More preferably, it is 1 × 10 5 Ω · cm or less, and particularly preferably 2 × 10 4 Ω · cm or less. When the volume resistivity exceeds this upper limit, there is a possibility that rate characteristics and low-temperature characteristics as a battery may be deteriorated. The lower limit of the volume resistivity is usually 5 × 10 1 Ω · cm or more, preferably 1 × 10 2 Ω · cm or more, more preferably 5 × 10 2 Ω · cm or more, and most preferably 1 × 10 3 Ω · cm. That's it. If the volume resistivity is below this lower limit, the safety of the battery may be reduced.

なお、本発明において、リチウムニッケルマンガン系複合酸化物粉体を40MPaの圧力で圧密した時の体積抵抗率は、公知の粉体抵抗率測定装置(例えば、ダイアインスツルメンツ社製:ロレスターGP粉体抵抗率測定システム)を用い、例えば、後述の実施例の項で示す測定条件に基づいて測定することができる。   In the present invention, the volume resistivity when the lithium nickel manganese composite oxide powder is compacted at a pressure of 40 MPa is a known powder resistivity measuring device (for example, Lorester GP powder resistance manufactured by Dia Instruments Co., Ltd.). For example, measurement can be performed based on the measurement conditions shown in the section of Examples described later.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体は、通常は一次粒子が凝集して二次粒子を形成した形態を有する。なお、リチウムニッケルマンガン系複合酸化物粉体がこの様な形態を有することは、例えばSEM(走査電子顕微鏡)観察や断面SEM観察により確認することができる。   The lithium nickel manganese composite oxide powder of the present invention usually has a form in which primary particles are aggregated to form secondary particles. In addition, it can confirm that lithium nickel manganese type complex oxide powder has such a form by SEM (scanning electron microscope) observation or cross-sectional SEM observation, for example.

本発明のリチウムニッケルマンガン系複合酸化物粉体の嵩密度は、通常1.5g/cm3以上、好ましくは1.7g/cm3以上、より好ましくは1.9g/cm3以上、最も好ましくは2.0g/cm3以上である。この下限を下回ると、粉体充填性や電極調製に悪影響を及ぼし、また、これを活物質とする正極は単位容積当たりの容量密度が小さくなりすぎて好ましくない。また、嵩密度の上限は、通常3g/cm3以下、好ましくは2.8g/cm3以下、より好ましくは2.6g/cm3以下である。嵩密度がこの上限を上回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる虞があり、電池性能が低下するため好ましくない。 The bulk density of the lithium nickel manganese based composite oxide powder of the present invention is usually 1.5 g / cm 3 or more, preferably 1.7 g / cm 3 or more, more preferably 1.9 g / cm 3 or more, most preferably 2.0 g / cm 3 or more. Below this lower limit, powder filling properties and electrode preparation are adversely affected, and a positive electrode using this as an active material is not preferable because the capacity density per unit volume becomes too small. Further, the upper limit of the bulk density is usually 3 g / cm 3 or less, preferably 2.8 g / cm 3 or less, more preferably 2.6 g / cm 3 or less. While it is preferable for the bulk density to exceed this upper limit, it is preferable for improving powder filling properties and electrode density. On the other hand, the specific surface area may become too low, which is not preferable because battery performance deteriorates.

本発明のリチウムニッケルマンガン系複合酸化物粉体の平均一次粒子径は、通常0.1μm以上、好ましくは0.2μm以上、更に好ましくは0.3μm以上、最も好ましくは0.4μm以上で、通常3μm以下、好ましくは2μm以下、さらに好ましくは1.5μm以下、最も好ましくは1.0μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、レート特性や出力特性等の電池性能が低下する可能性が高くなるため好ましくない。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる虞があるため好ましくない。   The average primary particle diameter of the lithium nickel manganese composite oxide powder of the present invention is usually 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and most preferably 0.4 μm or more. It is 3 μm or less, preferably 2 μm or less, more preferably 1.5 μm or less, and most preferably 1.0 μm or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, and the specific surface area is greatly reduced, so there is a high possibility that the battery performance such as rate characteristics and output characteristics will deteriorate. Therefore, it is not preferable. Below the lower limit, the crystal is undeveloped, which may cause problems such as poor reversibility of charge / discharge, which is not preferable.

本発明のリチウムニッケルマンガン系複合酸化物粉体の二次粒子のメジアン径は、通常3μm以上、好ましくは5μm以上、より好ましくは9μm以上、最も好ましくは10μm以上であり、また、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。この範囲の下限を下回ると、高嵩密度品が得られなくなる虞があり、この範囲の上限を超えると、電池性能の低下を来したり、正極活物質層形成時の塗布性に問題を生ずる虞があるため好ましくない。   The median diameter of the secondary particles of the lithium nickel manganese based composite oxide powder of the present invention is usually 3 μm or more, preferably 5 μm or more, more preferably 9 μm or more, most preferably 10 μm or more, and usually 20 μm or less. It is preferably 18 μm or less, more preferably 16 μm or less, and most preferably 15 μm or less. If the lower limit of the range is not reached, a high bulk density product may not be obtained. If the upper limit of the range is exceeded, battery performance may be deteriorated or the coatability at the time of forming the positive electrode active material layer may be problematic. Since there is a possibility, it is not preferable.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体の二次粒子の90%積算径(D90)は、通常30μm以下、好ましくは26μm以下、より好ましくは23μm以下、最も好ましくは20μm以下であり、また、通常5μm以上、好ましくは8μm以上、より好ましくは12μm以上、最も好ましくは15μm以上である。この範囲の上限を超えると、電池性能の低下を来したり、正極活物質層形成時の塗布性に問題が生ずる虞があり、この範囲の下限を下回ると、高嵩密度品が得られなくなる虞があるため好ましくない。なお、ここで規定する二次粒子の90%積算径(D90)は、屈折率1.24で設定した場合の値である。 The 90% cumulative diameter (D 90 ) of the secondary particles of the lithium nickel manganese composite oxide powder of the present invention is usually 30 μm or less, preferably 26 μm or less, more preferably 23 μm or less, and most preferably 20 μm or less. In addition, it is usually 5 μm or more, preferably 8 μm or more, more preferably 12 μm or more, and most preferably 15 μm or more. If the upper limit of this range is exceeded, battery performance may be deteriorated, and there may be a problem in applicability during the formation of the positive electrode active material layer. If the lower limit of this range is exceeded, high bulk density products cannot be obtained. This is not preferable because there is a fear. The 90% cumulative diameter (D 90 ) of the secondary particles defined here is a value when set at a refractive index of 1.24.

また、本発明のリチウムニッケルマンガン系複合酸化物粉体のBET比表面積は、通常0.2m2/g以上、好ましくは0.3m2/g以上、更に好ましくは0.4m2/g以上であり、また、通常1.5m2/g以下、好ましくは1.2m2/g以下、更に好ましくは0.9m2/g以下、最も好ましくは0.6m2/g以下である。BET比表面積がこの範囲の下限を下回ると、電池性能が低下しやすく、この範囲の上限を超えると、嵩密度が上がりにくくなったり、正極活物質形成時の塗布性に問題が発生しやすい。 The BET specific surface area of the lithium nickel manganese composite oxide powder of the present invention is usually 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more. In addition, it is usually 1.5 m 2 / g or less, preferably 1.2 m 2 / g or less, more preferably 0.9 m 2 / g or less, and most preferably 0.6 m 2 / g or less. When the BET specific surface area is less than the lower limit of this range, the battery performance is likely to deteriorate. When the BET specific surface area exceeds the upper limit of this range, the bulk density is difficult to increase or a problem is likely to occur in the coating property when forming the positive electrode active material.

なお、リチウムニッケルマンガン系複合酸化物粉体の嵩密度は、例えば、試料10〜11gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした場合の粉体充填密度(タップ密度)として求めることができる。また、平均一次粒子径は、例えば、30000倍で観察したSEM画像より求めることができる。また、二次粒子のメジアン径は、公知のレーザー回折/散乱式粒度分布測定装置を用いて、例えば屈折率1.24を設定し、粒子径基準を体積基準として測定することができる。具体的には、測定の際の分散媒として0.1量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定を行なうことができる。また、比表面積は、窒素吸着法を利用した公知のBET比表面積の測定法により測定することができる。 The bulk density of the lithium nickel manganese composite oxide powder is, for example, a powder packing density (tap density) when 10 to 11 g of a sample is placed in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm. Can be obtained as Moreover, an average primary particle diameter can be calculated | required from the SEM image observed by 30000 times, for example. The median diameter of the secondary particles can be measured using a known laser diffraction / scattering particle size distribution measuring device, for example, by setting a refractive index of 1.24 and using the particle diameter reference as a volume reference. Specifically, using a 0.1 mass% aqueous solution of sodium hexametaphosphate as a dispersion medium during measurement, it can be measured after ultrasonic dispersion for 5 minutes. The specific surface area can be measured by a known BET specific surface area measurement method using a nitrogen adsorption method.

ここで、上記特許文献1〜3に記載の技術と本発明との相違点について説明する。
特許文献1に記載の技術では、上述の様に、リチウム比率の増加に従って塩基性(pH)が高まり、それに伴うガス発生等の課題を有していたが、塩基性(pH)を低減させるための手段が講じられておらず、本発明の塩基性(pH)低減及び電池性能改善のための要件である含有硫黄濃度に関する記載も無い。また、不純物構成成分として副反応をひき起こしたり、正極活物質の表面や粒界に存在し、リチウムイオンの吸蔵・放出反応を阻害する等して電池性能に影響を与える含有炭素濃度についての記載もなく、含有硫黄濃度や体積抵抗率、含有炭素濃度の電池性能への影響についての認識は全くない。
Here, the difference between the technology described in Patent Documents 1 to 3 and the present invention will be described.
In the technique described in Patent Document 1, as described above, the basicity (pH) increases as the lithium ratio increases, and there are problems such as gas generation associated therewith. However, in order to reduce the basicity (pH). No measures are taken, and there is no description regarding the concentration of contained sulfur, which is a requirement for reducing basicity (pH) and improving battery performance of the present invention. Also, a description of the carbon content that affects battery performance by causing side reactions as impurity constituents, or existing on the surface or grain boundary of the positive electrode active material and inhibiting lithium ion storage / release reactions. There is no recognition of the influence of the contained sulfur concentration, volume resistivity, and contained carbon concentration on battery performance.

また、特許文献2記載の技術では、Li比率が1に限定されており、本発明における組成の範囲を満たしていない。その結果、得られるリチウム二次電池の電池性能が不十分である。また、この文献には塩基性(pH)を低減させる目的で硫黄分を加えるという概念が開示されていない。この文献に規定されたリチウム比率は上述の様に本発明よりも低く、そのため、本発明が前提とする塩基性(pH)の上昇という課題は生じ得ない。   In the technique described in Patent Document 2, the Li ratio is limited to 1, which does not satisfy the composition range of the present invention. As a result, the battery performance of the obtained lithium secondary battery is insufficient. Further, this document does not disclose the concept of adding a sulfur component for the purpose of reducing basicity (pH). As described above, the lithium ratio defined in this document is lower than that of the present invention, and therefore, the problem of increase in basicity (pH) that the present invention is based on cannot be generated.

また、特許文献3記載の技術では、実施例の正極活物質として、硫黄分を含んだLi1.05Ni0.42Mn0.532が用いられている。しかしながら、この正極活物質の含有硫黄濃
度を量%換算すると0.05量%となって、本発明の規定する濃度範囲に満たない。含有硫黄濃度がこの範囲では、上述の様に、塩基性(pH)の低減効果を発揮させることは困難である。
In the technique described in Patent Document 3, Li 1.05 Ni 0.42 Mn 0.53 O 2 containing a sulfur content is used as the positive electrode active material in the examples. However, this content sulfur concentration of the positive electrode active material made in terms mass% and 0.05 mass%, less than the density range defined in the present invention. When the contained sulfur concentration is within this range, it is difficult to exert the basicity (pH) reduction effect as described above.

これらに対して、本発明では、上述の所定範囲の組成比(ニッケル/マンガン/コバルト比率)を有するリチウムニッケルマンガン系複合酸化物において、リチウム/遷移金属(ニッケル、マンガン、コバルト)の原子比率を1よりも高い所定の範囲内に設定するとともに、所定濃度の硫黄成分(好ましくは硫酸塩)を並存させている。これによって、低コスト化や電池性能の向上を図りつつ、同時に塩基性(pH)の上昇を抑え、安全性や保存性の向上をも達成することが可能になっている。   On the other hand, in the present invention, in the lithium nickel manganese composite oxide having the composition ratio (nickel / manganese / cobalt ratio) in the predetermined range, the atomic ratio of lithium / transition metal (nickel, manganese, cobalt) is changed. While being set within a predetermined range higher than 1, a sulfur component (preferably sulfate) having a predetermined concentration coexists. As a result, it is possible to reduce the cost and improve the battery performance, and at the same time, suppress the increase in basicity (pH) and achieve the improvement of safety and storage stability.

なお、従来のリチウム二次電池に関する技術文献の中にも、正極材料に硫黄分を含有させることを開示しているものがある。以下にそれらの文献の例を挙げる。
・特開平07−014572号公報
・特許第3443224号公報
・特開平09−245787号公報
・特開平09−283118号公報
・特許第3421510号公報
・特許第3315910号公報
・特開2000−021402号公報
・特開2000−215895号公報
・特開2002−015739号公報
・特開2004−014296号公報
In addition, some technical documents relating to conventional lithium secondary batteries disclose that a positive electrode material contains a sulfur content. Examples of those documents are given below.
・ Japanese Patent Laid-Open No. 07-014572, Japanese Patent No. 3444324, Japanese Patent Laid-Open No. 09-245787, Japanese Patent Laid-Open No. 09-283118, Japanese Patent No. 3421510, Japanese Patent No. 3315910, Japanese Patent Laid-Open No. 2000-021402 -JP2000-215895A-JP2002-015739A-JP2004-014296A

しかしながら、これらの文献に記載の技術は、何れもその正極活物質の組成又は結晶構造が本発明のリチウムニッケルマンガン系複合酸化物粉体とは異なっている。加えて、これらの文献には、塩基性(pH)の低減についても言及されていない。   However, all of the techniques described in these documents differ from the lithium nickel manganese composite oxide powder of the present invention in the composition or crystal structure of the positive electrode active material. In addition, these references do not mention reduction of basicity (pH).

〔II.リチウムニッケルマンガン系複合酸化物の製造方法〕
本発明のリチウムニッケルマンガン系複合酸化物粉体は、特定の製法に限定されるものではないが、例えば、ニッケル化合物、マンガン化合物、必要に応じて用いられるコバルト化合物、硫酸塩化合物を液体媒体中に分散させたスラリーを噴霧乾燥後、リチウム化合物と混合し、該混合物を焼成して製造することができる。この製造方法(以下、適宜「本発明のリチウムニッケルマンガン系複合酸化物粉体の製造方法」或いは単に「本発明の製造方法」という。)について、以下、詳細に説明する。
[II. Method for producing lithium nickel manganese composite oxide]
The lithium nickel manganese composite oxide powder of the present invention is not limited to a specific production method. For example, a nickel compound, a manganese compound, a cobalt compound used as necessary, and a sulfate compound in a liquid medium. The slurry dispersed in can be spray-dried, mixed with a lithium compound, and the mixture can be fired to produce. Hereinafter, this production method (hereinafter referred to as “the production method of the lithium nickel manganese composite oxide powder of the present invention” or simply “the production method of the present invention”) will be described in detail.

本発明の製造方法により、リチウムニッケルマンガン系複合酸化物を製造するに当たり、スラリーの調製に用いる原料化合物のうち、ニッケル化合物としては、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2O、Ni(NO32・6H2O、NiSO4、NiSO4・6H2O、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にNOX等の有害物質を発生させない点で、窒素原子や硫黄原子を含有しない、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2Oのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる観点、及び反応性が高いという観点から、特に好ましいのはNi(OH)2、NiO、NiOOHである。これらのニッケル化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 Among the raw material compounds used for the preparation of the slurry in producing the lithium nickel manganese composite oxide by the production method of the present invention, the nickel compounds include Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH ) 2 · 4H 2 O, NiC 2 O 4 · 2H 2 O, Ni (NO 3 ) 2 · 6H 2 O, NiSO 4 , NiSO 4 · 6H 2 O, fatty acid nickel, nickel halide and the like. Among these, Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 , which does not contain nitrogen atoms or sulfur atoms, does not generate harmful substances such as NO x during the firing process. Nickel compounds such as O and NiC 2 O 4 .2H 2 O are preferred. Further, Ni (OH) 2 , NiO, and NiOOH are particularly preferable from the viewpoint of being available as an industrial raw material at a low cost and having a high reactivity. These nickel compounds may be used individually by 1 type, and may use 2 or more types together.

また、マンガン化合物としてはMn23、MnO2、Mn34等のマンガン酸化物、MnCO3、Mn(NO32、MnSO4、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO2、Mn23、Mn34は、焼成処理の際にNOX、CO2等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。これらのマンガン化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 As manganese compounds, manganese oxides such as Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, manganese fatty acid And manganese salts such as oxyhydroxide, manganese chloride and the like. Among these manganese compounds, MnO 2 , Mn 2 O 3 , and Mn 3 O 4 are preferable because they do not generate NO X , CO 2, and other gases during the firing process and can be obtained at low cost as industrial raw materials. These manganese compounds may be used individually by 1 type, and may use 2 or more types together.

また、コバルト化合物としては、Co(OH)2、CoOOH、CoO、Co23、Co34、Co(OCOCH32・4H2O、CoCl2、Co(NO32・6H2O、Co(SO42・7H2O等が挙げられる。中でも、焼成工程の際にNOX等の有害物質を発生させない点で、Co(OH)2、CoOOH、CoO、Co23、Co34が好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点でCo(OH)2、CoOOHである。これらのコバルト化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 Cobalt compounds include Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , Co 3 O 4 , Co (OCOCH 3 ) 2 .4H 2 O, CoCl 2 , Co (NO 3 ) 2 .6H 2. O, Co (SO 4 ) 2 · 7H 2 O, and the like. Among them, Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , and Co 3 O 4 are preferable in terms of not generating harmful substances such as NO x during the firing process, and more preferably industrially inexpensive. Co (OH) 2 and CoOOH are available and have high reactivity. These cobalt compounds may be used individually by 1 type, and may use 2 or more types together.

また、硫酸塩化合物としては、無機塩では、ZnSO4、(NH42Zn(SO42、Al2(SO43、(SbO)2・SO4、Sb2(SO43、(NH42SO4、Al(NH4)(SO42、Na(NH4)SO4、Y2(SO43、(NH4)Y(SO42、K3Y(SO43、NaY(SO42、Ir2(SO43、Ir(SO42、CsIr(SO42、In2(SO43、In(NH4)(SO42、CsIn(SO42、CdSO4、Cd2(NH42(SO43、Cd(NH42(SO42、K2SO4、Ga2(SO43、AlK(SO42、Ga(NH4)(SO42、IrK(SO42、IrK3(SO43、CdK2(SO42、GdK(SO42、GaK(SO42、CaK2(SO42、CrK(SO42、CoK2(SO43、CoK(SO42、CsGa(SO42、CeK(SO42、CeK4(SO44、FeK2(SO42、FeK(SO42、CuK2(SO42、K2Ni(SO42、K2Mg(SO42、K2Mg2(SO43、K2Mn(SO42、KMn(SO42、CaSO4、Ag2SO4、Au2(SO43、CrSO4、Cr2(SO43、Cr(NH4)(SO42、Cr(NH43(SO43、CrCs(SO42、CoSO4、Co2(SO43、Co(NH42(SO42、Co(NH4)(SO42、CoCs(SO42、Zr(SO42、Zr(OH)2(SO4)、Zr2(OH)2(SO43、NH4HSO4、(NO)HSO4、KHSO4、Ca(HSO42、Sr(HSO42、CsHSO4、NaHSO4、Ba(HSO42、(NH3OH)HSO4、Mg(HSO42、LiHSO4、RbHSO4、Sc2(SO43、KSc(SO42、SnSO4、Sn(SO42、SrSO4、Cs2SO4、AlCs(SO42、Ce2(SO43、Ce(SO42、(NH4)Ce(SO42、(NH44Ce(SO44、Ta2(SO45、TiO(SO4)、Ti2(SO43、Ti(SO42、(NH4)Ti3(SO45、CsTi(SO42、FeSO4、Fe2(SO43、FeSO4・Fe2(SO43、Cs2Fe(SO42、CsFe(SO42、(NH42Fe(SO42、Fe(NH4)(SO42、Fe(NH43(SO43、Fe(NH3OH)(SO42、Cu2SO4、CuSO4、Cu(NH42(SO42、Cs2Cu(SO42、Th(SO42、Na2SO4、AlNa(SO42、K3Na(SO42、CaNa2(SO42、Na3Sc(SO43、NaCe(SO42、CuNa2(SO42、Na2Ni(SO42、MgNa2(SO42、MnNa2(SO42、PbSO4、Pb(SO42、Nb63(SO48、Nb2O(SO44、NiSO4、Cs2Ni(SO42、(NH42Ni(SO42、Pt(SO42、VSO4、V2(SO43、V(SO42、K2V(SO42、KV(SO42、CsV(SO42、Rb2V(SO42、RbV(SO42、VO(SO4)、(NH42V(SO42、(NH4)V(SO42、Hf(SO42、PdSO4、BaSO4、Bi2(SO43、(N25)HSO4、(N252SO4、Al(N25)(SO42、Cr(N25)(SO42、(NH3OH)2SO4、Al(NH3OH)(SO42、Ga(NH3OH)(SO42、Cr(NH3OH)(SO42、(NH4)Pr(SO42、K3Pr(SO43、BeSO4、MgSO4、Mg(NH42(SO42、Cs2Mg(SO42、MnSO4、Mn2(SO43、Mn(SO42、Cs2Mn(SO42、CsMn(SO42、Mn(NH42(SO42、Mn(NH4)(SO42、CsMo(SO42、EuSO4、Eu2(SO43、La2(SO43、Li2SO4、Ru(SO42、Rb2SO4、AlRb(SO42、IrRb(SO42、GaRb(SO42、CrRb2(SO42、CrRb(SO42、CoRb2(SO42、FeRb2(SO42、FeRb(SO42、MgRb2(SO42、MnRb2(SO42、MnRb(SO42、Rh2(SO43、KRh(SO42、CsRh(SO42、及びこれらの水和物等が挙げられる。有機塩では、硫酸水素テトラブチルアンモニウム、トリフルオロメタンスルホン酸、1−ナフチルアミン−2−スルホン酸、1−ナフチルアミン−5−スルホン酸、1−ナフトール−3,6−ジスルホン酸、p−ブロモベンゼンスルホン酸、p−アニリンスルホン酸、o−キシレン−4−スルホン酸、ジメチルスルホン、o−スルホ安息香酸、5−スルホサリチル酸等が挙げられる。これらの硫酸塩化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 Moreover, as a sulfate compound, as an inorganic salt, ZnSO 4 , (NH 4 ) 2 Zn (SO 4 ) 2 , Al 2 (SO 4 ) 3 , (SbO) 2 .SO 4 , Sb 2 (SO 4 ) 3 , (NH 4 ) 2 SO 4 , Al (NH 4 ) (SO 4 ) 2 , Na (NH 4 ) SO 4 , Y 2 (SO 4 ) 3 , (NH 4 ) Y (SO 4 ) 2 , K 3 Y (SO 4 ) 3 , NaY (SO 4 ) 2 , Ir 2 (SO 4 ) 3 , Ir (SO 4 ) 2 , CsIr (SO 4 ) 2 , In 2 (SO 4 ) 3 , In (NH 4 ) (SO 4) 2, CsIn (SO 4 ) 2, CdSO 4, Cd 2 (NH 4) 2 (SO 4) 3, Cd (NH 4) 2 (SO 4) 2, K 2 SO 4, Ga 2 (SO 4) 3, AlK (SO 4) 2 , Ga (NH 4) (SO 4) 2, IrK (SO 4) 2, IrK 3 (SO 4) 3, CdK 2 (SO 4) 2, GdK (SO 4) 2, aK (SO 4) 2, CaK 2 (SO 4) 2, CrK (SO 4) 2, CoK 2 (SO 4) 3, CoK (SO 4) 2, CsGa (SO 4) 2, CeK (SO 4) 2 , ceK 4 (SO 4) 4 , FeK 2 (SO 4) 2, FeK (SO 4) 2, CuK 2 (SO 4) 2, K 2 Ni (SO 4) 2, K 2 Mg (SO 4) 2, K 2 Mg 2 (SO 4 ) 3 , K 2 Mn (SO 4 ) 2 , KMn (SO 4 ) 2 , CaSO 4 , Ag 2 SO 4 , Au 2 (SO 4 ) 3 , CrSO 4 , Cr 2 (SO 4 ) 3 , Cr (NH 4 ) (SO 4 ) 2 , Cr (NH 4 ) 3 (SO 4 ) 3 , CrCs (SO 4 ) 2 , CoSO 4 , Co 2 (SO 4 ) 3 , Co (NH 4 ) 2 (SO 4 ) 2 , Co (NH 4 ) (SO 4 ) 2 , CoCs (SO 4 ) 2 , Zr (SO 4 ) 2 , Zr (OH) 2 (SO 4 ), Zr 2 (OH ) 2 (SO 4 ) 3 , NH 4 HSO 4 , (NO) HSO 4 , KHSO 4 , Ca (HSO 4 ) 2 , Sr (HSO 4 ) 2 , CsHSO 4 , NaHSO 4 , Ba (HSO 4 ) 2 , ( NH 3 OH) HSO 4 , Mg (HSO 4 ) 2 , LiHSO 4 , RbHSO 4 , Sc 2 (SO 4 ) 3 , KSc (SO 4 ) 2 , SnSO 4 , Sn (SO 4 ) 2 , SrSO 4 , Cs 2 SO 4 , AlCs (SO 4 ) 2 , Ce 2 (SO 4 ) 3 , Ce (SO 4 ) 2 , (NH 4 ) Ce (SO 4 ) 2 , (NH 4 ) 4 Ce (SO 4 ) 4 , Ta 2 (SO 4 ) 5 , TiO (SO 4 ), Ti 2 (SO 4 ) 3 , Ti (SO 4 ) 2 , (NH 4 ) Ti 3 (SO 4 ) 5 , CsTi (SO 4 ) 2 , FeSO 4 , Fe 2 (SO 4) 3, FeSO 4 · Fe 2 (SO 4) 3, Cs 2 Fe (SO 4) 2, CsFe (S 4) 2, (NH 4) 2 Fe (SO 4) 2, Fe (NH 4) (SO 4) 2, Fe (NH 4) 3 (SO 4) 3, Fe (NH 3 OH) (SO 4) 2 , Cu 2 SO 4 , CuSO 4 , Cu (NH 4 ) 2 (SO 4 ) 2 , Cs 2 Cu (SO 4 ) 2 , Th (SO 4 ) 2 , Na 2 SO 4 , AlNa (SO 4 ) 2 , K 3 Na (SO 4 ) 2 , CaNa 2 (SO 4 ) 2 , Na 3 Sc (SO 4 ) 3 , NaCe (SO 4 ) 2 , CuNa 2 (SO 4 ) 2 , Na 2 Ni (SO 4 ) 2 , MgNa 2 (SO 4 ) 2 , MnNa 2 (SO 4 ) 2 , PbSO 4 , Pb (SO 4 ) 2 , Nb 6 O 3 (SO 4 ) 8 , Nb 2 O (SO 4 ) 4 , NiSO 4 , Cs 2 Ni (SO 4 ) 2 , (NH 4 ) 2 Ni (SO 4 ) 2 , Pt (SO 4 ) 2 , VSO 4 , V 2 (SO 4 ) 3 , V (SO 4 ) 2 , K 2 V (SO 4 ) 2 , KV (SO 4 ) 2 , CsV (SO 4 ) 2 , Rb 2 V (SO 4 ) 2 , RbV (SO 4 ) 2 , VO (SO 4 ), (NH 4 ) 2 V (SO 4 ) 2 , (NH 4 ) V (SO 4 ) 2 , Hf (SO 4 ) 2 , PdSO 4 , BaSO 4 , Bi 2 (SO 4 ) 3 , (N 2 H 5 ) HSO 4 , (N 2 H 5 ) 2 SO 4 , Al (N 2 H 5 ) (SO 4 ) 2 , Cr (N 2 H 5 ) (SO 4 ) 2 , (NH 3 OH) 2 SO 4 , Al (NH 3 OH) (SO 4 ) 2 , Ga (NH 3 OH) (SO 4 ) 2 , Cr (NH 3 OH) (SO 4 ) 2 , (NH 4 ) Pr (SO 4 ) 2 , K 3 Pr (SO 4 ) 3 , BeSO 4 , MgSO 4 , Mg (NH 4 ) 2 (SO 4 ) 2 , Cs 2 Mg (SO 4 ) 2 , MnSO 4 , Mn 2 (SO 4 ) 3 , Mn (SO 4 ) 2 , Cs 2 Mn (SO 4 ) 2 , CsMn ( SO 4) 2 Mn (NH 4) 2 (SO 4) 2, Mn (NH 4) (SO 4) 2, CsMo (SO 4) 2, EuSO 4, Eu 2 (SO 4) 3, La 2 (SO 4) 3, Li 2 SO 4 , Ru (SO 4 ) 2 , Rb 2 SO 4 , AlRb (SO 4 ) 2 , IrRb (SO 4 ) 2 , GaRb (SO 4 ) 2 , CrRb 2 (SO 4 ) 2 , CrRb (SO 4 ) 2 , CoRb 2 (SO 4 ) 2 , FeRb 2 (SO 4 ) 2 , FeRb (SO 4 ) 2 , MgRb 2 (SO 4 ) 2 , MnRb 2 (SO 4 ) 2 , MnRb (SO 4 ) 2 , Rh 2 (SO 4 ) 3 , KRh (SO 4 ) 2 , CsRh (SO 4 ) 2 , and hydrates thereof. Among organic salts, tetrabutylammonium hydrogen sulfate, trifluoromethanesulfonic acid, 1-naphthylamine-2-sulfonic acid, 1-naphthylamine-5-sulfonic acid, 1-naphthol-3,6-disulfonic acid, p-bromobenzenesulfonic acid , P-anilinesulfonic acid, o-xylene-4-sulfonic acid, dimethylsulfone, o-sulfobenzoic acid, 5-sulfosalicylic acid and the like. These sulfate compounds may be used individually by 1 type, and may use 2 or more types together.

これらの中でも、硫酸塩化合物としては、焼成処理後の含有炭素濃度を極力低減させる点で、炭素原子を含有しない化合物が好ましく、また、焼成工程の際にNH3、NOX等の環境破壊物質を発生させない点で、窒素原子を含まない化合物が好ましい。具体的には、ZnSO4、Al2(SO43、Sb2(SO43、Y2(SO43、CaSO4、Zr(SO42、SnSO4、Sn(SO42、SrSO4、Ce2(SO43、Ce(SO42、TiO(SO4)、Ti2(SO43、Ti(SO42、FeSO4、Fe2(SO43、FeSO4・Fe2(SO43、Cu2SO4、CuSO4、BaSO4、Bi2(SO43、MgSO4、EuSO4、Eu2(SO43、La2(SO43、Li2SO4、及びこれらの水和物が好ましい。 Among these, as the sulfate compound, a compound containing no carbon atom is preferable from the viewpoint of reducing the concentration of carbon contained after the firing treatment as much as possible, and an environmentally destructive substance such as NH 3 or NO x during the firing process. The compound which does not contain a nitrogen atom at the point which does not generate | occur | produce is preferable. Specifically, ZnSO 4 , Al 2 (SO 4 ) 3 , Sb 2 (SO 4 ) 3 , Y 2 (SO 4 ) 3 , CaSO 4 , Zr (SO 4 ) 2 , SnSO 4 , Sn (SO 4 ) 2 , SrSO 4 , Ce 2 (SO 4 ) 3 , Ce (SO 4 ) 2 , TiO (SO 4 ), Ti 2 (SO 4 ) 3 , Ti (SO 4 ) 2 , FeSO 4 , Fe 2 (SO 4 ) 3 , FeSO 4 · Fe 2 (SO 4 ) 3 , Cu 2 SO 4 , CuSO 4 , BaSO 4 , Bi 2 (SO 4 ) 3 , MgSO 4 , EuSO 4 , Eu 2 (SO 4 ) 3 , La 2 (SO 4 ) 3 , Li 2 SO 4 and their hydrates are preferred.

原料の混合方法は特に限定されるものではなく、湿式でも乾式でも良い。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。   The method for mixing the raw materials is not particularly limited, and may be wet or dry. For example, a method using an apparatus such as a ball mill, a vibration mill, or a bead mill can be used. Wet mixing is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.

混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていれば良く、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。   The mixing time varies depending on the mixing method, but it is sufficient that the raw materials are uniformly mixed at the particle level. For example, in a ball mill (wet or dry type), usually about 1 to 2 days, and in a bead mill (wet continuous method), a residence time. Is usually about 0.1 to 6 hours.

なお、原料の混合段階においては、それと並行して原料の粉砕が為されていることが好ましい。   In the raw material mixing stage, it is preferable that the raw material is pulverized in parallel.

粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径(メジアン径)として通常0.3μm以下、好ましくは0.25μm以下、更に好ましくは0.2μm以下、最も好ましくは0.15μm以下とする。粉砕後の原料粒子の平均粒子径が大きすぎると、焼成工程における反応性が低下するのに加え、組成均一化し難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上となるように粉砕すれば良い。このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。なお、スラリー中の粉砕粒子の平均粒子径(メジアン径)は、例えば後述の実施例の欄に記載の方法により測定することが可能である。   As the degree of pulverization, the particle diameter of the raw material particles after pulverization is an index, but the average particle diameter (median diameter) is usually 0.3 μm or less, preferably 0.25 μm or less, more preferably 0.2 μm or less, most preferably Preferably it is 0.15 μm or less. If the average particle size of the raw material particles after pulverization is too large, the reactivity in the firing step is lowered, and it is difficult to make the composition uniform. However, making particles smaller than necessary leads to an increase in the cost of pulverization, so that the average particle size is usually 0.01 μm or more, preferably 0.02 μm or more, more preferably 0.05 μm or more. It ’s fine. A means for realizing such a degree of pulverization is not particularly limited, but a wet pulverization method is preferable. Specific examples include dyno mill. In addition, the average particle diameter (median diameter) of the pulverized particles in the slurry can be measured by, for example, the method described in the column of Examples described later.

湿式混合後は、次いで通常乾燥工程に供される。方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、球状の二次粒子を効率よく形成できる等の観点から噴霧乾燥が好ましい。   After the wet mixing, it is then usually subjected to a drying process. The method is not particularly limited, but spray drying is preferable from the viewpoints of uniformity of the generated particulate matter, powder fluidity, powder handling performance, and efficient formation of spherical secondary particles.

本発明のリチウムニッケルマンガン系複合酸化物粉体の製造方法においては、湿式粉砕により平均粒子系0.3μm以下に粉砕した後、噴霧乾燥することにより、一次粒子が凝集して中実な二次粒子を形成してなる粉体を得る。一次粒子が凝集して中実な二次粒子を形成してなる粉体は、本発明品の形状的特徴である。このような形状的特徴としては、粒子サイズの変化はあるものの、基本的にLi原料と混合・焼成して得られるリチウムニッケルマンガン系複合酸化物粉体にも反映される。形状の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。   In the method for producing lithium nickel manganese composite oxide powder of the present invention, primary particles are aggregated and solid secondary by pulverizing to an average particle size of 0.3 μm or less by wet pulverization and then spray drying. A powder obtained by forming particles is obtained. A powder formed by agglomerating primary particles to form solid secondary particles is a feature of the product of the present invention. Such shape characteristics are reflected in the lithium nickel manganese composite oxide powder basically obtained by mixing and firing with the Li raw material, though there is a change in the particle size. Examples of the shape confirmation method include SEM observation and cross-sectional SEM observation.

噴霧乾燥により得られる粒子状物の平均粒子径(メジアン径)は、通常50μm以下、より好ましくは40μm以下、最も好ましくは30μm以下となるようにする。ただし、あまりに小さな粒径は得にくい傾向にあるので、通常は3μm以下、好ましくは5μm以上、より好ましくは6μm以上である。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。なお、噴霧乾燥後の粒子状物の平均粒子径(メジアン径)は、例えば後述の実施例の欄に記載の方法により測定することが可能である。   The average particle diameter (median diameter) of the particulate matter obtained by spray drying is usually 50 μm or less, more preferably 40 μm or less, and most preferably 30 μm or less. However, since it tends to be difficult to obtain a particle size that is too small, it is usually 3 μm or less, preferably 5 μm or more, and more preferably 6 μm or more. In the case of producing a particulate material by the spray drying method, the particle size can be controlled by appropriately selecting the spray format, the pressurized gas flow supply rate, the slurry supply rate, the drying temperature, and the like. In addition, the average particle diameter (median diameter) of the particulate matter after spray drying can be measured by, for example, the method described in the column of Examples described later.

また、噴霧乾燥により得られる粒子状物は、比表面積が低いと、次の工程であるリチウム化合物と焼成反応によりリチウムニッケルマンガン系複合酸化物を作製するに当たって、リチウム化合物との反応性が低下してしまうため、前記の如く、噴霧乾燥前に出発原料を粉砕するなどの手段により、できるだけ高比表面積化されていることが好ましい。一方で、過度に高比表面積化しようとすると、工業的に不利となる。従って、これによって得られた噴霧乾燥粒子は、BET比表面積にして通常20m2/g以上、好ましくは30m2/g以上、より好ましくは40m2/g以上、更に好ましくは50m2/g以上、最も好ましくは60m2/g以上、また、通常200m2/g以下、好ましくは150m2/g以下とすることが望ましい。 In addition, when the particulate matter obtained by spray drying has a low specific surface area, the reactivity with the lithium compound is reduced in producing a lithium nickel manganese composite oxide by a firing reaction with a lithium compound in the next step. Therefore, as described above, it is preferable that the specific surface area be as high as possible by means such as pulverizing the starting material before spray drying. On the other hand, an excessively high specific surface area is industrially disadvantageous. Accordingly, the spray-dried particles obtained thereby have a BET specific surface area of usually 20 m 2 / g or more, preferably 30 m 2 / g or more, more preferably 40 m 2 / g or more, still more preferably 50 m 2 / g or more, Most preferably, it is 60 m 2 / g or more, usually 200 m 2 / g or less, preferably 150 m 2 / g or less.

噴霧乾燥により得られた造粒粒子に混合するリチウム化合物としては、Li2CO3、LiNO3、LiNO2、LiOH、LiOH・H2O、LiH、LiF、LiCl、LiBr、LiI、CH3OOLi、Li2O、Li2SO4、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にNOx等の有害物質を発生させない点で、窒素原子や硫黄原子を含有しないリチウム化合物であり、また、焼成処理後の含有炭素濃度を極力低減させる点で、炭素原子を含有しない化合物であり、これらの点を勘案すると、とりわけLiOH、LiOH・H2Oが好ましい。これらのリチウム化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 Examples of the lithium compound to be mixed with the granulated particles obtained by spray drying include Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH · H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 OOLi, Li 2 O, Li 2 SO 4 , dicarboxylic acid Li, citric acid Li, fatty acid Li, alkyl lithium and the like can be mentioned. Among these lithium compounds, preferred are lithium compounds that do not contain nitrogen atoms or sulfur atoms in that no harmful substances such as NO x are generated during the firing treatment. From the viewpoint of reducing as much as possible, it is a compound containing no carbon atom, and taking these points into consideration, LiOH and LiOH.H 2 O are particularly preferable. These lithium compounds may be used individually by 1 type, and may use 2 or more types together.

このようなリチウム化合物の粒径としては、ニッケル原料、マンガン原料、コバルト原料を含有する混合物との混合性を上げるため、且つ電池性能を向上させるために、平均粒子径(メジアン径)で、通常500μm以下、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは20μm以下、最も好ましくは10μm以下である。一方、あまりに小さな粒径のものは、大気中での安定性が低いために平均粒子径で通常、0.01μm以上、好ましくは0.1μm以上、更に好ましくは0.2μm以上、最も好ましくは0.5μm以上である。なお、原料リチウム化合物粒子の平均粒子径(メジアン径)は、例えば後述の実施例の欄に記載の方法により測定することが可能である。   The particle diameter of such a lithium compound is usually an average particle diameter (median diameter) in order to improve the mixing performance with a mixture containing a nickel raw material, a manganese raw material, and a cobalt raw material, and to improve battery performance. It is 500 μm or less, preferably 100 μm or less, more preferably 50 μm or less, still more preferably 20 μm or less, and most preferably 10 μm or less. On the other hand, those having a too small particle size have a mean particle size of usually 0.01 μm or more, preferably 0.1 μm or more, more preferably 0.2 μm or more, and most preferably 0 because the stability in the air is low. .5 μm or more. In addition, the average particle diameter (median diameter) of the raw material lithium compound particles can be measured, for example, by the method described in the column of Examples described later.

特定の製造条件を固定した場合には、噴霧乾燥により得られた造粒粒子にリチウム化合物を混合する際のリチウム化合物の遷移金属に対する仕込量を調節することで、Li/(Ni+Mn+Co)モル比を制御することができる。   When specific production conditions are fixed, the Li / (Ni + Mn + Co) molar ratio can be adjusted by adjusting the amount of the lithium compound to the transition metal when the lithium compound is mixed with the granulated particles obtained by spray drying. Can be controlled.

噴霧乾燥により得られた粉体とリチウム化合物との混合は十分に行なうことが重要である。十分に混合できる限りにおいて、この混合手法に特に制限はないが、一般的に工業用として使用されている粉体混合装置を使用するのが好ましい。混合する系内の雰囲気としては、大気中での炭酸吸収を防ぐために、炭酸ガス除去された空気、窒素ガス、アルゴンガス等の不活性ガス雰囲気とするのが好ましい。   It is important to sufficiently mix the powder obtained by spray drying and the lithium compound. The mixing method is not particularly limited as long as it can be sufficiently mixed, but it is preferable to use a powder mixing apparatus generally used for industrial purposes. The atmosphere in the system to be mixed is preferably an inert gas atmosphere such as air from which carbon dioxide gas has been removed, nitrogen gas, argon gas, etc. in order to prevent carbon dioxide absorption in the air.

このようにして得られた混合粉体は、次いで焼成処理される。この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、焼成温度が高すぎると一次粒子が成長しすぎる傾向があり、また、逆に焼成温度が低すぎると嵩密度が小さく、また比表面積が大きくなりすぎる傾向がある。焼成温度としては、通常800℃以上、好ましくは900℃以上、更に好ましくは950℃以上、また、通常1100℃以下、好ましくは1075℃以下、更に好ましくは1050℃以下である。   The mixed powder thus obtained is then fired. This firing condition depends on the composition and the lithium compound raw material to be used. However, if the firing temperature is too high, primary particles tend to grow too much. Conversely, if the firing temperature is too low, the bulk density is small. The specific surface area tends to be too large. The firing temperature is usually 800 ° C. or higher, preferably 900 ° C. or higher, more preferably 950 ° C. or higher, and usually 1100 ° C. or lower, preferably 1075 ° C. or lower, more preferably 1050 ° C. or lower.

焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程または、一次粒子或いはさらに微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返しても良い。   For firing, for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used. The firing process is usually divided into three parts: temperature increase, maximum temperature retention, and temperature decrease. The second maximum temperature holding portion is not necessarily limited to one time, and may include two or more stages depending on the purpose, which means that aggregation is eliminated to the extent that secondary particles are not destroyed. The temperature raising, maximum temperature holding, and temperature lowering steps may be repeated twice or more with a crushing step or a pulverization step which means crushing to primary particles or even fine powder.

昇温工程としては、通常1℃/分以上、10℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。   As the temperature raising step, the temperature in the furnace is usually raised at a temperature raising rate of 1 ° C./min or more and 10 ° C./min or less. Even if this rate of temperature rise is too slow, it takes time and is industrially disadvantageous. However, if it is too fast, the furnace temperature does not follow the set temperature depending on the furnace.

最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば30分以上、好ましくは5時間以上、更に好ましくは10時間以上で、50時間以下、好ましくは25時間以下、更に好ましくは20時間以下である。焼成時間が短すぎると結晶性の良いリチウムニッケルマンガンコバルト複合酸化物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。   Although the holding time in the maximum temperature holding step varies depending on the temperature, it is usually 30 minutes or longer, preferably 5 hours or longer, more preferably 10 hours or longer, 50 hours or shorter, preferably 25 hours within the aforementioned temperature range. Hereinafter, it is more preferably 20 hours or less. If the firing time is too short, it becomes difficult to obtain a lithium nickel manganese cobalt composite oxide powder having good crystallinity, and it is not practical to be too long. If the firing time is too long, it will be disadvantageous because it will be necessary to crush afterwards or it will be difficult to crush.

降温工程では、通常0.1℃/分以上、10℃/分以下の降温速度で炉内を降温させる。あまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早める傾向にある。   In the temperature lowering step, the temperature in the furnace is normally decreased at a temperature decreasing rate of 0.1 ° C./min or more and 10 ° C./min or less. If it is too slow, it takes time and is industrially disadvantageous, but if it is too fast, the uniformity of the target product tends to be lacking or the container tends to deteriorate.

焼成時の雰囲気は、空気等の酸素含有ガス雰囲気を用いることができる。酸素濃度は、通常1体積%以上、好ましくは10体積%以上、また、通常100体積%以下、好ましくは50体積%以下の雰囲気とする。   As an atmosphere during firing, an oxygen-containing gas atmosphere such as air can be used. The oxygen concentration is usually 1% by volume or more, preferably 10% by volume or more, and usually 100% by volume or less, preferably 50% by volume or less.

このようにして得られたリチウムニッケルマンガン系複合酸化物粉体(本発明のリチウムニッケルマンガン系複合酸化物粉体)によれば、ガス発生による膨れが少なく、容量が高く、レート特性に優れ、低温出力特性、保存特性にも優れた、性能バランスの良いリチウム二次電池用正極材料が実現される。   According to the lithium nickel manganese composite oxide powder thus obtained (lithium nickel manganese composite oxide powder of the present invention), there is little swelling due to gas generation, high capacity, excellent rate characteristics, A positive electrode material for a lithium secondary battery having excellent low temperature output characteristics and storage characteristics and a well-balanced performance is realized.

〔III.リチウム二次電池用正極〕
本発明のリチウム二次電池用正極は、集電体上に、本発明のリチウムニッケルマンガン系複合酸化物粉体及び結着剤を含有する正極活物質層を形成してなるものである。
[III. (Positive electrode for lithium secondary battery)
The positive electrode for a lithium secondary battery of the present invention is obtained by forming a positive electrode active material layer containing the lithium nickel manganese composite oxide powder of the present invention and a binder on a current collector.

正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。   The positive electrode active material layer is usually formed by mixing a positive electrode material, a binder, and a conductive material and a thickener, which are used if necessary, in a dry form into a sheet shape, and then pressing the positive electrode current collector on the positive electrode current collector. Alternatively, these materials are dissolved or dispersed in a liquid medium to form a slurry, which is applied to the positive electrode current collector and dried.

正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。   As the material for the positive electrode current collector, metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbon materials such as carbon cloth and carbon paper are usually used. Of these, metal materials are preferable, and aluminum is particularly preferable. As for the shape, in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc., and in the case of a carbon material, a carbon plate, a carbon thin film, a carbon cylinder Etc. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.

正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する虞がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる虞がある。   When a thin film is used as the positive electrode current collector, the thickness is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 100 mm or less, preferably 1 mm or less, more preferably 50 μm. The following ranges are preferred. If the thickness is thinner than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.

正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。   The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that is stable with respect to the liquid medium used during electrode production may be used. Specific examples include polyethylene, Resin polymers such as polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene・ Rubber polymers such as propylene rubber, styrene / butadiene / styrene block copolymer and hydrogenated products thereof, EPDM (ethylene-propylene-diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, Styrene / isoprene styrene bromide Copolymer and its hydrogenated thermoplastic elastomeric polymer, syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer, etc. Fluorine polymers such as soft resinous polymers, polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers, ion conductivity of alkali metal ions (especially lithium ions) And a polymer composition having the same. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

正極活物質層中の結着剤の割合は、通常0.1量%以上、好ましくは1量%以上、更に好ましくは5量%以上であり、また、通常80量%以下、好ましくは60量%以下、更に好ましくは40量%以下、最も好ましくは10量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう虞がある一方で、高すぎると、電池容量や導電性の低下につながる虞がある。 The proportion of the positive electrode active material layer of the binder is usually 0.1 mass% or more, preferably 1 mass% or more, still more preferably 5 mass% or more, and usually 80 mass% or less, preferably 60 mass% or less, more preferably 40 mass% or less, most preferably 10 mass% or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained, and the mechanical strength of the positive electrode may be insufficient, and the battery performance such as cycle characteristics may be deteriorated. There is a possibility that it may lead to a decrease in capacity and conductivity.

正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の導電材の割合は、通常0.01量%以上、好ましくは0.1量%以上、更に好ましくは1量%以上であり、また、通常50量%以下、好ましくは30量%以下、更に好ましくは15量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。 The positive electrode active material layer usually contains a conductive material in order to increase conductivity. There are no particular restrictions on the type, but specific examples include metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. And carbon materials. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios. The proportion of the conductive material in the positive electrode active material layer is usually 0.01 mass% or more, preferably 0.1 mass% or more, still more preferably 1 mass% or more, and usually 50 mass% or less , preferably 30 mass% or less, still more preferably not more than 15 mass%. If the proportion of the conductive material is too low, the conductivity may be insufficient, and conversely if it is too high, the battery capacity may be reduced.

スラリーを形成するための液体媒体としては、正極材料であるリチウムニッケル系複合酸化物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。   As a liquid medium for forming a slurry, it is possible to dissolve or disperse lithium nickel-based composite oxide powder as a positive electrode material, a binder, and a conductive material and a thickener used as necessary. The solvent is not particularly limited as long as it is a suitable solvent, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N -N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. Can be mentioned. In particular, when an aqueous solvent is used, a dispersant is added together with the thickener, and a slurry such as SBR is slurried. In addition, these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極活物質層中の正極材料としての本発明のリチウムニッケルマンガン系複合酸化物粉体の含有割合は、通常10量%以上、好ましくは30量%以上、更に好ましくは50量%以上であり、また、通常99.9量%以下、好ましくは99量%以下である。正極活物質層中における本発明のリチウムニッケルマンガン系複合酸化物粉体の割合が多すぎると正極の強度が不足する傾向にあり、逆に少なすぎると容量の面で不十分となることがある。 Content of the complex oxide powder of the present invention as positive electrode material in the positive electrode active material layer is usually 10 mass% or more, preferably 30 mass% or more, more preferably 50 mass% or more , and the addition usually 99.9 mass% or less, preferably 99 mass% or less. If the ratio of the lithium nickel manganese composite oxide powder of the present invention in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and conversely if too small, the capacity may be insufficient. .

また、正極活物質層の厚さは、通常10〜200μm程度である。   The thickness of the positive electrode active material layer is usually about 10 to 200 μm.

なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。   The positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.

〔IV.本発明のリチウム二次電池〕
本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な上記の本発明のリチウム二次電池用正極と、リチウムを吸蔵・放出可能な負極と、リチウム塩を電解塩とする非水電解質とを備える。更に、正極と負極との間に、非水電解質を保持するセパレータを備えていても良い。正極と負極との接触による短絡を効果的に防止するには、このようにセパレータを介在させるのが望ましい。
[IV. Lithium secondary battery of the present invention]
The lithium secondary battery of the present invention includes the above-described positive electrode for a lithium secondary battery of the present invention capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, and a non-aqueous electrolyte using a lithium salt as an electrolytic salt, Is provided. Further, a separator for holding a nonaqueous electrolyte may be provided between the positive electrode and the negative electrode. In order to effectively prevent a short circuit due to contact between the positive electrode and the negative electrode, it is desirable to interpose a separator in this way.

負極は通常、正極と同様に、負極集電体上に負極活物質層を形成して構成される。   The negative electrode is usually configured by forming a negative electrode active material layer on a negative electrode current collector, similarly to the positive electrode.

負極集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されていることから好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、正極集電体について上述した範囲と同様である。   As a material of the negative electrode current collector, a metal material such as copper, nickel, stainless steel, nickel-plated steel, or a carbon material such as carbon cloth or carbon paper is used. Among these, in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, etc., and in the case of a carbon material, a carbon plate, a carbon thin film, a carbon cylinder, etc. are mentioned. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape. When a metal thin film is used as the negative electrode current collector, the preferred thickness range is the same as the range described above for the positive electrode current collector.

負極活物質層は、負極活物質を含んで構成される。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に他に制限はないが、通常は安全性の高さの面から、リチウムを吸蔵、放出できる炭素材料が用いられる。   The negative electrode active material layer includes a negative electrode active material. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions, but it can usually occlude and release lithium from the viewpoint of high safety. A carbon material is used.

炭素材料としては、その種類に特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、或いはこれらピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。中でも黒鉛が好ましく、特に好適には、種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛にピッチを含む黒鉛材料等であって、種々の表面処理を施したものが主として使用される。これらの炭素材料は、それぞれ1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。   Although there is no restriction | limiting in particular as a carbon material, Graphite (graphite), such as artificial graphite and natural graphite, and the thermal decomposition thing of organic substance on various thermal decomposition conditions are mentioned. Examples of pyrolysis products of organic matter include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, or carbide obtained by oxidizing these pitches, needle coke, pitch coke, phenol resin, crystalline cellulose, etc. And carbon materials obtained by partially graphitizing these, furnace black, acetylene black, pitch-based carbon fibers, and the like. Among them, graphite is preferable, and particularly preferable is artificial graphite, purified natural graphite, or graphite material containing pitch in these graphites, which is manufactured by subjecting easy-graphite pitch obtained from various raw materials to high-temperature heat treatment. Therefore, those subjected to various surface treatments are mainly used. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

負極活物質として黒鉛材料を用いる場合、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上、また、通常0.34nm以下、好ましくは0.337nm以下であるものが好ましい。   When a graphite material is used as the negative electrode active material, the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is usually 0.335 nm or more, and usually 0.34 nm or less, preferably Is preferably 0.337 nm or less.

また、黒鉛材料の灰分が、黒鉛材料の量に対して通常1量%以下、中でも0.5量%以下、特に0.1量%以下であることが好ましい。 The ash content of the graphite material is usually 1 mass% or less with respect to mass of the graphite material, among others 0.5 mass% or less, and particularly preferably 0.1 mass% or less.

更に、学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)が、通常30nm以上、中でも50nm以上、特に100nm以上であることが好ましい。   Further, the crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, and particularly preferably 100 nm or more.

また、レーザー回折・散乱法により求めた黒鉛材料のメジアン径が、通常1μm以上、中でも3μm以上、更には5μm以上、特に7μm以上、また、通常100μm以下、中でも50μm以下、更には40μm以下、特に30μm以下であることが好ましい。   The median diameter of the graphite material determined by the laser diffraction / scattering method is usually 1 μm or more, especially 3 μm or more, more preferably 5 μm or more, especially 7 μm or more, and usually 100 μm or less, especially 50 μm or less, more preferably 40 μm or less, especially 40 μm or less. It is preferable that it is 30 micrometers or less.

また、黒鉛材料のBET法比表面積は、通常0.5m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、更に好ましくは1.5m2/g以上、また、通常25.0m2/g以下、好ましくは20.0m2/g以下、より好ましくは15.0m2/g以下、更に好ましくは10.0m2/g以下である。 Further, the BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, and further preferably 1.5 m 2 / g. or more, and usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g, more preferably 15.0 m 2 / g or less, still more preferably 10.0 m 2 / g or less.

更に、黒鉛材料についてアルゴンレーザー光を用いたラマンスペクトル分析を行なった場合に、1580〜1620cm-1の範囲で検出されるピークPAの強度IAと、1350〜1370cm-1の範囲で検出されるピークPBの強度IBとの強度比IA/IBが、0以上0.5以下であるものが好ましい。また、ピークPAの半価幅は26cm-1以下が好ましく、25cm-1以下がより好ましい。なお、上述の各種の炭素材料の他に、リチウムの吸蔵及び放出が可能なその他の材料の負極活物質として用いることもできる。炭素材料以外の負極活物質の具体例としては、酸化錫や酸化ケイ素などの金属酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらの炭素材料以外の材料は、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いても良い。また、上述の炭素材料と組み合わせて用いても良い。 Further, in the case of performing the Raman spectrum analysis using an argon laser beam on the graphite material, the intensity I A of the peak P A is detected in the range of 1580~1620Cm -1, is detected in the range of 1350 -1 that intensity ratio I a / I B of the intensity I B of a peak P B is what is preferably 0 to 0.5. Further, the half width of the peak P A is preferably 26cm -1 or less, 25 cm -1 or less is more preferable. In addition to the above-mentioned various carbon materials, it can also be used as a negative electrode active material of other materials capable of inserting and extracting lithium. Specific examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide, and lithium alloys such as lithium alone and lithium aluminum alloys. One of these materials other than the carbon material may be used alone, or two or more thereof may be used in combination. Moreover, you may use in combination with the above-mentioned carbon material.

負極活物質層は、通常は正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて導電材及び増粘剤とを液体媒体でスラリー化したものを負極集電体に塗布し、乾燥することにより製造することができる。スラリーを形成する液体媒体や結着剤、増粘剤、導電材等としては、正極活物質層について上述したものと同様のものを使用することができる。   As in the case of the positive electrode active material layer, the negative electrode active material layer is usually prepared by slurrying the above-described negative electrode active material, a binder, and optionally a conductive material and a thickener in a liquid medium. It can manufacture by apply | coating to a negative electrode electrical power collector, and drying. As the liquid medium, the binder, the thickener, the conductive material, and the like that form the slurry, the same materials as those described above for the positive electrode active material layer can be used.

電解質としては、例えば公知の有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等を用いることができるが、中でも有機電解液が好ましい。有機電解液は、有機溶媒に溶質(電解質)を溶解させて構成される。   As the electrolyte, for example, known organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, and the like can be used. Among them, organic electrolytes are preferable. The organic electrolytic solution is configured by dissolving a solute (electrolyte) in an organic solvent.

ここで、有機溶媒の種類は特に限定されないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。代表的なものを列挙すると、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリエチル等が挙げられる。これらはそれぞれ単独で使用しても良く、2種類以上を任意の組み合わせ及び比率で混合して用いても良い。   Here, the type of the organic solvent is not particularly limited. For example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides. A phosphoric acid ester compound or the like can be used. Typical examples are dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane. 1,2-diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile 1,2-dichloroethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate and the like. Each of these may be used alone, or two or more kinds may be mixed and used in an arbitrary combination and ratio.

上述の有機溶媒には、電解塩を解離させるために、高誘電率溶媒を含めることが好ましい。ここで、高誘電率溶媒とは、25℃における比誘電率が20以上の化合物を意味する。高誘電率溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、及び、それらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した化合物が、電解液中に含まれることが好ましい。高誘電率溶媒の電解液に占める割合は、好ましくは20量%以上、更に好ましくは30量%以上、最も好ましくは40量%以上である。高誘電率溶媒の含有量が上記範囲よりも少ないと、所望の電池特性が得られない場合がある。 The organic solvent described above preferably contains a high dielectric constant solvent in order to dissociate the electrolytic salt. Here, the high dielectric constant solvent means a compound having a relative dielectric constant of 20 or more at 25 ° C. Among the high dielectric constant solvents, it is preferable that ethylene carbonate, propylene carbonate, and compounds in which hydrogen atoms thereof are substituted with other elements such as halogen or alkyl groups are contained in the electrolytic solution. Percentage of electrolyte of high dielectric constant solvent is preferably 20 mass% or more, more preferably 30 mass% or more, most preferably 40 mass% or more. If the content of the high dielectric constant solvent is less than the above range, desired battery characteristics may not be obtained.

電解塩の種類も特に限定されず、従来公知の任意の溶質を使用することができる。具体例としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiBOB、LiCl、LiBr、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32等が挙げられる。これらの電解塩は任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。また、CO2、N2O、CO、SO2等のガスやポリサルファイドSx 2-など負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で加えても良い。 The type of the electrolytic salt is not particularly limited, and any conventionally known solute can be used. Specific examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiBOB, LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 and the like. Any one of these electrolytic salts may be used alone, or two or more thereof may be used in any combination and ratio. In addition, any ratio of an additive that forms a good film that enables efficient charge and discharge of lithium ions on the negative electrode surface, such as gas such as CO 2 , N 2 O, CO, SO 2 , and polysulfide S x 2− You can add it.

電解塩のリチウム塩は電解液中に、通常0.5mol/L以上、1.5mol/L以下となるように含有させる。0.5mol/L未満でも1.5mol/Lを超えても電気伝導度が低下し、電池特性に悪影響を与えることがある。下限としては0.75mol/L以上、上限として1.25mol/L以下が好ましい。   The lithium salt of the electrolytic salt is usually contained in the electrolytic solution so as to be 0.5 mol / L or more and 1.5 mol / L or less. Even if it is less than 0.5 mol / L or more than 1.5 mol / L, the electrical conductivity may be lowered, and the battery characteristics may be adversely affected. The lower limit is preferably 0.75 mol / L or more and the upper limit is 1.25 mol / L or less.

高分子固体電解質を使用する場合にも、その種類は特に限定されず、固体電解質として公知の任意の結晶質・非晶質の無機物を用いることができる。結晶質の無機固体電解質としては、例えば、LiI、Li3N、Li1+xxTi2-x(PO43(式中、JはAl、Sc、Y、及びLaのうち何れかの元素を表わす。)、Li0.5-3xRE0.5+xTiO3(式中、REはLa、Pr、Nd、及びSmのうち何れかの元素を表わす。)等が挙げられる(なお、xは0≦x≦2を満たす数を表わす。)。また、非晶質の無機固体電解質としては、例えば、4.9LiI−34.1Li2O−61B25、33.3Li2O−66.7SiO2等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で用いても良い。 Even when a polymer solid electrolyte is used, the type thereof is not particularly limited, and any known crystalline / amorphous inorganic substance can be used as the solid electrolyte. Examples of the crystalline inorganic solid electrolyte include LiI, Li 3 N, Li 1 + x J x Ti 2-x (PO 4 ) 3 (wherein J is any one of Al, Sc, Y, and La). Li 0.5-3x RE 0.5 + x TiO 3 (wherein RE represents any element of La, Pr, Nd, and Sm), etc. Represents a number satisfying 0 ≦ x ≦ 2.) Examples of the amorphous inorganic solid electrolyte include oxide glasses such as 4.9LiI-34.1Li 2 O-61B 2 O 5 and 33.3Li 2 O-66.7SiO 2 . Any one of these may be used alone, or two or more may be used in any combination and ratio.

電解質として前述の有機電解液を用いる場合には、電極同士の短絡を防止するために、正極と負極との間にセパレータが介装される。セパレータの材質や形状は特に制限されないが、使用する有機電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が用いられる。特に、セパレータの重要な因子である化学的及び電気化学的な安定性の観点からは、ポリオレフィン系高分子が好ましく、電池におけるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが特に望ましい。   When the above-described organic electrolyte is used as the electrolyte, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes. The material and shape of the separator are not particularly limited, but those that are stable with respect to the organic electrolyte used, have excellent liquid retention properties, and can reliably prevent short-circuiting between electrodes are preferable. Preferable examples include microporous films, sheets, nonwoven fabrics and the like made of various polymer materials. Specific examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene. In particular, from the viewpoint of chemical and electrochemical stability, which is an important factor for separators, polyolefin polymers are preferable. From the viewpoint of self-occluding temperature, which is one of the purposes of use of separators in batteries, polyethylene is preferred. Is particularly desirable.

ポリエチレンからなるセパレータを用いる場合、高温形状維持性の点から、超高分子ポリエチレンを用いることが好ましく、その分子量の下限は好ましくは50万以上、更に好ましくは100万以上、最も好ましくは150万以上である。他方、分子量の上限は、好ましくは500万以下、更に好ましくは400万以下、最も好ましくは300万以下である。分子量が大きすぎると流動性が低くなりすぎてしまい、加熱された時にセパレータの孔が閉塞しない場合があるからである。   When using a separator made of polyethylene, it is preferable to use ultra-high molecular weight polyethylene from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000 or more, more preferably 1,000,000 or more, most preferably 1,500,000 or more. It is. On the other hand, the upper limit of the molecular weight is preferably 5 million or less, more preferably 4 million or less, and most preferably 3 million or less. This is because if the molecular weight is too large, the fluidity becomes too low, and the pores of the separator may not close when heated.

本発明のリチウム二次電池は、上述の本発明のリチウム二次電池用正極と、負極と、電解質と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。   The lithium secondary battery of the present invention is produced by assembling the above-described positive electrode for a lithium secondary battery of the present invention, a negative electrode, an electrolyte, and a separator used as necessary into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.

本発明のリチウム二次電池の形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。   The shape of the lithium secondary battery of the present invention is not particularly limited, and can be appropriately selected from various commonly employed shapes according to the application. Examples of commonly used shapes include a cylinder type with a sheet electrode and separator in a spiral shape, a cylinder type with an inside-out structure combining a pellet electrode and a separator, and a coin type with stacked pellet electrodes and a separator. Can be mentioned. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を超えない限りにおいて、各種の変形を加えて実施することが可能である。   The general embodiment of the lithium secondary battery of the present invention has been described above. However, the lithium secondary battery of the present invention is not limited to the above-described embodiment, and various modifications are possible as long as the gist thereof is not exceeded. Can be implemented.

次に、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限り、これらの実施例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these Examples, unless the summary is exceeded.

〔物性の測定方法〕
後述の各実施例及び比較例において製造されたリチウムニッケルマンガン系複合酸化物粉体の物性等は、各々次のようにして測定した。
[Method for measuring physical properties]
The physical properties and the like of lithium nickel manganese composite oxide powders produced in each of Examples and Comparative Examples described later were measured as follows.

結晶相:粉末X線回折パターンにより求めた。
比表面積:BET法により求めた。
平均一次粒子径:30000倍のSEM画像により求めた。
二次粒子のメジアン径:超音波分散5分後に測定した。
嵩密度:試料粉体10〜11gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
Crystal phase: Determined by powder X-ray diffraction pattern.
Specific surface area: determined by the BET method.
Average primary particle size: It was determined from an SEM image of 30000 times.
Median diameter of secondary particles: measured after 5 minutes of ultrasonic dispersion.
Bulk density: 10 to 11 g of the sample powder was placed in a 10 ml glass graduated cylinder, and was determined as the powder packing density when tapped 200 times with a stroke of about 20 mm.

含有炭素濃度C:(株)堀場製作所製EMIA−520炭素硫黄分析計を使用した。数十〜100mgの試料を空焼きした磁製るつぼに秤り取り、助燃剤を加えて、酸素気流中、高周波加熱炉でCを燃焼抽出した。燃焼ガス中のCO2を、非分散赤外吸光光度法により定量した。感度較正には社団法人日本鉄鋼連盟製150−15低合金鋼1号(C保証値:0.469重量%)を使用した。 Contained carbon concentration C: An EMIA-520 carbon sulfur analyzer manufactured by Horiba, Ltd. was used. A sample of several tens to 100 mg was weighed into an air-baked porcelain crucible, a combustion aid was added, and C was burned and extracted in a high-frequency heating furnace in an oxygen stream. CO 2 in the combustion gas was quantified by non-dispersive infrared absorptiometry. For sensitivity calibration, 150-15 low alloy steel No. 1 (C guaranteed value: 0.469% by weight) manufactured by Japan Iron and Steel Federation was used.

含有硫黄濃度S:(株)堀場製作所製EMIA−520炭素硫黄分析計を使用した。数十〜100mgの試料を空焼きした磁製るつぼに秤り取り、助燃剤を加えて、酸素気流中、高周波加熱炉でSを燃焼抽出した。燃焼ガス中のSO2を、非分散赤外吸光光度法により定量した。感度較正には社団法人日本鉄鋼連盟製150−15低合金鋼1号(S保証値:0.0295重量%)を使用した。 Contained sulfur concentration S: An EMIA-520 carbon sulfur analyzer manufactured by Horiba, Ltd. was used. A sample of several tens to 100 mg was weighed into an air-baked porcelain crucible, a combustion aid was added, and S was burned and extracted in a high-frequency heating furnace in an oxygen stream. SO 2 in the combustion gas was quantified by non-dispersive infrared absorptiometry. For sensitivity calibration, 150-15 low alloy steel No. 1 (S guaranteed value: 0.0295% by weight) manufactured by Japan Iron and Steel Federation was used.

体積抵抗率:粉体抵抗率測定装置(ダイアインスツルメンツ社製:ロレスターGP粉体低効率測定システムPD−41)を用い、試料量3gとし、粉体用プローブユニット(四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mm)により、印加電圧リミッタを90Vとして、種々加圧下の粉体の体積抵抗率[Ω・cm]を測定し、40MPaの圧力下における体積抵抗率の値について比較した。 Volume resistivity: powder resistivity measuring apparatus: using (Dia Instruments Co. Loresta GP powder low efficiency measuring system PD-41), and a sample Weight 3g, powder probe unit (four-probe-ring electrode, The electrode resistivity is 5.0 mm, the electrode radius is 1.0 mm, and the sample radius is 12.5 mm. The applied voltage limiter is 90 V, and the volume resistivity [Ω · cm] of the powder under various pressures is measured, and the pressure is 40 MPa. The volume resistivity values at were compared.

pH:脱塩水50gをビーカーに秤量し、攪拌させながら試料5gを投入。液温とpH値をモニタリングしながら、投入後10分経過後のpH値と液温を測定した。 pH: Weigh 50 g of demineralized water into a beaker and add 5 g of sample while stirring. While monitoring the liquid temperature and the pH value, the pH value and the liquid temperature after 10 minutes from the introduction were measured.

スラリー中の粉砕粒子のメジアン径:公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定を行なった。 The median diameter of the pulverized particles in the slurry was measured with a known laser diffraction / scattering particle size distribution measuring apparatus with a refractive index of 1.24 and a particle diameter standard as a volume standard. Further, using a 0.1 mass% aqueous solution of sodium hexametaphosphate as a dispersion medium, it was measured after ultrasonic dispersion for 5 minutes.

原料LiOH粉末の平均粒子径としてのメジアン径:公知のレーザー回折/散乱式粒度分布測定装置を用い、屈折率を1.14に設定し、粒子径基準を体積基準として測定した。また、分散媒としてエチルアルコールを用い、水酸化リチウムの飽和溶液とした後、5分間の超音波分散後に測定を行なった。 Median diameter as average particle diameter of raw material LiOH powder: Using a known laser diffraction / scattering particle size distribution measuring apparatus, the refractive index was set to 1.14, and the particle diameter standard was measured as a volume standard. Further, ethyl alcohol was used as a dispersion medium to make a saturated solution of lithium hydroxide, and measurement was performed after ultrasonic dispersion for 5 minutes.

噴霧乾燥により得られた粒子状粉末の物性:形態は、SEM観察及び断面SEM観察により確認した。平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定を行なった。比表面積は、BET法により、比表面積基準を体積基準として測定した。 Physical properties of the particulate powder obtained by spray drying: The morphology was confirmed by SEM observation and cross-sectional SEM observation. The median diameter and 90% cumulative diameter (D 90 ) as the average particle diameter were measured with a known laser diffraction / scattering particle size distribution measuring device with a refractive index of 1.24 and a particle diameter standard as a volume standard. . Further, using a 0.1 mass% aqueous solution of sodium hexametaphosphate as a dispersion medium, it was measured after ultrasonic dispersion for 5 minutes. The specific surface area was measured by the BET method using the specific surface area standard as the volume standard.

〔リチウムニッケルマンガン系複合酸化物粉体の製造(実施例及び比較例)〕
(実施例1)
Ni(OH)2、Mn34、Co(OH)2、及びAl2(SO43・14〜18H2Oを、Ni:Mn:Co:SO4=1/3:1/3:1/3:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.14μmに粉砕した。
[Production of Lithium Nickel Manganese Complex Oxide Powder (Examples and Comparative Examples)]
Example 1
Ni (OH) 2 , Mn 3 O 4 , Co (OH) 2 , and Al 2 (SO 4 ) 3 · 14 to 18H 2 O are mixed with Ni: Mn: Co: SO 4 = 1/3: 1/3: After weighing and mixing to a molar ratio of 1/3: 0.005, pure water was added to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.14 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:12.6μm、BET比表面積:43m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.10の比で添加した。この混合前粉末約52gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、975℃で12時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.06Ni0.325Mn0.333Co0.3422の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は1.0μm、二次粒子のメジアン径は11.3μm、90%積算径(D90)は16.9μm、嵩密度は2.0g/cm3、BET比表面積は
0.51m2/g、含有硫黄濃度は0.184量%、含有炭素濃度は0.010量%、体積抵抗率は6.0×104Ω・cmであった。pH値(液温)は10.80(23.9℃)であった。
Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 12.6 μm, BET specific surface area: 43 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.10. About 52 g of this pre-mixed powder was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was charged into an alumina crucible and calcined at 975 ° C. for 12 hours under air flow (temperature increase / decrease rate of 5 ° C./min.) And then crushed to have a composition of Li 1.06 Ni 0.325 Mn 0.333 Co 0.342 O. A lithium nickel manganese cobalt composite oxide having a layered structure of 2 was obtained. The average primary particle diameter is 1.0 μm, the median diameter of the secondary particles is 11.3 μm, the 90% cumulative diameter (D 90 ) is 16.9 μm, the bulk density is 2.0 g / cm 3 , and the BET specific surface area is 0.00. 51m 2 / g, containing sulfur concentration is 0.184 mass%, 0.010 mass percent carbon concentration, and the volume resistivity was 6.0 × 10 4 Ω · cm. The pH value (liquid temperature) was 10.80 (23.9 ° C.).

(実施例2)
Ni(OH)2、Mn34、Co(OH)2、及びAl2(SO43・14〜18H2Oを、Ni:Mn:Co:SO4=1/3:1/3:1/3:0.01のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.14μmに粉砕した。
(Example 2)
Ni (OH) 2 , Mn 3 O 4 , Co (OH) 2 , and Al 2 (SO 4 ) 3 · 14 to 18H 2 O are mixed with Ni: Mn: Co: SO 4 = 1/3: 1/3: After weighing and mixing to a molar ratio of 1/3: 0.01, pure water was added thereto to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.14 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:11.8μm、BET比表面積:38m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.10の比で添加した。この混合前粉末約52gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、975℃で12時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.09Ni0.328Mn0.332Co0.3402の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は1.3μm、二次粒子のメジアン径は11.6μm、90%積算径(D90)は17.2μm、嵩密度は2.0g/cm3、BET比表面積は
0.39m2/g、含有硫黄濃度は0.325量%、含有炭素濃度は0.008量%、体積抵抗率は4.6×104Ω・cmであった。pH値(液温)は10.81(24.2℃)であった。
Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 11.8 μm, BET specific surface area: 38 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.10. About 52 g of this pre-mixed powder was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was charged into an alumina crucible, fired at 975 ° C. for 12 hours under air flow (temperature raising / lowering rate 5 ° C./min.), And then crushed to have a composition of Li 1.09 Ni 0.328 Mn 0.332 Co 0.340 O. A lithium nickel manganese cobalt composite oxide having a layered structure of 2 was obtained. The average primary particle diameter is 1.3 μm, the median diameter of the secondary particles is 11.6 μm, the 90% cumulative diameter (D 90 ) is 17.2 μm, the bulk density is 2.0 g / cm 3 , and the BET specific surface area is 0.00. 39m 2 / g, containing sulfur concentration is 0.325 mass%, the carbon concentration is 0.008 mass%, the volume resistivity was 4.6 × 10 4 Ω · cm. The pH value (liquid temperature) was 10.81 (24.2 ° C.).

(実施例3)
Ni(OH)2、Mn34、Co(OH)2、及びLi2SO4・H2Oを、Ni:Mn:Co:SO4=1/3:1/3:1/3:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.15μmに粉砕した。
(Example 3)
Ni (OH) 2 , Mn 3 O 4 , Co (OH) 2 , and Li 2 SO 4 .H 2 O are mixed with Ni: Mn: Co: SO 4 = 1/3: 1/3: 1/3: 0. After weighing and mixing so that the molar ratio was 0.005, pure water was added thereto to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.15 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:12.1μm、BET比表面積:44m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.10の比で添加した。この混合前粉末約52gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、975℃で12時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.06Ni0.329Mn0.325Co0.3462の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.9μm、二次粒子のメジアン径は11.1μm、90%積算径(D90)は16.7μm、嵩密度は2.0g/cm3、BET比表面積は
0.57m2/g、含有硫黄濃度は0.188量%、含有炭素濃度は0.012量%、体積抵抗率は3.6×104Ω・cmであった。pH値(液温)は10.83(24.7℃)であった。
Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by aggregation of primary particles to form solid secondary particles. Average particle size: 12.1 μm, BET specific surface area: 44 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.10. About 52 g of this pre-mixed powder was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was charged into an alumina crucible and calcined at 975 ° C. for 12 hours under air flow (temperature increase / decrease rate of 5 ° C./min.) And then crushed to have a composition of Li 1.06 Ni 0.329 Mn 0.325 Co 0.346 O. A lithium nickel manganese cobalt composite oxide having a layered structure of 2 was obtained. The average primary particle diameter is 0.9 μm, the median diameter of the secondary particles is 11.1 μm, the 90% cumulative diameter (D 90 ) is 16.7 μm, the bulk density is 2.0 g / cm 3 , and the BET specific surface area is 0.00. 57m 2 / g, containing sulfur concentration is 0.188 mass%, 0.012 mass percent carbon concentration, and the volume resistivity was 3.6 × 10 4 Ω · cm. The pH value (liquid temperature) was 10.83 (24.7 ° C.).

(比較例1)
Ni(OH)2、Mn34、及びCo(OH)2を、Ni:Mn:Co=1:1:1のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.15μmに粉砕した。
(Comparative Example 1)
Ni (OH) 2 , Mn 3 O 4 , and Co (OH) 2 were weighed and mixed so as to have a molar ratio of Ni: Mn: Co = 1: 1: 1, and then pure water was added thereto. A slurry was prepared. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.15 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:11.7μm、BET比表面積:46m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.05の比で添加した。この混合前粉末約256gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、950℃で12時間焼成(昇降温速度5℃/min.)した後、解砕し、再度950℃で12時間焼成(昇降温速度5℃/min.)して、組成がLi1.00Ni0.326Mn0.329Co0.3452の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.7μm、二次粒子のメジアン径は11.8μm、90%積算径(D90)は19.8μm、嵩密度は2.3g/cm3、BET比表面積は0.58m2/g、含有硫黄濃度は0.024量%であり、含有炭素濃度は0.009量%であった。体積抵抗率は2.8×106Ω・cmであった。pH値(液温)は10.93(25.0℃)で
あった。
Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 11.7 μm, BET specific surface area: 46 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.05. About 256 g of the powder before mixing was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was placed in an alumina crucible, fired at 950 ° C. for 12 hours under air flow (heating / cooling rate 5 ° C./min.), Crushed, and fired again at 950 ° C. for 12 hours (heating / cooling rate 5). C./min.) To obtain a lithium nickel manganese cobalt composite oxide having a layered structure with a composition of Li 1.00 Ni 0.326 Mn 0.329 Co 0.345 O 2 . The average primary particle diameter is 0.7 μm, the median diameter of the secondary particles is 11.8 μm, the 90% cumulative diameter (D 90 ) is 19.8 μm, the bulk density is 2.3 g / cm 3 , and the BET specific surface area is 0.3. 58m 2 / g, containing the sulfur concentration is 0.024 mass%, the carbon concentration was 0.009 mass%. The volume resistivity was 2.8 × 10 6 Ω · cm. The pH value (liquid temperature) was 10.93 (25.0 ° C.).

(比較例2)
Ni(OH)2、Mn34、及びCo(OH)2を、Ni:Mn:Co=1:1:1のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.21μmに粉砕した。
(Comparative Example 2)
Ni (OH) 2 , Mn 3 O 4 , and Co (OH) 2 were weighed and mixed so as to have a molar ratio of Ni: Mn: Co = 1: 1: 1, and then pure water was added thereto. A slurry was prepared. While the slurry was stirred, the solid content in the slurry was pulverized to a median diameter of 0.21 μm using a circulating medium stirring wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:11.8μm、BET比表面積:68m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.08の比で添加した。この混合前粉末約3kgをハイスピードミキサーを用い、窒素雰囲気下、アジテーターの回転数を300rpm/min.、チョッパーの回転数を3000rpm/minとして、1時間かけて混合した。この焼成前混合物をアルミナ製角鉢に仕込み、空気流通下、975℃で12時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.04Ni0.337Mn0.332Co0.3312の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.9μm、二次粒子のメジアン径は10.3μm、90%積算径(D90)は16.7μm、嵩密度は2.2g/cm3、BET比表面積は0.66m2/g、含有硫黄濃度は0.040量%であり、含有炭素濃度は0.009量%であった。体積抵抗率は5.5×104Ω・cmであった。pH値(液温)は11.01(25.0℃)であった。 Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 11.8 μm, BET specific surface area: 68 m 2 / G), LiOH powder ground to a median diameter of 20 μm or less was added in a Li / (Ni + Mn / Co) molar ratio at a ratio of 1.08. About 3 kg of this pre-mixed powder was used in a high-speed mixer, and the rotational speed of the agitator was 300 rpm / min. The chopper was rotated at 3000 rpm / min and mixed for 1 hour. This pre-firing mixture was charged into an alumina square bowl, fired at 975 ° C. for 12 hours under air flow (temperature raising / lowering rate 5 ° C./min.), Pulverized, and the composition was Li 1.04 Ni 0.337 Mn 0.332 Co 0.331. A lithium nickel manganese cobalt composite oxide having a layered structure of O 2 was obtained. The average primary particle diameter is 0.9 μm, the median diameter of the secondary particles is 10.3 μm, the 90% cumulative diameter (D 90 ) is 16.7 μm, the bulk density is 2.2 g / cm 3 , and the BET specific surface area is 0.00. 66m 2 / g, containing the sulfur concentration is 0.040 mass%, the carbon concentration was 0.009 mass%. The volume resistivity was 5.5 × 10 4 Ω · cm. The pH value (liquid temperature) was 11.01 (25.0 ° C.).

(比較例3)
Ni(OH)2、Mn34、及びCo(OH)2を、Ni:Mn:Co=1:1:1のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.21μmに粉砕した。
(Comparative Example 3)
Ni (OH) 2 , Mn 3 O 4 , and Co (OH) 2 were weighed and mixed so as to have a molar ratio of Ni: Mn: Co = 1: 1: 1, and then pure water was added thereto. A slurry was prepared. While the slurry was stirred, the solid content in the slurry was pulverized to a median diameter of 0.21 μm using a circulating medium stirring wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:11.8μm、BET比表面積:68m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.12の比で添加した。この混合前粉末約3kgをハイスピードミキサーを用い、窒素雰囲気下、アジテーターの回転数を300rpm/min.、チョッパーの回転数を3000rpm/minとして、1時間かけて混合した。この焼成前混合物をアルミナ製角鉢に仕込み、空気流通下、975℃で12時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.08Ni0.337Mn0.332Co0.3312の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.9μm、二次粒子のメジアン径は10.3μm、90%積算径(D90)は16.6μm、嵩密度は2.1g/cm3、BET比表面積は0.64m2/g、含有硫黄濃度は0.036量%、含有炭素濃度は0.015量%、体積抵抗率は1.2×10○4Ω・cmであった。pH値(液温)は11.24(24.9℃)であった。 Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 11.8 μm, BET specific surface area: 68 m 2 / G), LiOH powder ground to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.12. About 3 kg of this pre-mixed powder was used in a high-speed mixer, and the rotational speed of the agitator was 300 rpm / min. The chopper was rotated at 3000 rpm / min and mixed for 1 hour. This pre-fired mixture was charged into an alumina square bowl, fired at 975 ° C. for 12 hours under air flow (temperature raising / lowering rate 5 ° C./min.), Pulverized, and the composition was Li 1.08 Ni 0.337 Mn 0.332 Co 0.331. A lithium nickel manganese cobalt composite oxide having a layered structure of O 2 was obtained. The average primary particle diameter is 0.9 μm, the median diameter of the secondary particles is 10.3 μm, the 90% cumulative diameter (D 90 ) is 16.6 μm, the bulk density is 2.1 g / cm 3 , and the BET specific surface area is 0.00. 64m 2 / g, containing sulfur concentration is 0.036 mass%, 0.015 mass percent carbon concentration, and the volume resistivity was 1.2 × 10 ○ 4 Ω · cm . The pH value (liquid temperature) was 11.24 (24.9 ° C.).

(比較例4)
Ni(OH)2、Mn34、Co(OH)2、及びAl2(SO43・14〜18H2Oを、Ni:Mn:Co:SO4=1/3:1/3:1/3:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.14μmに粉砕した。
(Comparative Example 4)
Ni (OH) 2 , Mn 3 O 4 , Co (OH) 2 , and Al 2 (SO 4 ) 3 · 14 to 18H 2 O are mixed with Ni: Mn: Co: SO 4 = 1/3: 1/3: After weighing and mixing to a molar ratio of 1/3: 0.005, pure water was added to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.14 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:12.6μm、BET比表面積:43m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.05の比で添加した。この混合前粉末約51gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、950℃で10時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.01Ni0.325Mn0.333Co0.3422の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.5μm、二次粒子のメジアン径は10.3μm、90%積算径(D90)は15.8μm、嵩密度は2.1g/cm3、BET比表面積は0.83m2/g、含有硫黄濃度は0.220量%、含有炭素濃度は0.011量%、体積抵抗率については、抵抗値が測定範囲を超えたため、測定不能であった。pH値(液温)は10.29(24.5℃)であった。 Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by agglomeration of primary particles to form solid secondary particles. Average particle size: 12.6 μm, BET specific surface area: 43 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.05. About 51 g of this pre-mixed powder was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was charged into an alumina crucible, fired at 950 ° C. for 10 hours under air flow (temperature raising / lowering rate 5 ° C./min.), Crushed, and the composition was Li 1.01 Ni 0.325 Mn 0.333 Co 0.342 O. A lithium nickel manganese cobalt composite oxide having a layered structure of 2 was obtained. The average primary particle diameter is 0.5 μm, the median diameter of the secondary particles is 10.3 μm, the 90% cumulative diameter (D 90 ) is 15.8 μm, the bulk density is 2.1 g / cm 3 , and the BET specific surface area is 0.00. 83m 2 / g, containing sulfur concentration is 0.220 mass%, 0.011 mass percent carbon concentration for the volume resistivity, the resistance value exceeds the measurement range, it could not be measured. The pH value (liquid temperature) was 10.29 (24.5 ° C.).

(比較例5)
Ni(OH)2、Mn34、Co(OH)2、及びLi2SO4・H2Oを、Ni:Mn:Co:SO4=1/3:1/3:1/3:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.15μmに粉砕した。
(Comparative Example 5)
Ni (OH) 2 , Mn 3 O 4 , Co (OH) 2 , and Li 2 SO 4 .H 2 O are mixed with Ni: Mn: Co: SO 4 = 1/3: 1/3: 1/3: 0. After weighing and mixing so that the molar ratio was 0.005, pure water was added thereto to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.15 μm using a circulating medium agitation type wet pulverizer.

スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末(一次粒子が凝集して中実な二次粒子を形成してなる粉体。平均粒子径:12.1μm、BET比表面積:44m2/g)に、メジアン径20μm以下に粉砕したLiOH粉末をLi/(Ni+Mn/Co)モル比にして1.05の比で添加した。この混合前粉末約51gを500ml広口ポリ瓶に入れ、密栓してストローク約20cm、1分間当たり約160回で20分間手振り混合した。この焼成前混合物をアルミナ製るつぼに仕込み、空気流通下、950℃で10時間焼成(昇降温速度5℃/min.)した後、解砕して、組成がLi1.01Ni0.329Mn0.325Co0.3462の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。この平均一次粒子径は0.6μm、二次粒子のメジアン径は10.5μm、90%積算径(D90)は16.4μm、嵩密度は2.1g/cm3、BET比表面積は0.94m2/g、含有硫黄濃度は0.218量%、含有炭素濃度は0.017量%、体積抵抗率は4.6×106Ω・cmであった。pH値(液温)は10.33(24.4℃)であった。 Particulate powder obtained by spray-drying the slurry with a spray dryer (powder formed by aggregation of primary particles to form solid secondary particles. Average particle size: 12.1 μm, BET specific surface area: 44 m 2 / G), LiOH powder pulverized to a median diameter of 20 μm or less was added at a Li / (Ni + Mn / Co) molar ratio of 1.05. About 51 g of this pre-mixed powder was placed in a 500 ml wide-mouthed plastic bottle, sealed, and shaken and mixed for 20 minutes at a stroke of about 20 cm and about 160 times per minute. This pre-firing mixture was charged into an alumina crucible, fired at 950 ° C. for 10 hours under air flow (temperature raising / lowering rate 5 ° C./min.), And then crushed to have a composition of Li 1.01 Ni 0.329 Mn 0.325 Co 0.346 O. A lithium nickel manganese cobalt composite oxide having a layered structure of 2 was obtained. The average primary particle diameter is 0.6 μm, the median diameter of the secondary particles is 10.5 μm, the 90% cumulative diameter (D 90 ) is 16.4 μm, the bulk density is 2.1 g / cm 3 , and the BET specific surface area is 0.00. 94m 2 / g, containing sulfur concentration is 0.218 mass%, the carbon concentration is 0.017 mass%, the volume resistivity was 4.6 × 10 6 Ω · cm. The pH value (liquid temperature) was 10.33 (24.4 ° C.).

〔電池の作製及び評価〕
上述の実施例1〜3及び比較例1〜5で製造したリチウムニッケルマンガン系複合酸化物粉体をそれぞれ正極材料(正極活物質)として用いて、以下の手法によりリチウム二次電池を作製し、評価を行なった。
[Production and evaluation of batteries]
Using the lithium nickel manganese composite oxide powders produced in Examples 1 to 3 and Comparative Examples 1 to 5 described above as positive electrode materials (positive electrode active materials), a lithium secondary battery was produced by the following method, Evaluation was performed.

(1)初期充放電容量:
実施例1〜3及び比較例1〜5で製造したリチウムニッケルマンガン系複合酸化物粉体75量%、アセチレンブラック20量%、ポリテトラフルオロエチレンパウダー5量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφのポンチを用いて打ち抜いた。この際、全体量は約8mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφの正極とした。
(1) Initial charge / discharge capacity:
That weighed at a ratio of Examples 1 to 3 and the complex oxide powder 75 mass% was prepared in Comparative Example 1-5, acetylene black 20 mass%, polytetrafluoroethylene powder 5 mass% Were mixed thoroughly in a mortar, and a thin sheet was punched out using a 9 mmφ punch. At this time, the whole mass was adjusted to about 8 mg. This was pressure-bonded to an aluminum expanded metal to obtain a 9 mmφ positive electrode.

9mmφの正極を試験極とし、リチウム金属板を対極とし、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPF6を1mol/Lで溶解した電解液を用い、厚さ25μmの多孔性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。 Using a 9 mmφ positive electrode as a test electrode and a lithium metal plate as a counter electrode, 1 mol of LiPF 6 in a solvent of EC (ethylene carbonate): DMC (dimethyl carbonate): EMC (ethyl methyl carbonate) = 3: 3: 4 (volume ratio) A coin-type cell was assembled using a 25 μm-thick porous polyethylene film as a separator using an electrolytic solution dissolved at / L.

得られたコイン型セルについて、0.2mA/cm2の定電流で、充電上限電圧を4.3V、放電下限電圧を3.0Vとして、充放電2サイクルの試験を行ない、引き続いて、3〜10サイクル目を、0.5mA/cm2の定電流充電、0.2mA/cm2、0.5mA/cm2、1mA/cm2、3mA/cm2、5mA/cm2、7mA/cm2、9mA/cm2、及び11mA/cm2の各放電での試験を行なった。この時の1サイクル目の0.2mA/cm2での初期充放電容量(mAh/g)、及び10サイクル目の11mA/cm2でのハイレート放電容量(mAh/g)を測定した(これらをそれぞれ以下、単に「初期充放電容量」「ハイレート放電容量」という。)。 With respect to the obtained coin-type cell, a charge / discharge two-cycle test was conducted with a constant current of 0.2 mA / cm 2 , a charge upper limit voltage of 4.3 V, and a discharge lower limit voltage of 3.0 V. 10th cycle, constant current charging of 0.5 mA / cm 2 , 0.2 mA / cm 2 , 0.5 mA / cm 2 , 1 mA / cm 2 , 3 mA / cm 2 , 5 mA / cm 2 , 7 mA / cm 2 , 9 mA / cm 2, and tests were carried out at each discharge of 11 mA / cm 2. Initial discharge capacity at 0.2 mA / cm 2 in the first cycle at this time (mAh / g), and 10 th cycle high-rate discharge capacity at 11 mA / cm 2 a (mAh / g) was measured (these Hereinafter, these are simply referred to as “initial charge / discharge capacity” and “high rate discharge capacity”).

(2)低温負荷特性試験:
実施例1〜3及び比較例1〜5で製造したリチウムニッケルマンガン系複合酸化物粉体75量%、アセチレンブラック20量%、ポリテトラフルオロエチレンパウダー5量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφ及び12mmφのポンチを用いて打ち抜いた。この際、全体量は各々約8mmg、約18mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφ及び12mmφの正極とした。
(2) Low temperature load characteristic test:
That weighed at a ratio of Examples 1 to 3 and the complex oxide powder 75 mass% was prepared in Comparative Example 1-5, acetylene black 20 mass%, polytetrafluoroethylene powder 5 mass% Were mixed thoroughly in a mortar, and a thin sheet was punched out using 9 mmφ and 12 mmφ punches. At this time, the whole mass are each approximately 8Mmg, it was adjusted to about 18 mg. This was pressure-bonded to an aluminum expanded metal to obtain positive electrodes of 9 mmφ and 12 mmφ.

9mmφの正極を試験極とし、リチウム金属板を対極とし、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPF6を1mol/Lで溶解した電解液を用い、厚さ25μmの多孔性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。 Using a 9 mmφ positive electrode as a test electrode and a lithium metal plate as a counter electrode, 1 mol of LiPF 6 in a solvent of EC (ethylene carbonate): DMC (dimethyl carbonate): EMC (ethyl methyl carbonate) = 3: 3: 4 (volume ratio) A coin-type cell was assembled using a 25 μm-thick porous polyethylene film as a separator using an electrolytic solution dissolved at / L.

得られたコイン型セルについて、0.2mA/cm2の定電流定電圧充電、即ち正極からリチウムイオンを放出させる反応を上限4.2Vで行なった。ついで0.2mA/cm2の定電流放電、即ち正極にリチウムイオンを吸蔵させる反応を下限3.0Vで行なった際の、正極活物質単位量あたりの初期充電容量をQs(C)[mAh/g]、初期放電容量をQs(D)[mAh/g]とした。 The obtained coin-type cell was subjected to a constant current / constant voltage charge of 0.2 mA / cm 2 , that is, a reaction for releasing lithium ions from the positive electrode at an upper limit of 4.2 V. Then 0.2 mA / cm 2 constant current discharge, i.e. when the reaction was carried out to absorb lithium ions in the positive electrode at the lower limit 3.0 V, the initial charge capacity per positive electrode active material unit Weight Qs (C) [mAh / G], and the initial discharge capacity is Qs (D) [mAh / g].

負極活物質として平均粒子径8〜10μmの黒鉛粉末(d002=3.35Å)、バインダーとしてポリフッ化ビニリデンをそれぞれ用い、これらを量比で92.5:7.5の割合で秤量し、これをN−メチルピロリドン溶液中で混合し、負極合剤スラリーとした。このスラリーを20μmの厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、0.5ton/cm2でプレス処理をしたものを負極とした。この時、電極上の負極活物質の量は約5〜12mgになるように調節した。 Graphite powder having an average particle size of 8~10μm as a negative electrode active material (d 002 = 3.35Å), using respectively the polyvinylidene fluoride as a binder, these in mass ratio 92.5: were weighed at a ratio of 7.5, This was mixed in an N-methylpyrrolidone solution to obtain a negative electrode mixture slurry. The slurry was applied to one side of a 20 μm thick copper foil, dried to evaporate the solvent, punched to 12 mmφ, and pressed at 0.5 ton / cm 2 to form a negative electrode. At this time, the amount of the negative electrode active material on the electrode was adjusted to be about 5 to 12 mg.

なお、この負極を試験極とし、リチウム金属を対極として電池セルを組み、0.2mA/cm2−3mVの定電流−定電圧法(カット電流0.05mA)で負極にリチウムイオンを吸蔵させる試験を下限0Vで行なった際の、負極活物質単位量当たりの初期吸蔵容量をQf[mAh/g]とした。 A test in which a negative electrode is used as a test electrode, a battery cell is assembled using lithium metal as a counter electrode, and lithium ions are occluded in the negative electrode by a constant current-constant voltage method (cut current 0.05 mA) of 0.2 mA / cm 2 -3 mV. the time of performing at lower 0V, and the initial storage capacity per negative electrode active material unit Mass and Qf [mAh / g].

上記正極、負極を組み合わせ、コインセルを使用して試験用電池を組み立て、その電池性能を評価した。即ち、コインセルの正極缶の上に、作製した上述の正極を置き、その上にセパレータとして厚さ25μmの多孔性ポリエチレンフィルムを置き、ポリプロピレン製ガスケットで押さえた後、非水電解液として、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPF6を1mol/Lで溶解した電解液を用い、これを缶内に加えてセパレータに十分染み込ませた後、上述の負極を置き、負極缶を載せて封口し、コイン型のリチウム二次電池(実施例1〜3及び比較例1〜4の電池)を作製した。なお、この時、正極活物質の量と負極活物質量のバランスは、ほぼ以下の式を満たすように設定した。
正極活物質量[g]/負極活物質量[g]
=(Qf[mAh/g]/1.2)Qs(C)[mAh/g]
The positive electrode and the negative electrode were combined, a test battery was assembled using a coin cell, and the battery performance was evaluated. That is, the above-described positive electrode prepared is placed on the positive electrode can of the coin cell, a porous polyethylene film having a thickness of 25 μm is placed thereon as a separator, pressed with a polypropylene gasket, and then EC ( Using an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent of ethylene carbonate): DMC (dimethyl carbonate): EMC (ethyl methyl carbonate) = 3: 3: 4 (volume ratio), this was added to the can. After fully infiltrating the separator, the above-described negative electrode was placed, the negative electrode can was placed and sealed, and coin-type lithium secondary batteries (the batteries of Examples 1 to 3 and Comparative Examples 1 to 4) were produced. At this time, the balance of the mass and the negative electrode active material Weight of the positive electrode active material was set so as to satisfy substantially the following equation.
The positive electrode active material Mass [g] / the negative electrode active material Mass [g]
= (Qf [mAh / g] /1.2) Qs (C) [mAh / g]

こうして得られた電池の低温負荷特性を測定するため、電池の1時間率電流値、即ち1Cを下式の様に設定し、以下の試験を行なった。
1C[mA]=Qs(D)×正極活物質量[g]/h
In order to measure the low temperature load characteristics of the battery thus obtained, the 1 hour rate current value of the battery, that is, 1C, was set as shown in the following equation, and the following tests were performed.
1C [mA] = Qs (D ) × positive electrode active material Weight [g] / h

まず、室温で定電流0.2C充放電2サイクル及び定電流1C充放電1サイクルを行なった。なお、充電上限は4.1V、下限電圧は3.0Vとした。次に、1/3C定電流充放電により、充電深度40%に調整したコインセルを−30℃の低温雰囲気に1時間以上保持した後、定電流0.5C[mA]で10秒間放電させた時の10秒後の電圧をV[mV]、放電前の電圧をV0[mV]とした時、△V=V−V0として下式より低温抵抗値R[Ω]を算出した。
R[Ω]=△V[mV]/0.5C[mA]
First, a constant current 0.2C charge / discharge cycle and a constant current 1C charge / discharge cycle were performed at room temperature. The upper limit of charging was 4.1 V, and the lower limit voltage was 3.0 V. Next, when a coin cell adjusted to a charging depth of 40% is held in a low temperature atmosphere of −30 ° C. for 1 hour or longer by 1/3 C constant current charging / discharging and then discharged for 10 seconds at a constant current of 0.5 C [mA]. Assuming that the voltage after 10 seconds is V [mV] and the voltage before discharge is V 0 [mV], the low-temperature resistance value R [Ω] is calculated from the following equation as ΔV = V−V 0 .
R [Ω] = ΔV [mV] /0.5C [mA]

〔結果〕
実施例1〜3及び比較例1〜5のリチウムニッケルマンガン系複合酸化物粉体の各種の物性を、以下の表1〜3に示す。また、それらを正極材料(正極活物質)として作製したリチウム二次電池について測定した特性(初期充放電容量、ハイレート放電容量、低温抵抗値)を、以下の表3に示す。なお、表3の「判定結果」の欄については、正極材料のpHが11.00以下、リチウム二次電池の初期充放電容量が150mAh/g以上、ハイレート放電容量が115mAh/g以上、低温抵抗値が450Ω以下という基準を設け、これら全ての基準を満たしているものを「○」、何れか1つ以上の基準を満たしていないものを「×」で表わしている。
〔result〕
Various physical properties of the lithium nickel manganese composite oxide powders of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Tables 1 to 3 below. In addition, Table 3 below shows characteristics (initial charge / discharge capacity, high rate discharge capacity, low temperature resistance value) measured for lithium secondary batteries prepared using these as positive electrode materials (positive electrode active materials). Regarding the column of “judgment result” in Table 3, the pH of the positive electrode material is 11.00 or less, the initial charge / discharge capacity of the lithium secondary battery is 150 mAh / g or more, the high-rate discharge capacity is 115 mAh / g or more, and the low temperature resistance A criterion that the value is 450Ω or less is provided, and “◯” indicates that all of these criteria are satisfied, and “X” indicates that any one or more of the criteria is not satisfied.

Figure 0004997700
Figure 0004997700

Figure 0004997700
Figure 0004997700

Figure 0004997700
Figure 0004997700

上記表1〜3の結果より、次のことが明らかである。   From the results shown in Tables 1 to 3, the following is clear.

比較例1、4、5のリチウムニッケルマンガン系複合酸化物粉体は、Li量が少な過ぎ、本発明の規定を満たしていない。また、それを用いて作製されたリチウム二次電池は、ハイレート放電容量及び低温抵抗値が上述の基準を満たしておらず、電池特性が不十分であることが分かる。   The lithium nickel manganese composite oxide powders of Comparative Examples 1, 4, and 5 have too little Li content and do not satisfy the provisions of the present invention. Moreover, it turns out that the lithium secondary battery produced using it does not satisfy | fill the above-mentioned reference | standard in the high-rate discharge capacity and low temperature resistance value, and battery characteristics are inadequate.

比較例2、3のリチウムニッケルマンガン系複合酸化物粉体は、含有硫黄濃度が低過ぎ、本発明の規定を満たしておらず、その結果、pHが上述の基準を満たしていない。よって、それを用いて得られるリチウム二次電池は、ガス発生による膨れや保存劣化等の課題を有するものと推測される。   The lithium nickel manganese composite oxide powders of Comparative Examples 2 and 3 have a too low sulfur concentration and do not satisfy the provisions of the present invention, and as a result, the pH does not satisfy the above-described criteria. Therefore, it is estimated that the lithium secondary battery obtained by using it has problems such as swelling due to gas generation and storage deterioration.

これに対して、組成や含有硫黄濃度等の各種物性が本発明の規定を満たす実施例1〜3のリチウムニッケルマンガン系複合酸化物粉体は、pHが上述の基準を満たしている。よって、それを用いて得られるリチウム二次電池は、ガス発生による膨れや保存劣化等の課題を有するものと推測される。また、作製されたリチウム二次電池は、初期充放電容量、ハイレート放電容量及び低温抵抗値が何れも上述の基準を満たしていることから、高容量で、負荷特性、低温出力特性にも優れていることが分かる。   On the other hand, the lithium nickel manganese based composite oxide powders of Examples 1 to 3 in which various physical properties such as the composition and the concentration of contained sulfur satisfy the provisions of the present invention have a pH that satisfies the above-mentioned criteria. Therefore, it is estimated that the lithium secondary battery obtained by using it has problems such as swelling due to gas generation and storage deterioration. In addition, the fabricated lithium secondary battery has an initial charge / discharge capacity, a high-rate discharge capacity, and a low-temperature resistance value that all meet the above-mentioned standards, so it has a high capacity and excellent load characteristics and low-temperature output characteristics. I understand that.

本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、自動車用動力源等を挙げることができる。

The use of the lithium secondary battery of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, automobile power sources, and the like.

Claims (11)

下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、
含有炭素濃度が0.012質量%以下である
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
While having the composition represented by the following formula (I), the sulfur concentration is 0.06 mass% or more and 0.35 mass% or less,
A lithium nickel manganese based composite oxide powder for a positive electrode material for a lithium secondary battery, wherein the carbon concentration is 0.012% by mass or less.
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、
40MPaの圧力で圧密した時の体積抵抗率が5×105Ω・cm以下である
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
While having the composition represented by the following formula (I), the sulfur concentration is 0.06 mass% or more and 0.35 mass% or less,
A lithium nickel manganese based composite oxide powder for a lithium secondary battery positive electrode material, having a volume resistivity of 5 × 10 5 Ω · cm or less when consolidated at a pressure of 40 MPa.
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、
一次粒子が凝集して二次粒子を形成してなるとともに、嵩密度が1.5g/cm3以上
である
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
While having the composition represented by the following formula (I), the sulfur concentration is 0.06 mass% or more and 0.35 mass% or less,
Lithium nickel manganese based composite oxide powder for a positive electrode material for a lithium secondary battery, characterized in that the primary particles are aggregated to form secondary particles and the bulk density is 1.5 g / cm 3 or more. .
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、
一次粒子が凝集して二次粒子を形成してなるとともに、平均一次粒子径が0.1μm以上、3μm以下である
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。
While having the composition represented by the following formula (I), the sulfur concentration is 0.06 mass% or more and 0.35 mass% or less,
Lithium nickel manganese based composite oxide for lithium secondary battery positive electrode material, characterized in that primary particles aggregate to form secondary particles, and the average primary particle size is 0.1 μm or more and 3 μm or less powder.
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. It represents a number satisfying .55.)
下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であり、
一次粒子が凝集して二次粒子を形成してなるとともに、二次粒子の90%積算径が5μm以上、30μm以下である
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
While having the composition represented by the following formula (I), the sulfur concentration is 0.06 mass% or more and 0.35 mass% or less,
Lithium nickel manganese composite for positive electrode material of lithium secondary battery, characterized in that primary particles aggregate to form secondary particles, and 90% cumulative diameter of secondary particles is 5 μm or more and 30 μm or less Oxide powder.
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
式(I)において、Mn/Ni原子比率を表わすy/xが、0.95≦y/x≦1.5である
ことを特徴とする、請求項1〜のいずれか一項に記載のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
In the formula (I), y / x representing the Mn / Ni atomic ratio, characterized in that it is a 0.95 ≦ y / x ≦ 1.5, according to any one of claims 1 to 5 Lithium nickel manganese composite oxide powder for lithium secondary battery cathode material.
含有硫黄成分が硫酸塩化合物からなる
ことを特徴とする、請求項1〜のいずれか一項に記載のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
The lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material according to any one of claims 1 to 6 , wherein the sulfur component is a sulfate compound.
BET比表面積が0.2m2/g以上、1.5m2/g以下である
ことを特徴とする、請求項1〜のいずれか一項に記載のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体。
BET specific surface area of 0.2 m 2 / g or more, 1.5 m and wherein the 2 / g or less, according to claim 1-7 or a lithium secondary battery positive electrode material for a lithium nickel manganese according to one of -Based composite oxide powder.
下記式(I)で表わされる組成を有するとともに、含有硫黄濃度が0.06質量%以上、0.35質量%以下であるリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体を製造する方法であって、
ニッケル化合物、マンガン化合物、及び硫酸塩化合物、並びに必要に応じて用いられるコバルト化合物を、液体媒体中で平均粒径0.3μm以下まで粉砕し、均一に分散させたスラリーを噴霧乾燥して、一次粒子が凝集して二次粒子を形成してなる粉体とした後、該粉体をリチウム化合物と十分に混合し、該混合物を酸素含有ガス雰囲気中で焼成する
ことを特徴とする、リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体の製造方法。
Li1+zNixMnyCo1-x-y2 (I)
(式(I)において、x、y、zはそれぞれ、0.20≦x≦0.55、0.20≦y≦0.60、0.50≦x+y≦1、0.02≦z≦0.55を満たす数を表わす。)
A lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material having a composition represented by the following formula (I) and having a sulfur concentration of 0.06% by mass to 0.35% by mass is manufactured. A way to
A nickel compound, a manganese compound, a sulfate compound, and a cobalt compound used as necessary are pulverized in a liquid medium to an average particle size of 0.3 μm or less, and a uniformly dispersed slurry is spray-dried to obtain a primary The powder is formed by agglomerating particles to form secondary particles, the powder is thoroughly mixed with a lithium compound, and the mixture is fired in an oxygen-containing gas atmosphere. The manufacturing method of the lithium nickel manganese type complex oxide powder for secondary battery positive electrode materials.
Li 1 + z Ni x Mn y Co 1-xy O 2 (I)
(In the formula (I), x, y, z are 0.20 ≦ x ≦ 0.55, 0.20 ≦ y ≦ 0.60, 0.50 ≦ x + y ≦ 1, 0.02 ≦ z ≦ 0, respectively. Represents a number satisfying .55.)
集電体と、該集電体上に形成された正極活物質層とを少なくとも備え、
該正極活物質層が、請求項1〜のいずれか一項に記載のリチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体と、結着剤とを少なくとも含有する
ことを特徴とする、リチウム二次電池用正極。
A current collector, and at least a positive electrode active material layer formed on the current collector,
The positive electrode active material layer contains at least the lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material according to any one of claims 1 to 8 and a binder. A positive electrode for a lithium secondary battery.
リチウムを吸蔵・放出可能な正極及び負極と、リチウム塩を含有する非水電解質とを少なくとも備えたリチウム二次電池であって、
該正極が、請求項10記載のリチウム二次電池用正極である
ことを特徴とする、リチウム二次電池。
A lithium secondary battery comprising at least a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a lithium salt,
The lithium secondary battery, wherein the positive electrode is a positive electrode for a lithium secondary battery according to claim 10 .
JP2004360142A 2004-12-13 2004-12-13 Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4997700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360142A JP4997700B2 (en) 2004-12-13 2004-12-13 Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360142A JP4997700B2 (en) 2004-12-13 2004-12-13 Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2006172753A JP2006172753A (en) 2006-06-29
JP4997700B2 true JP4997700B2 (en) 2012-08-08

Family

ID=36673286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360142A Expired - Fee Related JP4997700B2 (en) 2004-12-13 2004-12-13 Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4997700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352528A (en) * 2015-11-05 2018-07-31 住友化学株式会社 Positive active material for lithium secondary battery, the manufacturing method of positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
CN102931391B (en) * 2008-04-03 2018-10-09 株式会社Lg化学 It is used to prepare the precursor of lithium transition-metal oxide
JP5610178B2 (en) * 2008-10-02 2014-10-22 戸田工業株式会社 Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP5231171B2 (en) 2008-10-30 2013-07-10 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5342273B2 (en) * 2009-02-25 2013-11-13 日本化学工業株式会社 Method for producing calcium-manganese composite oxide
EP2555287B1 (en) 2010-04-01 2018-05-02 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5708277B2 (en) * 2011-06-07 2015-04-30 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5946011B2 (en) * 2011-09-16 2016-07-05 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
KR101332020B1 (en) * 2012-01-31 2013-11-25 전자부품연구원 Positive active material for lithium secondary battery and method of preparing the same
CN104798243A (en) 2012-11-21 2015-07-22 日本电气株式会社 Lithium secondary battery
KR101669385B1 (en) * 2013-02-28 2016-10-25 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP5741969B2 (en) * 2013-08-05 2015-07-01 戸田工業株式会社 Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
KR102358438B1 (en) * 2014-12-30 2022-02-04 삼성전자주식회사 Composite positive active material, preparing method thereof, positive electrode including the same, and lithium secondary battery including the positive electrode
US10749165B2 (en) 2015-08-25 2020-08-18 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method of producing the same
EP3356297A4 (en) * 2015-09-30 2019-05-15 Umicore Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
WO2020261879A1 (en) * 2019-06-27 2020-12-30 東レ株式会社 Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US20220271328A1 (en) * 2019-07-03 2022-08-25 Umicore Lithium nickel manganese cobalt composite oxide as a positive electrode active material for rechargeable lithium ion batteries
CN113972352B (en) * 2020-07-07 2023-04-07 巴斯夫杉杉电池材料有限公司 Positive electrode active material of lithium ion battery and preparation method thereof
KR102317602B1 (en) * 2021-04-22 2021-10-25 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same
CN114497452A (en) * 2021-12-28 2022-05-13 高点(深圳)科技有限公司 Positive electrode material for silicon battery and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245787A (en) * 1996-03-07 1997-09-19 Kansai Shokubai Kagaku Kk Positive electrode active material for lithium secondary battery
JPH10302795A (en) * 1997-02-25 1998-11-13 Asahi Chem Ind Co Ltd Non-aqueous electrolytic secondary battery
JP4171848B2 (en) * 1998-06-02 2008-10-29 宇部興産株式会社 Lithium ion non-aqueous electrolyte secondary battery
JP3362025B2 (en) * 1999-04-30 2003-01-07 同和鉱業株式会社 Positive electrode active material and lithium secondary battery using the positive electrode active material
JP2003297354A (en) * 2002-03-29 2003-10-17 Tdk Corp Lithium secondary battery
JP4427351B2 (en) * 2003-02-21 2010-03-03 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005097087A (en) * 2003-07-18 2005-04-14 Tosoh Corp New lithium-nickel-manganese multiple oxide and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352528A (en) * 2015-11-05 2018-07-31 住友化学株式会社 Positive active material for lithium secondary battery, the manufacturing method of positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US20180316008A1 (en) * 2015-11-05 2018-11-01 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, method of producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11437618B2 (en) 2015-11-05 2022-09-06 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, method of producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Also Published As

Publication number Publication date
JP2006172753A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4529784B2 (en) Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP4432910B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
KR100946610B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP5359140B2 (en) Lithium transition metal compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5135912B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5343347B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5157071B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
WO2011125722A1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2009245955A (en) Lithium nickel manganese system complex oxide powder for lithium secondary battery positive electrode material and method of manufacturing the same, and positive electrode for lithium secondary battery using the same and lithium secondary battery
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2011108554A (en) Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
JP2007214138A (en) Layered lithium-nickel-based composite oxide powder for lithium secondary battery positive electrode material and its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2009032647A (en) Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP6010902B2 (en) Lithium transition metal-based compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2010278015A (en) Lithium-nickel-manganese-cobalt-based compound oxide powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, and positive electrode for lithium rechargeable battery, and lithium rechargeable battery using the powder
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4003759B2 (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees