JP2003297354A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2003297354A
JP2003297354A JP2002094234A JP2002094234A JP2003297354A JP 2003297354 A JP2003297354 A JP 2003297354A JP 2002094234 A JP2002094234 A JP 2002094234A JP 2002094234 A JP2002094234 A JP 2002094234A JP 2003297354 A JP2003297354 A JP 2003297354A
Authority
JP
Japan
Prior art keywords
lithium
active material
battery
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002094234A
Other languages
Japanese (ja)
Inventor
Tadashi Suzuki
鈴木  忠
Satoru Maruyama
哲 丸山
Takeshi Iijima
剛 飯島
Takeru Suzuki
長 鈴木
Akinori Nishizawa
明憲 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002094234A priority Critical patent/JP2003297354A/en
Publication of JP2003297354A publication Critical patent/JP2003297354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of suppressing gas generation inside the battery when it is stored at high temperatures by restricting the residual carbon amount in its active material and of reducing a swell of the battery. <P>SOLUTION: The lithium secondary battery is composed of an electrode active material capable of at least occluding and emitting lithium ions, a binder, a positive and a negative electrode having electricity collector, and an electrolytic solution, wherein the electrode active material contained in the positive electrode is lithium composite oxide expressed by the following formula, and the carbon content of the lithium composite oxide is no more than 6.0×10<SP>-4</SP>when expressed by the mass ratio of C/M. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は携帯機器の電源等と
して用いられるリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery used as a power source for portable equipment.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、高出力化電
池という点で携帯機器用途の電源として広く用いられて
きている。リチウムイオン二次電池は既に上市されてか
ら十年以上が経過し、特性も改善されてきている。リチ
ウムイオン二次電池に関しては、高容量であること、安
全性が高いことが技術課題として重点が置かれている。
2. Description of the Related Art Lithium-ion secondary batteries have been widely used as power sources for portable devices in terms of high-power batteries. The lithium ion secondary battery has been on the market for more than 10 years and its characteristics have been improved. With regard to lithium-ion secondary batteries, high capacity and high safety are emphasized as technical issues.

【0003】リチウムイオン二次電池の正極および負極
材料には、通常リチウムイオンを可逆的に吸蔵−放出可
能な材料が用いられている。その正極活物質としては、
リチウム含有金属酸化物が用いられることが多く、特に
コバルト酸リチウム、ニッケル酸リチウム、マンガン酸
リチウムおよびこれらに適当な金属元素を添加したもの
が用いられている。
Materials capable of reversibly occluding and releasing lithium ions are usually used for the positive electrode and negative electrode materials of lithium ion secondary batteries. As the positive electrode active material,
Lithium-containing metal oxides are often used, particularly lithium cobalt oxide, lithium nickel oxide, lithium manganate, and those obtained by adding an appropriate metal element to these.

【0004】しかし、ニッケル酸リチウムは熱安定性に
乏しく、リチウムイオン二次電池の正極としての実用化
には至っておらず、コバルト酸リチウムもリチウムイオ
ンをその構造中からから脱離させていくに従い、その熱
安定性は低下し、対リチウム金属で約4.3V以上とな
る電位から急激に低下していき、過充電時の安全性に問
題を残している。また、マンガン酸リチウムは、熱安定
性は高いものの、その理論容量がコバルト酸リチウムお
よびニッケル酸リチウムの約半分であることから、電池
に用いた場合の容量も低下し、リチウムイオン二次電池
の特長である高いエネルギー密度という特徴を生かしに
くい材料となっている。
However, since lithium nickelate has poor thermal stability, it has not been put to practical use as a positive electrode of a lithium ion secondary battery. Lithium cobaltate also desorbs lithium ions from its structure. However, its thermal stability decreases, and it rapidly decreases from a potential of about 4.3 V or more with respect to lithium metal, leaving a problem in safety during overcharge. Further, although lithium manganate has high thermal stability, its theoretical capacity is about half that of lithium cobalt oxide and lithium nickel oxide, so the capacity when used in a battery also decreases, and the lithium ion secondary battery It is a material that is difficult to take advantage of its high energy density.

【0005】リチウムイオン二次電池の正極活物質の一
つとして注目されているリチウム含有ニッケル・マンガ
ン・コバルト酸化物(LiNixMnyCoz2 )は、
コバルト酸リチウムやニッケル酸リチウムと同様の層状
岩塩型の結晶構造を有している。この構造は、リチウム
イオンを脱離させていっても維持され、現在リチウムイ
オン二次電池の正極浩物質として最も広く用いられてい
るコバルト酸リチウムと比ぺれば、この酸化物を用いた
電池は過充電に対してより安全な電池となっている。
[0005] Positive electrode active lithium-containing nickel-manganese-cobalt oxide has attracted attention as one of materials of the lithium ion secondary battery (LiNi x Mn y Co z O 2) is
It has the same layered rock salt type crystal structure as lithium cobalt oxide and lithium nickel oxide. This structure is maintained even after desorption of lithium ions, and in comparison with lithium cobalt oxide, which is currently most widely used as a positive electrode material for lithium ion secondary batteries, batteries using this oxide are It is a safer battery against overcharging.

【0006】なお、LiNixMnyCoz2 の、リチ
ウムイオン脱離に対する構造安定性はマンガン量に相関
していると言われている。また、LiNixMnyCoz
2は、コバルト酸リチウムと同程度の放電容量を有し
ているため、コバルト酸リチウム同様、高いエネルギー
密度という特長を生かした電池を作成することができ
る。特に、容量が大きく高いエネルギー密度を有する電
池には高い安全性が要求されるため、その特性を兼ね備
えているLiNixMnyCoz2 の利用は不可欠であ
る。また、希少金属元素であるコバルト量を低減できる
点も、LiNixMnyCoz2 利用に対する有利な点
である。
[0006] Incidentally, the LiNi x Mn y Co z O 2 , structural stability to the lithium ion desorption are said to be correlated to the amount of manganese. In addition, LiNi x Mn y Co z
Since O 2 has a discharge capacity similar to that of lithium cobalt oxide, it is possible to produce a battery that takes advantage of the feature of high energy density as in lithium cobalt oxide. In particular, since the high safety is required for a cell having high energy density large capacity, use of LiNi x Mn y Co z O 2 has both the characteristics is essential. Also, the point of reducing the amount of cobalt is a rare metal element, is an advantage for the LiNi x Mn y Co z O 2 utilization.

【0007】しかし、LiNixMnyCoz2 は、そ
の構造中にニッケルを含んでいることと、ニッケルイオ
ンの酸化還元電位がマンガンイオン、コバルトイオンの
酸化還元電位と比べて低いということから、充電時には
ニッケルイオンの酸化がマンガンイオン、コバルトイオ
ンに比べて優先的に起きることが考えられ、コバルト酸
リチウムを用いた電池と比べて、充電時の平均電圧が低
下するという現象が見られている。また、それに伴い、
放電時にはニッケルイオンの還元電位が低いことを反映
して、コバルト酸リチウムを用いた電池と比べて、放電
時の平均電圧が低下するという現象が見られている。こ
のように、LiNixMnyCoz2 が高い充電状態に
あるとき、同じ充電状態のコバルト酸リチウムを用いた
場合と比べて活物質中の酸化された金属イオンの量は多
くなっており、電解液や活物質中に残存する炭素痕等が
酸化されやすく、ガスが発生しやすい環境となっている
と考えられている。
However, LiNi x Mn y Co z O 2 are that contain nickel in its structure, since the oxidation-reduction potential of the nickel ion is low as compared with the redox potential of the manganese ions, cobalt ions , It is considered that nickel ions are oxidized more preferentially than manganese ions and cobalt ions at the time of charging, and a phenomenon that the average voltage at the time of charging is lower than that of a battery using lithium cobalt oxide is observed. There is. Also, along with it,
It has been observed that the average voltage during discharge is lower than that of a battery using lithium cobalt oxide, which reflects the low reduction potential of nickel ions during discharge. Thus, when the LiNi x Mn y Co z O 2 at a high state of charge, the amount of oxidized metal ions in the active material as compared with the case of using the same charged state lithium cobaltate is increasingly It is considered that the environment is such that carbon traces and the like remaining in the electrolytic solution and the active material are easily oxidized and gas is easily generated.

【0008】リチウムイオン電池を実用に供するにあた
り、数々の実用上の使用に耐えうるか否かを試すための
様々な試験が必要となるが、その中で高温保存時の電池
内部でのガス発生を抑制することは、電池の膨れ防止に
つながり、重要な事項の一つである。特に、外装体にア
ルミラミネートフィルムを用いた電池においては、高温
保存時の電池の膨れ低減は、外装体の強度が低いため
に、缶型に比べて顕著であり、実用に供するにあたり重
要な課題となっている。高温保存時の電池内部でのガス
発生を抑制するための手段としては、今までに(1)正
極活物質の粉体特性、(2)正極中への添加物、(3)
電解液組成、(4)電解質リチウム塩の熱安定性が寄与
していることが解明され開示されている。これらは主に
正極にコバルト酸リチウムを用いる場合の膨れ低減に対
する対策であり、正極活物質にLiNixMnyCoz2
を用いる場合には、さらに異なる方策が必要である。
In putting a lithium-ion battery into practical use, various tests are required to test whether it can withstand various practical uses. Among them, gas generation inside the battery during high temperature storage is required. Suppressing leads to prevention of battery swelling and is one of the important matters. In particular, in a battery using an aluminum laminate film for the outer casing, the reduction of the bulge of the battery during high temperature storage is remarkable as compared with the can type due to the low strength of the outer casing, which is an important issue for practical use. Has become. As means for suppressing gas generation inside the battery during high temperature storage, (1) powder characteristics of positive electrode active material, (2) additive to positive electrode, (3)
It has been clarified and disclosed that the electrolytic solution composition and (4) the thermal stability of the electrolyte lithium salt contribute. These are measures primarily for blister reduced when using lithium cobalt oxide for the positive electrode, LiNi x Mn y Co z O 2 as the positive electrode active material
When using, different measures are necessary.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、高い
充電状態での高温保存時の電池内部でのガス発生を抑制
するためのものであり、特に高エネルギー密度電池に必
要不可欠である高容量かつ高熱安定性を有する正極活物
質であるリチウム含有ニッケル・マンガン・コバルト複
合酸化物を用いた場合に、ガス発生を低減させたリチウ
ムイオン二次電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to suppress gas generation inside the battery during high temperature storage in a high charge state, and in particular, it is essential for high energy density batteries. It is an object of the present invention to provide a lithium ion secondary battery in which gas generation is reduced when a lithium-containing nickel-manganese-cobalt composite oxide, which is a positive electrode active material having high capacity and high thermal stability, is used.

【0010】[0010]

【課題を解決するための手段】すなわち上記目的は、以
下の本発明の構成により達成される。 (1) 少なくともリチウムイオンを吸蔵放出可能な電
極活物質と、結着剤と、集電体とを有する正極および負
極と、電解液とを有し、前記正極に含有される電極活物
質が下記式で表されるリチウム複合酸化物であり、この
リチウム複合酸化物中に含まれる炭素量がC/Mの質量
比で6.0×10-4 未満であるリチウム二次電池。 LiMO2 (M=Co,MnおよびNiの3種の元素から構成され
る。) (2) 前記リチウム複合酸化物の比表面積が0.1m2
/g 以上0.8m2 /g以下かつ平均拉径が4μm 以上2
5μm 以下である上記(1)のリチウム二次電池。 (3) 前記リチウム複合酸化物は下記式で表される上
記(1)または(2)のリチウム二次電池。 LixMnyNizCo1-y-zw (0.85≦x≦1.1、0≦y≦0.6、0≦z≦
1、1≦w≦2である。)
That is, the above object is achieved by the following constitution of the present invention. (1) An electrode active material capable of occluding and releasing lithium ions, a positive electrode and a negative electrode each having a binder and a current collector, and an electrolytic solution, and the electrode active material contained in the positive electrode is as follows. A lithium secondary battery represented by the formula, wherein the amount of carbon contained in the lithium composite oxide is less than 6.0 × 10 −4 in a mass ratio of C / M. LiMO 2 (M = Co, Mn, and Ni). (2) The specific surface area of the lithium composite oxide is 0.1 m 2.
/ g or more and 0.8m 2 / g or less and average diameter is 4μm or more 2
The lithium secondary battery according to (1) above, having a size of 5 μm or less. (3) The lithium secondary battery according to (1) or (2) above, wherein the lithium composite oxide is represented by the following formula. Li x Mn y Ni z Co 1 -yz O w (0.85 ≦ x ≦ 1.1,0 ≦ y ≦ 0.6,0 ≦ z ≦
1, 1 ≦ w ≦ 2. )

【0011】[0011]

【作用】高温保存時下、特に高い充電状態での高温保存
時は、正極活物質が高い酸化状態にあり、電解液や活物
質中に残存する炭素痕が酸化されやすい状態となってお
り、これらが炭化水素系ガスや二酸化炭素へと酸化され
ることが、電池膨れの原因となっている。そのため、活
物質中に残存する炭素量をある量に規制することで、電
池内部でのガス発生が抑制でき、特に高容量かつ高熱安
定性を有する正極活物質であるリチウム含有ニッケル・
マンガン・コバルト複合酸化物を用いた場合に有効であ
る。なお、この酸化物は高エネルギー密度電池の作製に
は必要不可欠な材料である。
[Function] During high temperature storage, particularly during high temperature storage in a highly charged state, the positive electrode active material is in a high oxidation state, and carbon traces remaining in the electrolytic solution and the active material are easily oxidized, Oxidation of these to hydrocarbon gas or carbon dioxide causes the battery to swell. Therefore, by regulating the amount of carbon remaining in the active material to a certain amount, it is possible to suppress gas generation inside the battery, and especially lithium-containing nickel that is a positive electrode active material having high capacity and high thermal stability.
It is effective when a manganese-cobalt composite oxide is used. This oxide is an essential material for the production of high energy density batteries.

【0012】[0012]

【発明の実施の形態】本発明のリチウム二次電池は、少
なくともリチウムイオンを吸蔵放出可能な電極活物質
と、結着剤と、集電体とを有する正極および負極と、電
解液とを有し、前記正極に含有される電極活物質が下記
式で表されるリチウム複合酸化物であり、このリチウム
複合酸化物中にに含まれる炭素量がC/Mの質量比で
6.0×10-4 未満としたものである。 LiMO2 (M=Co,MnおよびNiの3種の元素から構成され
る。)
BEST MODE FOR CARRYING OUT THE INVENTION The lithium secondary battery of the present invention comprises an electrode active material capable of occluding and releasing lithium ions, a binder, a positive electrode and a negative electrode having a current collector, and an electrolytic solution. However, the electrode active material contained in the positive electrode is a lithium composite oxide represented by the following formula, and the amount of carbon contained in the lithium composite oxide is 6.0 × 10 at a C / M mass ratio. It is less than -4 . LiMO 2 (M = Co, Mn, and Ni).

【0013】本発明において、正極活物質は、上記式で
表される3元系のリチウム複合酸化物である。
In the present invention, the positive electrode active material is a ternary lithium composite oxide represented by the above formula.

【0014】このような、リチウム含有ニッケル・マン
ガン・コバルト複合酸化物を用いることにより、高いエ
ネルギー密度と、高い安全性という特長を生かした電池
を作成することができる。また、希少金属元素であるコ
バルト量を低減できる。
By using such a lithium-containing nickel-manganese-cobalt composite oxide, it is possible to produce a battery that takes advantage of the features of high energy density and high safety. Further, the amount of cobalt, which is a rare metal element, can be reduced.

【0015】本発明における正極活物質は、好ましくは
下記式で表される。 LixMnyNizCo1-y-zw 0.85≦x≦1.1、0≦y≦0.6、0≦z≦1、
1≦w≦2である。また、好ましくは、0≦y≦0.
5、0.2<z<0.8である。
The positive electrode active material in the present invention is preferably represented by the following formula. Li x Mn y Ni z Co 1 -yz O w 0.85 ≦ x ≦ 1.1,0 ≦ y ≦ 0.6,0 ≦ z ≦ 1,
1 ≦ w ≦ 2. Further, preferably, 0 ≦ y ≦ 0.
5, 0.2 <z <0.8.

【0016】上記組成範囲の複合酸化物を用い、高温で
アニール処理をすることにより、高特性を維持しつつ、
高温保存時において、膨れを防止することができる。
By using a composite oxide having the above composition range and performing an annealing treatment at a high temperature, while maintaining high characteristics,
Swelling can be prevented during storage at high temperature.

【0017】また、実用的な組成範囲として特にマンガ
ンが0.5以下、ニッケルが0.2以上0.8以下のと
きに、活物質の性能が発現でき、なおかつ膨れが抑制さ
れる。ニッケルがこの範囲を逸脱すると、効果は認めら
れるが実用に供さない。一方、ニッケルの量が少なくな
るにつれて活物質の容量が低減し、電池特性に影響する
ので実用的であるとは云えない。
When the manganese content is 0.5 or less and the nickel content is 0.2 or more and 0.8 or less as a practical composition range, the performance of the active material can be exhibited and swelling is suppressed. When nickel deviates from this range, the effect is recognized but it is not put to practical use. On the other hand, as the amount of nickel decreases, the capacity of the active material decreases, which affects battery characteristics, so it cannot be said to be practical.

【0018】本発明においては、上記組成の正極活物質
中に含有される炭素量を規制する。この場合、含有する
炭素量としては、上記ニッケル・マンガン・コバルトの
3種の元素をM、炭素をCとしたとき、質量比でC/M
が6.0×10-4 未満、好ましくは5.5×10-4
下である。その下限としては特に限定されるものではな
いが、通常1.5×10-4 程度である。なお、上記値
は試料を燃焼させたときに発生する炭酸ガススペクトル
を測定して炭素量を求める所謂燃焼法により得られた値
である。
In the present invention, the amount of carbon contained in the positive electrode active material having the above composition is regulated. In this case, when the three elements nickel, manganese, and cobalt are M and carbon is C, the amount of carbon contained is C / M in mass ratio.
Is less than 6.0 × 10 −4 , preferably 5.5 × 10 −4 or less. Although the lower limit is not particularly limited, it is usually about 1.5 × 10 −4 . The above values are values obtained by a so-called combustion method in which a carbon dioxide spectrum generated when a sample is burned is measured to obtain the amount of carbon.

【0019】一方、誘導結合高周波プラズマ発光分析
(Inductively coupled plasma atomic emission spect
rometry:以下、ICP分析という)によって試料中の
元素(炭素量)を分析する場合、質量比でC/Liが好
ましくは5.0×10-3 未満、より好ましくは4.5
×10-3 以下である。
On the other hand, inductively coupled plasma atomic emission spectrography
Rometry: hereinafter referred to as ICP analysis), when analyzing the element (carbon amount) in the sample, C / Li in terms of mass ratio is preferably less than 5.0 × 10 −3 , more preferably 4.5.
It is × 10 −3 or less.

【0020】このように炭素残存量を規制するには、炭
素源が主に活物質中に過剰に存在するリチウムが、空気
中に存在する二酸化炭素を吸収すること等に由来するこ
とから、活物質合成時、および/または保存時に二酸化
炭素濃度を制御する等すればよい。
In order to control the residual carbon amount as described above, since the carbon source is mainly derived from the fact that lithium existing in excess in the active material absorbs carbon dioxide existing in the air, The carbon dioxide concentration may be controlled during the substance synthesis and / or during storage.

【0021】リチウム二次電池の構造は特に限定されな
いが、通常、正極、負極及びセパレータから構成され、
積層型電池や円筒型電池等に適用される。このような正
極、セパレータ、負極をこの順に積層し、圧着して電極
群とする。
The structure of the lithium secondary battery is not particularly limited, but is usually composed of a positive electrode, a negative electrode and a separator,
It is applied to stacked type batteries and cylindrical type batteries. Such a positive electrode, a separator and a negative electrode are laminated in this order and pressure-bonded to form an electrode group.

【0022】電極は、好ましくは電極活物質と結着剤、
必要により導電助剤との組成物を用いる。特に電極に金
属箔単体を用いた場合、例えばリチウムデンドライトの
ような、電池特性に寄与しない金属結晶が表面に析出
し、使用時間の経過に伴って電池特性が低下してくる。
The electrode is preferably an electrode active material and a binder,
A composition with a conductive additive is used if necessary. In particular, when a single metal foil is used for the electrode, a metal crystal such as lithium dendrite, which does not contribute to the battery characteristics, is deposited on the surface, and the battery characteristics deteriorate with the lapse of use time.

【0023】本発明において、リチウムイオンを吸蔵放
出可能な正極活物質は、上記式で表される複合金属酸化
物である。この酸化物の粉末の平均粒子径は好ましくは
5〜20μm 、特に7〜15μm 程度である。粒径が小
さすぎると電極の加工性が悪くなり、電極の安定性が悪
くなるなどといった問題が生じ、逆に大きすぎると粒子
内へのイオン拡散に時間がかかり、均一な充放電が妨げ
られ、レート特性が悪化する等といった問題が生じてく
る。
In the present invention, the positive electrode active material capable of inserting and extracting lithium ions is the composite metal oxide represented by the above formula. The average particle diameter of the oxide powder is preferably 5 to 20 .mu.m, particularly 7 to 15 .mu.m. If the particle size is too small, the workability of the electrode will deteriorate, and the stability of the electrode will deteriorate.On the other hand, if it is too large, it will take time for the ions to diffuse into the particles, preventing uniform charge / discharge. However, problems such as deterioration of rate characteristics will occur.

【0024】また、そのBET比表面積は、0.1m2
g 以上1.0m2/g 以下、特に0.1〜0.8m2/g 程
度が好ましい。比表面積が小さいと平均粒径が大きい場
合と同様な問題が生じ、大きすぎると平均粒径が小さい
場合と同様な問題が生じてくる。
The BET specific surface area is 0.1 m 2 /
g to 1.0 m 2 / g or less, particularly 0.1~0.8m about 2 / g are preferred. If the specific surface area is small, the same problem occurs as when the average particle size is large, and if it is too large, the same problem occurs as when the average particle size is small.

【0025】本発明においてリチウムイオンを吸蔵放出
可能な負極活物質としては、炭素材料、金属リチウム、
リチウム合金あるいは酸化物などが挙げられる。
In the present invention, as the negative electrode active material capable of inserting and extracting lithium ions, carbon materials, metallic lithium,
Examples include lithium alloys and oxides.

【0026】炭素材料では、例えば天然黒鉛、メソフェ
ーズカーボンマイクロビーズ(MCMB)、メソフェーズカ
ーボンファイバー(MCF)、コークス類、ガラス状炭
素、有機高分子化合物焼成体などが挙げられる。また、
リチウム合金ではLi−Al,LiSi,LiSn等が
挙げられる。酸化物としては、Nb25 、SnO等が
挙げられる。これらは通常粉末として用いられる。
Examples of the carbon materials include natural graphite, mesophase carbon microbeads (MCMB), mesophase carbon fibers (MCF), cokes, glassy carbon, and organic polymer compound fired bodies. Also,
Examples of lithium alloys include Li-Al, LiSi, and LiSn. Examples of the oxide include Nb 2 O 5 and SnO. These are usually used as powder.

【0027】これらのなかでも特に、格子面(002)面
間の面間隔が0.335〜0.380nmの人造黒鉛が好
ましい。なお、(002)面間の面間隔はX線回折により
算出することができる。天然黒鉛は、不純物を含むの
で、式(1)で示される化合物が初回の充電時に皮膜を
形成する際、その皮膜の質を低下させることがある。人
造黒鉛を用いることにより、不純物の影響を回避できる
ので、イオン透過性の良好な皮膜を形成することができ
る。
Of these, artificial graphite having a lattice spacing between (002) planes of 0.335 to 0.380 nm is particularly preferable. The surface spacing between the (002) planes can be calculated by X-ray diffraction. Since natural graphite contains impurities, when the compound represented by the formula (1) forms a film during the initial charging, the quality of the film may be deteriorated. By using artificial graphite, the influence of impurities can be avoided, so that a film having good ion permeability can be formed.

【0028】これらを粉末で用いる場合、その平均粒子
径は1〜30μm 、特に5〜25μm であることが好ま
しい。平均粒子径が小さすぎると、充放電サイクル寿命
が短くなり、また、容量のばらつき(個体差)が大きく
なる傾向にある。平均粒子径が大きすぎると、容量のば
らつきが著しく大きくなり、平均容量が小さくなってし
まう。平均粒子径が大きい場合に容量のばらつきが生じ
るのは、黒鉛等の負極活物質と集電体との接触や負極活
物質同士の接触にばらつきが生じるためと考えられる。
When these are used as powders, the average particle size is preferably 1 to 30 μm, particularly 5 to 25 μm. If the average particle size is too small, the charge / discharge cycle life tends to be short, and the capacity variation (individual difference) tends to increase. If the average particle size is too large, the variation in capacity becomes extremely large and the average capacity becomes small. It is considered that the reason why the capacity varies when the average particle diameter is large is that the contact between the negative electrode active material such as graphite and the current collector and the contact between the negative electrode active materials vary.

【0029】電極には、必要により導電助剤が添加され
る。導電助剤としては、好ましくは黒鉛、カーボンブラ
ック、アセチレンブラック、炭素繊維、ニッケル、アル
ミニウム、銅、銀等の金属が挙げられ、特に黒鉛、カー
ボンブラックが好ましい。
A conductive aid is added to the electrode, if necessary. The conductive aid is preferably graphite, carbon black, acetylene black, carbon fiber, a metal such as nickel, aluminum, copper or silver, and particularly preferably graphite or carbon black.

【0030】電極組成は正極では、重量比で活物質:導
電助剤:結着剤=80〜94:2〜8:2〜18の範囲
が好ましく、負極では、重量比で活物質:導電助剤:結
着剤=70〜97:0〜25:3〜10の範囲が好まし
い。
The electrode composition of the positive electrode is preferably in the range of active material: conductive assistant: binder = 80 to 94: 2 to 8: 2 to 18 by weight ratio, and in the negative electrode, the active material: conductive assistant is in weight ratio. Agent: Binder = The range of 70 to 97:00 to 25: 3 to 10 is preferable.

【0031】電極の製造は、まず、活物質と結着剤、必
要に応じて導電助剤を、結着剤溶液に分散し、塗布液を
調製する。
To manufacture the electrode, first, an active material, a binder, and optionally a conductive auxiliary agent are dispersed in a binder solution to prepare a coating solution.

【0032】結着剤としては、スチレンブタジエンゴム
(SBR)等のようなエラストマーや、ポリフッ化ビニ
リデン(PVDF)等のような樹脂材料を用いることが
できる。また、必要に応じてカルボキシメチルセルロー
ス(CMC)等の添加剤を加えてもよい。
As the binder, an elastomer such as styrene-butadiene rubber (SBR) or a resin material such as polyvinylidene fluoride (PVDF) can be used. Moreover, you may add additives, such as carboxymethyl cellulose (CMC), as needed.

【0033】そして、この電極塗布液を集電体に塗布す
る。塗布する手段は特に限定されず、集電体の材質や形
状などに応じて適宜決定すればよい。一般に、メタルマ
スク印刷法、静電塗装法、ディップコート法、スプレー
コート法、ロールコート法、ドクターブレード法、グラ
ビアコート法、スクリーン印刷法等が使用されている。
その後、必要に応じて、平板プレス、カレンダーロール
等により圧延処理を行う。
Then, the electrode coating solution is applied to the current collector. The means for applying is not particularly limited and may be appropriately determined depending on the material and shape of the current collector. Generally, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used.
Then, if necessary, rolling treatment is performed by a flat plate press, a calendar roll, or the like.

【0034】集電体は、電池の使用するデバイスの形状
やケース内への集電体の配置方法などに応じて、適宜通
常の集電体から選択すればよい。一般に、正極にはアル
ミニウム等が、負極には銅、ニッケル等が使用される。
なお、集電体は、通常、金属箔、金属メッシュなどが使
用される。金属箔よりも金属メッシュの方が電極との接
触抵抗が小さくなるが、金属箔でも十分小さな接触抵抗
が得られる。
The current collector may be appropriately selected from ordinary current collectors depending on the shape of the device used by the battery, the method of arranging the current collector in the case, and the like. Generally, aluminum or the like is used for the positive electrode and copper, nickel or the like is used for the negative electrode.
A metal foil, a metal mesh, or the like is usually used as the current collector. Although the metal mesh has a smaller contact resistance with the electrode than the metal foil, the metal foil can also obtain a sufficiently small contact resistance.

【0035】そして、溶媒を蒸発させ、電極を作製す
る。塗布厚は、50〜400μm 程度とすることが好ま
しい。
Then, the solvent is evaporated to produce an electrode. The coating thickness is preferably about 50 to 400 μm.

【0036】本発明において、リチウムイオン導電性物
質としては、リチウム塩を溶解させた非水電解液やゲル
状ポリマーのいずれかを用いることができる。
In the present invention, as the lithium ion conductive material, either a non-aqueous electrolytic solution in which a lithium salt is dissolved or a gel polymer can be used.

【0037】電解液の溶媒としては、高分子固体電解
質、電解質塩等との相溶性が良好なものであれば特に制
限はされないが、リチウム電池等では高い動作電圧でも
分解の起こらない極性有機溶媒、例えば、エチレンカー
ボネート(EC)、プロピレンカーボネート(PC)、
ブチレンカーボネート、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、エチルメチル
カーボネート等のカーボネート類、テトラヒドロフラン
(THF)、2−メチルテトラヒドロフラン等の環式エ
ーテル、1,3−ジオキソラン、4−メチルジオキソラ
ン等の環式エーテル、γ−ブチロラクトン等のラクト
ン、スルホラン等が好適に用いられる。3−メチルスル
ホラン、ジメトキシエタン、ジエトキシエタン、エトキ
シメトキシエタン、エチルジグライム等を用いてもよ
い。
The solvent of the electrolytic solution is not particularly limited as long as it has good compatibility with the solid polymer electrolyte, the electrolyte salt and the like, but a polar organic solvent which does not decompose even at a high operating voltage in a lithium battery or the like. , For example, ethylene carbonate (EC), propylene carbonate (PC),
Butylene carbonate, dimethyl carbonate (DM
C), carbonates such as diethyl carbonate (DEC) and ethyl methyl carbonate, cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran, cyclic ethers such as 1,3-dioxolane and 4-methyldioxolane, γ- Lactones such as butyrolactone and sulfolane are preferably used. 3-Methylsulfolane, dimethoxyethane, diethoxyethane, ethoxymethoxyethane, ethyl diglyme and the like may be used.

【0038】リチウムイオンを含む支持塩としては、例
えばLiClO4 、LiPF6 、LiBF4 、LiAs
6 、LiCF3SO3 、LiCF3CF2SO3 、Li
C(CF3SO23 、LiN(CF3SO22 、LiN
(CF3CF2SO22 、LiN(CF3SO2)(C4
9SO2)およびLiN(CF3CF2CO)2 などの塩ま
たはこれらの混合物が挙げられる。
Examples of the supporting salt containing lithium ions include LiClO 4 , LiPF 6 , LiBF 4 , and LiAs.
F 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , Li
C (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN
(CF 3 CF 2 SO 2) 2, LiN (CF 3 SO 2) (C 4 F
9 SO 2 ) and salts such as LiN (CF 3 CF 2 CO) 2 or mixtures thereof.

【0039】電解液中のリチウム塩の濃度は0.5〜
2.5モル/リットルが好ましく、より好ましくは0.
8〜1.5モル/リットルである。リチウム塩の濃度が
この範囲より高いと電解液の粘度が高くなり、ハイレー
トでの放電容量や低温での放電容量が抵下し、低いとリ
チウムイオンの供給が間に合わなくなり、ハイレートで
の放電容量や低温での放電容量が低下する。
The concentration of the lithium salt in the electrolytic solution is 0.5 to
It is preferably 2.5 mol / liter, more preferably 0.
It is 8 to 1.5 mol / liter. If the concentration of lithium salt is higher than this range, the viscosity of the electrolyte will be high, and the discharge capacity at high rate or low temperature will drop, and if it is low, the lithium ion supply will not be in time, and the discharge capacity at high rate or The discharge capacity at low temperature decreases.

【0040】ゲル状ポリマーとは、例えばポリアクリロ
ニトリル、ポリエチレングリコール、ポリフッ化ビニリ
デン(PVdF)などに前記リチウム塩を溶解させた非
水電解液を膨潤させたものが挙げられる。正極と負極の
間の短絡を防止する必要があれば、高分子の多孔膜、例
えばポリオレフィン1軸あるいは2軸延伸膜、ポリオレフ
イン不織布などをセパレータやリチウムイオン導電性ポ
リマーの基材として用いても良い。
Examples of the gel polymer include those obtained by swelling a non-aqueous electrolyte solution in which the lithium salt is dissolved in polyacrylonitrile, polyethylene glycol, polyvinylidene fluoride (PVdF) or the like. If it is necessary to prevent a short circuit between the positive electrode and the negative electrode, a polymer porous film, for example, a polyolefin uniaxially or biaxially stretched film, a polyolefin woven fabric or the like may be used as a separator or a base material of a lithium ion conductive polymer. .

【0041】ゲル状ポリマーの膜厚は、5〜100μm
、さらには5〜60μm 、特に10〜40μm である
ことが好ましい。
The film thickness of the gel polymer is 5 to 100 μm.
Further, it is preferably 5 to 60 μm, and particularly preferably 10 to 40 μm.

【0042】そのほかのセパレータ構成材料として、ポ
リエチレン、ポリプロピレンなどのポリオレフイン類の
一種又は二種以上(二種以上の場合、二層以上のフィル
ムの張り合わせ物などがある)、ポリエチレンテレフタ
ーレートのようなポリエステル類、エチレン−テトラフ
ルオロエチレン共重合体のような熱可塑性フッ素樹脂
類、セルロース類などがある。シートの形態はJIS−P81
17に規定する方法で測定した通気度が5〜2000秒/
100cc程度、厚さが5〜100μm 程度の微多孔膜フ
ィルム、織布、不織布などがある。
Other separator constituent materials include one or more kinds of polyolefins such as polyethylene and polypropylene (in the case of two or more kinds, a laminated product of two or more layers of film), polyethylene terephthalate, etc. Examples include polyesters, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses. Sheet form is JIS-P81
The air permeability measured by the method specified in 17 is 5 to 2000 seconds /
There are microporous film, woven cloth, non-woven cloth, etc. having a thickness of about 100 cc and a thickness of about 5 to 100 μm.

【0043】外装体は、例えばアルミニウム等の金属層
の両面に、熱接着性樹脂層としてのポリプロピレン、ポ
リエチレン等のポリオレフィン樹脂層や耐熱性のポリエ
ステル樹脂層が積層されたラミネートフィルムから構成
されている。外装体は、予め2枚のラミネートフィルム
をそれらの3辺の端面の熱接着性樹脂層相互を熱接着し
て第1のシール部を形成し、1辺が開口した袋状に形成
される。あるいは、一枚のラミネートフィルムを折り返
して両辺の端面を熱接着してシール部を形成して袋状と
してもよい。
The outer package is composed of a laminate film in which a polyolefin resin layer such as polypropylene or polyethylene as a heat-adhesive resin layer or a heat-resistant polyester resin layer is laminated on both surfaces of a metal layer such as aluminum. . The exterior body is formed in a bag shape in which one side is opened by previously heat-bonding two laminated films to each other by thermally adhering the thermoadhesive resin layers on the end faces of the three sides. Alternatively, a single laminated film may be folded back and the end faces of both sides may be heat-bonded to form a seal portion to form a bag shape.

【0044】ラミネートフィルムとしては、ラミネート
フィルムを構成する金属箔と導出端子間の絶縁を確保す
るため、例えば内装側から熱接着性樹脂層/ポリエステ
ル樹脂層/金属箔/ポリエステル樹脂層の積層構造を有
するラミネートフィルムを用いることが好ましい。この
ようなラミネートフィルムを用いることにより、熱接着
時に高融点のポリエステル樹脂層が溶けずに残るため、
導出端子と外装袋の金属箔との離間距離を確保し、絶縁
を確保することができる。そのため、ラミネートフィル
ムのポリエステル樹脂層の厚さは、5〜100μm 程度
とすることが好ましい。
As the laminate film, in order to secure the insulation between the metal foil forming the laminate film and the lead-out terminal, for example, a laminated structure of a thermoadhesive resin layer / polyester resin layer / metal foil / polyester resin layer from the interior side is used. It is preferable to use a laminate film having the same. By using such a laminate film, the high melting point polyester resin layer remains without melting during heat bonding,
Insulation can be secured by ensuring a distance between the lead-out terminal and the metal foil of the outer bag. Therefore, the thickness of the polyester resin layer of the laminated film is preferably about 5 to 100 μm.

【0045】本発明は電解液を用いたリチウムイオン電
池に関するものであるが,それに限定されることなく,
電解質が固体状の電解質である場合にも適用できる。
The present invention relates to a lithium ion battery using an electrolytic solution, but is not limited thereto,
It can also be applied when the electrolyte is a solid electrolyte.

【0046】[0046]

【実施例】〔実施例1〕正極の作製には、正極活物質と
して LixMnyNizCo1-y-zw 、 において、x=1、y=0.33、z=0.33、w=
2とした複合金属酸化物:90質量%を用い、導電助剤
としてアセチレンブラック:6質量%、結着剤としてポ
リフッ化ビニリデン:4質量%を用いた。
EXAMPLES The preparation of Example 1 a positive electrode, Li x Mn y Ni z Co 1-yz O w as the positive electrode active material, at, x = 1, y = 0.33 , z = 0.33, w =
90% by mass of the composite metal oxide defined as 2 was used, 6% by mass of acetylene black was used as a conductive aid, and 4% by mass of polyvinylidene fluoride was used as a binder.

【0047】負極活物質として人造黒鉛:92質量%
を、結着剤としてポリフッ化ビニリデン8質量%を用い
た。電解液には体積比でEC/DEC=3/7とした混
合溶液を溶媒とし、LiPF6 を1mol /Lの割合で溶
質とした非水電解溶液を用いた。
Artificial graphite as negative electrode active material: 92% by mass
8% by mass of polyvinylidene fluoride was used as a binder. As the electrolytic solution, a nonaqueous electrolytic solution was used in which a mixed solution having a volume ratio of EC / DEC = 3/7 was used as a solvent and LiPF 6 was a solute at a ratio of 1 mol / L.

【0048】以上の構成で、正極と負極をセパレータを
介して積層してセル化し、厚さ0.2mmのアルミラミネ
ートフィルム外装体内に収納した後、電解液を注液して
完成した。なお、外装体は所謂深絞り型の形状に成形し
たものを用いた。
With the above structure, the positive electrode and the negative electrode were laminated with a separator interposed therebetween to form a cell, which was housed in an aluminum laminate film outer casing having a thickness of 0.2 mm, and then an electrolytic solution was injected to complete the process. In addition, as the exterior body, one formed in a so-called deep-drawing type was used.

【0049】作成した電池に対して、0.2C充放電サ
イクルさせた後、4.2V 状態に充電し、90℃で4時
間保持した後の電池厚みを測定することで、電池の高温
状態でのガス発生を確認した。
The battery thus prepared was subjected to a 0.2 C charge / discharge cycle, charged to 4.2 V, and held at 90 ° C. for 4 hours, and the battery thickness was measured. The gas generation was confirmed.

【0050】なお、この正極活物質中に残存する炭素量
は、燃焼させたときの炭酸ガススペクトルから求める、
所謂燃焼法によって定量し、195ppm であった。
The amount of carbon remaining in the positive electrode active material is determined from the carbon dioxide gas spectrum when burned.
It was 195 ppm as determined by the so-called combustion method.

【0051】〔実施例2〕_正極活物質において、y=
0.42、z=0.42としたものを用いた以外は実施
例1と同様にして電池を作成、評価した。なお、この正
極活物質中に残存する炭素量は、燃焼法によって定量
し、304ppm であった。
Example 2 — In the positive electrode active material, y =
A battery was prepared and evaluated in the same manner as in Example 1 except that 0.42 and z = 0.42 were used. The amount of carbon remaining in this positive electrode active material was 304 ppm as determined by the combustion method.

【0052】〔比較例1〕正極活物質において、y=
0.55、z=0.30としたものを用いた以外は実施
例1と同様にして電池を作成、評価した。なお、この正
極活物質中に残存する炭素量は、燃焼法によって定量
し、581ppm であった。
Comparative Example 1 In the positive electrode active material, y =
A battery was prepared and evaluated in the same manner as in Example 1 except that the one having 0.55 and z = 0.30 was used. The amount of carbon remaining in the positive electrode active material was 581 ppm as determined by the combustion method.

【0053】〔比較例2〕正極活物質において、y=
0.70、z=0.10とした以外は実施例1と同様に
して電池を作成、評価した。なお、この正極活物質に残
存する炭素量は燃焼法よって定量し、857ppm であっ
た。
Comparative Example 2 In the positive electrode active material, y =
A battery was prepared and evaluated in the same manner as in Example 1 except that 0.70 and z = 0.10. The amount of carbon remaining in this positive electrode active material was 857 ppm as determined by the combustion method.

【0054】上記実施例1から2、および比較例1から
2について、90℃、4時間での高温保存試験前後の電
池厚み変化率と燃焼法による残存炭素量の各元素に対す
る質量比を表1に示す。
For the above Examples 1 and 2 and Comparative Examples 1 and 2, the mass ratios of the cell thickness change rate before and after the high temperature storage test at 90 ° C. for 4 hours and the residual carbon amount by the combustion method to each element are shown in Table 1. Shown in.

【0055】[0055]

【表1】 [Table 1]

【0056】残存炭素量を規制した活物質を用いた実施
例1,2では比較例1,2と比べて厚み変化率が大きく
低減した。残存炭素量の規制により、高温保存時にガス
発生を抑制するリチウムイオン二次電池を提供すること
ができる。
In Examples 1 and 2 using the active material in which the amount of residual carbon was regulated, the rate of change in thickness was greatly reduced as compared with Comparative Examples 1 and 2. By regulating the residual carbon amount, it is possible to provide a lithium ion secondary battery that suppresses gas generation during high temperature storage.

【0057】[0057]

【発明の効果】以上のように本発明によれば、活物質中
の残存炭素量を規制することで、高温保存時の電池内部
でのガス発生を抑制することが可能となり、電池の膨れ
を低減することができた。
As described above, according to the present invention, by controlling the amount of carbon remaining in the active material, it is possible to suppress the gas generation inside the battery during high temperature storage and to prevent the battery from bulging. Could be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 剛 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 鈴木 長 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 西沢 明憲 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 5H029 AJ03 AJ12 AK03 AL02 AL06 AL12 AM03 AM04 AM07 BJ04 BJ12 DJ16 HJ01 HJ02 HJ05 HJ07 5H050 AA08 AA10 AA15 CA08 CA19 CB02 CB08 CB12 FA17 HA01 HA02 HA05 HA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsuyoshi Iijima             1-13-1, Nihonbashi, Chuo-ku, Tokyo             -In DC Inc. (72) Inventor Cho Suzuki             1-13-1, Nihonbashi, Chuo-ku, Tokyo             -In DC Inc. (72) Inventor Akinori Nishizawa             1-13-1, Nihonbashi, Chuo-ku, Tokyo             -In DC Inc. F term (reference) 5H029 AJ03 AJ12 AK03 AL02 AL06                       AL12 AM03 AM04 AM07 BJ04                       BJ12 DJ16 HJ01 HJ02 HJ05                       HJ07                 5H050 AA08 AA10 AA15 CA08 CA19                       CB02 CB08 CB12 FA17 HA01                       HA02 HA05 HA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくともリチウムイオンを吸蔵放出可
能な電極活物質と、結着剤と、集電体とを有する正極お
よび負極と、電解液とを有し、 前記正極に含有される電極活物質が下記式で表されるリ
チウム複合酸化物であり、このリチウム複合酸化物中に
含まれる炭素量がC/Mの質量比で6.0×10-4
満であるリチウム二次電池。 LiMO2 (M=Co,MnおよびNiの3種の元素から構成され
る。)
1. An electrode active material contained in the positive electrode, the positive electrode and the negative electrode having at least a lithium ion occluding and releasing electrode active material, a binder, and a current collector, and an electrolytic solution. Is a lithium composite oxide represented by the following formula, and the amount of carbon contained in the lithium composite oxide is less than 6.0 × 10 −4 in a mass ratio of C / M. LiMO 2 (M = Co, Mn, and Ni).
【請求項2】 前記リチウム複合酸化物の比表面積が
0.1m2 /g 以上0.8m2 /g 以下かつ平均拉径が4μ
m 以上25μm 以下である請求項1のリチウム二次電
池。
2. The lithium complex oxide has a specific surface area of 0.1 m 2 / g or more and 0.8 m 2 / g or less and an average diameter of 4 μm.
The lithium secondary battery according to claim 1, having a size of m or more and 25 μm or less.
【請求項3】 前記リチウム複合酸化物は下記式で表さ
れる請求項1または2のリチウム二次電池。 LixMnyNizCo1-y-zw (0.85≦x≦1.1、0≦y≦0.6、0≦z≦
1、1≦w≦2である。)
3. The lithium secondary battery according to claim 1, wherein the lithium composite oxide is represented by the following formula. Li x Mn y Ni z Co 1 -yz O w (0.85 ≦ x ≦ 1.1,0 ≦ y ≦ 0.6,0 ≦ z ≦
1, 1 ≦ w ≦ 2. )
JP2002094234A 2002-03-29 2002-03-29 Lithium secondary battery Pending JP2003297354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094234A JP2003297354A (en) 2002-03-29 2002-03-29 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094234A JP2003297354A (en) 2002-03-29 2002-03-29 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003297354A true JP2003297354A (en) 2003-10-17

Family

ID=29386932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094234A Pending JP2003297354A (en) 2002-03-29 2002-03-29 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003297354A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2006172753A (en) * 2004-12-13 2006-06-29 Mitsubishi Chemicals Corp Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
KR101515350B1 (en) 2012-04-17 2015-04-27 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR101515361B1 (en) 2012-04-18 2015-05-06 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising The Same
EP3624244A4 (en) * 2017-11-30 2020-08-26 LG Chem, Ltd. Battery cell activation method and activation device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529784B2 (en) * 2004-04-27 2010-08-25 三菱化学株式会社 Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2006172753A (en) * 2004-12-13 2006-06-29 Mitsubishi Chemicals Corp Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
KR101515350B1 (en) 2012-04-17 2015-04-27 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR101515361B1 (en) 2012-04-18 2015-05-06 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising The Same
EP3624244A4 (en) * 2017-11-30 2020-08-26 LG Chem, Ltd. Battery cell activation method and activation device
US11342543B2 (en) 2017-11-30 2022-05-24 Lg Energy Solution, Ltd. Apparatus and method for activating battery cell

Similar Documents

Publication Publication Date Title
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP5318356B2 (en) Nonaqueous electrolyte secondary battery
WO2015111710A1 (en) Non-aqueous secondary battery
JP5522844B2 (en) Electrode for electrochemical element and lithium ion secondary battery
JPH1173962A (en) Nonaqueous system secondary battery
WO2015041167A1 (en) Non-aqueous secondary battery
WO2022198651A1 (en) Positive electrode plate, and electrochemical device and electronic device containing positive electrode plate
WO2022198667A1 (en) Positive electrode plate, electrochemical device comprising same, and electronic device
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP5793411B2 (en) Lithium secondary battery
JP4561041B2 (en) Lithium secondary battery
JP2003297354A (en) Lithium secondary battery
JP2002237331A (en) Lithium secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
WO2019065196A1 (en) Nonaqueous electrolyte secondary battery
JP2019110087A (en) Positive electrode for lithium ion secondary battery
JP2010033998A (en) Nonaqueous electrolyte secondary battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
WO2015037522A1 (en) Nonaqueous secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002050358A (en) Lithium secondary battery positive electrode
JP2007134218A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129