JP2002128526A - Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same - Google Patents

Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same

Info

Publication number
JP2002128526A
JP2002128526A JP2000323988A JP2000323988A JP2002128526A JP 2002128526 A JP2002128526 A JP 2002128526A JP 2000323988 A JP2000323988 A JP 2000323988A JP 2000323988 A JP2000323988 A JP 2000323988A JP 2002128526 A JP2002128526 A JP 2002128526A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
secondary battery
composite oxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000323988A
Other languages
Japanese (ja)
Other versions
JP4678457B2 (en
Inventor
Masao Kanzaki
昌郎 神崎
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000323988A priority Critical patent/JP4678457B2/en
Publication of JP2002128526A publication Critical patent/JP2002128526A/en
Application granted granted Critical
Publication of JP4678457B2 publication Critical patent/JP4678457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium-transition metal compound oxide having stable crystal structure and less cycle deterioration, which is used for a positive electrode active material for a lithium secondary battery with good cycle characteristic. SOLUTION: Lithium-transition metal compound oxide is represented by a composition formula Li1+xM1-x-yAlyO2-zFz (M is a kind of element selected among Co, Ni, Mn; 0<=x<=0.2; 0.05<=y<=0.2; 0.01<=z<=0.3) and has a lamellar halite crystal structure and the diffraction peak ratio I003/I104 of 1.7 or more, wherein I003 and I104 are diffraction peak strength at the (003) and (104) sides in X-ray diffraction method using CuKα ray. The lithium-transition metal compound oxide is used for a positive electrode active material for lithium secondary batteries.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池の正極活物質とし
て好適なリチウム遷移金属複合酸化物に関し、また、そ
れを用いたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to a lithium transition metal composite oxide suitable as a positive electrode active material for a lithium secondary battery utilizing a desorption phenomenon, and also relates to a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化に伴い、情報関連機器、通信機器の分野では、こ
れらの機器に用いる電源として、高エネルギー密度であ
るという理由から、リチウム二次電池が実用化され広く
普及するに至っている。また一方で、自動車の分野にお
いても、環境問題、資源問題から電気自動車の開発が急
がれており、この電気自動車用の電源としても、リチウ
ム二次電池が検討されている。
2. Description of the Related Art With the miniaturization of personal computers, video cameras, mobile phones, and the like, in the fields of information-related equipment and communication equipment, lithium secondary batteries are used as power sources for these equipments because of their high energy density. Has been put to practical use and has spread widely. On the other hand, in the field of automobiles, the development of electric vehicles is urgent due to environmental problems and resource problems, and lithium secondary batteries are being studied as power sources for electric vehicles.

【0003】リチウム二次電池は、比較的高価であるこ
とから、他の電池にも増して長寿命であることが要求さ
れる。つまり、充放電を繰り返してもその容量が減少し
ないといったサイクル特性が良好であることが要求され
る。特に、電池反応が活性化する高温下では一層劣化が
進むことから、例えば屋外放置される可能性のある電気
自動車用電源等の用途にリチウム二次電池を使用するこ
とを想定した場合には、高温下でのサイクル特性につい
ても良好であることが、そのリチウム二次電池に求めら
れる重要な特性の一つとなる。
[0003] Since lithium secondary batteries are relatively expensive, they are required to have a longer life than other batteries. That is, it is required that the cycle characteristics such that the capacity does not decrease even when charge and discharge are repeated are good. In particular, since the deterioration proceeds further under the high temperature at which the battery reaction is activated, for example, when assuming that the lithium secondary battery is used for an application such as a power supply for an electric vehicle that may be left outdoors, Good cycle characteristics at high temperature is one of the important characteristics required for the lithium secondary battery.

【0004】リチウム二次電池は、正極、負極、非水電
解液等から構成され、それぞれの構成要素について、サ
イクル劣化の原因が存在する。現在のリチウム二次電池
は、酸化還元電位が高く4V級のリチウム二次電池を構
成できること等を理由に、正極活物質としてLiCoO
2、LiNiO2等の層状岩塩構造リチウム遷移金属複合
酸化物が好んで用いられており、これらリチウム遷移金
属複合酸化物を正極活物質とするリチウム二次電池にお
いては、このリチウム遷移金属複合酸化物の構造変化に
起因するサイクル劣化が、リチウム二次電池のサイクル
劣化の主要因となっている。
A lithium secondary battery is composed of a positive electrode, a negative electrode, a non-aqueous electrolyte, and the like, and each component has a cause of cycle deterioration. The current lithium secondary battery has a high oxidation-reduction potential and can constitute a 4V-class lithium secondary battery.
2 , layered rock salt-structured lithium transition metal composite oxides such as LiNiO 2 are preferably used. In a lithium secondary battery using these lithium transition metal composite oxides as a positive electrode active material, this lithium transition metal composite oxide is used. The cycle deterioration caused by the structural change of the lithium secondary battery is a main factor of the cycle deterioration of the lithium secondary battery.

【0005】層状岩塩構造リチウム遷移金属複合酸化物
は六方晶系の結晶構造を持ち、遷移金属からなる層、O
からなる層、Liからなる層、Oからなる層がこの順に
繰り返し積層した構造となっている。正極活物質に起因
するサイクル劣化を抑制するため、上記リチウム遷移金
属複合酸化物において、遷移金属の層に存在する遷移金
属元素の一部を他元素によって置換するといった技術が
多数存在している。
The layered rock salt structure lithium transition metal composite oxide has a hexagonal crystal structure, and is composed of a layer composed of a transition metal, O
, A layer made of Li, and a layer made of O are repeatedly laminated in this order. In order to suppress the cycle deterioration due to the positive electrode active material, there are many techniques in the lithium transition metal composite oxide in which part of the transition metal element present in the transition metal layer is replaced with another element.

【0006】[0006]

【発明が解決しようとする課題】幾多の実験および研究
により、理由は定かではないが、本発明者は、遷移金属
層に存在する一部の元素を他元素で置換することに代え
あるいはそれとともに、O層に存在するOの一部を電気
陰性度の高いF(フッ素)によって置換することで、そ
のリチウム遷移金属複合酸化物の結晶構造の安定化が図
れるとの知見を得た。
According to a number of experiments and studies, although the reason is not clear, the present inventor has proposed that instead of replacing some of the elements present in the transition metal layer with other elements, or in combination therewith. It has been found that by substituting a part of O present in the O layer with F (fluorine) having a high electronegativity, the crystal structure of the lithium transition metal composite oxide can be stabilized.

【0007】ところが、本発明者は、単純にFによりO
の一部を置換するものを製造しようとした場合、結晶性
の良好なリチウム遷移金属複合酸化物、つまり結晶構造
の安定化したリチウム複合酸化物になり得ないとの知見
をも同時に得た。
[0007] However, the present inventor has simply stated that O
At the same time, it was also found that it was not possible to produce a lithium transition metal composite oxide having good crystallinity, that is, a lithium composite oxide having a stabilized crystal structure, in the case where an attempt was made to substitute a part of the compound.

【0008】そこで、本発明者は、更なる実験および研
究により、O層によって挟まれる遷移金属層に存在する
遷移金属元素の一部をその遷移金属元素より小さな原子
半径を持つAlで置換することで、O層に存在するOの
一部をFで置換した場合であっても、結晶性の良好なリ
チウム複合酸化物を得ることができるという新たな知見
を得た。
Accordingly, the present inventor has conducted further experiments and studies to replace a part of the transition metal element present in the transition metal layer sandwiched by the O layers with Al having an atomic radius smaller than that of the transition metal element. Thus, a new finding has been obtained that a lithium composite oxide having good crystallinity can be obtained even when a part of O present in the O layer is replaced with F.

【0009】本発明は、かかる新たな知見に基づいてな
されたものであり遷移金属の一部をAlで置換し、か
つ、Oの一部をFで置換することにより、結晶構造の安
定化したすなわちサイクル劣化の少ないリチウム遷移金
属複合酸化物を提供することを課題としている。そして
また、そのリチウム遷移金属複合酸化物を正極活物質に
用いることで、サイクル特性の良好なリチウム二次電池
を提供することを課題としている。
The present invention has been made on the basis of such a new finding, and the crystal structure has been stabilized by substituting part of the transition metal with Al and substituting part of O with F. That is, it is an object of the present invention to provide a lithium transition metal composite oxide with less cycle deterioration. Another object of the present invention is to provide a lithium secondary battery having good cycle characteristics by using the lithium transition metal composite oxide as a positive electrode active material.

【0010】[0010]

【課題を解決するための手段】本発明のリチウム二次電
池正極活物質用リチウム遷移金属複合酸化物は、組成式
Li1+x1-x-yAly2-zz(MはCo、Ni、Mn
から選ばれる1種以上;0≦x≦0.2;0.05≦y
≦0.2;0.01≦z≦0.3)で表され、結晶構造
が層状岩塩構造をなし、CuKα線を用いたX線回折分
析による(003)面の回折ピークの強度I003と(1
04)面の回折ピークの強度I104との強度比I003/I
104が1.7以上となることを特徴とする。
The lithium transition metal composite oxide for a positive electrode active material of a lithium secondary battery according to the present invention has a composition formula of Li 1 + x M 1-xy Al y O 2-z F z (M is Co , Ni, Mn
0 ≦ x ≦ 0.2; 0.05 ≦ y
≦ 0.2; represented by 0.01 ≦ z ≦ 0.3), the crystal structure is a layered rock salt structure, the intensity I 003 of diffraction peaks of (003) plane by X-ray diffraction analysis using a CuKα line (1
04) Intensity ratio I 003 / I with the intensity I 104 of the diffraction peak of the plane
104 is 1.7 or more.

【0011】つまり、本リチウム遷移金属複合酸化物
は、層状岩塩構造における遷移金属M層に存在するM原
子の一部をAl原子で置換し、かつ、O層に存在するO
原子の一部をF原子で置換したものであり、結晶性の高
いリチウム遷移金属複合酸化物である。
That is, in the present lithium transition metal composite oxide, part of the M atoms present in the transition metal M layer in the layered rock salt structure is partially replaced by Al atoms, and the O atoms present in the O layer are removed.
It is a lithium transition metal composite oxide having high crystallinity in which some of the atoms are replaced with F atoms.

【0012】本リチウム遷移金属複合酸化物は、Oの一
部がより電気陰性度の高いFで置換されていることで、
極めて結晶構造が安定したリチウム遷移金属複合酸化物
となる。単にFによる置換では、Oとの原子半径の違い
等により、その結晶性は悪化する。しかし、本リチウム
遷移金属複合酸化物では、O層に挟まれる遷移金属M層
においても、原子半径の小さなAlで置換していること
で、良好な結晶性を担保している。
In the lithium transition metal composite oxide, a part of O is substituted by F having a higher electronegativity,
A lithium transition metal composite oxide having an extremely stable crystal structure is obtained. The mere substitution with F deteriorates the crystallinity due to the difference in atomic radius from O or the like. However, in the present lithium transition metal composite oxide, even in the transition metal M layer sandwiched between the O layers, good crystallinity is ensured by substitution with Al having a small atomic radius.

【0013】したがって、本リチウム遷移金属酸化物
は、良好な結晶性と極めて安定した結晶構造により、充
放電の繰り返しに伴うLiの吸蔵・脱離による結晶構造
の崩壊が抑制され、サイクル劣化の小さなリチウム二次
電池用正極活物質となる。なお、置換元素であるAl
は、リチウム遷移金属複合酸化物の熱的安定性を良好に
するという機能をも果たすことから、本リチウム遷移金
属複合酸化物は熱的安定性に優れた正極活物質ともな
る。
Therefore, the lithium transition metal oxide of the present invention has good crystallinity and an extremely stable crystal structure, whereby the collapse of the crystal structure due to the occlusion and desorption of Li due to the repetition of charge and discharge is suppressed, and the cycle deterioration is small. It becomes a positive electrode active material for lithium secondary batteries. In addition, Al which is a substitution element
Also has a function of improving the thermal stability of the lithium transition metal composite oxide, so that the present lithium transition metal composite oxide is also a positive electrode active material having excellent thermal stability.

【0014】また、本発明のリチウム二次電池は、上記
本発明のリチウム遷移金属複合酸化物を正極活物質に用
いることを特徴とする。サイクル劣化の少ない正極活物
質となる上記リチウム遷移金属複合酸化物を用いること
で、本リチウム二次電池は、サイクル特性の良好なリチ
ウム二次電池となる。上記リチウム遷移金属複合酸化物
は、その優れた結晶構造の安定性と上述したAlの熱的
安定性向上作用とから、電池反応が活性化する高温にお
ける電池反応にも充分耐え得るものとなり、高温サイク
ル特性についても良好なリチウム二次電池となる。
Further, a lithium secondary battery of the present invention is characterized in that the above-mentioned lithium transition metal composite oxide of the present invention is used as a positive electrode active material. By using the lithium transition metal composite oxide which is a positive electrode active material with less cycle deterioration, the present lithium secondary battery becomes a lithium secondary battery having good cycle characteristics. The lithium transition metal composite oxide can sufficiently withstand a battery reaction at a high temperature at which the battery reaction is activated, because of its excellent crystal structure stability and the above-described effect of improving the thermal stability of Al. The lithium secondary battery also has good cycle characteristics.

【0015】[0015]

【発明の実施の形態】以下に、本発明のリチウム二次電
池正極活物質用リチウム遷移金属複合酸化物および本発
明のリチウム二次電池の実施の形態について、その組
成、その結晶構造と結晶性、その製造方法、リチウム二
次電池の構成の項目に分けて詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the composition, crystal structure and crystallinity of a lithium transition metal composite oxide for a lithium secondary battery positive electrode active material of the present invention and a lithium secondary battery of the present invention will be described. , Its manufacturing method, and the configuration of the lithium secondary battery will be described in detail.

【0016】〈リチウムニッケル複合酸化物の組成〉本
発明のリチウム遷移金属複合酸化物は、その組成をLi
1+x1-x-yAly2 -zz(MはCo、Ni、Mnから
選ばれる1種以上;0≦x≦0.2;0.05≦y≦
0.2;0.01≦z≦0.3)とする。
<Composition of lithium nickel composite oxide>
The lithium transition metal composite oxide of the invention has a composition of Li
1 + xM1-xyAlyOTwo -zFz(M is from Co, Ni, Mn
One or more selected; 0 ≦ x ≦ 0.2; 0.05 ≦ y ≦
0.2; 0.01 ≦ z ≦ 0.3).

【0017】遷移金属Mの種類により、組成式Li1+x
Co1-x-yAly2-zzで表されるリチウムコバルト複
合酸化物、組成式Li1+xNi1-x-yAly2-zzで表
されるリチウムニッケル複合酸化物、組成式Li1+x
1-x-yAly2-zzで表されるリチウムマンガン複合
酸化物が存在し、また、遷移金属元素Mが2種以上の元
素から構成されるそれぞれ組成式Li1+x(Co,N
i)1-x-yAly2-zz、Li1+x(Ni,Mn)1-x-y
Aly2-zz、Li1+x(Mn,Co)1-x-yAly
2-zz、Li1+x(Co,Ni,Mn)1-x-yAly2-z
zで表されるものが存在する。なお、MにおけるC
o、Ni、Mnの配合比は、任意に設定できる。
Depending on the type of the transition metal M, the composition formula Li 1 + x
Lithium cobalt composite oxide represented by Co 1-xy Al y O 2 -z F z, the lithium nickel composite oxide represented by the composition formula Li 1 + x Ni 1-xy Al y O 2-z F z, Composition formula Li 1 + x M
There is a lithium-manganese composite oxide represented by n 1-xy Al y O 2 -z F z , and the transition metal element M is composed of two or more elements and has a composition formula Li 1 + x (Co , N
i) 1-xy Al y O 2-z F z, Li 1 + x (Ni, Mn) 1-xy
Al y O 2-z F z , Li 1 + x (Mn, Co) 1-xy Al y O
2-z F z, Li 1 + x (Co, Ni, Mn) 1-xy Al y O 2-z
There is one represented by F z . Note that C in M
The mixing ratio of o, Ni, and Mn can be set arbitrarily.

【0018】これらの中でも、遷移金属元素Mにはその
中心的な元素としてNiが含まれ、組成式Li1+xNi
1-x-y-wM'wAly2-zz(M'はCo、Mnから選ば
れる1種以上;0≦w≦0.3)で表されるリチウムニ
ッケル複合酸化物は、組成式LiNiO2で表されるリ
チウムニッケル複合酸化物の特徴を維持するもので、高
価なCoを多く含まないことで比較的安価であり、ま
た、理論容量が比較的大きいことから、これらのメリッ
トを考慮する場合には、上記組成式で表されるリチウム
ニッケル複合酸化物を正極活物質とすることが望まし
い。なお、リチウムニッケル複合酸化物は、熱的安定性
が比較的低いことから、Alで置換することによる熱的
安定性向上効果が大きく発揮される。その点でも、上記
組成式で表されるリチウムニッケル複合酸化物は、効果
的なものとなる。
Among these, the transition metal element M contains Ni as its central element, and has a composition formula of Li 1 + x Ni
1-xyw M 'w Al y O 2-z F z (M' is Co, 1 or more selected from Mn; 0 ≦ w ≦ 0.3) lithium nickel composite oxide represented by the composition formula LiNiO The characteristics of the lithium-nickel composite oxide represented by 2 are maintained, and they are relatively inexpensive because they do not contain a lot of expensive Co. In addition, since their theoretical capacities are relatively large, these merits are considered. In this case, it is desirable that the lithium nickel composite oxide represented by the above composition formula be used as the positive electrode active material. In addition, since the lithium nickel composite oxide has relatively low thermal stability, the effect of improving thermal stability by substituting with Al is greatly exhibited. Also in that respect, the lithium nickel composite oxide represented by the above composition formula is effective.

【0019】組成式Li1+xNi1-x-y-wM'wAly2-z
zで表されるリチウムニッケル複合酸化物の場合も、
同様に、それぞれ組成式Li1+xNi1-x-yAly2-z
z、Li1+xNi1-x-y-wCowAly2-zz、Li1+x
1-x-y-wMnwAly2-zz、Li1+xNi
1-x-y-w(Co,Mn)wAly2-zzで表されるもの
が含まれる。なお、この場合にも、M'におけるCo、
Mnの配合比は、同様に、任意に設定できる。
Composition formula Li 1 + x Ni 1-xyw M ′ w Al y O 2-z
In the case of a lithium nickel composite oxide represented by F z ,
Similarly, the composition formulas Li 1 + x Ni 1-xy Al y O 2-z F
z, Li 1 + x Ni 1 -xyw Co w Al y O 2-z F z, Li 1 + x N
i 1-xyw Mn w Al y O 2-z F z, Li 1 + x Ni
1-xyw (Co, Mn) w Al y O 2-z F z is included. Note that also in this case, Co in M ′,
Similarly, the mixing ratio of Mn can be arbitrarily set.

【0020】また、上記組成式Li1+x1-x-yAly
2-zzは、遷移金属Mの一部をLiで置換するLi1+x
1-x-yAly2-zz(x>0)および遷移金属Mの一
部をLiで置換しないLiM1-yAly2-zzの両者を
含むことを意味している。さらに、製造過程で生じる不
純物元素の混入、各構成元素の過剰、欠損といった不可
避の非化学量論組成のものを排除するものではない。
Further, the above composition formula Li 1 + x M 1-xy Al y O
2-z F z is Li 1 + x which replaces part of the transition metal M with Li.
M 1-xy Al y O 2 -z F z (x> 0) and LiM 1 -y Al y O 2 -z F z in which part of the transition metal M is not replaced with Li are included. I have. Furthermore, it does not exclude unavoidable non-stoichiometric compositions such as the incorporation of impurity elements generated in the manufacturing process, excess or deficiency of each constituent element.

【0021】以下に、組成式Li1+x1-x-yAly2-z
zにおけるそれぞれの構成元素の組成比について説明
する。まず、Liの組成比である1+x、つまり、遷移
金属Mの一部をLiで置換する割合xは、x≦0.2と
する。x>0.2の場合は、遷移金属Mの層に1価のL
iが多く存在することで、充放電にともなって吸蔵・脱
離するLiが少なくなりすぎ、活物質としての容量が減
少しすぎることになるからである。実用的な範囲とし
て、x≦0.1であることがより望ましい。
In the following, the composition formula Li 1 + x M 1-xy Al y O 2-z
The composition ratio of the respective constituent elements will be described in F z. First, the composition ratio of Li, 1 + x, that is, the ratio x in which part of the transition metal M is replaced with Li is set to x ≦ 0.2. When x> 0.2, monovalent L is added to the layer of the transition metal M.
This is because the presence of a large amount of i causes too little Li to be occluded / desorbed due to charge / discharge, resulting in an excessive decrease in the capacity as an active material. As a practical range, it is more preferable that x ≦ 0.1.

【0022】次に、Alの組成比つまり遷移金属Mを置
換するAlの割合、言い換えれば組成式中のyの値は、
0.05≦y≦0.2とする。y<0.05の場合は、
置換による効果が小さく、熱的安定性に劣るばかりでな
く、Oの一部をFで置換することによる結晶性の低下が
著しくなる。逆に、y>0.2の場合は、活物質として
の容量が減少しすぎることになる。実用的な範囲とし
て、y≦0.1であることがより望ましい。
Next, the composition ratio of Al, that is, the ratio of Al replacing the transition metal M, in other words, the value of y in the composition formula is
It is assumed that 0.05 ≦ y ≦ 0.2. If y <0.05,
The effect of the substitution is small, and not only is the thermal stability inferior, but also the crystallinity is significantly reduced by substituting a part of O with F. Conversely, when y> 0.2, the capacity as an active material is excessively reduced. As a practical range, it is more desirable that y ≦ 0.1.

【0023】Fの組成比つまりOを置換するFの割合、
言い換えれば組成式中のzの値は、0.01≦z≦0.
3とする。z<0.01の場合は、置換の効果が小さ
く、結晶構造の安定化が図れない。逆に、z>0.3の
場合は、結晶性の良好なリチウム遷移金属複合酸化物を
得難いという問題がある。なお、結晶構造の安定化によ
るサイクル特性の向上という理由からすれば、z≧0.
1であることがより望ましく、また、良好な結晶性維持
による大容量の確保という理由からすれば、z≦0.2
であることがより望ましい。
The composition ratio of F, that is, the ratio of F replacing O,
In other words, the value of z in the composition formula is 0.01 ≦ z ≦ 0.
3 is assumed. When z <0.01, the effect of substitution is small and the crystal structure cannot be stabilized. Conversely, when z> 0.3, there is a problem that it is difficult to obtain a lithium transition metal composite oxide having good crystallinity. Incidentally, from the viewpoint of improving the cycle characteristics by stabilizing the crystal structure, z ≧ 0.
1 is more desirable, and from the viewpoint of securing a large capacity by maintaining good crystallinity, z ≦ 0.2
Is more desirable.

【0024】〈リチウムニッケル複合酸化物の結晶構造
と結晶性〉本発明のリチウム遷移金属複合酸化物は、そ
の結晶構造が層状岩塩構造をなしている。層状岩塩構造
とは、六方晶系に属する結晶構造であり、組成式LiM
2で表される正規組成のものでは、遷移金属Mからな
る層、Oからなる層、Liからなる層、Oからなる層の
4層がこの順に繰り返し積層された結晶構造となってい
る。ただし、上述したように、本発明のリチウム遷移金
属複合酸化物は、Mからなる層に存在するM原子の一部
がAl原子、場合によってはLi原子で置換され、Oか
らなる層に存在するO原子の一部がF原子で置換された
構造となっている。
<Crystal Structure of Lithium Nickel Composite Oxide
And crystallinity> The lithium transition metal composite oxide of the present invention
Has a layered rock salt structure. Layered rock salt structure
Is a crystal structure belonging to a hexagonal system and has a composition formula of LiM
O TwoIn the case of the normal composition represented by
Layer, O layer, Li layer, O layer
It has a crystal structure in which four layers are repeatedly laminated in this order.
You. However, as described above, the lithium transition gold of the present invention
Group oxides are part of the M atoms present in the M layer.
Is replaced by an Al atom and, in some cases, a Li atom,
Some of the O atoms in the layer consisted of F atoms
It has a structure.

【0025】リチウム二次電池の正極活物質として用い
る場合、粉末状のものを用いればよく、その粉末粒子の
構造は特に限定するものではない。一般には、単結晶に
近い微細な一次粒子が凝集して二次粒子を構成し、この
二次粒子が粉末粒子となっている。したがって、本発明
のリチウム遷移金属複合酸化物の場合も、そのような粒
子構造を有するものを用いればよい。
When used as a positive electrode active material of a lithium secondary battery, a powdery material may be used, and the structure of the powder particles is not particularly limited. Generally, fine primary particles close to a single crystal are aggregated to form secondary particles, and the secondary particles are powder particles. Therefore, in the case of the lithium transition metal composite oxide of the present invention, an oxide having such a particle structure may be used.

【0026】層状岩塩構造においては、通常遷移金属M
はM3+という3価で存在する。ところが、特にNiの場
合にそうであるが、M2+という2価の状態でLiのサイ
トに混入する場合がある。この場合、その領域はミクロ
的に立方岩塩構造とみなせ、この領域を一般に「岩塩ド
メイン」と呼んでいる。単にO層に存在するO原子の一
部を原子半径のより大きなF原子で置換した場合、原子
の整列状態の乱れにより、O層に挟まれる遷移金属Mの
層に存在するはずのM原子が、M2+となってLi層に混
入しやすく、岩塩ドメインが多くなってしまう。岩塩ド
メインはそれ自体が電気化学的に不活性であることに加
え、Li層の二次元固相拡散を阻害し、さらには、結晶
構造の安定性を損なう。そこで、この岩塩ドメインのな
い良好な結晶性を有するリチウム遷移金属複合酸化物で
あることが要求される。
In the layered rock salt structure, the transition metal M
Exists in a trivalent form of M 3+ . However, particularly in the case of Ni, there is a case where it is mixed into the Li site in a divalent state of M 2+ . In this case, the region can be considered as a cubic salt structure microscopically, and this region is generally called a "salt domain". When a part of O atoms present in the O layer is simply replaced with F atoms having a larger atomic radius, M atoms that should be present in the transition metal M layer sandwiched between the O layers are disturbed due to disordered arrangement of atoms. , M 2+ and easily mixed into the Li layer, resulting in an increase in rock salt domains. The rock salt domain, in addition to being electrochemically inert itself, inhibits the two-dimensional solid-state diffusion of the Li layer and further impairs the stability of the crystal structure. Therefore, a lithium transition metal composite oxide having good crystallinity without this rock salt domain is required.

【0027】層状岩塩構造リチウム遷移金属複合酸化物
の結晶性を示すパラメータとして、本技術では、CuK
α線を用いたX線回折分析による(003)面の回折ピ
ークの強度I003と(104)面の回折ピークの強度I
104との強度比I003/I104を採用する。(003)面
の回折ピークは、層状岩塩構造固有のものであるのに対
し、(104)面の回折ピークは層状岩塩構造のみなら
ず立方岩塩構造からも選られる。したがって、その強度
比I003/I104が大きい程、岩塩ドメインが少なく、層
状岩塩構造の単一相に近づく。つまり結晶性が良好とな
る。本発明のリチウム遷移金属複合酸化物の場合、この
パラメータを用いれば、I003/I104が1.7以上とな
ることを必要とする。1.7未満の場合は、結晶性が低
く、正極活物質として用いたリチウム二次電池のサイク
ル特性等の電池性能を悪化させることとなる。
In the present technology, CuK is used as a parameter indicating the crystallinity of the layered rock salt structure lithium transition metal composite oxide.
The intensity I 003 of the diffraction peak on the (003) plane and the intensity I of the diffraction peak on the (104) plane by X-ray diffraction analysis using α-rays
Adopting intensity ratio I 003 / I 104 of the 104. The diffraction peak of the (003) plane is specific to the layered rock salt structure, while the diffraction peak of the (104) plane is selected not only from the layered rock salt structure but also from the cubic rock salt structure. Therefore, the larger the intensity ratio I 003 / I 104 , the smaller the number of rock salt domains and the closer to a single phase of a layered rock salt structure. That is, the crystallinity is improved. In the case of the lithium transition metal composite oxide of the present invention, if this parameter is used, I 003 / I 104 needs to be 1.7 or more. If it is less than 1.7, the crystallinity is low, and the battery performance such as the cycle characteristics of the lithium secondary battery used as the positive electrode active material is deteriorated.

【0028】〈リチウムニッケル複合酸化物の製造方
法〉本発明のリチウム遷移金属複合酸化物は、その製造
方法を特に限定するものではない。既に公知の方法、例
えば、固相反応法、溶融塩法、水溶液からの析出法、噴
霧燃焼法等、種々方法によって製造することができる。
<Production method of lithium nickel composite oxide> The production method of the lithium transition metal composite oxide of the present invention is not particularly limited. It can be produced by various methods known in the art, for example, a solid phase reaction method, a molten salt method, a precipitation method from an aqueous solution, a spray combustion method and the like.

【0029】例えば、固相反応法によって製造する場合
であれば、リチウム源、遷移金属M源、アルミニウム
源、フッ素源となるそれぞれの原料を混合して混合物を
得、その混合物を焼成すればよい。
For example, in the case of manufacturing by a solid phase reaction method, a mixture may be obtained by mixing the respective raw materials serving as a lithium source, a transition metal M source, an aluminum source, and a fluorine source, and the mixture may be fired. .

【0030】この場合、リチウム源となる原料として
は、LiOH・H2O、Li2CO3、LiNO3等を、遷
移金属M源となる原料としては、CoCO3、CoO、
Co34、Ni(OH)2、NiCO3、Ni(NO32
・6H2O、Mn23、MnCO3、Mn(NO32・6
2O等を、アルミニウム源となる原料としては、Al
(OH)3、Al23等を、フッ素源となる原料として
は、LiF、AlF3等を、それぞれ用いることができ
る。なお、LiFを用いる場合にはフッ素源のみならず
リチウム源をも兼ねることになる。
In this case, LiOH.H 2 O, Li 2 CO 3 , LiNO 3 or the like is used as a raw material as a lithium source, and CoCO 3 , CoO, or
Co 3 O 4 , Ni (OH) 2 , NiCO 3 , Ni (NO 3 ) 2
· 6H 2 O, Mn 2 O 3, MnCO 3, Mn (NO 3) 2 · 6
As a raw material serving as an aluminum source, H 2 O or the like
(OH) 3 , Al 2 O 3, etc., and LiF, AlF 3, etc. can be used as a raw material serving as a fluorine source. When LiF is used, it serves not only as a fluorine source but also as a lithium source.

【0031】原料の混合割合は、混合物中の構成元素が
製造しようとするリチウム遷移金属複合酸化物の組成に
応じた比となるような割合とすればよい。混合の方法に
ついても特に限定するものではなく、ボールミル等の混
合装置を用いて、均一になるように行えばよい。また、
混合物の焼成は、大気中あるいは酸素雰囲気中にて行え
ばよく、焼成温度が、700〜1000℃、焼成時間が
5〜50時間となるような条件で焼成すればよい。
The mixing ratio of the raw materials may be such that the constituent elements in the mixture have a ratio corresponding to the composition of the lithium transition metal composite oxide to be produced. The method of mixing is not particularly limited, and the mixing may be performed using a mixing device such as a ball mill. Also,
The mixture may be fired in the air or in an oxygen atmosphere, and may be fired at a firing temperature of 700 to 1000 ° C. and a firing time of 5 to 50 hours.

【0032】〈リチウム二次電池の構成〉本発明のリチ
ウム二次電池は、上記本発明のリチウム遷移金属複合酸
化物を正極活物質として用いたリチウム二次電池であ
り、正極活物質を除く他の構成については、特に限定す
るものではなく、既に公知のリチウム二次電池の構成に
従えばよい。また、本発明のリチウム遷移金属複合酸化
物は、その組成の違い等により種々のリチウム遷移金属
複合酸化物が存在する。本発明のリチウム二次電池にお
いては、それらの1種を正極活物質として用いるもので
あってもよく、また、2種以上を混合して用いるもので
あってもよい。
<Structure of Lithium Secondary Battery> The lithium secondary battery of the present invention is a lithium secondary battery using the above-described lithium transition metal composite oxide of the present invention as a positive electrode active material. Is not particularly limited, and may be in accordance with the configuration of a known lithium secondary battery. Further, in the lithium transition metal composite oxide of the present invention, various lithium transition metal composite oxides exist depending on the difference in the composition and the like. In the lithium secondary battery of the present invention, one of them may be used as the positive electrode active material, or two or more thereof may be used in combination.

【0033】上記本発明のリチウム遷移金属複合酸化物
を正極活物質とする場合、正極は、例えば、そのリチウ
ム遷移金属複合酸化物を結着剤で結着して形成すること
ができる。その構成および製造方法は、特に限定するも
のではなく。既に公知の構成および製造方法に従えばよ
い。より具体的に説明すれば、まず、本発明のリチウム
遷移金属複合酸化物と、導電材と、結着剤とを混合し、
これらを分散させるための溶剤を添加して、ペースト状
の正極合材を調製する。次に、この正極合材をアルミニ
ウム箔等の正極集電体の表面に塗工機等により塗布し、
乾燥して固形分のみの正極合材を層状に形成すればよ
い。そしてこの後に、必要に応じ、ロールプレス等の圧
縮機により圧縮を行い、活物質密度を高めるものであっ
てもよい。この形態の正極はシート状であり、作製しよ
うとする電池に適合する大きさに裁断等して電池の作製
に供すればよい。
When the lithium transition metal composite oxide of the present invention is used as a positive electrode active material, the positive electrode can be formed, for example, by binding the lithium transition metal composite oxide with a binder. The configuration and manufacturing method are not particularly limited. What is necessary is just to follow the already known structure and manufacturing method. More specifically, first, a lithium transition metal composite oxide of the present invention, a conductive material, and a binder are mixed,
A solvent for dispersing these is added to prepare a paste-like positive electrode mixture. Next, this positive electrode mixture is applied to the surface of a positive electrode current collector such as an aluminum foil by a coating machine or the like,
What is necessary is just to dry and form a positive electrode mixture of only solid content in the form of a layer. Thereafter, if necessary, the active material density may be increased by performing compression using a compressor such as a roll press. The positive electrode in this form is in a sheet shape, and may be cut into a size suitable for a battery to be manufactured and used for manufacturing a battery.

【0034】なお、導電材は、正極の電気伝導性を確保
するためのものであり、カーボンブラック、アセチレン
ブラック、黒鉛等の炭素物質粉状体の1種又は2種以上
を混合したものを用いることができる。結着剤は、活物
質粒子および導電材粒子を繋ぎ止める役割を果たすもの
でポリテトラフルオロエチレン、ポリフッ化ビニリデ
ン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂を用いることができる。ま
た、分散させるための溶剤としては、N−メチル−2−
ピロリドン等の有機溶剤を用いることができる。なお、
正極合材中の活物質、導電材、結着剤(固形分のみ)の
混合比は、重量比において、正極活物質100重量部に
対して、導電材2〜20重量部、正極結着剤1〜20重
量部とすればよく、溶剤の添加量は、塗工機等の特性に
応じ適量とすればよい。
The conductive material is used to secure the electrical conductivity of the positive electrode, and one or a mixture of two or more powdered carbon materials such as carbon black, acetylene black and graphite is used. be able to. The binding agent plays a role of binding the active material particles and the conductive material particles, and may be a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. . Further, as a solvent for dispersing, N-methyl-2-
Organic solvents such as pyrrolidone can be used. In addition,
The mixing ratio of the active material, the conductive material, and the binder (only solid content) in the positive electrode mixture is 2 to 20 parts by weight of the conductive material, 100 parts by weight of the positive electrode active material, and the positive electrode binder in weight ratio. The amount may be 1 to 20 parts by weight, and the amount of the solvent added may be an appropriate amount according to the characteristics of the coating machine or the like.

【0035】上記正極に対向させる負極は、金属リチウ
ム、リチウム合金等を、シート状若しくは薄板状にし
て、あるいはシート状若しくは薄板状にしたものをニッ
ケル、ステンレス等の集電体網に圧着して形成するもの
であってもよい。しかしデンドライトの析出等を考慮
し、安全性に優れたリチウム二次電池とするために、リ
チウムを吸蔵・脱離できる炭素物質を活物質とする負極
を用いることができる。使用できる炭素物質としては、
天然あるいは人造の黒鉛、フェノール樹脂等の有機化合
物焼成体、コークス等の粉状体が挙げられる。この場合
は、負極活物質に結着剤を混合し、適当な溶媒を加えて
ペースト状にした負極合材を、銅等の金属箔集電体の表
面に塗布乾燥して形成する。なお、炭素物質を負極活物
質とした場合、正極同様、負極結着剤としてはポリフッ
化ビニリデン等の含フッ素樹脂等を、溶剤としてはN−
メチル−2−ピロリドン等の有機溶剤を用いることがで
きる。
The negative electrode opposed to the positive electrode is formed by sheet-like or sheet-like metal lithium, a lithium alloy, or the like, or by pressing the sheet-like or sheet-like thing to a current collector net made of nickel, stainless steel, or the like. It may be formed. However, in consideration of dendrite precipitation and the like, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material can be used in order to obtain a lithium secondary battery having excellent safety. As carbon materials that can be used,
Examples include natural or artificial graphites, fired organic compounds such as phenolic resins, and powdered materials such as coke. In this case, the binder is mixed with the negative electrode active material, and a suitable solvent is added thereto to form a paste-like negative electrode mixture on a surface of a metal foil current collector of copper or the like, followed by drying. When the carbon material is used as the negative electrode active material, a fluorine-containing resin such as polyvinylidene fluoride or the like is used as the negative electrode binder and the N-
An organic solvent such as methyl-2-pyrrolidone can be used.

【0036】本発明のリチウム二次電池では、一般のリ
チウム二次電池と同様、正極および負極の他に、正極と
負極の間に挟装されるセパレータ、非水電解液等をも構
成要素とする。セパレータは、正極と負極とを分離し電
解液を保持するものであり、ポリエチレン、ポリプロピ
レン等の薄い微多孔膜を用いることができる。また非水
電解液は、有機溶媒に電解質であるリチウム塩を溶解さ
せたもので、有機溶媒としては、非プロトン性有機溶
媒、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジメチルカーボネート、ジエチルカーボネート、
エチルメチルカーボネート、γ−ブチロラクトン、アセ
トニトリル、1,2−ジメトキシエタン、テトラヒドロ
フラン、ジオキソラン、塩化メチレン等の1種またはこ
れらの2種以上の混合溶媒を用いることができる。ま
た、溶解させる電解質としては、LiI、LiCl
4、LiAsF6、LiBF4、LiPF6、LiN(C
3SO2 2等のリチウム塩を用いることができる。
In the lithium secondary battery of the present invention, a general rechargeable battery is used.
Like the rechargeable lithium battery, in addition to the positive and negative electrodes,
A separator sandwiched between the negative electrodes, a non-aqueous electrolyte, etc.
It is a component. The separator separates the positive and negative electrodes and
Holds the lysate, polyethylene, polypropylene
A thin microporous film such as ren can be used. Also non-water
Electrolyte solution is prepared by dissolving lithium salt as electrolyte in organic solvent.
Aprotic organic solvent
Medium, for example, ethylene carbonate, propylene carbonate
Dimethyl carbonate, diethyl carbonate,
Ethyl methyl carbonate, γ-butyrolactone, acetyl
Tonitrile, 1,2-dimethoxyethane, tetrahydro
One or more of furan, dioxolan, methylene chloride, etc.
Two or more of these mixed solvents can be used. Ma
The electrolyte to be dissolved is LiI, LiCl
OFour, LiAsF6, LiBFFour, LiPF6, LiN (C
FThreeSOTwo) TwoAnd the like.

【0037】なお、上記セパレータおよび非水電解液と
いう構成に代えて、ポリエチレンオキシド等の高分子量
ポリマーとLiClO4やLiN(CF3SO22等のリ
チウム塩を使用した高分子固体電解質を用いることもで
き、また、上記非水電解液をポリアクリロニトリル(P
AN)等の固体高分子マトリクスにトラップさせたゲル
電解質を用いることもできる。
In place of the separator and the non-aqueous electrolyte, a polymer solid electrolyte using a high molecular weight polymer such as polyethylene oxide and a lithium salt such as LiClO 4 or LiN (CF 3 SO 2 ) 2 is used. In addition, the above non-aqueous electrolyte can be converted to polyacrylonitrile (P
A gel electrolyte trapped in a solid polymer matrix such as AN) can also be used.

【0038】以上のように構成される本発明のリチウム
二次電池であるが、その形状は円筒型、積層型、コイン
型等、種々のものとすることができる。いずれの形状を
採る場合であっても、正極および負極にセパレータを挟
装させて積層することにより電極体とし、それぞれの電
極から外部に通ずる正極端子および負極端子までの間を
集電用リード等を用いて接続し、この電極体を非水電解
液とともに電池ケースに密閉して電池を完成することが
できる。
The lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type, a stacked type, and a coin type. Regardless of the shape used, a positive electrode and a negative electrode are sandwiched between separators and laminated to form an electrode body, and a current collecting lead or the like extends from each electrode to the positive electrode terminal and the negative electrode terminal leading to the outside. The electrode body is sealed in a battery case together with the non-aqueous electrolyte to complete the battery.

【0039】〈他の実施形態の許容〉以上、本発明のリ
チウム二次電池正極活物質用リチウム遷移金属複合酸化
物および本発明のリチウム二次電池の実施形態について
説明したが、上述した実施形態は一実施形態にすぎず、
本発明のリチウム二次電池正極活物質用リチウム遷移金
属複合酸化物および本発明のリチウム二次電池は、上記
実施形態を始めとして、当業者の知識に基づいて種々の
変更、改良を施した種々の形態で実施することができ
る。
<Allowance of Other Embodiments> The embodiments of the lithium transition metal composite oxide for a lithium secondary battery positive electrode active material of the present invention and the lithium secondary battery of the present invention have been described above. Is only one embodiment,
The lithium transition metal composite oxide for a positive electrode active material of a lithium secondary battery of the present invention and the lithium secondary battery of the present invention include the above-described embodiment, and various modifications and improvements based on the knowledge of those skilled in the art. It can be implemented in the form of

【0040】[0040]

【実施例】上記実施形態に基づいて、実際に本発明のリ
チウム遷移金属複合酸化物を製造し、また、組成が本発
明のリチウム遷移金属複合酸化物の範囲から外れるもの
をも製造した。そしてこれらを比較し、また、これらを
正極活物質に用いたリチウム二次電池を比較すること
で、本発明のリチウム遷移金属複合酸化物および本発明
のリチウム二次電池の優秀性を確認した。以下に、説明
する。
EXAMPLES Based on the above embodiment, a lithium transition metal composite oxide of the present invention was actually manufactured, and one having a composition outside the range of the lithium transition metal composite oxide of the present invention was also manufactured. Then, by comparing these, and comparing lithium secondary batteries using these as a positive electrode active material, the superiority of the lithium transition metal composite oxide of the present invention and the lithium secondary battery of the present invention were confirmed. This will be described below.

【0041】〈実施例のリチウム遷移金属複合酸化物〉
本リチウム遷移金属複合酸化物は、その組成がLi1.1
Ni0.75Mn0.1Al0. 051.80.2となるリチウムニ
ッケル複合酸化物であり、固相反応法で製造したもので
ある。リチウム源としてLiOH・H2Oを、ニッケル
源としてNi(OH)2を、マンガン源としてMn23
を、アルミニウム源としてAl(OH)3を、フッ素源
としてLiF(リチウム源を兼ねる)を用い、それぞれ
をモル比で0.9:0.75:0.05:0.05:
0.2となるような割合で混合して混合物を得、この混
合物を酸素気流中において900℃の温度で12時間焼
成して製造した。
<Lithium Transition Metal Composite Oxide of Example>
The present lithium transition metal composite oxide has a composition of Li1.1
Ni0.75Mn0.1Al0. 05O1.8F0.2Lithium ni
Is a composite oxide manufactured by solid-state reaction method.
is there. LiOH · H as lithium sourceTwoO for nickel
Ni (OH) as sourceTwoWith Mn as a manganese sourceTwoOThree
With Al (OH) as the aluminum sourceThreeThe fluorine source
LiF (also used as lithium source)
In a molar ratio of 0.9: 0.75: 0.05: 0.05:
0.2 to obtain a mixture.
The mixture is baked at 900 ° C for 12 hours in an oxygen stream.
Manufactured.

【0042】〈比較例1のリチウム遷移金属複合酸化
物〉本リチウム遷移金属複合酸化物は、フッ素置換して
いないリチウム遷移金属複合酸化物である。その組成が
Li1.1Ni0.75Mn0.1Al0.052となるリチウムニ
ッケル複合酸化物であり、固相反応法で製造したもので
ある。リチウム源としてLiOH・H2Oを、ニッケル
源としてNi(OH)2を、マンガン源としてMn23
を、アルミニウム源としてAl(OH)3を用い、それ
ぞれをモル比で1.1:0.75:0.05:0.05
となるような割合で混合して混合物を得、この混合物を
酸素気流中において900℃の温度で12時間焼成して
製造した。
<Lithium Transition Metal Composite Oxide of Comparative Example 1> This lithium transition metal composite oxide is a lithium transition metal composite oxide not substituted with fluorine. This is a lithium nickel composite oxide having a composition of Li 1.1 Ni 0.75 Mn 0.1 Al 0.05 O 2, and is manufactured by a solid-state reaction method. LiOH · H 2 O as a lithium source, Ni (OH) 2 as a nickel source, and Mn 2 O 3 as a manganese source
And Al (OH) 3 as an aluminum source, and the respective molar ratios are 1.1: 0.75: 0.05: 0.05.
The mixture was mixed at such a ratio as to obtain a mixture, and the mixture was fired at a temperature of 900 ° C. for 12 hours in an oxygen stream to produce the mixture.

【0043】〈比較例2のリチウム遷移金属複合酸化
物〉本リチウム遷移金属複合酸化物は、フッ素置換して
いるが、遷移金属層をアルミニウム置換していないリチ
ウム遷移金属複合酸化物である。その組成がLi1. 1
0.75Mn0.151.80.2となるリチウムニッケル複合
酸化物であり、固相反応法で製造したものである。リチ
ウム源としてLiOH・H2Oを、ニッケル源としてN
i(OH)2を、Mn源としてMn23を、フッ素源と
してLiF(リチウム源を兼ねる)を用い、それぞれを
モル比で0.9:0.75:0.075:0.2となる
ような割合で混合して混合物を得、この混合物を酸素気
流中において900℃の温度で12時間焼成して製造し
た。
<Lithium Transition Metal Composite Oxidation of Comparative Example 2>
The present lithium transition metal composite oxide is
But the transition metal layer is not replaced with aluminum.
Transition metal composite oxide. Its composition is Li1. 1N
i0.75Mn0.15O1.8F0.2Lithium nickel composite
It is an oxide and is produced by a solid-phase reaction method. Lichi
LiOH ・ HTwoO as nickel source
i (OH)TwoWith Mn as Mn sourceTwoOThreeWith a fluorine source
And LiF (also used as lithium source)
0.9: 0.75: 0.075: 0.2 in molar ratio
The mixture is mixed in such a ratio to obtain a mixture, and this mixture is
Baked at 900 ° C for 12 hours
Was.

【0044】〈比較例3のリチウム遷移金属複合酸化
物〉本リチウム遷移金属複合酸化物は、フッ素置換もア
ルミニウム置換もしていないリチウム遷移金属複合酸化
物である。その組成がLi1.1Ni0.75Mn0.152とな
るリチウムニッケル複合酸化物であり、固相反応法で製
造したものである。リチウム源としてLiOH・H2
を、ニッケル源としてNi(OH)2を、マンガン源と
してMn23を用い、それぞれをモル比で1.1:0.
75:0.075となるような割合で混合して混合物を
得、この混合物を酸素気流中において900℃の温度で
12時間焼成して製造した。
<Lithium Transition Metal Composite Oxide of Comparative Example 3> This lithium transition metal composite oxide is a lithium transition metal composite oxide having neither fluorine substitution nor aluminum substitution. This is a lithium nickel composite oxide having a composition of Li 1.1 Ni 0.75 Mn 0.15 O 2 , which is manufactured by a solid-state reaction method. LiOH.H 2 O as lithium source
, Ni (OH) 2 as a nickel source, and Mn 2 O 3 as a manganese source, each having a molar ratio of 1.1: 0.
The mixture was mixed at a ratio of 75: 0.075 to obtain a mixture, and the mixture was baked at a temperature of 900 ° C. for 12 hours in an oxygen stream to produce the mixture.

【0045】〈X線回折分析による結晶性の評価〉上記
実施例および比較例のそれぞれのリチウム遷移金属複合
酸化物に対して、CuKα線を用いた粉末法によるX線
回折分析を行った。この結果として、実施例および比較
例1のリチウム遷移金属複合酸化物のXRDスペクトル
を図1に、比較例2および比較例3のリチウム遷移金属
複合酸化物のXRDスペクトルを図2に示す。
<Evaluation of Crystallinity by X-ray Diffraction Analysis> Each of the lithium transition metal composite oxides of the above Examples and Comparative Examples was subjected to X-ray diffraction analysis by a powder method using CuKα radiation. As a result, XRD spectra of the lithium transition metal composite oxides of Examples and Comparative Example 1 are shown in FIG. 1, and XRD spectra of the lithium transition metal composite oxides of Comparative Examples 2 and 3 are shown in FIG.

【0046】図1および図2から明らかなように、いず
れのリチウム遷移金属複合酸化物も層状岩塩構造である
ことが確認できる。XRDスペクトルにおいて、2θ≒
19°(θは回折角)にあるピークが(003)面のピ
ークであり、2θ≒44°にあるピークが(104)面
のピークである。下記表1に、これらのスペクトルから
算出したそれぞれのリチウム遷移金属複合酸化物の(0
03)面の回折ピークの強度I003と(104)面の回
折ピークの強度I104との強度比I003/I104を示す。
As is clear from FIGS. 1 and 2, it can be confirmed that each lithium transition metal composite oxide has a layered rock salt structure. In the XRD spectrum, 2θ ≒
The peak at 19 ° (θ is the diffraction angle) is the peak on the (003) plane, and the peak at 2θ ≒ 44 ° is the peak on the (104) plane. Table 1 below shows the (0) of each lithium transition metal composite oxide calculated from these spectra.
The intensity ratio I 003 / I 104 between the intensity I 003 of the diffraction peak on the 03) plane and the intensity I 104 of the diffraction peak on the (104) plane is shown.

【0047】[0047]

【表1】 [Table 1]

【0048】上記表1からわかるように、フッ素置換を
していない比較例1および比較例3のリチウム遷移金属
複合酸化物は、強度比I003/I104がそれぞれ2.2
8、 2.18と高い値を示し、結晶性が良好であること
が伺える。また、アルミニウム置換をせずにフッ素置換
を行った比較例2のリチウム遷移金属複合酸化物は、強
度比I003/I104が1.33と低く、結晶性が悪いこと
を示している。これに対し、アルミニウム置換を行った
上でフッ素置換を行った実施例のリチウム遷移金属複合
酸化物は、その強度比I003/I104が1.72と比較的
高い値を示している。このことからすれば、アルミニウ
ム置換を行えば、フッ素置換を行ったとしても、高い結
晶性を維持できることが確認できる。
As can be seen from Table 1 above, the fluorine substitution
Lithium transition metal of Comparative Example 1 and Comparative Example 3
The composite oxide has an intensity ratio I003/ I104Is 2.2
8, 2.18 high value and good crystallinity
Can be heard. Also, fluorine substitution without aluminum substitution
The lithium transition metal composite oxide of Comparative Example 2 in which
Degree ratio I003/ I104Is low at 1.33 and crystallinity is poor
Is shown. In contrast, aluminum substitution was performed
Lithium transition metal composite of Example in which fluorine substitution was performed on
The oxide has an intensity ratio I003/ I104Is relatively high at 1.72
It shows a high value. In light of this, aluminum
If substitution is performed, high results are obtained even if fluorine is substituted.
It can be confirmed that the crystallinity can be maintained.

【0049】〈リチウム二次電池の作製〉次に、上記実
施例および比較例1のリチウム遷移金属複合酸化物を実
際に正極活物質として用いたリチウム二次電池を作製し
た。正極は、まず、正極活物質となるそれぞれのリチウ
ム遷移金属複合酸化物70重量部に、導電材としてのカ
ーボンブラックを25重量部、結着剤としてのポリフッ
化ビニリデンを5重量部混合し、溶剤として適量のN−
メチル−2−ピロリドンを添加して、ペースト状の正極
合材を調製した。次いで、このペースト状の正極合材を
アルミニウム箔集電体に塗工して加圧し、正極合材の厚
さを65μmとした後、直径15mmφの円盤状に打ち
抜いて正極とした。
<Preparation of Lithium Secondary Battery> Next, a lithium secondary battery using the lithium-transition metal composite oxide of the above example and Comparative Example 1 as a positive electrode active material was prepared. The positive electrode was prepared by first mixing 70 parts by weight of each lithium transition metal composite oxide serving as a positive electrode active material, 25 parts by weight of carbon black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder, Suitable amount of N-
Methyl-2-pyrrolidone was added to prepare a paste-like positive electrode mixture. Next, this paste-like positive electrode mixture was applied to an aluminum foil current collector and pressurized to make the thickness of the positive electrode mixture 65 μm, and then punched into a disk having a diameter of 15 mmφ to obtain a positive electrode.

【0050】対向させる負極は、金属リチウムを活物質
として用いた。金属リチウムを厚さ400μmのシート
状にしてニッケル集電体網に圧着し、これを直径17m
mφの円盤状に打ち抜いたものを負極とした。
For the negative electrode to be opposed, metallic lithium was used as an active material. Metallic lithium was formed into a sheet having a thickness of 400 μm and pressed on a nickel current collector network, and this was 17 m in diameter.
A punched out disk having a diameter of mφ was used as a negative electrode.

【0051】セパレータにはポリエチレン製の微多孔膜
を用い、セパレータに含浸させる非水電解液は、エチレ
ンカーボネートとジエチルカーボネートとを体積比3:
7に混合した混合溶媒にLiPF6を1Mの濃度で溶解
したものを用いた。 上記正極および負極を、セパレー
タを介して対向させ、上記非水電解液を適量注入して含
浸させた後、コイン型電池ケースに収納することにより
リチウム二次電池を作製した。なお、実施例のリチウム
遷移金属複合酸化物を正極活物質に用いたリチウム二次
電池を実施例のリチウム二次電池とし、同様に比較例1
のリチウム遷移金属複合酸化物を正極活物質に用いたリ
チウム二次電池を比較例1のリチウム二次電池とした。
As the separator, a microporous polyethylene membrane was used, and the nonaqueous electrolytic solution impregnated in the separator was prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 3:
A solution obtained by dissolving LiPF 6 at a concentration of 1 M in the mixed solvent mixed in Example 7 was used. The positive electrode and the negative electrode were opposed to each other with a separator interposed therebetween, and a suitable amount of the nonaqueous electrolyte was injected and impregnated. Then, the battery was housed in a coin-type battery case to produce a lithium secondary battery. The lithium secondary battery using the lithium transition metal composite oxide of the example as the positive electrode active material was used as the lithium secondary battery of the example, and Comparative Example 1 was similarly used.
A lithium secondary battery using the lithium transition metal composite oxide of Comparative Example 1 as a positive electrode active material was designated as a lithium secondary battery of Comparative Example 1.

【0052】〈充放電サイクル試験〉上記実施例および
比較例1のリチウム二次電池に対して充放電サイクル試
験を行った。充放電サイクル試験はリチウム二次電池の
実使用最高温度と目される60℃という高温環境下で行
い、その条件は、まずコンディショニングを兼ねて、
0.2mAの定電流で充電終止電圧4.3Vまで充電を
行った後0.2mAの定電流で放電終止電圧3.0Vま
で放電を行うサイクルを5サイクル行い、次いで、6サ
イクル目からは充放電電流を0.4mAに上げ、合計5
0サイクルの充放電を行うものとした。この充放電サイ
クル試験の結果として、実施例および比較例1のリチウ
ム二次電池の各サイクルにおける正極活物質単位重量あ
たりの放電容量(活物質放電容量)を、図3に示す。
<Charge / Discharge Cycle Test> A charge / discharge cycle test was performed on the lithium secondary batteries of the above Examples and Comparative Example 1. The charge-discharge cycle test was performed in a high-temperature environment of 60 ° C, which is considered to be the maximum practical use temperature of a lithium secondary battery.
After charging to a charge end voltage of 4.3 V with a constant current of 0.2 mA, five cycles of discharging to a discharge end voltage of 3.0 V with a constant current of 0.2 mA are performed, and then charging is performed from the sixth cycle. The discharge current was increased to 0.4 mA, for a total of 5
The charge / discharge of 0 cycle was performed. FIG. 3 shows the discharge capacity per unit weight of the positive electrode active material (active material discharge capacity) in each cycle of the lithium secondary batteries of Example and Comparative Example 1 as a result of the charge / discharge cycle test.

【0053】〈サイクル特性の評価〉図3から明らかな
ように、比較例1のリチウム二次電池は、コンディショ
ニングの後も放電容量が大きく低下し続け、50サイク
ル目の放電容量は、6サイクル目の放電容量に対して8
3%にまで低下した。これに対して、フッ素置換がなさ
れているリチウム遷移金属複合酸化物を正極活物質に用
いた実施例のリチウム二次電池では、コンディショニン
グの後の充放電サイクルにおいて放電容量の低下は少な
く、6サイクル目の放電容量に対する50サイクル目の
放電容量は93%と高い値を示した。
<Evaluation of Cycle Characteristics> As is clear from FIG. 3, the discharge capacity of the lithium secondary battery of Comparative Example 1 continued to decrease greatly after conditioning, and the discharge capacity at the 50th cycle was reduced to the 6th cycle. 8 for the discharge capacity of
It dropped to 3%. On the other hand, in the lithium secondary battery of the embodiment using the lithium-transition metal composite oxide subjected to fluorine substitution as the positive electrode active material, the decrease in the discharge capacity in the charge / discharge cycle after the conditioning is small, The discharge capacity at the 50th cycle relative to the discharge capacity at the eye showed a high value of 93%.

【0054】このことから、アルミニウム置換を施しか
つフッ素置換を施した結晶性の高いリチウム遷移金属複
合酸化物は、繰り返される充放電によってもその劣化が
小さく、フッ素置換による効果が充分に発揮されている
ことが確認できる。したがって、本発明のリチウム遷移
金属複合酸化物を正極活物質に用いた本発明のリチウム
二次電池は、サイクル特性の良好な、また、高温サイク
ル特性についても良好なリチウム二次電池となることが
確認できる。
Thus, the lithium-transition metal composite oxide having high crystallinity, which has been subjected to aluminum substitution and fluorine substitution, is less deteriorated by repeated charge and discharge, and the effect of the fluorine substitution is sufficiently exhibited. Can be confirmed. Therefore, the lithium secondary battery of the present invention using the lithium transition metal composite oxide of the present invention as the positive electrode active material has good cycle characteristics, and can be a lithium secondary battery having good high-temperature cycle characteristics. You can check.

【0055】[0055]

【発明の効果】本発明は、層状岩塩構造リチウム遷移金
属複合酸化物を、遷移金属の一部をアルミニウムで置換
しかつ酸素の一部をフッ素で置換し、高い結晶性を維持
するように構成するものである。このような構成をもつ
本発明のリチウム遷移金属複合酸化物は、結晶構造が安
定化しており、リチウム二次電池の正極活物質として用
いた場合に、繰り返される充放電によっても劣化の小さ
なものとなる。
According to the present invention, a layered rock salt-structured lithium transition metal composite oxide is constructed such that a part of the transition metal is substituted by aluminum and a part of oxygen is substituted by fluorine to maintain high crystallinity. Is what you do. The lithium transition metal composite oxide of the present invention having such a structure has a stabilized crystal structure and, when used as a positive electrode active material of a lithium secondary battery, has a small deterioration even by repeated charge and discharge. Become.

【0056】また、本発明は、リチウム二次電池を上記
本発明のリチウム遷移金属複合酸化物を正極活物質に用
いて構成するものである。このような構成をもつ本発明
のリチウム二次電池は、サイクル特性の良好なリチウム
二次電池となる。
Further, the present invention provides a lithium secondary battery using the above-mentioned lithium transition metal composite oxide of the present invention as a positive electrode active material. The lithium secondary battery of the present invention having such a configuration is a lithium secondary battery having good cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 アルミニウム置換し、かつ、フッ素置換した
あるいはフッ素置換していないリチウムニッケル複合酸
化物について行ったX線回折分析の結果として、実施例
および比較例1のリチウム遷移金属複合酸化物のXRD
スペクトルを示す。
FIG. 1 shows the results of X-ray diffraction analysis performed on lithium-nickel composite oxides substituted with aluminum and substituted with fluorine or not substituted with fluorine, as a result of XRD of lithium-transition metal composite oxides of Examples and Comparative Example 1.
The spectrum is shown.

【図2】 アルミニウム置換せず、かつ、フッ素置換し
たあるいはフッ素置換していないリチウムニッケル複合
酸化物について行ったX線回折分析の結果として、比較
例2および比較例3のリチウム遷移金属複合酸化物のX
RDスペクトルを示す。
FIG. 2 shows lithium transition metal composite oxides of Comparative Examples 2 and 3 as a result of X-ray diffraction analysis performed on a lithium-nickel composite oxide not substituted with aluminum and substituted with fluorine or not substituted with fluorine. X
3 shows an RD spectrum.

【図3】 フッ素置換による効果を調査すべく行った充
放電サイクル試験の結果として、実施例および比較例1
のリチウム二次電池の各サイクルにおける活物質放電容
量を示す。
FIG. 3 shows the results of a charge / discharge cycle test conducted to investigate the effect of fluorine substitution, as a result of Examples and Comparative Examples 1.
4 shows the active material discharge capacity in each cycle of the lithium secondary battery of FIG.

フロントページの続き Fターム(参考) 4G048 AA04 AA06 AC06 AD06 5H029 AJ05 AK03 AK19 AL06 AL07 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 DJ17 HJ02 HJ13 5H050 AA07 BA17 CA08 CA09 FA19 HA02 HA13 Continued on front page F term (reference) 4G048 AA04 AA06 AC06 AD06 5H029 AJ05 AK03 AK19 AL06 AL07 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 DJ17 HJ02 HJ13 5H050 AA07 BA17 CA08 CA09 FA19 HA02 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成式Li1+x1-x-yAly2-z
z(MはCo、Ni、Mnから選ばれる1種以上;0≦
x≦0.2;0.05≦y≦0.2;0.01≦z≦
0.3)で表され、結晶構造が層状岩塩構造をなし、C
uKα線を用いたX線回折分析による(003)面の回
折ピークの強度I003と(104)面の回折ピークの強
度I104との強度比I003/I104が1.7以上となるリ
チウム二次電池正極活物質用リチウム遷移金属複合酸化
物。
1. A composition formula of Li 1 + x M 1-xy Al y O 2-z F
z (M is at least one selected from Co, Ni and Mn; 0 ≦
x ≦ 0.2; 0.05 ≦ y ≦ 0.2; 0.01 ≦ z ≦
0.3), the crystal structure is a layered rock salt structure, and C
Lithium having an intensity ratio I 003 / I 104 between the intensity I 003 of the diffraction peak on the (003) plane and the intensity I 104 of the diffraction peak on the (104) plane obtained by X-ray diffraction analysis using uKα radiation is 1.7 or more. Lithium transition metal composite oxide for secondary battery positive electrode active material.
【請求項2】 前記Mにはその中心的な元素としてNi
が含まれ、組成式Li 1+xNi1-x-y-wM'wAly2-z
z(M'はCo、Mnから選ばれる1種以上;0≦w≦
0.3)で表される請求項1に記載のリチウム二次電池
正極活物質用リチウム遷移金属複合酸化物。
2. The M has Ni as its central element.
And the composition formula Li 1 + xNi1-xywM 'wAlyO2-zF
z(M ′ is at least one selected from Co and Mn; 0 ≦ w ≦
The lithium secondary battery according to claim 1, which is represented by 0.3).
Lithium transition metal composite oxide for positive electrode active material.
【請求項3】 組成式Li1+x1-x-yAly2-z
z(MはCo、Ni、Mnから選ばれる1種以上;0≦
x≦0.2;0.05≦y≦0.2;0.01≦z≦
0.3)で表され、結晶構造が層状岩塩構造をなし、C
uKα線を用いたX線回折分析による(003)面の回
折ピークの強度I003と(104)面の回折ピークの強
度I104との強度比I003/I104が1.7以上となるリ
チウム遷移金属複合酸化物を正極活物質に用いたリチウ
ム二次電池。
3. A composition formula Li 1 + x M 1-xy Al y O 2-z F
z (M is at least one selected from Co, Ni and Mn; 0 ≦
x ≦ 0.2; 0.05 ≦ y ≦ 0.2; 0.01 ≦ z ≦
0.3), the crystal structure is a layered rock salt structure, and C
Lithium having an intensity ratio I 003 / I 104 between the intensity I 003 of the diffraction peak on the (003) plane and the intensity I 104 of the diffraction peak on the (104) plane obtained by X-ray diffraction analysis using uKα radiation is 1.7 or more. A lithium secondary battery using a transition metal composite oxide as a positive electrode active material.
JP2000323988A 2000-10-24 2000-10-24 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4678457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323988A JP4678457B2 (en) 2000-10-24 2000-10-24 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323988A JP4678457B2 (en) 2000-10-24 2000-10-24 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002128526A true JP2002128526A (en) 2002-05-09
JP4678457B2 JP4678457B2 (en) 2011-04-27

Family

ID=18801586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323988A Expired - Fee Related JP4678457B2 (en) 2000-10-24 2000-10-24 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4678457B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131411A1 (en) * 2006-05-12 2007-11-22 Sobright Technology (Jiaxing) Co., Ltd. A positive electrode material for secondary battery and the preparation method of the same
JP2009021251A (en) * 2007-07-16 2009-01-29 Samsung Sdi Co Ltd Cathode active material of lithium secondary cell, its forming method, and lithium secondary cell
WO2010035421A1 (en) * 2008-09-26 2010-04-01 株式会社山田エビデンスリサーチ Apparatus for water treatment
WO2012017826A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
US20130177816A1 (en) * 2010-09-17 2013-07-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
US9786911B2 (en) 2010-04-30 2017-10-10 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
CN110048087A (en) * 2018-01-17 2019-07-23 松下知识产权经营株式会社 Positive active material and battery
CN114982008A (en) * 2019-12-26 2022-08-30 汉阳大学校产学协力团 Fluorine-containing positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP2022127991A (en) * 2021-02-22 2022-09-01 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery
US20220285676A1 (en) * 2019-08-30 2022-09-08 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059725A (en) * 1996-08-16 1998-03-03 Sakai Chem Ind Co Ltd Particle-shaped composition, its production and lithium ion secondary battery
JPH1179750A (en) * 1997-05-15 1999-03-23 Fmc Corp Doped interlayer compound and its production
JPH11278850A (en) * 1998-03-31 1999-10-12 Agency Of Ind Science & Technol Production of lithium cobaltate for secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000128539A (en) * 1998-10-19 2000-05-09 Ube Ind Ltd Lithium transition metal based halogenated oxide and its production and its utilization
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000513701A (en) * 1997-06-04 2000-10-17 テルコーディア テクノロジーズ インコーポレイテッド Lithium aluminum manganese oxyfluoride for electrodes of lithium ion batteries
JP2000294240A (en) * 1999-04-08 2000-10-20 Toyota Central Res & Dev Lab Inc Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059725A (en) * 1996-08-16 1998-03-03 Sakai Chem Ind Co Ltd Particle-shaped composition, its production and lithium ion secondary battery
JPH1179750A (en) * 1997-05-15 1999-03-23 Fmc Corp Doped interlayer compound and its production
JP2000513701A (en) * 1997-06-04 2000-10-17 テルコーディア テクノロジーズ インコーポレイテッド Lithium aluminum manganese oxyfluoride for electrodes of lithium ion batteries
JPH11278850A (en) * 1998-03-31 1999-10-12 Agency Of Ind Science & Technol Production of lithium cobaltate for secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000128539A (en) * 1998-10-19 2000-05-09 Ube Ind Ltd Lithium transition metal based halogenated oxide and its production and its utilization
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000294240A (en) * 1999-04-08 2000-10-20 Toyota Central Res & Dev Lab Inc Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131411A1 (en) * 2006-05-12 2007-11-22 Sobright Technology (Jiaxing) Co., Ltd. A positive electrode material for secondary battery and the preparation method of the same
JP2009021251A (en) * 2007-07-16 2009-01-29 Samsung Sdi Co Ltd Cathode active material of lithium secondary cell, its forming method, and lithium secondary cell
US8999578B2 (en) 2007-07-16 2015-04-07 Samsung Sdi Co., Ltd. Positive electrode active materials for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
WO2010035421A1 (en) * 2008-09-26 2010-04-01 株式会社山田エビデンスリサーチ Apparatus for water treatment
US10559821B2 (en) 2010-04-30 2020-02-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US9786911B2 (en) 2010-04-30 2017-10-10 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
WO2012017826A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
CN103069622A (en) * 2010-08-06 2013-04-24 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
US9780371B2 (en) * 2010-09-17 2017-10-03 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US20130177816A1 (en) * 2010-09-17 2013-07-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
CN110048087A (en) * 2018-01-17 2019-07-23 松下知识产权经营株式会社 Positive active material and battery
JP2019125574A (en) * 2018-01-17 2019-07-25 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP7228772B2 (en) 2018-01-17 2023-02-27 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US20220285676A1 (en) * 2019-08-30 2022-09-08 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
CN114982008A (en) * 2019-12-26 2022-08-30 汉阳大学校产学协力团 Fluorine-containing positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP2022127991A (en) * 2021-02-22 2022-09-01 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery
JP7225288B2 (en) 2021-02-22 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery

Also Published As

Publication number Publication date
JP4678457B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5030123B2 (en) Lithium secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5954179B2 (en) Non-aqueous secondary battery electrode, non-aqueous secondary battery including the same, and assembled battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
US20080085452A1 (en) Cathode active material and lithium battery using the same
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2000251892A (en) Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP2003297354A (en) Lithium secondary battery
JP2002151154A (en) Lithium secondary battery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP4581196B2 (en) Positive electrode for lithium secondary battery
JP5189466B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees