JP6017364B2 - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP6017364B2
JP6017364B2 JP2013075229A JP2013075229A JP6017364B2 JP 6017364 B2 JP6017364 B2 JP 6017364B2 JP 2013075229 A JP2013075229 A JP 2013075229A JP 2013075229 A JP2013075229 A JP 2013075229A JP 6017364 B2 JP6017364 B2 JP 6017364B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
active material
ion battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075229A
Other languages
Japanese (ja)
Other versions
JP2014199778A (en
Inventor
隆宏 芳賀
隆宏 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075229A priority Critical patent/JP6017364B2/en
Publication of JP2014199778A publication Critical patent/JP2014199778A/en
Application granted granted Critical
Publication of JP6017364B2 publication Critical patent/JP6017364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

リチウムイオン電池の正極側の正極材活物質は、上記のようなコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムに代表される。しかしながら、それぞれには、長所短所があり、コバルト酸リチウムは、容量及び安全性などバランスのとれた材料であるが、コバルトはレアメタルという非常に希少な金属であるため、コストが高いという短所がある。ニッケル酸リチウムは非常に電池容量を持つが、安全性に乏しく、マンガン酸リチウムは、非常に熱的安定性があるが、容量が低いという短所がある。最近になり、高容量、安全性、コストの面からNiMnCo、NiCoAlに代表される三元系と三種類を用いた正極材活物質が使用されている。この三元系においては電池作製後の充放電により高Ni比率の材料に関しては充放電後の粒子内の割れが報告されており、これによって寿命劣化が起きるといわれている。   The positive electrode active material on the positive electrode side of the lithium ion battery is typified by lithium cobaltate, lithium nickelate, and lithium manganate as described above. However, each has advantages and disadvantages, and lithium cobaltate is a balanced material such as capacity and safety, but cobalt is a rare metal called a rare metal and therefore has a disadvantage of high cost. . Although lithium nickelate has a very high battery capacity, it is poor in safety, and lithium manganate has a very low thermal capacity but has a disadvantage of low capacity. Recently, from the viewpoint of high capacity, safety, and cost, ternary systems represented by NiMnCo and NiCoAl and positive electrode active materials using three kinds have been used. In this ternary system, cracks in the particles after charging / discharging have been reported for materials with a high Ni ratio due to charging / discharging after battery fabrication, and this is said to cause life deterioration.

このような充放電における粒子内の割れを抑制するための技術としては、例えば、特許文献1に、粉体状のリチウム遷移金属複合酸化物からなるリチウム二次電池用正極活物質であって、その粒子径のモード値をRaμm、算術標準偏差をRbμmとした場合に、(i)Ra≧0.5であり、且つ、(ii)40MPaの圧力で1分間の圧縮処理を行なった後の粒度分布において、Raμmに最も近接した極大粒子径をRcμmとした場合に、x=(Rc−Ra)/Rbで定義されるxが、−2.7<x<−1.2であることを特徴とするリチウム二次電池用正極活物質が開示されている。そして、このような構成によれば、高温環境下での使用時にもクラックが発生し難く、サイクル特性、特に高温サイクル特性に優れたリチウム二次電池を実現できる、リチウム遷移金属複合酸化物からなる正極活物質を提供することができると記載されている。   As a technique for suppressing cracks in particles during such charge and discharge, for example, Patent Document 1 discloses a positive electrode active material for a lithium secondary battery made of a powdered lithium transition metal composite oxide, When the mode value of the particle diameter is Ra μm and the arithmetic standard deviation is Rb μm, (i) Ra ≧ 0.5, and (ii) the particle size after compression for 1 minute at a pressure of 40 MPa. In the distribution, when the maximum particle diameter closest to Raμm is Rcμm, x defined by x = (Rc−Ra) / Rb is −2.7 <x <−1.2. A positive electrode active material for a lithium secondary battery is disclosed. And according to such a structure, it becomes difficult to generate | occur | produce a crack at the time of use in a high temperature environment, and consists of lithium transition metal complex oxide which can implement | achieve the lithium secondary battery excellent in cycling characteristics, especially high temperature cycling characteristics. It is described that a positive electrode active material can be provided.

特開2004−342548号公報JP 2004-342548 A

しかしながら、上記のように正極活物質の粒子の割れを抑制する手段以外の、充放電サイクル等の電池特性の向上に寄与する技術の開発も望まれている。
本発明は、このような課題に鑑み、粒子の割れ方のバラツキが良好に抑制され、これにより電池特性が良好となるリチウムイオン電池用正極活物質を提供することを課題とする。
However, development of a technique that contributes to improvement of battery characteristics such as a charge / discharge cycle other than the means for suppressing cracking of the particles of the positive electrode active material as described above is also desired.
In view of such a problem, an object of the present invention is to provide a positive electrode active material for a lithium ion battery in which variation in how particles are cracked is satisfactorily suppressed, thereby improving battery characteristics.

正極活物質の粒子の割れは、上記のように電池の充放電時に発生する。電極を構成する正極活物質の二次粒子間で割れかたにバラツキがあると、電極セルの電池性能にバラツキが生じることになる。そうすると、バラツキの中で最も劣化すると想定される条件で電極セルの設計を行わざるを得ず、良好な電池特性が望めない。そこで、正極材活物質が充放電サイクル時における二次粒子間の割れかたのバラツキを制御することが電池特性の向上にとって有効であることを見出した。   As described above, cracking of the positive electrode active material particles occurs during charging and discharging of the battery. If there is a variation in how the secondary particles of the positive electrode active material constituting the electrode are cracked, the battery performance of the electrode cell will vary. If it does so, an electrode cell must be designed on the conditions assumed to be the most deteriorated in variation, and a favorable battery characteristic cannot be expected. Therefore, it has been found that it is effective for improving battery characteristics to control the variation in how the positive electrode active material cracks between secondary particles during the charge / discharge cycle.

上記知見を基礎にして完成した本発明は一側面において、組成式:LixNi1-yy2+α
(前記式において、MはMn、Co、Cu、Zn、Mg及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、−0.1≦α≦0.1である。)
で表され、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成され、平均粒子径D50が7〜12μmであり、ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となり、且つ、圧縮応力印加前後でメインピークが小粒径側にシフトするリチウムイオン電池用正極活物質である。
In one aspect, the present invention completed based on the above knowledge has a composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Mn, Co, Cu, Zn, Mg and Zr , 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1.)
Secondary particles formed by agglomeration of primary particles, or a mixture of primary particles and secondary particles, with an average particle diameter D50 of 7 to 12 μm. when the compressive stress of 3.0 ton / cm 2 was added 30 seconds to the particles, Ri Do a particle size distribution with one peak of the peak, and a lithium ion main peak in the compressive stress before and after applying the shift to smaller particle size side It is a positive electrode active material for batteries.

本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記粒度分布における一山のピークの平均粒子径D50が1〜7μmである。   In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention has an average particle diameter D50 of one peak in the particle size distribution of 1 to 7 μm.

本発明に係るリチウムイオン電池用正極活物質は別の一実施形態において、前記粒度分布における一山のピークの頻度が3〜12%である。   In another embodiment of the positive electrode active material for a lithium ion battery according to the present invention, the peak frequency in the particle size distribution is 3 to 12%.

本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記Mが、Mn及びCoから選択される1種以上である。   In one embodiment of the positive electrode active material for a lithium ion battery according to the present invention, the M is one or more selected from Mn and Co.

本発明は、別の一側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.

本発明は、更に別の一側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.

本発明によれば、粒子の割れ方のバラツキが良好に抑制され、これにより電池特性が良好となるリチウムイオン電池用正極活物質を提供することができる。   According to the present invention, it is possible to provide a positive electrode active material for a lithium ion battery in which variation in particle cracking is suppressed satisfactorily, thereby improving battery characteristics.

圧縮応力印加後の粒度分布の形状のパターンを示す図である。It is a figure which shows the pattern of the shape of the particle size distribution after compressive stress application. 実施例1の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of Example 1. 実施例2の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of Example 2. 実施例3の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of Example 3. 実施例4の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of Example 4. 実施例5の粒度分布を示すグラフである。10 is a graph showing the particle size distribution of Example 5. 比較例1の粒度分布を示すグラフである。5 is a graph showing the particle size distribution of Comparative Example 1.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
組成式:LixNi1-yy2+α
(前記式において、Mは金属であり、0.9≦x≦1.2であり、0<y≦0.7であり、−0.1≦α≦0.1である。)
で表される。
また、Mは、好ましくはMn、Co、Cu、Al、Zn、Mg及びZrから選択される1種以上であり、より好ましくはMn及びCoから選択される1種以上である。
(Configuration of positive electrode active material for lithium ion battery)
As a material of the positive electrode active material for lithium ion batteries of the present invention, compounds useful as a positive electrode active material for general positive electrodes for lithium ion batteries can be widely used. In particular, lithium cobaltate (LiCoO 2 ), It is preferable to use lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery of the present invention produced using such a material is
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is a metal, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and −0.1 ≦ α ≦ 0.1.)
It is represented by
M is preferably at least one selected from Mn, Co, Cu, Al, Zn, Mg and Zr, more preferably at least one selected from Mn and Co.

本発明のリチウムイオン電池用正極活物質は、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。これらの一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物の平均粒子径D50は7〜12μmである。平均粒子径D50が7〜12μmであれば、ばらつきが抑制された粉体となり、電極組成のばらつきを抑制することができる。このため、リチウムイオン電池に用いたときにレート特性及びサイクル特性等の電池特性が良好となる。平均粒子径D50は、好ましくは7〜9μmである。   The positive electrode active material for a lithium ion battery of the present invention is composed of secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles. The average particle diameter D50 of the secondary particles formed by aggregation of these primary particles or the mixture of the primary particles and the secondary particles is 7 to 12 μm. If average particle diameter D50 is 7-12 micrometers, it will become the powder by which the dispersion | variation was suppressed and the dispersion | variation in an electrode composition can be suppressed. For this reason, when used in a lithium ion battery, battery characteristics such as rate characteristics and cycle characteristics are improved. The average particle diameter D50 is preferably 7 to 9 μm.

本発明のペレット圧縮試験は以下の手順で行う。まず、SUS製の金型を準備する。当該金型は、内部に粉体試料を入れるための17.5mm径の内空部が形成されている。次に、正極活物質の粒子の粉体を1±0.05g採取して試料とし、これを金型の内空部に入れ、厚みが均等になるように広げる。次に、金型の内空部の試料を、押圧面を備えた別のSUS製の金型で上から押し込んで30秒間圧縮する。常圧に戻した後、金型から正極活物質を取り出す。続いて、試料の粒度分布の測定を行う。当該測定は、レーザー回折/散乱式粒度分布測定装置等で行うことができる。本発明のリチウムイオン電池用正極活物質は、このようなペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となる。 The pellet compression test of the present invention is performed according to the following procedure. First, a SUS mold is prepared. The mold has an inner space portion with a diameter of 17.5 mm for placing a powder sample therein. Next, 1 ± 0.05 g of a positive electrode active material particle powder is sampled and placed in the inner space of the mold and spread so that the thickness is uniform. Next, the sample in the inner space of the mold is pressed from above with another SUS mold having a pressing surface and compressed for 30 seconds. After returning to normal pressure, the positive electrode active material is removed from the mold. Subsequently, the particle size distribution of the sample is measured. The measurement can be performed with a laser diffraction / scattering particle size distribution measuring apparatus or the like. The positive electrode active material for a lithium ion battery of the present invention has a particle size distribution having a peak when a compressive stress of 3.0 ton / cm 2 is applied to the particles of the positive electrode active material for 30 seconds in such a pellet compression test. It becomes.

圧縮応力印加前は、粒度分布は一山のピークであるが、圧縮応力印加後には一山もしくは二山のピークになる。圧縮応力が印加されることによって、粒度分布の平均粒子径は小さくなるが、粒子の硬度にバラツキがあるときは二山のピークとなり、バラツキがないときは一山のピークとなる。圧縮応力印加後の粒度分布の形状には、図1に示す(1)〜(4)の4パターンがある。(1)と(2)は一山のピークであり、圧縮応力印加後に均一に粒子が一次粒子に分離されている。一方、(3)と(4)は二山のピークであり、圧縮応力印加後に一次粒子に分離される部分と二次粒子のままで一次粒子に分離されない部分が混在している。なお、ピークの「山」は、ピークの曲線中の極大部分ともいうことができる。(2)は元の平均粒子径D50(例えば、7〜12μm)に対し、大部分が割れて、メインピークが小粒径側にシフトし、一部の粒子のみがショルダーの形状で残っている。一方、(3)は元の平均粒子径D50(例えば、7〜12μm)に対し、一部しか割れが進行せず、メインピークが小粒径側にシフトしていない。(2)と(3)はいずれも完全な二山ではないが、圧縮応力印加前後でメインピークが小粒径側にシフトするか否かで区別される。電池特性については、メインピークが小粒径側にシフトしている(2)のほうが、メインピークが小粒径側にシフトしていない(3)に対して優れている。   Before the compressive stress is applied, the particle size distribution has a peak of one peak, but after the compressive stress is applied, it has a peak of one or two peaks. When the compressive stress is applied, the average particle size of the particle size distribution is reduced. However, when there is a variation in the hardness of the particles, there are two peaks, and when there is no variation, there is a peak. There are four patterns (1) to (4) shown in FIG. 1 as the shape of the particle size distribution after the compression stress is applied. (1) and (2) are peaks of peaks, and the particles are uniformly separated into primary particles after compressive stress is applied. On the other hand, (3) and (4) are peaks of two peaks, and a portion separated into primary particles after applying compressive stress and a portion that remains as secondary particles but not separated into primary particles are mixed. The peak “mountain” can also be referred to as the maximum portion in the peak curve. In (2), most of the original average particle diameter D50 (for example, 7 to 12 μm) is cracked, the main peak is shifted to the small particle diameter side, and only some of the particles remain in the shoulder shape. . On the other hand, in (3), cracking proceeds only partially with respect to the original average particle diameter D50 (for example, 7 to 12 μm), and the main peak is not shifted to the small particle diameter side. Both (2) and (3) are not perfect two peaks, but are distinguished by whether or not the main peak shifts to the small particle size side before and after applying compressive stress. Regarding the battery characteristics, the main peak is shifted to the small particle size side (2) is superior to the main peak not shifted to the small particle size side (3).

圧縮応力印加後の一次粒子と二次粒子の混在は、粒子間のバラツキ、ひいては電極セルのバラツキの形で発現する。二次粒子間の硬度が均一な場合は、各二次粒子は製造プロセス中のプレス等により正極活物質の二次粒子が一次粒子に対応した形状に分離するが、二次粒子間の硬度にバラツキがある場合は、製造プロセスで破壊していなかった異常部分が充放電による格子の膨張・収縮により破壊され、電池の特性を劣化させる要因となる。ここで、本発明のリチウムイオン電池用正極活物質は、ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となる。このため、電池の充放電後等で電極材として用いられている正極活物質の粒子の割れかたのバラツキが抑制されることとなり、電池特性が良好となる。 The mixture of primary particles and secondary particles after the application of compressive stress is manifested in the form of variations between the particles, and hence variations in the electrode cells. When the hardness between the secondary particles is uniform, each secondary particle is separated into a shape corresponding to the primary particle by the press during the manufacturing process, etc. When there is variation, an abnormal portion that has not been destroyed in the manufacturing process is destroyed by the expansion and contraction of the lattice due to charge and discharge, which causes deterioration of battery characteristics. Here, the positive electrode active material for a lithium ion battery of the present invention has a particle size distribution having a peak when a compressive stress of 3.0 ton / cm 2 is applied to the positive electrode active material particles for 30 seconds in a pellet compression test. It becomes. For this reason, the variation in how the particles of the positive electrode active material used as the electrode material after charging and discharging of the battery are cracked is suppressed, and the battery characteristics are improved.

上記粒度分布における一山のピークの平均粒子径D50は1〜7μmであるのが好ましい。このような構成によれば、正極活物質の粒子の割れかたのバラツキがより抑制されることとなり、電池特性がより良好となる。また、上記粒度分布における一山のピークの平均粒子径D50は2〜5μmであるのがより好ましい。   It is preferable that the average particle diameter D50 of one peak in the particle size distribution is 1 to 7 μm. According to such a configuration, variation in how the positive electrode active material particles are cracked is further suppressed, and battery characteristics are further improved. Moreover, it is more preferable that the average particle diameter D50 of the peak of the peak in the particle size distribution is 2 to 5 μm.

上記粒度分布における一山のピークの頻度が3〜12%であるのが好ましい。このような構成によれば、正極活物質の粒子の割れかたのバラツキがより抑制されることとなり、電池特性がより良好となる。また、上記粒度分布における一山のピークの頻度が4〜9%であるのがより好ましい。   It is preferable that the frequency of a peak in the particle size distribution is 3 to 12%. According to such a configuration, variation in how the positive electrode active material particles are cracked is further suppressed, and battery characteristics are further improved. Moreover, it is more preferable that the peak frequency in the particle size distribution is 4 to 9%.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni及び金属Mである。金属Mとしては、好ましくはMn、Co、Cu、Al、Zn、Mg及びZrから選択される1種以上であり、より好ましくはMn及びCoから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属は、所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metals are Ni and metal M. The metal M is preferably at least one selected from Mn, Co, Cu, Al, Zn, Mg and Zr, more preferably at least one selected from Mn and Co. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.

次に、リチウムイオン電池正極材用前駆体の焼成を行う。本発明では、当該焼成の条件によって、圧縮応力印加後の粒度分布を制御する。ペレット圧縮試験で正極活物質の粒子の粒度分布の形状が一山と二山のピークとなる機構は、焼成原料を焼成用こう鉢に充填する際に、充填時に焼成原料が固まって不均一となる、もしくは焼成原料が充填前から凝集しており不均一となり、焼成の昇温時にこれらの不均一部分が局所的に異常焼成を起こすことがその発生要因の一つに挙げられる。焼成原料が凝集しないようにするためには、こう鉢(焼成容器)内への充填密度を均一にすることが重要である。焼成原料を焼成用こう鉢に充填する際に、こう鉢を一定時間振動することによって充填密度のバラツキが抑制される。また、焼成速度が部分的に速いと異常焼成が起こりやすい。昇温時以外の焼成部分で一部は正常な部分に戻るが、異常焼成のまま残る粒子がある。焼成後に行われる解砕工程の後もそのような粒子として残っているため、この異常焼成の粒子がペレット圧縮試験で破壊されずに残り、二山のピークとなる。   Next, the precursor for a lithium ion battery positive electrode material is fired. In the present invention, the particle size distribution after applying compressive stress is controlled according to the firing conditions. The mechanism in which the shape of the particle size distribution of the positive electrode active material particles peaks and peaks in the pellet compression test is that when the firing raw material is filled in the firing mortar, the firing raw material is hardened and uneven during filling. One cause of this is that the firing raw material is agglomerated before the filling and becomes non-uniform, and these non-uniform portions locally cause abnormal firing when the temperature of firing is increased. In order to prevent the firing raw material from agglomerating, it is important to make the packing density in the mortar (firing container) uniform. When filling the baking raw material into the baking mortar, the filling density is suppressed by vibrating the mortar for a certain period of time. Further, if the firing rate is partially high, abnormal firing is likely to occur. Some of the fired parts other than those at the time of temperature rise return to normal parts, but there are particles that remain abnormally fired. Since such particles remain even after the crushing step performed after firing, the abnormally fired particles remain unbroken in the pellet compression test, resulting in two peaks.

焼成工程として、まず、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。焼成原料を焼成容器に充填する際には、原料が凝集しないようにする。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、昇温工程においては100〜300℃/hの昇温レートで900〜1000℃まで加熱し、続いて当該温度で1〜4時間保持する。その後、100〜200℃/hの降温レートで降温させる。このような焼成条件により、昇温工程では均一に熱が入り、粒子同士の熱の伝導性が良好となる。また、降温工程では急冷且つ適切な降温雰囲気の制御によって、遷移金属層内の原子の再配列や遷移金属層の積層欠陥、酸素欠陥等の生成のような構造的変化が促進される。このように焼成条件を制御することで、異常焼成を抑制し、ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となるように制御することができる。
また、101〜202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
本発明のリチウムイオン電池用正極活物質の製造方法において、焼成温度を高くすることで結晶化を促進し、平均粒子径D50を7〜12μmに制御する。
As the firing step, first, a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material. When filling the firing raw material into the firing container, the raw material is prevented from agglomerating. Next, the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is heated to 900 to 1000 ° C. at a temperature raising rate of 100 to 300 ° C./h in the temperature raising step, and subsequently held at the temperature for 1 to 4 hours. Thereafter, the temperature is lowered at a temperature lowering rate of 100 to 200 ° C./h. Due to such firing conditions, heat is uniformly input in the temperature raising step, and the heat conductivity between the particles is improved. In the temperature lowering process, structural changes such as rearrangement of atoms in the transition metal layer, generation of stacking faults, oxygen defects and the like in the transition metal layer are promoted by rapid cooling and appropriate control of the temperature lowering atmosphere. By controlling the firing conditions in this way, abnormal firing is suppressed, and when a compressive stress of 3.0 ton / cm 2 is applied to the positive electrode active material particles for 30 seconds in the pellet compression test, it has a peak. The particle size distribution can be controlled.
Further, it is preferable to perform baking under pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases.
In the manufacturing method of the positive electrode active material for lithium ion batteries of this invention, crystallization is accelerated | stimulated by making a calcination temperature high and the average particle diameter D50 is controlled to 7-12 micrometers.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例)
まず、所定の投入量の炭酸リチウムを純水に懸濁させた後、金属塩溶液を投入した。この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、表1に示すような焼成条件により焼成を行った。続いて室温まで冷却した後、解砕してリチウムイオン二次電池正極材の粉末を得た。
(Example)
First, a predetermined amount of lithium carbonate was suspended in pure water, and then a metal salt solution was added. By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, a firing container was prepared, and this firing container was filled with a lithium-containing carbonate. Next, firing was performed under the firing conditions shown in Table 1. Subsequently, after cooling to room temperature, it was crushed to obtain a powder of a positive electrode material for a lithium ion secondary battery.

(比較例)
焼成容器へ原料を充填する際に、焼成条件が異なること以外は、実施例と同様にしてリチウムイオン二次電池正極材の粉末を作製した。
(Comparative example)
A lithium ion secondary battery positive electrode powder was prepared in the same manner as in the example except that the firing conditions were different when the firing container was filled with the raw materials.

(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。各金属の組成比は、表2に記載の通りであることを確認した。また、酸素含有量はLECO法で測定しαを算出した。
(Evaluation)
-Evaluation of composition of positive electrode material-
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. It was confirmed that the composition ratio of each metal was as shown in Table 2. The oxygen content was measured by the LECO method and α was calculated.

−平均粒子径D50の評価−
粒子断面をFIBにより切り出し、そのままエスエスアイ・ナノテクノロジー社製のFIB装置(SMI3050SE)を用いてSIM像を取得した。当該SIM像上の任意の直線上に存在する粒子のみの定方向径を測定することにより、平均粒子径D50を算出した。
-Evaluation of average particle diameter D50-
A particle cross section was cut out by FIB, and a SIM image was obtained as it was using an FIB apparatus (SMI3050SE) manufactured by SSI Nanotechnology. The average particle diameter D50 was calculated by measuring the constant direction diameter of only the particles existing on an arbitrary straight line on the SIM image.

−粒度分布の評価−
SUS製の金型を準備した。当該金型は、内部に粉体試料を入れるための17.5mm径の内空部が形成されている。次に、正極活物質の粒子の粉体を1±0.05g採取して試料とし、これを金型の内空部に入れ、厚みが均等になるように広げた。次に、金型の内空部の試料を、押圧面を備えた別のSUS製の金型で上から3.0ton/cm2の圧縮応力で押し込んで30秒間圧縮した。常圧に戻した後、金型から正極活物質を取り出した。続いて、試料の粒度分布の測定を日機装社製Microtrac MT3300EX IIレーザー回折/散乱式粒度分布測定装置で行った。
-Evaluation of particle size distribution-
A SUS mold was prepared. The mold has an inner space portion with a diameter of 17.5 mm for placing a powder sample therein. Next, 1 ± 0.05 g of a positive electrode active material particle powder was sampled and placed in an inner space of a mold, which was spread so that the thickness was uniform. Next, the sample in the inner space of the mold was pressed with another SUS mold having a pressing surface from above with a compressive stress of 3.0 ton / cm 2 and compressed for 30 seconds. After returning to normal pressure, the positive electrode active material was taken out of the mold. Subsequently, the particle size distribution of the sample was measured with a Microtrac MT3300EX II laser diffraction / scattering particle size distribution measuring device manufactured by Nikkiso Co., Ltd.

−放電容量及び充放電効率の評価−
各正極活物質と、導電材と、バインダーとを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化して正極合剤を作製し、これをAl箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また、充放電効率は、電池測定によって得られた初期放電容量及び初期充電容量から算出した。
これらの結果を表1〜3に示す。
-Evaluation of discharge capacity and charge / discharge efficiency-
Each positive electrode active material, a conductive material, and a binder are weighed in a ratio of 90: 5: 5, and the positive electrode active material and the conductive material are mixed in a material in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). Thus, a positive electrode mixture was prepared by slurrying, applied onto an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and a discharge at a current density of 0.2 C was performed using 1M-LiPF6 dissolved in EC-DMC (1: 1) as an electrolyte. The capacity was measured. The charge / discharge efficiency was calculated from the initial discharge capacity and the initial charge capacity obtained by battery measurement.
These results are shown in Tables 1-3.

表3より、実施例1〜9は、いずれも平均粒子径D50が7〜12μm、ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となり、作製した電池の放電容量及び充放電効率が良好であった。
比較例1〜4は、ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、二山のピークを持つ粒度分布となり、作製した電池の充放電効率が不良であった。
実施例1〜5及び比較例1の粒度分布を示すグラフを図2〜7に示す。なお、図2〜7では、それぞれ上記3.0ton/cm2の圧縮応力で押し込んで30秒間圧縮した正極活物質の日機装社製Microtrac MT3300EX IIレーザー回折/散乱式粒度分布測定装置による粒度分布を「3.0T」で示している。また、実施例1〜5及び比較例1について上記圧縮前の試料も正極活物質の日機装社製Microtrac MT3300EX IIレーザー回折/散乱式粒度分布測定装置で粒度分布を測定し、その結果を「0.0T」で示している。
As shown in Table 3, Examples 1 to 9 all have an average particle diameter D50 of 7 to 12 μm, and when a compressive stress of 3.0 ton / cm 2 is applied to the positive electrode active material particles for 30 seconds in the pellet compression test, The particle size distribution had peak peaks, and the discharge capacity and charge / discharge efficiency of the produced battery were good.
In Comparative Examples 1 to 4, in the pellet compression test, when a 3.0 ton / cm 2 compressive stress was applied to the positive electrode active material particles for 30 seconds, the particle size distribution had two peaks, and charge and discharge of the produced battery Efficiency was poor.
The graph which shows the particle size distribution of Examples 1-5 and Comparative Example 1 is shown in FIGS. 2 to 7, the particle size distribution of the positive electrode active material, which was compressed by 30 ton / cm 2 of the above-described compression for 30 seconds, as measured by the Nikkiso Microtrac MT3300EX II laser diffraction / scattering particle size distribution analyzer, 3.0T ". Further, for Examples 1 to 5 and Comparative Example 1, the sample before compression was also measured for particle size distribution using a Microtrac MT3300EX II laser diffraction / scattering particle size distribution measuring device manufactured by Nikkiso Co., Ltd., which is a positive electrode active material. 0T ".

Claims (6)

組成式:LixNi1-yy2+α
(前記式において、MはMn、Co、Cu、Zn、Mg及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、−0.1≦α≦0.1である。)
で表され、
一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成され、
平均粒子径D50が7〜12μmであり、
ペレット圧縮試験において、正極活物質の粒子に3.0ton/cm2の圧縮応力を30秒間加えたとき、一山のピークを持つ粒度分布となり、且つ、圧縮応力印加前後でメインピークが小粒径側にシフトするリチウムイオン電池用正極活物質。
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Mn, Co, Cu, Zn, Mg and Zr , 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1.)
Represented by
Secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles,
The average particle diameter D50 is 7-12 μm,
In pellet compression test, when applying a compressive stress particles of 3.0 ton / cm 2 of the cathode active material 30 seconds, Ri Do a particle size distribution with one peak of the peak, and the main peak in the compressive stress before and after applying a small A positive electrode active material for lithium ion batteries that shifts to the particle size side .
前記粒度分布における一山のピークの平均粒子径D50が1〜7μmである請求項1に記載のリチウムイオン電池用正極活物質。   2. The positive electrode active material for a lithium ion battery according to claim 1, wherein an average particle diameter D50 of a mountain peak in the particle size distribution is 1 to 7 μm. 前記粒度分布における一山のピークの頻度が3〜12%である請求項1又は2に記載のリチウムイオン電池用正極活物質。   3. The positive electrode active material for a lithium ion battery according to claim 1, wherein the peak frequency in the particle size distribution is 3 to 12%. 前記Mが、Mn及びCoから選択される1種以上である請求項1〜3のいずれかに記載のリチウムイオン電池用正極活物質。 Wherein M is a positive active material for a lithium ion battery according to claim 1 is at least one selected from Mn and Co. 請求項1〜のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。 The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries in any one of Claims 1-4 . 請求項に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。 The lithium ion battery using the positive electrode for lithium ion batteries of Claim 5 .
JP2013075229A 2013-03-29 2013-03-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP6017364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075229A JP6017364B2 (en) 2013-03-29 2013-03-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075229A JP6017364B2 (en) 2013-03-29 2013-03-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2014199778A JP2014199778A (en) 2014-10-23
JP6017364B2 true JP6017364B2 (en) 2016-10-26

Family

ID=52356554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075229A Active JP6017364B2 (en) 2013-03-29 2013-03-29 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP6017364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10833328B2 (en) * 2014-06-10 2020-11-10 Umicore Positive electrode materials having a superior hardness strength

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203632A (en) * 2002-01-09 2003-07-18 Hitachi Ltd Positive electrode active material for lithium secondary battery and its manufacturing method, lithium secondary battery using the same, and battery pack module
JP3709446B2 (en) * 2002-12-09 2005-10-26 三井金属鉱業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP2004342548A (en) * 2003-05-19 2004-12-02 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, manufacturing method for same, positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2004355824A (en) * 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous secondary battery and cathode
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP4752244B2 (en) * 2004-11-09 2011-08-17 三菱化学株式会社 Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
DE102006049098B4 (en) * 2006-10-13 2023-11-09 Toda Kogyo Corp. Powdered compounds, process for their production and their use in lithium secondary batteries
KR101447453B1 (en) * 2006-12-26 2014-10-06 가부시키가이샤 산도쿠 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JP2009283354A (en) * 2008-05-23 2009-12-03 Panasonic Corp Electrode for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
WO2011108389A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery

Also Published As

Publication number Publication date
JP2014199778A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5313392B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5843753B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5467144B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR102235758B1 (en) Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having the same
KR20180024004A (en) Li-containing silicon oxide powder and manufacturing method thereof
JP7230515B2 (en) Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP7276324B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2022174097A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
JP2022174094A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
JP2023103440A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
JP7143855B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
JP7110647B2 (en) Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP6017364B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011187419A (en) Positive electrode for lithium ion battery, and lithium ion battery
JP5876850B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6273115B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5550948B2 (en) Method for producing positive electrode for lithium ion battery
JP2016072188A (en) Method for manufacturing coated complex oxide particles for positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use of coated complex oxide particles manufactured thereby
JP2018006346A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2011108655A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250