JP4752244B2 - Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery - Google Patents

Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery Download PDF

Info

Publication number
JP4752244B2
JP4752244B2 JP2004325326A JP2004325326A JP4752244B2 JP 4752244 B2 JP4752244 B2 JP 4752244B2 JP 2004325326 A JP2004325326 A JP 2004325326A JP 2004325326 A JP2004325326 A JP 2004325326A JP 4752244 B2 JP4752244 B2 JP 4752244B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
composite oxide
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325326A
Other languages
Japanese (ja)
Other versions
JP2006134816A (en
Inventor
優子 石田
賢治 志塚
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004325326A priority Critical patent/JP4752244B2/en
Publication of JP2006134816A publication Critical patent/JP2006134816A/en
Application granted granted Critical
Publication of JP4752244B2 publication Critical patent/JP4752244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池正極用材料として用いられる層状リチウムニッケルマンガン系複合酸化物粉体及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池に関するものである。詳しくは、適度な粒子の解砕され易さを持ち、塗布膜形成能に優れ、かつレート特性に優れたリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池に関するものである。   The present invention relates to a layered lithium nickel manganese composite oxide powder used as a material for a positive electrode of a lithium secondary battery, a lithium secondary battery positive electrode using the same, and a lithium secondary battery. Specifically, the layered lithium-nickel-manganese based composite oxide for a positive electrode material of a lithium secondary battery that has moderate particle easiness to be crushed, excellent coating film forming ability, and excellent rate characteristics, and lithium The present invention relates to a secondary battery positive electrode and a lithium secondary battery.

リチウム二次電池は、エネルギー密度及び出力密度等に優れ、小型化・軽量化できるため、ノート型パソコン、携帯電話及びハンディビデオカメラ等の携帯機器の電源として急速に普及している。また、電気自動車や電力のロードレベリング等の電源としても注目されている。   Lithium secondary batteries are excellent in energy density and output density, and can be reduced in size and weight, so that they are rapidly spreading as power sources for portable devices such as laptop computers, mobile phones, and handy video cameras. It is also attracting attention as a power source for electric vehicles and power load leveling.

リチウム二次電池に用いられる正極は、通常、集電体と、その表面に形成された正極活物質、導電材及び結着剤を含有する正極活物質層とから構成されている。正極活物質としては、通常、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、又はリチウム・ニッケル複合酸化物や、これら複合酸化物の遷移金属の一部を他の金属で置換したリチウム遷移金属系複合酸化物が用いられている。これらのリチウム系複合酸化物を用いたリチウム二次電池は、いずれも得られる電圧及び出力が高いという利点を有する。そしてリチウム系複合酸化物として種々の組成のものが提案されているが、中でも好ましいものの一つは、層状構造のリチウムニッケルマンガンコバルト系複合酸化物であり、このものを正極活物質とする電池は安全性が高いとされている。   A positive electrode used in a lithium secondary battery is generally composed of a current collector and a positive electrode active material layer containing a positive electrode active material, a conductive material, and a binder formed on the surface of the current collector. As a positive electrode active material, a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide, or a lithium transition in which a part of the transition metal of these composite oxides is replaced with another metal. Metal-based composite oxides are used. Lithium secondary batteries using these lithium-based composite oxides all have the advantage of high voltage and output. In addition, lithium composite oxides having various compositions have been proposed, but one of the preferable ones is a lithium nickel manganese cobalt composite oxide having a layered structure, and a battery using this as a positive electrode active material is It is said that safety is high.

層状構造のリチウムニッケルマンガンコバルト系複合酸化物を製造する方法として、特許文献1には、リチウム化合物、ニッケル化合物、マンガン化合物及びコバルト化合物を原料としてスプレードライ法により造粒・乾燥し、その原料粉を大気中で970℃で焼成する方法が提案されている。   As a method for producing a lithium nickel manganese cobalt based composite oxide having a layered structure, Patent Document 1 discloses that a raw material powder is obtained by granulating and drying a lithium compound, a nickel compound, a manganese compound and a cobalt compound as raw materials by a spray drying method. Has been proposed that is fired at 970 ° C. in the atmosphere.

しかしながら、上記方法で得られる層状構造のリチウムニッケルマンガンコバルト系複合酸化物は二次粒子の強度が弱いために、塗布膜形成能において問題がある。即ち、これを正極活物質として、導電材及び結着剤と混合して塗布スラリーを調製する際、或いは調製した塗布スラリーを集電体上に塗布する際に、二次粒子が一粒子単位にまでバラバラになってしまうことにより、十分な強度を有する塗布膜を形成し得ない。正極活物質層としての塗布膜の強度が低いと、電池組立時に膜の剥離が生じたり、導電材、集電体、活物質のネットワークが弱いため、電池寿命が低下する。また、導電パスもとれにくいことが多い。このような二次粒子強度の低い正極活物質を用いて、電池組立に必要な十分な強度を有する塗布膜を形成するためには、塗布スラリーの調製に際し、導電材や結着剤を通常よりも多く用いる必要があるが、このように、導電材や結着剤を多量に配合すると、相対的に正極活物質の割合が減って電池密度や電池容量が低下することになる。   However, the lithium nickel manganese cobalt composite oxide having a layered structure obtained by the above method has a problem in the ability to form a coating film because the secondary particles have low strength. That is, when this is used as a positive electrode active material and mixed with a conductive material and a binder to prepare a coating slurry, or when the prepared coating slurry is applied onto a current collector, the secondary particles are made into one particle unit. As a result, the coated film having sufficient strength cannot be formed. If the strength of the coating film as the positive electrode active material layer is low, the film will be peeled off during battery assembly, and the battery life will be reduced because the network of the conductive material, current collector and active material is weak. Also, it is often difficult to obtain a conductive path. In order to form a coating film having a sufficient strength necessary for battery assembly using such a positive electrode active material having a low secondary particle strength, a conductive material and a binder should be used more than usual when preparing a coating slurry. However, when a large amount of a conductive material or a binder is blended in this way, the proportion of the positive electrode active material is relatively reduced, and the battery density and battery capacity are lowered.

また、特許文献1には、比較例として、共沈法で造粒・乾燥して得られた原料粉を大気中で970℃で焼成する方法も提案されているが、この方法で得られる層状リチウムニッケルマンガンコバルト系複合酸化物は二次粒子の強度が強すぎ、一次粒子間に電解液が浸透する隙間が殆どないために、粒子の内部抵抗が高く、その結果、得られる電池のレート特性(出力特性)が低いという欠点がある。   Patent Document 1 also proposes a method of firing raw material powder obtained by granulation and drying by a coprecipitation method at 970 ° C. in the atmosphere as a comparative example. Lithium nickel manganese cobalt based composite oxide is too strong in the secondary particles, and there is almost no gap for electrolyte to penetrate between the primary particles, so the internal resistance of the particles is high, resulting in the rate characteristics of the resulting battery There is a disadvantage that (output characteristics) are low.

なお、特許文献1には、「このようなリチウム二次電池用正極活物質によれば、一次粒子間の凝集力が弱いために、適度な解砕或いは電極作製工程で簡単に一次粒子に解砕され、しかも二次粒子が解砕する過程において一次粒子自体が崩れることがないため、一次粒子がその大きさ・形状を保ったまま単分散(その粒子がほとんどを占める分散)した状態となる。」、即ち、二次粒子が解砕され易い程良いとされ、「上記リチウム二次電池用正極活物質において、二次粒子の解砕され易さは、10.5mmφのダイスに粉1gを入れて一軸方向へ圧力をかける試験において、2tの圧力をかけたときの粉の粒度分布のd50の値が、圧力をかける前の約70%以下になる程度であるのが好ましく、更に好ましくは1tの圧力をかけたときの粉のd50値が、圧力をかける前の約50%以下になる程度である。」との記載があるが、特許文献1には、70%<a≦95%を満たすリチウムニッケルマンガンコバルト系複合酸化物は記載されていない。   Patent Document 1 states that “According to such a positive electrode active material for a lithium secondary battery, the cohesive force between the primary particles is weak, so that the primary particles can be easily disintegrated into the primary particles by an appropriate crushing or electrode preparation process. In the process of being crushed and the secondary particles are crushed, the primary particles themselves do not collapse, so that the primary particles are monodispersed (dispersed with most of the particles) while maintaining their size and shape. That is, it is said that the secondary particles are easy to be crushed. “In the positive electrode active material for a lithium secondary battery, the ease with which the secondary particles are crushed is 1 g of powder in a 10.5 mmφ die. In a test in which pressure is applied in a uniaxial direction, it is preferable that the value of d50 of the particle size distribution of the powder when pressure of 2 t is applied is about 70% or less before applying pressure, more preferably Powder when pressure of 1t is applied The d50 value is about 50% or less before the pressure is applied. "Patent Document 1, however, discloses that lithium nickel manganese cobalt based composite oxide satisfying 70% <a≤95%. Is not listed.

この特許文献1での1.07ton加圧が、後述の本発明における粒子解砕され易さ評価a値における1.2ton/cm加圧に相当する。本発明に係る粒子解砕され易さ評価a値で見ると、特許文献1の実施例1のものは10〜12%、比較例1のものは98%であることが特許文献1のグラフ及び表から読みとれる。なお、測定時の活物質の量が0.5gでも1gでも、粒子解砕され易さ評価a値には殆ど影響しない。 1.07ton pressure in Patent Document 1 corresponds to 1.2 ton / cm 2 pressure in the particle crushing is easy evaluation a value in the present invention which will be described later. From the viewpoint of the ease of particle crushing evaluation a value according to the present invention, the graph of Patent Document 1 shows that Example 1 of Patent Document 1 is 10 to 12% and that of Comparative Example 1 is 98%. Read from the table. In addition, even if the amount of the active material at the time of measurement is 0.5 g or 1 g, the evaluation of the ease of particle crushing evaluation a value is hardly affected.

即ち、特許文献1では、特許文献1の従来技術としての共沈法を採用した場合には、二次粒子が強固で解砕され難く(特許文献1の比較例1)、このような粒子では、良好な正極を形成し得ないから、二次粒子が一次粒子にまで完全に単分散させることを目的としており、「適度な解砕され易さ」に調整するという技術思想は特許文献1には存在しない。
特開2004−192846号公報
That is, in Patent Document 1, when the coprecipitation method as the prior art of Patent Document 1 is adopted, the secondary particles are strong and difficult to be crushed (Comparative Example 1 of Patent Document 1). Since a good positive electrode cannot be formed, the purpose is to completely disperse the secondary particles to primary particles. The technical idea of adjusting to “appropriately easy to be crushed” is disclosed in Patent Document 1. Does not exist.
JP 2004-192846 A

従って、本発明は、適度な解砕され易さを有し、このため塗布膜形成能に優れ、かつレート特性に優れたリチウム二次電池を提供し得るリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体と、これを用いた高容量でレート特性等の電池性能に優れたリチウム二次電池正極並びにリチウム二次電池を提供することを目的とする。   Accordingly, the present invention has a layered lithium nickel for a lithium secondary battery positive electrode material that has a moderate ease of being crushed and thus can provide a lithium secondary battery excellent in coating film forming ability and excellent in rate characteristics. It is an object of the present invention to provide a manganese-based composite oxide powder, a lithium secondary battery positive electrode and a lithium secondary battery that are high in capacity and have excellent battery performance such as rate characteristics using the same.

本発明者らは、上記課題に鑑み鋭意検討したところ、活物質粒子のつぶれ易さが適度であること、即ち、所定の粒子解砕され易さ評価a値が適度な領域にあることで、レート特性及び塗布膜形成能に優れた層状構造のリチウムニッケルマンガン系複合酸化物粉体を確実に得ることができることを見出し、発明を完成させた。   The inventors of the present invention have intensively studied in view of the above problems, and that the ease of crushing of the active material particles is appropriate, that is, the ease of predetermined particle crushing evaluation a value is in an appropriate region. The present inventors have found that a lithium nickel manganese composite oxide powder having a layered structure excellent in rate characteristics and coating film forming ability can be obtained with certainty, and completed the invention.

即ち、本発明の要旨は、下記組成式(1)で表される層状リチウムニッケルマンガン系複合酸化物よりなる粉体であって、BET比表面積が2m /g以下であり、或いはタップ密度(嵩密度)が1.3g/cm 以上であり、下記に定義される粒子解砕され易さ評価a値が、70%<a≦95%であることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体、に存する。
Li1+xNi1−y−z−pMnCo …(1)
(ただし、0≦x≦0.20、0.25≦y≦0.5、0≦z≦0.5、0≦p≦0.2、0.5≦y+z+p≦0.75であり、MはAl,Fe,Ti,Mg,Cr,Ga,Cu,Zn,Nb,及びZrの何れか1種以上)
[粒子解砕され易さ評価a値]
15mmφの2枚の並行なステンレスプレートの間に該粉体を0.5gはさみ、1軸方向に30MPaの圧力をかけたときの粉体のメジアン径bと、圧力をかける前の粉体のメジアン径cとから、下記(2)式で算出する値。
a=b/c ×100(%) …(2)
That is, the gist of the present invention is a powder composed of a layered lithium nickel manganese composite oxide represented by the following composition formula (1), and has a BET specific surface area of 2 m 2 / g or less, or a tap density ( Lithium secondary battery positive electrode material, characterized in that the bulk density is 1.3 g / cm 3 or more, and the particle easiness evaluation a value defined below is 70% <a ≦ 95% Layered lithium nickel manganese based composite oxide powder.
Li 1 + x Ni 1-y -z-p Mn y Co z M p O 2 ... (1)
(However, 0 ≦ x ≦ 0.20, 0.25 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.5, 0 ≦ p ≦ 0.2, 0.5 ≦ y + z + p ≦ 0.75, and M Is one or more of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, and Zr)
[Evaluation of ease of particle crushing a value]
0.5 g of the powder is sandwiched between two 15 mmφ parallel stainless steel plates, the median diameter b of the powder when pressure of 30 MPa is applied in one axial direction, and the median of the powder before pressure is applied A value calculated from the diameter c by the following equation (2).
a = b / c × 100 (%) (2)

本発明の別の要旨は、上記本発明のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特徴とするリチウム二次電池正極、に存する。
本発明の更に別の要旨は、リチウムを吸蔵・放出可能な負極、リチウム塩を含有する非水電解質、及びリチウムを吸蔵・放出可能な正極を備えたリチウム二次電池であって、正極として上記本発明のリチウム二次電池正極を用いたことを特徴とするリチウム二次電池、に存する。
Another gist of the present invention is to have a positive electrode active material layer containing a layered lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material of the present invention and a binder on a current collector. The lithium secondary battery positive electrode is characterized.
Still another gist of the present invention is a lithium secondary battery comprising a negative electrode capable of inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a positive electrode capable of inserting and extracting lithium, wherein The present invention resides in a lithium secondary battery using the positive electrode of the lithium secondary battery of the present invention.

本発明のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体は、正極活物質層としての塗布膜を形成する際に、過度に一次粒子単位にまで解砕される程の低強度ではなく、また、一次粒子間に殆ど隙間がないほどの過度な高強度でもない、適度な粒子解砕され易さを有する。このため、導電材や結着剤を多量に用いることなく、電池製造に必要とされる十分な強度の塗布膜を形成することができるため、正極活物質層中の正極活物質量を十分に確保して、電池密度、電池容量を上げることができる。一方で、一次粒子間に適度な隙間を有することにより、レート特性の向上も図れる。   The layered lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material of the present invention is low enough to be pulverized to the primary particle unit excessively when forming a coating film as a positive electrode active material layer. It is not strong, and it has moderate easiness to be crushed, not excessively strong enough that there are almost no gaps between primary particles. For this reason, a coating film having a sufficient strength required for battery production can be formed without using a large amount of a conductive material or a binder, so that the amount of the positive electrode active material in the positive electrode active material layer is sufficiently large. It is possible to secure the battery density and the battery capacity. On the other hand, the rate characteristics can be improved by providing an appropriate gap between the primary particles.

このため、本発明のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体によれば、高容量でレート特性等の電池性能に優れたリチウム二次電池正極及びリチウム二次電池を実現することができる。   Therefore, according to the layered lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material of the present invention, a lithium secondary battery positive electrode and a lithium secondary battery excellent in battery performance such as high capacity and rate characteristics can be obtained. Can be realized.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to the gist thereof. The content of is not specified.

[リチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体]
まず、本発明のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体について説明する。
[Layered lithium nickel manganese based composite oxide powder for lithium secondary battery cathode material]
First, the layered lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material of the present invention will be described.

〈組成〉
本発明に係る層状構造のリチウムニッケルマンガン系複合酸化物粉体(以下「本発明の複合酸化物粉体」ということがある。)は、以下の組成式(1)で表されるものである。
Li1+xNi1−y−z−pMnCo …(1)
(ただし、0≦x≦0.20、0.25≦y≦0.5、0≦z≦0.5、0≦p≦0.2、0.5≦y+z+p≦0.75であり、MはAl,Fe,Ti,Mg,Cr,Ga,Cu,Zn,Nb,及びZrの何れか1種以上)
<composition>
The layered lithium nickel manganese composite oxide powder (hereinafter sometimes referred to as “the composite oxide powder of the present invention”) according to the present invention is represented by the following composition formula (1). .
Li 1 + x Ni 1-y -z-p Mn y Co z M p O 2 ... (1)
(However, 0 ≦ x ≦ 0.20, 0.25 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.5, 0 ≦ p ≦ 0.2, 0.5 ≦ y + z + p ≦ 0.75, and M Is one or more of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, and Zr)

組成式(1)において、xは通常0以上、好ましくは0.01以上、より好ましくは0.02以上である。xが0より小さいと複合酸化物中に未反応化合物が残存し、複合酸化物の結晶構造が若干不安定になる傾向がみられるため好ましくない。また、xは通常0.20以下であり、好ましくは0.15以下、より好ましくは0.10以下である。xが0.2より大きいと複合酸化物が単一の結晶相とならず、またリチウムが遷移金属サイトに置換する可能性があるため、これを正極活物質とするリチウム二次電池の充放電容量が低下する傾向がみられるので好ましくない。   In the composition formula (1), x is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more. When x is smaller than 0, an unreacted compound remains in the composite oxide, and the crystal structure of the composite oxide tends to become slightly unstable. Moreover, x is 0.20 or less normally, Preferably it is 0.15 or less, More preferably, it is 0.10 or less. When x is larger than 0.2, the composite oxide does not become a single crystal phase, and lithium may be replaced with a transition metal site. Therefore, charging / discharging of a lithium secondary battery using this as a positive electrode active material Since the capacity tends to decrease, it is not preferable.

yは通常0.25以上であり、好ましくは0.3以上、より好ましくは0.31以上、特に好ましくは0.32以上である。yが小さすぎると電池の安全性が低下することがある。また、yは通常0.5以下、好ましくは0.4以下、特に好ましくは0.35以下である。yが大きすぎると複合酸化物が単一の結晶相とならず、電池のサイクル特性や充放電容量が低下することがある。   y is usually 0.25 or more, preferably 0.3 or more, more preferably 0.31 or more, and particularly preferably 0.32 or more. If y is too small, the safety of the battery may be reduced. Further, y is usually 0.5 or less, preferably 0.4 or less, particularly preferably 0.35 or less. If y is too large, the composite oxide does not become a single crystal phase, and the cycle characteristics and charge / discharge capacity of the battery may be reduced.

zは通常0以上、好ましくは0.2以上、より好ましくは0.25以上、最も好ましくは0.3以上である。zが小さすぎると充放電時の複合酸化物の結晶構造が不安定となることがある。また、zは通常0.5以下、好ましくは0.4以下、特に好ましくは0.35以下である。zが大きすぎると高価となり、また電池の安全性が低下することがある。   z is usually 0 or more, preferably 0.2 or more, more preferably 0.25 or more, and most preferably 0.3 or more. If z is too small, the crystal structure of the complex oxide at the time of charge / discharge may become unstable. Z is usually 0.5 or less, preferably 0.4 or less, particularly preferably 0.35 or less. If z is too large, it becomes expensive and the safety of the battery may be lowered.

pは通常0以上、0.2以下であるが、好ましくは0.1以下、より好ましくは0.01以下、特に0が好ましい。pが大きすぎると複合酸化物の結晶構造が単一の結晶相となりにくく、また電池の容量が低下しやすい。   p is usually 0 or more and 0.2 or less, preferably 0.1 or less, more preferably 0.01 or less, and particularly preferably 0. When p is too large, the crystal structure of the composite oxide is unlikely to become a single crystal phase, and the capacity of the battery tends to decrease.

y+z+pは通常0.5以上、好ましくは0.6以上、特に好ましくは0.65以上である。y+z+pが小さすぎると複合酸化物を製造するのが困難となり、また複合酸化物が炭酸ガスを吸収して劣化しやすい。また、y+z+pは通常0.75以下、好ましくは0.70以下、より好ましくは0.69以下、特に好ましくは0.68以下である。y+z+pが大きすぎると電池の容量が低下しやすい。   y + z + p is usually 0.5 or more, preferably 0.6 or more, particularly preferably 0.65 or more. If y + z + p is too small, it is difficult to produce a composite oxide, and the composite oxide tends to absorb carbon dioxide and deteriorate. Moreover, y + z + p is usually 0.75 or less, preferably 0.70 or less, more preferably 0.69 or less, and particularly preferably 0.68 or less. If y + z + p is too large, the battery capacity tends to decrease.

〈粒子解砕され易さ〉
本発明の複合酸化物粉体はまた、下記に定義される粒子解砕され易さが70%<a≦95%である。
[粒子解砕され易さ評価a値]
15mmφの2枚の並行なステンレスプレートの間に該粉体を0.5gはさみ、1軸方向に1.2ton/cmの圧力をかけたときの粉体のメジアン径bと、圧力をかける前の粉体のメジアン径cとから、下記(2)式で算出する値。
a=b/c ×100(%) …(2)
なお、ここでのメジアン径とは、後述する方法で測定された二次粒子のメジアン径を指す。
<Ease of particle crushing>
The composite oxide powder of the present invention also has the ease of particle crushing defined below as 70% <a ≦ 95%.
[Evaluation of ease of particle crushing a value]
0.5 g of the powder is sandwiched between two 15 mmφ parallel stainless steel plates, the median diameter b of the powder when a pressure of 1.2 ton / cm 2 is applied in one axial direction, and before the pressure is applied The value calculated by the following equation (2) from the median diameter c of the powder.
a = b / c × 100 (%) (2)
In addition, the median diameter here refers to the median diameter of secondary particles measured by a method described later.

a値は、通常70%より大きく、好ましくは71%以上、特に好ましくは72%以上で、通常95%以下、好ましくは90%以下、特に好ましくは88%以下、とりわけ好ましくは85%以下である。   The a value is usually more than 70%, preferably 71% or more, particularly preferably 72% or more, and usually 95% or less, preferably 90% or less, particularly preferably 88% or less, particularly preferably 85% or less. .

a値が上記下限より小さいと、粒子は塗布スラリーを調製する際に、バラバラになりすぎて、強度の弱い塗布膜しか得ることができない。前述の如く、膜強度が弱いと電池組立時に膜の剥離が生じたり、導電材、集電体、活物質のネットワークが弱いため、電池寿命が低下する。また、導電パスもとれにくいことが多い。a値が上記下限より小さい粒子を用いて膜強度が十分で、導電パスもとれた塗布膜を得るためには、所定量よりも多くの導電材、結着剤を添加しなければならず、この場合には、電池密度を上げることができなくなる。   When the value a is smaller than the lower limit, the particles are too scattered when preparing the coating slurry, and only a coating film with low strength can be obtained. As described above, when the film strength is weak, the film is peeled off when the battery is assembled, and the battery life is shortened because the network of the conductive material, the current collector, and the active material is weak. Also, it is often difficult to obtain a conductive path. In order to obtain a coating film having sufficient film strength and a conductive path using particles having an a value smaller than the above lower limit, more conductive material than a predetermined amount, a binder must be added, In this case, the battery density cannot be increased.

a値が上記上限より大きいものは、その粒子は壊れにくい、即ち、二次粒子を構成する一次粒子間に微少なクラックや空隙が殆ど存在しない事を示している。一次粒子間に電解液の浸透する微少なクラックや空隙が無い場合、粒子の内部抵抗が高く、ハイレート特性(高電流での出力特性)が低下する。   When the a value is larger than the above upper limit, the particles are not easily broken, that is, there are almost no fine cracks or voids between the primary particles constituting the secondary particles. If there are no minute cracks or voids through which the electrolyte solution permeates between primary particles, the internal resistance of the particles is high, and the high rate characteristics (output characteristics at high current) are reduced.

〈二次粒子のメジアン径〉
本発明の複合酸化物は層状構造を有し、一次粒子が凝集・焼結して二次粒子を形成している。
二次粒子の平均粒径(メジアン径)は、通常3μm以上、好ましくは4μm以上、特に好ましくは5μm以上である。また、通常20μm以下、好ましくは15μm以下、特に好ましくは10μm以下である。二次粒子の平均粒径が小さすぎると、正極表面で副反応が起こるため、サイクル特性が低下しやすい。逆に、平均粒径が大きすぎると、リチウム拡散が阻害され、又は導電パスが不足してレート特性や容量が低下しやすい。
なお、二次粒子のメジアン径は、分散媒として、例えば、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用いた公知のレーザー回折/散乱式粒度分布測定装置によって測定することができる。
<Median diameter of secondary particles>
The composite oxide of the present invention has a layered structure, and primary particles are aggregated and sintered to form secondary particles.
The average particle diameter (median diameter) of the secondary particles is usually 3 μm or more, preferably 4 μm or more, particularly preferably 5 μm or more. Moreover, it is 20 micrometers or less normally, Preferably it is 15 micrometers or less, Most preferably, it is 10 micrometers or less. If the average particle size of the secondary particles is too small, side reactions occur on the surface of the positive electrode, so that the cycle characteristics are likely to deteriorate. On the other hand, if the average particle size is too large, lithium diffusion is hindered, or the conductive path is insufficient and the rate characteristics and capacity are likely to decrease.
The median diameter of the secondary particles can be measured by a known laser diffraction / scattering particle size distribution measuring apparatus using, for example, a 0.1 wt% sodium hexametaphosphate aqueous solution as a dispersion medium.

〈平均一次粒子径〉
本発明の複合酸化物粉体の平均一次粒子径(一次粒子の平均粒径)は、通常0.1μm以上、好ましくは0.3μm以上、特に好ましくは0.5μm以上である。また、通常2μm以下、好ましくは1.5μm以下、より好ましくは1.3μm以下、特に好ましくは1.1μm以下である。一次粒子の平均粒径が小さすぎると、サイクル特性や作製した電池の安全性が低下することがある。逆に、平均粒径が大きすぎると、内部抵抗が大きくなり十分な出力が得られなくなることがある。
なお、本発明における一次粒子の平均粒径は、走査型電子顕微鏡(SEM)で観察した長径の平均径であり、10000倍の観察写真を用いて、30〜50個程度の一次粒子の長径の測定値の平均値として求めることができる。
<Average primary particle size>
The average primary particle size (average particle size of primary particles) of the composite oxide powder of the present invention is usually 0.1 μm or more, preferably 0.3 μm or more, particularly preferably 0.5 μm or more. Moreover, it is 2 micrometers or less normally, Preferably it is 1.5 micrometers or less, More preferably, it is 1.3 micrometers or less, Most preferably, it is 1.1 micrometers or less. If the average particle size of the primary particles is too small, the cycle characteristics and the safety of the produced battery may be reduced. On the other hand, if the average particle size is too large, the internal resistance increases and a sufficient output may not be obtained.
In addition, the average particle diameter of the primary particle in this invention is an average diameter of the long diameter observed with the scanning electron microscope (SEM), and the long diameter of about 30-50 primary particles is used using an observation photograph of 10,000 times. It can obtain | require as an average value of a measured value.

〈BET比表面積〉
本発明の複合酸化物粉体のBET比表面積は、通常0.3m/g以上、好ましくは0.5m/g以上である。また通常2m/g以下、好ましくは1.5m/g以下、より好ましくは1.2m/g以下である。BET比表面積が小さすぎると電池性能が低下することがある。逆に、BET比表面積が大きすぎると正極活物質層を形成させる際の塗布性が悪化するので好ましくない。
BET比表面積は、公知のBET式粉体比表面積測定装置によって、Nガスを用いて、BET1点法で測定することができる。
<BET specific surface area>
The BET specific surface area of the composite oxide powder of the present invention is usually 0.3 m 2 / g or more, preferably 0.5 m 2 / g or more. Moreover, it is 2 m < 2 > / g or less normally, Preferably it is 1.5 m < 2 > / g or less, More preferably, it is 1.2 m < 2 > / g or less. If the BET specific surface area is too small, battery performance may be reduced. On the contrary, if the BET specific surface area is too large, the coating property when forming the positive electrode active material layer is deteriorated, which is not preferable.
The BET specific surface area can be measured by a BET one-point method using N 2 gas with a known BET type powder specific surface area measuring device.

<タップ密度>
本発明の複合酸化物粉体のタップ密度(嵩密度)は、通常1.3g/cm3以上、好ましくは1.5g/cm3以上、更に好ましくは1.6g/cm3以上、最も好ましくは1.7g/cm3以上であり、組成比や含有する元素に応じて、最適化することができる。
<Tap density>
The tap density (bulk density) of the composite oxide powder of the present invention is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, most preferably It is 1.7 g / cm 3 or more, and can be optimized according to the composition ratio and contained elements.

複合酸化物粉体のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約されるおそれがある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は大きければ大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなることがあるため、通常2.5g/cm3以下、好ましくは2.4g/cm3以下である。 When the tap density of the composite oxide powder is below the above lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of the conductive material and the binder increases. The filling rate of the positive electrode active material is restricted, and the battery capacity may be restricted. By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. The tap density is preferably as large as possible, and there is no particular upper limit. However, if the tap density is too large, diffusion of lithium ions using the electrolytic solution in the positive electrode active material layer as a medium becomes rate-determining, and load characteristics may be easily lowered. Usually, it is 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less.

なお、タップ密度は、複合酸化物粉末約8gを10mlのガラス製メスシリンダーに入れて、高さ1〜5cmの位置から木材製のテーブル上に50〜500回/分程度の間隔で、体積が変化しなくなるまで(通常200〜800回)タッピングした後の体積を測定して求める。   In addition, tap density puts about 8g of complex oxide powders into a 10 ml glass graduated cylinder, and the volume is about 50 to 500 times / minute on a wood table from a position of 1 to 5 cm in height. Determine the volume after tapping until it no longer changes (usually 200 to 800 times).

〈本発明の複合酸化物粉体の製造法〉
本発明の複合酸化物粉体の製造法は特に限定されないが、上記組成及び粒子解砕され易さを有する本発明の複合酸化物粉体は、例えば以下の方法で実現することができる。
所定量のニッケル化合物、マンガン化合物、コバルト化合物及びM金属化合物を粉砕、噴霧、乾燥により造粒した粒子に、リチウム化合物を混合して焼成前駆体混合物を調製した後、この焼成前駆体混合物を、酸素含有ガス雰囲気で焼成する。
この際、用いるリチウム化合物の殆どの量をニッケル化合物、マンガン化合物、コバルト化合物及びM金属化合物からなる造粒粒子を形成した後に混合する。ただし、リチウム化合物は微量(例えば、リチウムを除く全金属元素のモル量に対し0.2mol%以下)であれば、初期の金属化合物原料といっしょに粉砕、噴霧、乾燥しても構わない。リチウム化合物を造粒粒子形成後に添加する方が好ましいのは、この方法であれば焼成後の粒子が中空粒子となりにくいためである。これに対して、初めにリチウム化合物を混合する方法では、焼成後、一次粒子間に大きな空隙ができること多く、このため、粒子はつぶれやすく、塗布スラリー調製時にばらばらになりやすい。
<Method for producing composite oxide powder of the present invention>
The method for producing the composite oxide powder of the present invention is not particularly limited, but the composite oxide powder of the present invention having the above composition and ease of particle pulverization can be realized, for example, by the following method.
After a predetermined amount of a nickel compound, a manganese compound, a cobalt compound, and an M metal compound is pulverized, sprayed, and granulated by drying, a lithium compound is mixed to prepare a firing precursor mixture, and then this firing precursor mixture is used. Baking in an oxygen-containing gas atmosphere.
At this time, most of the lithium compound used is mixed after forming granulated particles composed of a nickel compound, a manganese compound, a cobalt compound and an M metal compound. However, the lithium compound may be pulverized, sprayed, and dried together with the initial metal compound raw material as long as it is in a trace amount (for example, 0.2 mol% or less with respect to the molar amount of all metal elements excluding lithium). The reason why it is preferable to add the lithium compound after forming the granulated particles is that, if this method is used, the fired particles are unlikely to become hollow particles. On the other hand, in the method in which the lithium compound is first mixed, large voids are often formed between the primary particles after firing. For this reason, the particles are easily crushed and are likely to be separated during the preparation of the coating slurry.

以下に、この製造法についてより詳細に説明する。
原料のリチウム化合物としては、例えば、LiOH、LiOH・HO等のリチウム水酸化物;LiCO、LiNO、リチウムハロゲン化物等の無機リチウム塩などの無機リチウム化合物:アルキルリチウム;酢酸リチウム等のカルボン酸リチウム塩などの有機リチウム化合物が挙げられる。これらのうち、LiOH又はLiOH・HOが好ましく、特にLiOHが好ましい。これらは、窒素元素及びイオウ元素等を含まないので、焼成の際、NOx及びSOx等の有害物質が発生しない点において好ましい。
Below, this manufacturing method is demonstrated in detail.
Examples of the lithium compound as a raw material include lithium hydroxides such as LiOH and LiOH.H 2 O; inorganic lithium compounds such as inorganic lithium salts such as Li 2 CO 3 , LiNO 3 and lithium halides: alkyl lithium; lithium acetate And organic lithium compounds such as carboxylic acid lithium salts. Among these, LiOH or LiOH.H 2 O is preferable, and LiOH is particularly preferable. These are preferable in that no harmful substances such as NOx and SOx are generated during firing since they do not contain nitrogen element, sulfur element and the like.

ニッケル化合物としては、例えば、Ni(OH);NiO;NiOOH;NiCO・2Ni(OH)・4HO、Ni(NO・6HO、NiSO、NiSO・6HO、ニッケルハロゲン化物等の無機ニッケル塩などの無機ニッケル化合物;酢酸ニッケル、NiC・2HO等のカルボン酸ニッケル塩などの有機ニッケル化合物が挙げられる。これらのうち、焼成処理の際にNOx及びSOx等の有害物質を発生させないNi(OH)、NiO、NiOOH、NiCO・2Ni(OH)・4HO又はNiC2O・2HO等が好ましい。更に好ましいのは、安価に入手でき、しかも反応性が高いNi(OH)、NiO又はNiOOHである。 Examples of nickel compounds include Ni (OH) 2 ; NiO; NiOOH; NiCO 3 .2Ni (OH) 2 .4H 2 O, Ni (NO 3 ) 2 .6H 2 O, NiSO 4 , NiSO 4 .6H 2 O. And inorganic nickel compounds such as inorganic nickel salts such as nickel halides; and organic nickel compounds such as nickel acetate and carboxylic acid nickel salts such as NiC 2 O 4 .2H 2 O. Of these, Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, or the like that does not generate harmful substances such as NOx and SOx during the firing process. preferable. Further preferred is Ni (OH) 2 , NiO or NiOOH, which is available at a low cost and has high reactivity.

マンガン化合物としては、例えば、Mn、MnO、Mn等のマンガン酸化物;MnOOH;MnCO、Mn(NO、MnSO、マンガンハロゲン化物等の無機マンガン塩などの無機マンガン化合物:酢酸マンガンクエン酸、マンガン等のカルボン酸マンガン塩などの有機マンガン化合物が挙げられる。これらのうち、焼成処理の際にNOx及びSOx等の有害物質が発生せず、安価に入手できるMnO、Mn、Mnが好ましい。 Examples of manganese compounds include manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ; MnOOH; MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , inorganic manganese salts such as manganese halides, etc. Inorganic manganese compounds: Organic manganese compounds such as manganese acetate citric acid, manganese carboxylates such as manganese, and the like. Among these, MnO 2 , Mn 2 O 3 , and Mn 3 O 4 that are inexpensive and can be obtained without causing harmful substances such as NOx and SOx during the firing treatment are preferable.

コバルト化合物としては、例えば、Co(OH);CoO、Co、Co等のコバルト酸化物;CoOOH;Co(NO・6HO、Co(SO・7HO、コバルトハロゲン化物などの無機コバルト塩;Co(OCOCH・4HO等のカルボン酸コバルト塩などの有機コバルト化合物が挙げられる。これらのうち、焼成処理の際にNOx及びSOx等の有害物質が発生しないCo(OH)、CoO、Co、Co、CoOOHが好ましい。更に好ましいのは、安価に入手でき、しかも反応性が高いCoO、Co(OH)、CoOOHである。 Examples of the cobalt compound include Co (OH) 2 ; cobalt oxides such as CoO, Co 2 O 3 , and Co 3 O 4 ; CoOOH; Co (NO 3 ) 2 .6H 2 O, Co (SO 4 ) 2. Examples include inorganic cobalt salts such as 7H 2 O and cobalt halides; and organic cobalt compounds such as carboxylic acid cobalt salts such as Co (OCOCH 3 ) 2 .4H 2 O. Of these, Co (OH) 2 , CoO, Co 2 O 3 , Co 3 O 4 , and CoOOH are preferred because no harmful substances such as NOx and SOx are generated during the firing process. More preferable are CoO, Co (OH) 2 , and CoOOH, which are available at low cost and have high reactivity.

なお、リチウム化合物、ニッケル化合物、マンガン化合物及びコバルト化合物は、それぞれ1種を単独で使用しても、2種以上を併用してもよい。   In addition, a lithium compound, a nickel compound, a manganese compound, and a cobalt compound may each be used individually by 1 type, or may use 2 or more types together.

本発明の複合酸化物粉体にはM金属を含有させてもよい。この場合、M金属原料のM金属化合物としては、M金属の、水酸化物;酸化物;オキシ水酸化物;ハロゲン化物、炭酸塩、硝酸塩、硫酸塩等の無機塩などの無機M金属化合物:酢酸塩、蓚酸塩等のモノ又はジカルボン酸塩等の有機M金属化合物が挙げられる。M金属化合物の金属は、Al,Fe,Ti,Mg,Cr,Ga,Cu,Zn又はNbであり、Cuが好ましい。M金属及びM金属化合物についても、それぞれ1種を単独で用いても、2種以上を併用してもよい。   The complex oxide powder of the present invention may contain M metal. In this case, as the M metal compound of the M metal raw material, inorganic M metal compounds such as M metal hydroxides; oxides; oxyhydroxides; inorganic salts such as halides, carbonates, nitrates and sulfates: Examples thereof include organic M metal compounds such as mono- and dicarboxylates such as acetate and oxalate. The metal of the M metal compound is Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, or Nb, and Cu is preferable. As for the M metal and the M metal compound, one kind may be used alone, or two or more kinds may be used in combination.

上述したニッケル化合物、マンガン化合物及びコバルト化合物、並びに所望のM金属化合物を、組成式(1)の組成となるように湿式又は乾式で混合してリチウムニッケルマンガンコバルト系複合酸化物の焼成前駆体混合物を調製する。この焼成前駆体混合物の調製法は、好ましくは湿式粉砕法により混合した後、噴霧乾燥する方法である。   The above-described nickel compound, manganese compound, cobalt compound, and desired M metal compound are mixed in a wet or dry manner so as to have the composition represented by the composition formula (1), and then a firing precursor mixture of a lithium nickel manganese cobalt based composite oxide. To prepare. The method for preparing the calcined precursor mixture is preferably a method of spray drying after mixing by a wet pulverization method.

湿式混合法の他の例としては、リチウム化合物、ニッケル化合物、マンガン化合物及びコバルト化合物、並びに所望のM金属化合物を分散媒に分散又は溶解させて得られるスラリーを乾燥させた後、焼成する方法が挙げられる。好ましいのは、最初にリチウム化合物を除く各金属化合物を分散媒に分散又は溶解させてスラリーとし、これを乾燥させた後、これにリチウム化合物を混合して焼成する方法である。この方法では、適度に内部に空隙を有し、かつ中空粒子となりにくくなるため、適度な二次粒子強度を有する粒子を得ることができる。   As another example of the wet mixing method, there is a method in which a lithium compound, a nickel compound, a manganese compound, a cobalt compound, and a slurry obtained by dispersing or dissolving a desired M metal compound in a dispersion medium are dried and then fired. Can be mentioned. Preferable is a method in which each metal compound excluding the lithium compound is first dispersed or dissolved in a dispersion medium to form a slurry, dried, and then mixed with the lithium compound and fired. In this method, since it has moderate voids inside and hardly becomes hollow particles, particles having an appropriate secondary particle strength can be obtained.

湿式法で用いる分散媒としては、有機溶媒、水のいずれも用いることができるが、水を用いるのが好ましい。   As the dispersion medium used in the wet method, either an organic solvent or water can be used, but water is preferably used.

スラリー中のリチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、M金属化合物の平均粒径は、通常2μm以下、好ましくは1μm以下、さらに好ましくは0.5μm以下である。この平均粒径が大きすぎると、焼成工程での反応性が低下する。また、得られる複合酸化物粉体の球状度が低下し、複合酸化物粉体の嵩密度が低くなることがある。平均粒径の下限は任意だが、平均粒径が0.01μm未満となるように微粒子化することは費用がかかるだけで無意味である。従って、粉砕は平均粒径が通常0.02μm以上、好ましくは0.1μm以上となるように行うべきである。各金属化合物は、予め粉砕してから分散媒に分散してもよく、また分散媒中で粉砕してもよい。粉砕装置としては、ボールミル、ビーズミル、振動ミル等を用いればよい。ボールミルでは1時間〜2日間程度、ビーズミルでは滞留時間0.1時間〜6時間程度で粉砕・混合するのが好ましい。   The average particle size of the lithium compound, nickel compound, manganese compound, cobalt compound, and M metal compound in the slurry is usually 2 μm or less, preferably 1 μm or less, and more preferably 0.5 μm or less. When this average particle diameter is too large, the reactivity in a baking process will fall. Moreover, the sphericity of the obtained composite oxide powder may be reduced, and the bulk density of the composite oxide powder may be lowered. Although the lower limit of the average particle diameter is arbitrary, it is meaningless to make fine particles so that the average particle diameter is less than 0.01 μm because it is expensive. Therefore, the pulverization should be carried out so that the average particle size is usually 0.02 μm or more, preferably 0.1 μm or more. Each metal compound may be pulverized in advance and then dispersed in the dispersion medium, or may be pulverized in the dispersion medium. As a pulverizer, a ball mill, a bead mill, a vibration mill, or the like may be used. It is preferable to grind and mix in a ball mill for about 1 hour to 2 days, and in a bead mill for a residence time of about 0.1 to 6 hours.

次いで、得られた混合物を、乾燥して焼成前駆体混合物とする。乾燥は、噴霧乾燥方式により行うのが好ましく、これにより均一な球状粉体を得ることができる。噴霧乾燥に際しては、噴霧装置、スラリー濃度、乾燥温度を適宜選択することにより、中実で平均粒子径が50μm以下、特に40μm以下の粒子が生成するように行うのが好ましい。平均粒径の下限は任意だが、通常3μm以上、好ましくは4μm以上となるように条件を設定する。   Next, the obtained mixture is dried to obtain a calcined precursor mixture. Drying is preferably performed by a spray drying method, whereby a uniform spherical powder can be obtained. The spray drying is preferably carried out by appropriately selecting the spray device, slurry concentration, and drying temperature so that solid particles having an average particle diameter of 50 μm or less, particularly 40 μm or less are generated. The lower limit of the average particle diameter is arbitrary, but the conditions are usually set to 3 μm or more, preferably 4 μm or more.

なお、リチウム化合物以外の金属化合物を上記方法に準じて湿式混合し乾燥した後、リチウム化合物と混合して焼成前駆体混合物を調製する場合、用いるリチウム化合物の平均粒径は、通常0.01μm以上、好ましくは0.1μm以上、更に好ましくは0.2μm以上、特に好ましくは0.5μm以上である。また、通常500μm以下、好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下である。平均粒径が小さいとリチウム化合物の大気中での安定性が低くなりやすい。逆に、平均粒径が大きすぎると電池性能が低下することがある。   When a metal compound other than the lithium compound is wet-mixed and dried according to the above method and then mixed with the lithium compound to prepare a calcined precursor mixture, the average particle size of the lithium compound used is usually 0.01 μm or more. The thickness is preferably 0.1 μm or more, more preferably 0.2 μm or more, and particularly preferably 0.5 μm or more. Moreover, it is 500 micrometers or less normally, Preferably it is 100 micrometers or less, More preferably, it is 50 micrometers or less, Most preferably, it is 20 micrometers or less. If the average particle size is small, the stability of the lithium compound in the air tends to be low. Conversely, if the average particle size is too large, battery performance may be reduced.

リチウム化合物と他の金属化合物との混合には、常用されている任意の粉体混合装置を用いることができる。混合雰囲気としては、金属化合物が大気中の二酸化炭素と反応しないように、窒素又はアルゴン等の不活性ガス雰囲気で混合するのが好ましい。   For mixing the lithium compound and the other metal compound, any commonly used powder mixing apparatus can be used. The mixed atmosphere is preferably mixed in an inert gas atmosphere such as nitrogen or argon so that the metal compound does not react with carbon dioxide in the atmosphere.

得られた焼成前駆体混合物を、箱形炉、管状炉、トンネル炉、ロータリーキルン等の装置を用いて焼成することにより、本発明の複合酸化物粉体を製造することができる。   By firing the obtained firing precursor mixture using an apparatus such as a box furnace, a tubular furnace, a tunnel furnace, or a rotary kiln, the composite oxide powder of the present invention can be produced.

この焼成は酸素含有ガス雰囲気下行う。具体的には、酸素雰囲気、空気雰囲気などで実施できるが、経済性の面で空気雰囲気が好ましい。   This firing is performed in an oxygen-containing gas atmosphere. Specifically, it can be carried out in an oxygen atmosphere, an air atmosphere, or the like, but an air atmosphere is preferable in terms of economy.

この焼成温度が低いと、一次粒子の平均粒径は小さくなり、層状構造のリチウムニッケルマンガンコバルト系複合酸化物の生成が不完全となり、結晶性が劣るものが生成することがある。従って、焼成温度は、通常750℃以上、好ましくは800℃以上、特に好ましくは900℃以上で行う。逆に、焼成温度が高すぎると、酸素欠損等により結晶相の安定性が低下することがある。従って、焼成は1100℃以下で行うのが好ましい。   When this firing temperature is low, the average particle size of the primary particles becomes small, the generation of the lithium nickel manganese cobalt based composite oxide having a layered structure becomes incomplete, and the crystallinity may be inferior. Therefore, the firing temperature is usually 750 ° C. or higher, preferably 800 ° C. or higher, particularly preferably 900 ° C. or higher. Conversely, if the firing temperature is too high, the stability of the crystal phase may be reduced due to oxygen deficiency or the like. Accordingly, the firing is preferably performed at 1100 ° C. or lower.

焼成時間は、通常1時間以上、好ましくは5時間以上、特に好ましくは10時間以上である。また、通常100時間以下、好ましくは50時間以下、特に好ましくは25時間以下である。焼成時間が短いと、反応が不完全となることがある。また、更に長時間焼成しても、特に支障はないが、不経済である。   The firing time is usually 1 hour or longer, preferably 5 hours or longer, particularly preferably 10 hours or longer. Moreover, it is normally 100 hours or less, Preferably it is 50 hours or less, Most preferably, it is 25 hours or less. If the firing time is short, the reaction may be incomplete. Further, even if firing for a longer time, there is no particular problem, but it is uneconomical.

焼成時の昇温操作は、毎分1℃以上10℃以下の昇温速度となるように行うのが好ましい。昇温速度が遅いのは実用的ではなく、逆に速すぎると炉内温度が設定温度に追従しなくなることがある。また、降温操作は、毎分0.1℃以上5℃以下の速度となるように行うのが好ましい。降温速度が遅いのは実用的ではなく、逆に速すぎると得られる複合酸化物粉体の均一性が劣ることがある。また、焼成は2段階焼成及び1段階焼成のいずれでも良く、解砕処理を挟んで昇温・焼成・降温の操作を2回以上繰り返してもよい。   The temperature raising operation during firing is preferably performed so that the temperature raising rate is 1 ° C. or more and 10 ° C. or less per minute. It is not practical that the rate of temperature increase is slow. Conversely, if the rate is too high, the furnace temperature may not follow the set temperature. Further, the temperature lowering operation is preferably performed at a rate of 0.1 ° C. to 5 ° C. per minute. It is not practical that the temperature lowering rate is slow, and on the contrary, the uniformity of the obtained composite oxide powder may be inferior if it is too fast. Further, the firing may be either a two-step firing or a one-step firing, and the operation of raising, firing, and lowering the temperature may be repeated twice or more with the crushing process interposed therebetween.

[リチウム二次電池正極]
本発明の複合酸化物粉体は、リチウム二次電池正極材料として適したものである。
次に、本発明の複合酸化物粉体を用いた本発明のリチウム二次電池正極について説明する。
[Lithium secondary battery positive electrode]
The composite oxide powder of the present invention is suitable as a positive electrode material for a lithium secondary battery.
Next, the positive electrode of the lithium secondary battery of the present invention using the composite oxide powder of the present invention will be described.

本発明の複合酸化物粉体を用いる正極の製造は、常法により行うことができる。即ち、本発明の複合酸化物粉体と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を分散媒に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。   The production of the positive electrode using the composite oxide powder of the present invention can be performed by a conventional method. That is, the composite oxide powder of the present invention and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these This material is dissolved or dispersed in a dispersion medium to form a slurry, which is applied to a positive electrode current collector and dried to form a positive electrode active material layer on the current collector, whereby a positive electrode can be obtained.

本発明の複合酸化物粉体の正極活物質層中の含有量は、通常10重量%以上、好ましくは30重量%以上、特に好ましくは50重量%以上である。また、通常99.9重量%以下、好ましくは99重要%以下である。正極活物質層中の本発明の複合酸化物粉体の含有量が低いと電気容量が不十分となることがある。逆に含有量が高すぎると正極の強度が不足することがある。なお、本発明の複合酸化物粉体は1種を単独で用いても良く、異なる組成又は異なる粒子解砕され易さの2種以上を任意の組み合わせ及び比率で併用しても良い。   The content of the composite oxide powder of the present invention in the positive electrode active material layer is usually 10% by weight or more, preferably 30% by weight or more, and particularly preferably 50% by weight or more. Moreover, it is 99.9 weight% or less normally, Preferably it is 99 important% or less. If the content of the composite oxide powder of the present invention in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient. In addition, the composite oxide powder of this invention may be used individually by 1 type, and may use together 2 or more types from which a different composition or different particle | grains are easy to be crushed by arbitrary combinations and ratios.

結着剤は、分散媒に対して安定であれば任意のものを用いることができる。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Any binder can be used as long as it is stable to the dispersion medium. Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose and other resin-based polymers, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, Rubber polymers such as isoprene rubber, butadiene rubber, ethylene / propylene rubber; styrene / butadiene / styrene block copolymer and its hydrogenated product, EPDM (ethylene-propylene-diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymers such as butadiene / ethylene copolymer, styrene / isoprene styrene block copolymer and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene Soft resinous polymers such as vinyl acid copolymers and propylene / α-olefin copolymers; Fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene / ethylene copolymers Polymers: Polymer compositions having ionic conductivity of alkali metal ions (particularly lithium ions), and the like. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

結着剤は、正極活物質層中に、通常0.1重量%以上、好ましくは1重量%以上、特に好ましくは2重量%以上で、通常40重量%以下、好ましくは20重量%以下、特に好ましくは10重量%以下となるように用いる。正極活物質層中の結着剤の含有量が少なすぎると正極活物質を十分保持できず、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうことがある。逆に、含有量が多すぎると、相対的に正極活物質層中の正極活物質量が減るために、電池容量や導電性が低下することがある。   The binder is usually 0.1% by weight or more, preferably 1% by weight or more, particularly preferably 2% by weight or more, and usually 40% by weight or less, preferably 20% by weight or less, in the positive electrode active material layer. Preferably it is used so that it may become 10 weight% or less. If the content of the binder in the positive electrode active material layer is too small, the positive electrode active material cannot be sufficiently retained, the mechanical strength of the positive electrode is insufficient, and battery performance such as cycle characteristics may be deteriorated. On the other hand, when the content is too large, the amount of the positive electrode active material in the positive electrode active material layer is relatively reduced, and the battery capacity and conductivity may be reduced.

導電材としては、例えば、銅、ニッケル等の金属材料:天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料などが挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the conductive material include metal materials such as copper and nickel: graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

導電材は、正極活物質層中に、通常0.01重量%以上、好ましくは0.1重量%以上、特に好ましくは1重量%以上で、通常40重量%以下、好ましくは20重量%以下、特に好ましくは10重量%以下となるように用いる。正極活物質層中の導電材の含有量が少なすぎると導電性が不十分となることがある。逆に、含有量が多すぎると電池容量が低下することがある。   The conductive material is usually 0.01% by weight or more, preferably 0.1% by weight or more, particularly preferably 1% by weight or more, and usually 40% by weight or less, preferably 20% by weight or less in the positive electrode active material layer. Especially preferably, it is used so that it may become 10 weight% or less. If the content of the conductive material in the positive electrode active material layer is too small, the conductivity may be insufficient. Conversely, if the content is too large, the battery capacity may decrease.

スラリーの調製に用いる分散媒としては、正極材料及び結着剤、並びに導電材及び増粘剤を溶解又は分散することが可能なものであれば、その種類に特に制限はなく、水系媒体と有機系媒体のどちらを用いてもよい。水系媒体としては、例えば、水、アルコール等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N−N−ジメチルアミノプロピルアミン等のアミン類;ジメチルエーテル、エチレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミ
ド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などを挙げることができる。特に水系媒体を用いる場合、増粘剤に併せて分散媒を加え、SBR等のラテックスを用いてスラリー化するのが好ましい。なお、これらの分散媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The dispersion medium used for the preparation of the slurry is not particularly limited as long as it can dissolve or disperse the positive electrode material and the binder, and the conductive material and the thickener. Either of the system media may be used. Examples of the aqueous medium include water and alcohol. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and NN-dimethylaminopropylamine; ethers such as dimethyl ether, ethylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethyl Examples include amides such as formamide and dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide. In particular, when an aqueous medium is used, it is preferable to add a dispersion medium together with the thickener and make a slurry using a latex such as SBR. In addition, these dispersion media may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極集電体の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。   Examples of the material of the positive electrode current collector include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.

集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常は1μm以上、好ましくは3μm以上、特に好ましくは5μm以上である。また、通常100μm以下、好ましくは1mm以下、特に好ましくは50μm以下である。集電体の厚さが薄過ぎると集電体として必要な強度が不足することがある。逆に厚すぎると、取り扱い性が損なわれる。   Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, particularly preferably 5 μm or more. Moreover, it is 100 micrometers or less normally, Preferably it is 1 mm or less, Most preferably, it is 50 micrometers or less. If the current collector is too thin, the strength required for the current collector may be insufficient. On the other hand, if it is too thick, the handleability is impaired.

なお、集電体への塗布スラリーの塗布・乾燥によって得られた正極活物質層は、ローラープレス等により圧密して正極活物質の充填密度を上げるのが好ましい。このようにして形成される正極活物質層の厚さとしては、通常10〜200μmが好ましい。   Note that the positive electrode active material layer obtained by applying and drying the application slurry on the current collector is preferably consolidated by a roller press or the like to increase the packing density of the positive electrode active material. The thickness of the positive electrode active material layer thus formed is usually preferably 10 to 200 μm.

[リチウム二次電池]
次に、本発明のリチウム二次電池について説明する。
本発明のリチウム二次電池は、上述の本発明のリチウム二次電池正極、リチウムを吸蔵・放出可能な負極、及び、リチウム塩を電解塩として含有する非水電解質とを有するものである。
[Lithium secondary battery]
Next, the lithium secondary battery of the present invention will be described.
The lithium secondary battery of the present invention has the above-described lithium secondary battery positive electrode of the present invention, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a lithium salt as an electrolytic salt.

〈負極〉
負極は、負極集電体上に負極活物質層を形成させることにより製造すればよい。
負極集電体の材質としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。金属材料の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が挙げられ、炭素材料の形状としては、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常は1μm以上、好ましくは3μm以上、特に好ましくは5μm以上である。また、通常1mm以下、好ましくは100μm以下、特に好ましくは50μm以下である。集電体の厚さが薄過ぎると集電体として必要な強度が不足することがある。逆に厚すぎると、取り扱い性が損なわれる。
<Negative electrode>
The negative electrode may be produced by forming a negative electrode active material layer on the negative electrode current collector.
Examples of the material for the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel; and carbon materials such as carbon cloth and carbon paper. Examples of the shape of the metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, and a metal thin film. Examples of the shape of the carbon material include a carbon plate, a carbon thin film, and a carbon cylinder. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, particularly preferably 5 μm or more. Moreover, it is 1 mm or less normally, Preferably it is 100 micrometers or less, Most preferably, it is 50 micrometers or less. If the current collector is too thin, the strength required for the current collector may be insufficient. On the other hand, if it is too thick, the handleability is impaired.

負極活物質層に含まれる負極活物質は、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば任意であるが、通常は安全性の高さの面からリチウムを吸蔵、放出できる炭素材料が用いられる。   The negative electrode active material contained in the negative electrode active material layer may be any material as long as it can electrochemically occlude and release lithium ions, but is usually carbon that can occlude and release lithium from the viewpoint of high safety. Material is used.

炭素材料としては、例えば、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、石炭系又は石油系のピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。これらのうち、黒鉛、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された人造黒鉛若しくは精製天然黒鉛又はこれらの黒鉛にピッチを含む黒鉛材料等であって種々の表面処理を施したものが好ましい。これらの炭素材料は、それぞれ1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the carbon material include graphite (graphite) such as artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions. Examples of pyrolysis products of organic matter include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, coal-based or petroleum-based carbonized carbide, needle coke, pitch coke, and phenol resin. And carbides such as crystalline cellulose and the like, carbon materials obtained by partially graphitizing these, furnace black, acetylene black, pitch-based carbon fibers, and the like. Among these, graphite, especially artificial graphite or purified natural graphite produced by subjecting easily graphitizable pitch obtained from various raw materials to high-temperature heat treatment, graphite material containing pitch in these graphite, etc., and various surfaces What processed is preferable. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

黒鉛材料としては、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上、0.34nm以下、特に0.337nm以下であるものが好ましい。黒鉛材料の灰分は、黒鉛材料の重量に対して、通常1重量%以下、好ましくは0.5重量%以下、より好ましくは0.1重量%以下である。学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上である。   As a graphite material, a d-value (interlayer distance) of a lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is usually 0.335 nm or more and 0.34 nm or less, particularly 0.337 nm or less. preferable. The ash content of the graphite material is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less, based on the weight of the graphite material. The crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more.

レーザー回折・散乱法により求めた黒鉛材料のメジアン径は、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは7μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。   The median diameter of the graphite material determined by the laser diffraction / scattering method is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, particularly preferably 7 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably. It is 40 μm or less, particularly preferably 30 μm or less.

また、黒鉛材料のBET法比表面積は、通常0.5m/g以上、好ましくは0.7m/g以上、より好ましくは1.0m/g以上、特に好ましくは1.5m/g以上であり、通常25.0m/g以下、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、特に好ましくは10.0m/g以下である。 Further, the BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, particularly preferably 1.5 m 2 / g. or more, usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g or less, more preferably 15.0 m 2 / g or less, particularly preferably 10.0 m 2 / g or less.

また、アルゴンレーザー光を用いたラマンスペクトル分析で、1580〜1620cm−1の範囲で検出されるピークPAの強度IAと、1350〜1370cm−1の範囲で検出されるピークPBの強度IBとの強度比IA/IBが、0以上0.5以下であるものが好ましく、ピークPAの半価幅は26cm−1以下、特に25cm−1以下が好ましい。 The intensity of the Raman spectrum analysis using argon laser beam, the intensity IA of a peak PA detected in the range of 1580~1620Cm -1, and intensity IB of a peak PB detected in the range of 1350 -1 The ratio IA / IB is preferably 0 or more and 0.5 or less, and the half width of the peak PA is preferably 26 cm −1 or less, particularly preferably 25 cm −1 or less.

炭素材料以外の負極活物質としては、例えば、酸化錫や酸化ケイ素などの金属酸化物;リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらは、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよく、炭素材料と組み合わせて用いてもよい。   Examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide; and lithium alloys such as lithium alone and lithium aluminum alloys. These may be used individually by 1 type, may be used in combination of 2 or more types, and may be used in combination with a carbon material.

負極活物質層は、正極活物質層と同様にして形成させればよい。即ち、前述の負極活物質及び結着剤、並びに所望により増粘剤及び導電材を、分散媒でスラリー化したものを負極集電体に塗布し、乾燥することにより形成させることができる。ここで用いる分散媒、結着剤、導電材及び増粘剤としては、正極活物質層について前述したものと同様のものを同等の割合で用いることができる。   The negative electrode active material layer may be formed in the same manner as the positive electrode active material layer. That is, the negative electrode active material and the binder, and optionally a thickener and a conductive material, which are slurried with a dispersion medium, are applied to the negative electrode current collector and dried. As the dispersion medium, the binder, the conductive material, and the thickener used here, the same materials as those described above for the positive electrode active material layer can be used at an equivalent ratio.

〈非水電解質〉
非水電解質としては、例えば、有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等が挙げられ、これらのうち有機電解液が好ましい。
<Nonaqueous electrolyte>
Examples of the non-aqueous electrolyte include organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, etc. Among these, organic electrolytes are preferable.

有機電解液に用いる有機溶媒には公知のいずれのものも用いることができる。例えば、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート等のカーボネート類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル等のエーテル類;4−メチル−2−ペンタノン等のケトン類;スルホラン、メチルスルホラン等のスルホラン系化合物;ジメチルスルホキシド等のスルホキシド化合物;γ−ブチロラクトン等のラクトン類;アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル等のニトリル類;1,2−ジクロロエタン等の塩素化炭化水素類;アミン類;エステル類;ジメチルホルムアミド等のアミド類;リン酸トリメチル、リン酸トリエチル等のリン酸エステル化合物等が挙げられる。これらは1種を単独で用いても、2種類以上を併用してもよい。   Any known organic solvent can be used for the organic electrolyte. For example, carbonates such as dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, Ethers such as 1,3-dioxolane, 4-methyl-1,3-dioxolane and diethyl ether; ketones such as 4-methyl-2-pentanone; sulfolane compounds such as sulfolane and methyl sulfolane; sulfoxide compounds such as dimethyl sulfoxide Lactones such as γ-butyrolactone; nitriles such as acetonitrile, propionitrile, benzonitrile, butyronitrile, and valeronitrile; chlorinated hydrocarbons such as 1,2-dichloroethane; amines Esters, amides such as dimethylformamide; trimethyl phosphate, phosphoric acid ester compounds such as triethyl phosphate. These may be used individually by 1 type, or may use 2 or more types together.

有機電解液は、電解質を解離させるため、25℃における比誘電率が20以上である高誘電率溶媒を含んでいるのが好ましい。中でも、エチレンカーボネート、プロピレンカーボネート、及びそれらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した有機溶媒を含んでいるのが好ましい。有機電解液全体に占める高誘電率溶媒の電解液の割合は、通常20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上である。また、有機電解液には、CO、NO、CO、SO等のガスやポリサルファイドSx2−など負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で添加してもよい。 The organic electrolytic solution preferably contains a high dielectric constant solvent having a relative dielectric constant of 20 or more at 25 ° C. in order to dissociate the electrolyte. Among these, it is preferable to include ethylene carbonate, propylene carbonate, and an organic solvent in which hydrogen atoms thereof are substituted with other elements such as halogen or alkyl groups. The ratio of the electrolyte solution of the high dielectric constant solvent to the whole organic electrolyte solution is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more. In addition, in the organic electrolyte, an additive that forms a good film that enables efficient charge and discharge of lithium ions on the negative electrode surface, such as gas such as CO 2 , N 2 O, CO, and SO 2 and polysulfide Sx 2− May be added at an arbitrary ratio.

溶質となるリチウム塩は、従来公知の任意のものを用いることができる。具体例としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等が挙げられる。これらの溶質は1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Any conventionally known lithium salt can be used as the solute. Specific examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2. , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 and the like. These solutes may be used alone or in combination of two or more in any combination and ratio.

電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、好ましくは0.75mol/L以上である。また、通常1.5mol/L以下、好ましくは1.25mol/L以下である。この濃度が、高くても低くても伝導度が低下し、電池特性が低下することがある。   The concentration of the lithium salt in the electrolytic solution is usually 0.5 mol / L or more, preferably 0.75 mol / L or more. Moreover, it is 1.5 mol / L or less normally, Preferably it is 1.25 mol / L or less. Whether the concentration is high or low, the conductivity may decrease, and the battery characteristics may deteriorate.

無機固体電解質としては、電解質として用いることが知られている結晶質・非晶質の任意のものを用いることができる。結晶質の無機固体電解質としては、例えば、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5―3xRE0.5+xTiO(RE=La、Pr、Nd、Sm)等が挙げられる。非晶質の無機固体電解質としては、例えば、4.9LiI−34.1LiO−61B、33.3LiO−66.7SiO等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the inorganic solid electrolyte, any crystalline or amorphous material known to be used as an electrolyte can be used. Examples of the crystalline inorganic solid electrolyte include LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x RE 0. .5 + x TiO 3 (RE = La, Pr, Nd, Sm) and the like. Examples of the amorphous inorganic solid electrolyte include oxide glasses such as 4.9LiI-34.1Li 2 O-61B 2 O 5 and 33.3Li 2 O-66.7SiO 2 . Any one of these may be used alone, or two or more may be used in any combination and ratio.

〈セパレータ〉
二次電池は、電極同士の短絡を防止するため正極と負極の間に非水電解質を保持するセパレータを備えているのが好ましい。
<Separator>
The secondary battery preferably includes a separator that holds a nonaqueous electrolyte between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes.

セパレータの材質や形状は、使用する有機電解液に対して安定で、かつ保液性に優れ、更に電極同士の短絡を確実に防止できるものであれば任意である。例えば、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料としては、例えば、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン(PVDF)、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が挙げられる。化学的及び電気化学的な安定性の点からはポリオレフィン系高分子が好ましく、電池の自己閉塞温度の点からはポリエチレンが好ましい。ポリエチレンとしては、高温形状維持性に優れる超高分子ポリエチレンが好ましい。ポリエチレンの分子量は、通常50万以上、好ましくは100万以上、特に好ましくは150万以上である。また、通常500万以下、好ましくは400万以下、特に好ましくは300万以下である。この分子量が小さすぎると高温時の形状が維持できなくなることがある。逆に、分子量が大きすぎると流動性が低くなり、加熱時セパレータの穴が閉塞しないことがある。   The material and shape of the separator are arbitrary as long as they are stable with respect to the organic electrolyte used, have excellent liquid retention, and can reliably prevent short-circuiting between electrodes. Examples thereof include microporous films, sheets and nonwoven fabrics made of various polymer materials. Examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride (PVDF), polypropylene, polyethylene, and polybutene. Polyolefin polymers are preferable from the viewpoint of chemical and electrochemical stability, and polyethylene is preferable from the viewpoint of the self-closing temperature of the battery. As the polyethylene, ultra high molecular weight polyethylene excellent in high temperature shape maintenance is preferable. The molecular weight of polyethylene is usually 500,000 or more, preferably 1,000,000 or more, particularly preferably 1,500,000 or more. Moreover, it is 5 million or less normally, Preferably it is 4 million or less, Most preferably, it is 3 million or less. If the molecular weight is too small, the shape at high temperature may not be maintained. On the other hand, if the molecular weight is too large, the fluidity is lowered, and the hole of the separator may not be closed during heating.

〈電池形状〉
本発明のリチウム二次電池の形状は、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。形状としては、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
リチウム二次電池は、目的とする電池の形状に合わせ公知の方法により組み立てればよい。
<Battery shape>
The shape of the lithium secondary battery of the present invention can be appropriately selected from various shapes generally employed according to the application. Examples of the shape include a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like.
What is necessary is just to assemble a lithium secondary battery by a well-known method according to the shape of the target battery.

以下に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に制限されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
Ni(OH)、Mn及びCo(OH)を、Ni:Mn:Co=0.33:0.33:0.33のモル比となるように秤量して混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を平均粒径0.18μmに粉砕した。
Example 1
Ni (OH) 2 , Mn 3 O 4 and Co (OH) 2 were weighed and mixed so that the molar ratio of Ni: Mn: Co = 0.33: 0.33: 0.33 was obtained. Pure water was added to the slurry to prepare a slurry. While stirring this slurry, the solid content in the slurry was pulverized to an average particle size of 0.18 μm using a circulating medium agitation type wet pulverizer.

このスラリーをスプレードライヤーにより噴霧乾燥して得られた粒子に、粉砕したLiOH粉末(平均粒径約8μm)を添加し、よく混合して焼成前駆体混合物を得た。この焼成前駆体混合物を空気雰囲気で990℃で12時間焼成した後、解砕して、組成式がLi1.00Ni0.33Mn0.33Co0.332の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物粉体を得た。
得られた層状リチウムニッケルマンガンコバルト複合酸化物粉体について、以下の方法で各種物性及び特性の測定を行い、結果を表1に示した。
The pulverized LiOH powder (average particle diameter of about 8 μm) was added to the particles obtained by spray-drying this slurry with a spray dryer, and mixed well to obtain a calcined precursor mixture. This calcined precursor mixture was calcined at 990 ° C. for 12 hours in an air atmosphere, and then crushed to obtain a lithium nickel manganese cobalt composite oxide powder having a layered structure whose composition formula is Li 1.00 Ni 0.33 Mn 0.33 Co 0.33 O 2 Got.
About the obtained layered lithium nickel manganese cobalt composite oxide powder, various physical properties and characteristics were measured by the following methods, and the results are shown in Table 1.

<平均一次粒子の測定方法>
一次粒子の平均粒径は走査型電子顕微鏡(SEM)で観察した画像から求めた。10000倍の観察写真を用いて、30〜50個程度の一次粒子の長径を測定した。その平均径を平均一次粒子径とした。
<Measurement method of average primary particles>
The average particle size of the primary particles was determined from an image observed with a scanning electron microscope (SEM). The major axis of about 30 to 50 primary particles was measured using a 10,000-fold observation photograph. The average diameter was defined as the average primary particle diameter.

<二次粒子のメジアン径の測定方法>
二次粒子の平均粒径はメジアン径とし、レーザー回折/散乱式粒度分布測定装置(堀場製「LA920」)を用いて測定した。分散媒は0.1重量%ヘキサメタリン酸ナトリウム水溶液を用いた。屈折率は1.24(虚数項なし)を選択した。レーザー回折/散乱式粒度分布測定装置は屈折率の設定が粒径に与える影響が大きい。サンプルを分散媒に添加した後、測定機器に内蔵の超音波照射装置で超音波を5分照射後に測定した。
<Measuring method of median diameter of secondary particles>
The average particle diameter of the secondary particles was the median diameter, and was measured using a laser diffraction / scattering particle size distribution analyzer (“LA920” manufactured by Horiba). As the dispersion medium, an aqueous 0.1 wt% sodium hexametaphosphate solution was used. A refractive index of 1.24 (no imaginary term) was selected. The laser diffraction / scattering type particle size distribution measuring apparatus has a great influence on the particle diameter by setting the refractive index. After adding a sample to a dispersion medium, it measured after irradiating an ultrasonic wave for 5 minutes with the ultrasonic irradiation apparatus incorporated in the measuring instrument.

<比表面積の測定方法>
BET法比表面積計(大倉理研製 型式「AMS8000」)を用いて測定した。
<Method for measuring specific surface area>
The measurement was made using a BET specific surface area meter (model “AMS8000” manufactured by Okura Riken).

<タップ密度の測定>
複合酸化物粉末約8gを10mlのガラス製メスシリンダーに入れて、高さ1〜5cmの位置から木材製のテーブル上に50〜500回/分程度の間隔で、体積が変化しなくなるまで(通常200〜800回)タッピングした後の体積を測定して求めた。
<Measurement of tap density>
About 8 g of complex oxide powder is put into a 10 ml glass graduated cylinder, and the volume does not change at an interval of about 50 to 500 times / min. (200 to 800 times) The volume after tapping was measured and determined.

<粒子解砕され易さの測定方法>
直径20mmのSUS板の上に0.5gのリチウムニッケルマンガンコバルト複合酸化物粉体を、厚みが均等になるように広げ、その上に直径15mm、厚さ0.6mmのSUS板を下のSUS板と並行になるように載せる。その上から一軸方向に、ハンドプレス(理研製 型式「MS05−100」(シリンダー面積7.16cm))を用いて30MPaの圧力で1分間プレスした(圧力30MPaは、シリンダー面積が7.16cmのため、2.2tonの荷重に相当する。すなわち、1.2ton/cmの圧力でプレスしている。)。上の直径15mmのSUS板からはみ出した部分は除去し、直径15mmのSUS板の真下で荷重のかかった部分の粒子のみの粒度分布を前記二次粒子のメジアン径の測定方法に従い、測定した。圧をかける前のメジアン径をcμm、圧をかけた後のメジアン径をbμmとして、粒子解砕され易さ評価a値を次式で算出した。
a=b/c ×100%
ここでのメジアン径は、二次粒子のメジアン径を指す。
<Measurement method for ease of particle crushing>
On the SUS plate with a diameter of 20 mm, 0.5 g of lithium nickel manganese cobalt composite oxide powder is spread so that the thickness is uniform, and the SUS plate with a diameter of 15 mm and a thickness of 0.6 mm is placed on the SUS plate below. Put it in parallel with the board. From there, uniaxially pressed with a hand press (Riken model “MS05-100” (cylinder area 7.16 cm 2 )) for 1 minute at a pressure of 30 MPa (pressure 30 MPa, cylinder area 7.16 cm 2). Therefore, it corresponds to a load of 2.2 ton, that is, pressing at a pressure of 1.2 ton / cm 2 ). The portion protruding from the upper 15 mm diameter SUS plate was removed, and the particle size distribution of only the particles under the load under the 15 mm diameter SUS plate was measured according to the method for measuring the median diameter of the secondary particles. The median diameter before applying pressure was c μm, and the median diameter after applying pressure was b μm.
a = b / c × 100%
The median diameter here refers to the median diameter of the secondary particles.

<塗布膜強度の測定方法>
得られたリチウムニッケルマンガンコバルト複合酸化物粉体を正極活物質とし、活物質/導電材/結着剤=85/10/5(重量%)の割合でN−メチルピロリドン(NMP)を分散媒として塗布スラリーを調製した。導電材としてはアセチレンブラック(電気化学工業社製「デンカブラック」)、結着剤としてはポリフッ化ビニリデン(呉羽化学工業社製「PVDF#1100」)を用いた。固形分とNMPの割合は固形分/(固形分+NMP)=40〜43(重量%)の割合とし、十分混合してNMPスラリーを調製した。このスラリーを真空脱泡後、厚み20μmのアルミ箔集電体上に塗布し、120℃の通風乾燥で乾燥して薄膜を形成した。
この塗布膜について、JIS Z0237に準拠してひっかき試験器(トライボギア,HEIDON−18)で合材密着強度測定を実施した。
<Measurement method of coating film strength>
The obtained lithium nickel manganese cobalt composite oxide powder is used as a positive electrode active material, and N-methylpyrrolidone (NMP) is dispersed in a ratio of active material / conductive material / binder = 85/10/5 (wt%). As a coating slurry was prepared. As the conductive material, acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) was used, and as the binder, polyvinylidene fluoride (“PVDF # 1100” manufactured by Kureha Chemical Industry Co., Ltd.) was used. The ratio of solid content and NMP was a ratio of solid content / (solid content + NMP) = 40 to 43 (% by weight), and mixed well to prepare an NMP slurry. This slurry was vacuum degassed and then applied onto an aluminum foil current collector having a thickness of 20 μm and dried by ventilation drying at 120 ° C. to form a thin film.
About this coating film, based on JISZ0237, the mixture adhesion strength measurement was implemented with the scratch test device (Tribogear, HEIDON-18).

<塗布膜抵抗の測定方法>
塗布膜強度測定の膜を作成するのに用いた真空脱泡した正極スラリーを100μmのPETフィルム上に塗布し、120℃で乾燥して抵抗測定用の塗布膜を得た。低抵抗率計(四端子四探針法 JIS K7194準拠:ロレスターEP(三菱化学社製))で薄膜の体積抵抗率(Ω・cm)を測定した。同じ組成の活物質であれば、ほぼ同程度の粒子抵抗を示すため、塗布膜の体積抵抗率が低いほど、導電材のネットワークが良好で導電パスがとれていることを示す。そのような活物質は、より少ない量の導電材で活物質の性能を引き出すことができ、電池容量を上げることも可能である。
活物質の組成が異なると粒子の粉体抵抗は桁単位で異なるため、一律の比較ができない。それ故、今回はNi:Mn:Co=0.33:0.33:0.33組成のみの比較とする。
<Measurement method of coating film resistance>
The positive electrode slurry that had been vacuum degassed used to prepare the film for coating film strength measurement was coated on a 100 μm PET film and dried at 120 ° C. to obtain a coating film for resistance measurement. The volume resistivity (Ω · cm) of the thin film was measured with a low resistivity meter (4-terminal four-probe method JIS K7194 compliant: Lorester EP (Mitsubishi Chemical Corporation)). Since active materials having the same composition exhibit approximately the same particle resistance, the lower the volume resistivity of the coating film, the better the conductive material network and the better the conductive path. Such an active material can bring out the performance of the active material with a smaller amount of the conductive material, and can increase the battery capacity.
If the composition of the active material is different, the powder resistance of the particles is different in the order of digits, so a uniform comparison cannot be made. Therefore, this time, only Ni: Mn: Co = 0.33: 0.33: 0.33 composition is compared.

<電池性能の測定方法>
リチウムニッケルマンガンコバルト複合酸化物粉体75重量%、導電材としてアセチレンブラック20重量%、結着剤としてポリテトラフルオロエチレン(PTFE)5重量%を乳鉢で十分混合したのち、シート状にのばし、これを直径9mm、7mgになるように円形に打ち抜いた。これにアルミニウム製エキスパンドメタルを圧着し、正極とした。
負極には厚さ0.5mm、直径12のLi箔を用いた。
電解液はエチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)=3/3/4(体積比)の混合溶媒にLiPFを濃度1mol/Lとなるように溶解させた溶液を用いた。
セパレータとしてはポリエチレンフィルムを用いた。
これらの正極、負極、電解液、セパレータを用いてコイン型電池を組み立てた。
コイン型電池は上限電圧4.2V、下限電圧3.0Vとし、0.2mA/cm定電流定電圧にて充電し、0.2mA/cm定電流放電を実施した(初期放電容量(A))。続けてハイレート特性として0.5mA定電流充電、11mA/cm定電流放電を実施し、放電容量を測定した(11mA放電容量(B))。
<Measurement method of battery performance>
Lithium nickel manganese cobalt composite oxide powder 75 wt%, acetylene black 20 wt% as a conductive material, polytetrafluoroethylene (PTFE) 5 wt% as a binder are thoroughly mixed in a mortar, and then spread into a sheet. Was punched out in a circular shape so as to have a diameter of 9 mm and 7 mg. An aluminum expanded metal was pressure-bonded to this to obtain a positive electrode.
A Li foil having a thickness of 0.5 mm and a diameter of 12 was used for the negative electrode.
The electrolytic solution is a solution obtained by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) = 3/3/4 (volume ratio) to a concentration of 1 mol / L. Was used.
A polyethylene film was used as the separator.
A coin-type battery was assembled using these positive electrode, negative electrode, electrolyte, and separator.
Coin cell batteries as the upper limit voltage 4.2 V, lower limit voltage 3.0 V, then charged at 0.2 mA / cm 2 constant current constant voltage was carried out 0.2 mA / cm 2 constant current discharge (initial discharge capacity (A )). Subsequently, 0.5 mA constant current charge and 11 mA / cm 2 constant current discharge were performed as high rate characteristics, and the discharge capacity was measured (11 mA discharge capacity (B)).

(実施例2)
微量のLi原料をスプレードライの前に添加し、残りのLi原料をスプレードライ後に添加する方法でリチウムニッケルマンガンコバルト複合酸化物粉体を製造した。
LiOH、NiO、Mn及びCo(OH)を、Li:Ni:Mn:Co=0.05:0.33:0.33:0.33のモル比となるように秤量して混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を粉砕した。
このスラリーをスプレードライヤーにより噴霧乾燥して得られた粒子に、(Ni+Mn+Co)に対して、更に1.00のモル比の粉砕したLiOH粉末(平均粒径8μm)を添加し、よく混合して焼成前駆体混合物を得た。この焼成前駆体混合物を空気雰囲気で950℃で12時間焼成した後、解砕して、組成式がLi1.05Ni0.33Mn0.33Co0.332の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物粉体を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について実施例1と同様に評価を行って、結果を表1に示した。
(Example 2)
A small amount of Li raw material was added before spray drying, and the remaining Li raw material was added after spray drying to produce lithium nickel manganese cobalt composite oxide powder.
LiOH, NiO, Mn 3 O 4 and Co (OH) 2 are weighed and mixed so as to have a molar ratio of Li: Ni: Mn: Co = 0.05: 0.33: 0.33: 0.33. After that, pure water was added thereto to prepare a slurry. While the slurry was stirred, the solid content in the slurry was pulverized using a circulating medium stirring wet pulverizer.
To the particles obtained by spray-drying this slurry with a spray dryer, pulverized LiOH powder (average particle size 8 μm) with a molar ratio of 1.00 is added to (Ni + Mn + Co), mixed well, and fired. A precursor mixture was obtained. This calcined precursor mixture was calcined at 950 ° C. for 12 hours in an air atmosphere and then crushed to obtain a lithium nickel manganese cobalt composite oxide powder having a layered structure whose composition formula is Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 Got.
The obtained lithium nickel manganese cobalt composite oxide powder was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

(実施例3)
コバルト原料をCoOOHとしたこと以外は、実施例2と同様にしてリチウムニッケルマンガンコバルト複合酸化物粉体を製造した。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について実施例1と同様に評価を行って、結果を表1に示した。
(Example 3)
A lithium nickel manganese cobalt composite oxide powder was produced in the same manner as in Example 2 except that the cobalt raw material was CoOOH.
The obtained lithium nickel manganese cobalt composite oxide powder was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

(実施例4)
Ni(OH)、Mn及びCoOOHを、Ni:Mn:Co=0.4:0.4:0.2のモル比となるように秤量して混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を平均粒径0.21μmに粉砕した。
このスラリーをスプレードライヤーにより噴霧乾燥して得られた粒子に、(Ni+Mn+Co)に対して、更に1.00のモル比の粉砕したLiOH粉末(平均粒径8μm)を添加し、よく混合して焼成前駆体混合物を得た。この焼成前駆体混合物を空気雰囲気で975℃で12時間焼成した後、解砕して、組成式がLi1.02Ni0.40Mn0.40Co0.202の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物粉体を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について実施例1と同様に塗布膜強度と電池性能の評価を行って、結果を表1に示した。
Example 4
Ni (OH) 2 , Mn 3 O 4 and CoOOH were weighed and mixed so as to have a molar ratio of Ni: Mn: Co = 0.4: 0.4: 0.2, and then pure water was added thereto. In addition, a slurry was prepared. While stirring this slurry, the solid content in the slurry was pulverized to an average particle size of 0.21 μm using a circulating medium agitation type wet pulverizer.
To the particles obtained by spray-drying this slurry with a spray dryer, pulverized LiOH powder (average particle size 8 μm) with a molar ratio of 1.00 is added to (Ni + Mn + Co), mixed well, and fired. A precursor mixture was obtained. This calcined precursor mixture was calcined at 975 ° C. for 12 hours in an air atmosphere, then crushed, and lithium nickel manganese cobalt composite oxide powder having a layered structure with a composition formula of Li 1.02 Ni 0.40 Mn 0.40 Co 0.20 O 2 Got.
The obtained lithium nickel manganese cobalt composite oxide powder was evaluated for coating film strength and battery performance in the same manner as in Example 1, and the results are shown in Table 1.

(比較例1)
Ni、Mn、Coのモル比が0.33:0.33:0.33である共沈粒子に粉砕したLiOH粉末を添加し、よく混合して焼成前駆体混合物を得た。この焼成前駆体混合物を空気雰囲気で1000℃で12時間焼成した後、解砕して、組成式がLi1.00Ni0.33Mn0.33Co0.332の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について、実施例1と同様に評価を行って結果を表1に示した。
(Comparative Example 1)
The pulverized LiOH powder was added to the coprecipitated particles having a molar ratio of Ni, Mn, and Co of 0.33: 0.33: 0.33 and mixed well to obtain a calcined precursor mixture. This calcined precursor mixture was calcined at 1000 ° C. for 12 hours in an air atmosphere and then crushed to obtain a lithium nickel manganese cobalt composite oxide having a layered structure whose composition formula is Li 1.00 Ni 0.33 Mn 0.33 Co 0.33 O 2. It was.
The obtained lithium nickel manganese cobalt composite oxide powder was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

(比較例2)
すべてのLi原料をスプレードライの前に添加する方法でリチウムニッケルマンガンコバルト複合酸化物粉体を製造した。
LiOH、NiO、Mn及びCo(OH)を、Li:Ni:Mn:Co=1.05:0.33:0.33:0.33のモル比となるように秤量して混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を平均粒径0.2μmに粉砕した。
このスラリーをスプレードライヤーにより噴霧乾燥して得られた粒子を空気雰囲気で950℃で12時間焼成した後、解砕して、組成式がLi1.05Ni0.33Mn0.33Co0.332の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物粉体を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について、実施例1と同様に塗布膜形成能の評価を行って結果を表1に示した。なお、このリチウムニッケルマンガンコバルト複合酸化物粉体は塗布膜強度が低いので、電池性能の評価は行わなかった。
(Comparative Example 2)
Lithium nickel manganese cobalt composite oxide powder was produced by a method in which all Li raw materials were added before spray drying.
LiOH, NiO, Mn 3 O 4 and Co (OH) 2 are weighed and mixed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.33: 0.33: 0.33. After that, pure water was added thereto to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to an average particle size of 0.2 μm using a circulating medium agitation type wet pulverizer.
The particles obtained by spray-drying this slurry with a spray dryer are calcined at 950 ° C. for 12 hours in an air atmosphere and then crushed to have a layered structure whose composition formula is Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2. Lithium nickel manganese cobalt composite oxide powder was obtained.
The obtained lithium nickel manganese cobalt composite oxide powder was evaluated for coating film forming ability in the same manner as in Example 1, and the results are shown in Table 1. Since this lithium nickel manganese cobalt composite oxide powder has a low coating film strength, the battery performance was not evaluated.

(比較例3)
LiOH、NiO、Mn及びCoOOHを、Li:Ni:Mn:Co=0.05:0.65:0.15:0.20のモル比となるように秤量して混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を平均粒径0.2μmに粉砕した。
このスラリーをスプレードライヤーにより噴霧乾燥して得られた粒子に、(Ni+Mn+Co)に対して、更に1.00のモル比の粉砕したLiOH粉末を添加し、よく混合して焼成前駆体混合物を得た。この焼成前駆体混合物を空気雰囲気で830℃で12時間焼成した後、解砕して、組成式が組成式がLi1.05Ni0.65Mn0.15Co0.202の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物粉体を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体について、実施例1と同様に塗布膜強度を調べ、結果を表1に示した。なお、このリチウムニッケルマンガンコバルト複合酸化物粉体は塗布膜強度が低いので、電池性能の評価は行わなかった。
(Comparative Example 3)
LiOH, NiO, Mn 3 O 4 and CoOOH were weighed and mixed so as to have a molar ratio of Li: Ni: Mn: Co = 0.05: 0.65: 0.15: 0.20. Pure water was added to the slurry to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to an average particle size of 0.2 μm using a circulating medium agitation type wet pulverizer.
To the particles obtained by spray-drying this slurry with a spray dryer, pulverized LiOH powder with a molar ratio of 1.00 to (Ni + Mn + Co) was further added and mixed well to obtain a calcined precursor mixture. . This calcined precursor mixture was calcined at 830 ° C. for 12 hours in an air atmosphere, and then crushed, and a lithium nickel manganese cobalt composite oxide having a layered structure with a composition formula of Li 1.05 Ni 0.65 Mn 0.15 Co 0.20 O 2. A material powder was obtained.
For the obtained lithium nickel manganese cobalt composite oxide powder, the coating film strength was examined in the same manner as in Example 1, and the results are shown in Table 1. Since this lithium nickel manganese cobalt composite oxide powder has a low coating film strength, the battery performance was not evaluated.

Figure 0004752244
Figure 0004752244

表1より次のことが明らかである。
共沈法により製造された比較例1の複合酸化物粉体では、粒子解砕され易さ評価a値が大き過ぎるため、容量維持率が低く、レート特性が劣る。
すべてのLi原料をスプレードライの前に添加する方法で製造された比較例2の複合酸化物粉体では、粒子解砕され易さ評価a値が小さ過ぎるため、塗布膜の強度は低く、塗布膜形成能に劣る。
組成において、Ni含有量が多過ぎる比較例3の複合酸化物粉体では、粒子解砕され易さ評価a値が小さく、やはり、塗布膜の強度が低い。
これらの比較例に対して、粒子解砕され易さ評価a値及び組成の両方が適切な範囲内である実施例1〜4では、容量維持率も塗布膜強度も高く、レート特性と塗布膜形成能との両立が図れる。
From Table 1, the following is clear.
In the composite oxide powder of Comparative Example 1 manufactured by the coprecipitation method, since the particle evaluation rate “a” is too large, the capacity retention rate is low and the rate characteristics are inferior.
In the composite oxide powder of Comparative Example 2 manufactured by the method of adding all the Li raw materials before spray drying, the ease of particle crushing evaluation a value is too small, so the strength of the coating film is low. Inferior in film forming ability.
In the composite oxide powder of Comparative Example 3 having a too high Ni content in the composition, the particle evaluation easiness of particle pulverization is small, and the strength of the coating film is also low.
Compared to these comparative examples, in Examples 1 to 4 in which both the particle evaluation easiness of particle crushing and the composition are within the appropriate ranges, the capacity retention rate and the coating film strength are high, and the rate characteristics and the coating film Compatibility with forming ability can be achieved.

本発明のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体を用いた正極を備えたリチウム二次電池は、高容量でレート特性に優れているため、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、電力のロードレベリング等の電源をはじめ、電気自転車、電気スクーター、電気自動車等に用いることができる。   The lithium secondary battery including the positive electrode using the layered lithium nickel manganese based composite oxide powder for the positive electrode material of the lithium secondary battery according to the present invention has a high capacity and excellent rate characteristics. , Mobile PC, electronic book player, mobile phone, mobile fax, mobile copy, mobile printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, walkie-talkie, electronic notebook, calculator, memory card, mobile tape It can be used for power supplies such as recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, power load leveling, electric bicycles, electric scooters, electric cars and the like.

Claims (7)

下記組成式(1)で表される層状リチウムニッケルマンガン系複合酸化物よりなる粉体であって、BET比表面積が2m /g以下であり、下記に定義される粒子解砕され易さ評価a値が、70%<a≦95%であることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体。
Li1+xNi1−y−z−pMnCo …(1)
(ただし、0≦x≦0.20、0.25≦y≦0.5、0≦z≦0.5、0≦p≦0.2、0.5≦y+z+p≦0.75であり、MはAl,Fe,Ti,Mg,Cr,Ga,Cu,Zn,Nb,及びZrの何れか1種以上)
[粒子解砕され易さ評価a値]
15mmφの2枚の並行なステンレスプレートの間に該粉体を0.5gはさみ、1軸方向に1.2ton/cmの圧力をかけたときの粉体のメジアン径bと、圧力をかける前の該粉体のメジアン径cとから、下記(2)式で算出される値。
a=b/c ×100(%) …(2)
A powder composed of a layered lithium nickel manganese composite oxide represented by the following composition formula (1), having a BET specific surface area of 2 m 2 / g or less, and evaluation of easiness of particle crushing as defined below A layered lithium nickel manganese based composite oxide powder for a lithium secondary battery positive electrode material, wherein the a value is 70% <a ≦ 95%.
Li 1 + x Ni 1-y -z-p Mn y Co z M p O 2 ... (1)
(However, 0 ≦ x ≦ 0.20, 0.25 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.5, 0 ≦ p ≦ 0.2, 0.5 ≦ y + z + p ≦ 0.75, and M Is one or more of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, and Zr)
[Evaluation of ease of particle crushing a value]
0.5 g of the powder is sandwiched between two 15 mmφ parallel stainless steel plates, the median diameter b of the powder when a pressure of 1.2 ton / cm 2 is applied in one axial direction, and before the pressure is applied The value calculated by the following equation (2) from the median diameter c of the powder.
a = b / c × 100 (%) (2)
下記組成式(1)で表される層状リチウムニッケルマンガン系複合酸化物よりなる粉体であって、タップ密度(嵩密度)が1.3g/cm 以上であり、下記に定義される粒子解砕され易さ評価a値が、70%<a≦95%であることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体。
Li1+xNi1−y−z−pMnCo …(1)
(ただし、0≦x≦0.20、0.25≦y≦0.5、0≦z≦0.5、0≦p≦0.2、0.5≦y+z+p≦0.75であり、MはAl,Fe,Ti,Mg,Cr,Ga,Cu,Zn,Nb,及びZrの何れか1種以上)
[粒子解砕され易さ評価a値]
15mmφの2枚の並行なステンレスプレートの間に該粉体を0.5gはさみ、1軸方向に1.2ton/cmの圧力をかけたときの粉体のメジアン径bと、圧力をかける前の該粉体のメジアン径cとから、下記(2)式で算出される値。
a=b/c ×100(%) …(2)
A powder composed of a layered lithium nickel manganese composite oxide represented by the following composition formula (1), the tap density (bulk density) is 1.3 g / cm 3 or more, and the particle solution defined below A layered lithium nickel manganese based composite oxide powder for a lithium secondary battery positive electrode material, wherein the ease of crushing evaluation a value is 70% <a ≦ 95%.
Li 1 + x Ni 1-y -z-p Mn y Co z M p O 2 ... (1)
(However, 0 ≦ x ≦ 0.20, 0.25 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.5, 0 ≦ p ≦ 0.2, 0.5 ≦ y + z + p ≦ 0.75, and M Is one or more of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, and Zr)
[Evaluation of ease of particle crushing a value]
0.5 g of the powder is sandwiched between two 15 mmφ parallel stainless steel plates, the median diameter b of the powder when a pressure of 1.2 ton / cm 2 is applied in one axial direction, and before the pressure is applied The value calculated by the following equation (2) from the median diameter c of the powder.
a = b / c × 100 (%) (2)
請求項1又は2において、一次粒子が凝集して二次粒子を形成してなり、二次粒子のメジアン径が3〜20μmであることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体。 The layered lithium nickel manganese for a positive electrode material for a lithium secondary battery according to claim 1 or 2, wherein the primary particles are aggregated to form secondary particles, and the median diameter of the secondary particles is 3 to 20 µm. -Based composite oxide powder. 請求項1ないし3のいずれか1項において、平均一次粒子径が0.1〜2μmであることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体。 4. The layered lithium nickel manganese based composite oxide powder for a lithium secondary battery positive electrode material according to claim 1, wherein the average primary particle diameter is 0.1 to 2 μm. 請求項1ないしのいずれか1項において、BET比表面積が0.3〜2m/gであることを特徴とするリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体。 In any one of claims 1 to 4, a lithium secondary battery positive electrode material, characterized for the layered complex oxide powder that has a BET specific surface area of 0.3~2m 2 / g. 請求項1ないしのいずれか1項に記載のリチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特徴とするリチウム二次電池正極。 A positive electrode active material layer containing the layered lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material according to any one of claims 1 to 5 and a binder on a current collector. A lithium secondary battery positive electrode characterized by. リチウムを吸蔵・放出可能な負極、リチウム塩を含有する非水電解質、及びリチウムを吸蔵・放出可能な正極を備えたリチウム二次電池であって、正極として請求項に記載のリチウム二次電池正極を用いたことを特徴とするリチウム二次電池。 A lithium secondary battery comprising a negative electrode capable of inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a positive electrode capable of inserting and extracting lithium, wherein the lithium secondary battery according to claim 6 is used as the positive electrode. A lithium secondary battery using a positive electrode.
JP2004325326A 2004-11-09 2004-11-09 Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery Expired - Fee Related JP4752244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325326A JP4752244B2 (en) 2004-11-09 2004-11-09 Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325326A JP4752244B2 (en) 2004-11-09 2004-11-09 Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006134816A JP2006134816A (en) 2006-05-25
JP4752244B2 true JP4752244B2 (en) 2011-08-17

Family

ID=36728149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325326A Expired - Fee Related JP4752244B2 (en) 2004-11-09 2004-11-09 Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4752244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764355B2 (en) 2020-01-22 2023-09-19 Uchicago Argonne, Llc Cathode active materials for secondary batteries

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
JP5231171B2 (en) * 2008-10-30 2013-07-10 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
JP5487821B2 (en) 2009-02-27 2014-05-14 住友化学株式会社 Lithium composite metal oxide and positive electrode active material
JP5810479B2 (en) * 2009-05-26 2015-11-11 日産自動車株式会社 ELECTRODE STRUCTURE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE FOR LITHIUM ION SECONDARY BATTERY
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
JP5175826B2 (en) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 Active material particles and use thereof
KR101450978B1 (en) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
EP2518802B1 (en) 2009-12-22 2020-11-25 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
WO2011096522A1 (en) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5313392B2 (en) * 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011187419A (en) * 2010-03-11 2011-09-22 Jx Nippon Mining & Metals Corp Positive electrode for lithium ion battery, and lithium ion battery
US8741484B2 (en) * 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
JP5494199B2 (en) * 2010-05-07 2014-05-14 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US20130143121A1 (en) 2010-12-03 2013-06-06 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
KR101667867B1 (en) 2011-01-21 2016-10-19 제이엑스금속주식회사 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
CN102683670A (en) * 2011-03-16 2012-09-19 日本化学工业株式会社 Method for manufacturing Lithium cobalt nickel manganese composite oxide
JP5547223B2 (en) * 2011-03-16 2014-07-09 日本化学工業株式会社 Method for producing lithium nickel manganese cobalt composite oxide
EP2704237B1 (en) 2011-03-29 2016-06-01 JX Nippon Mining & Metals Corporation Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5651547B2 (en) * 2011-06-29 2015-01-14 日立オートモティブシステムズ株式会社 Lithium ion secondary battery
JP5920872B2 (en) * 2011-11-25 2016-05-18 株式会社田中化学研究所 Lithium metal composite oxide and method for producing the same
JP5858279B2 (en) * 2011-12-05 2016-02-10 トヨタ自動車株式会社 Lithium ion secondary battery
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
JP6055967B2 (en) * 2012-05-10 2017-01-11 株式会社田中化学研究所 Positive electrode active material and method for producing the same, positive electrode active material precursor, positive electrode for lithium secondary battery, and lithium secondary battery
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
JP6017364B2 (en) * 2013-03-29 2016-10-26 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6399737B2 (en) * 2013-09-13 2018-10-03 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6435093B2 (en) * 2013-11-22 2018-12-05 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Positive electrode active material and lithium ion secondary battery
US10749165B2 (en) 2015-08-25 2020-08-18 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method of producing the same
JP2018006346A (en) * 2017-08-16 2018-01-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092950B2 (en) * 2001-05-17 2008-05-28 三菱化学株式会社 Method for producing lithium nickel manganese composite oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764355B2 (en) 2020-01-22 2023-09-19 Uchicago Argonne, Llc Cathode active materials for secondary batteries

Also Published As

Publication number Publication date
JP2006134816A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
US7923147B2 (en) Layered lithium-nickel-based compound oxide powder and its prodution process
JP4432910B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
KR100946610B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
KR100727332B1 (en) Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP4529784B2 (en) Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5135913B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5135912B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5157071B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2005123179A (en) Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
KR20130076795A (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2007214138A (en) Layered lithium-nickel-based composite oxide powder for lithium secondary battery positive electrode material and its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
KR20080108222A (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP2009245955A (en) Lithium nickel manganese system complex oxide powder for lithium secondary battery positive electrode material and method of manufacturing the same, and positive electrode for lithium secondary battery using the same and lithium secondary battery
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP4003759B2 (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP2005141983A (en) Layered lithium nickel base composite oxide powder for positive electrode material of lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4752244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees