JP3709446B2 - Positive electrode active material for lithium secondary battery and method for producing the same - Google Patents

Positive electrode active material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP3709446B2
JP3709446B2 JP2002356583A JP2002356583A JP3709446B2 JP 3709446 B2 JP3709446 B2 JP 3709446B2 JP 2002356583 A JP2002356583 A JP 2002356583A JP 2002356583 A JP2002356583 A JP 2002356583A JP 3709446 B2 JP3709446 B2 JP 3709446B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002356583A
Other languages
Japanese (ja)
Other versions
JP2004192846A (en
Inventor
朋哉 武内
ヤンコ マリノフ トドロフ
新太郎 石田
幸一 沼田
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002356583A priority Critical patent/JP3709446B2/en
Publication of JP2004192846A publication Critical patent/JP2004192846A/en
Application granted granted Critical
Publication of JP3709446B2 publication Critical patent/JP3709446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用の正極活物質及びその製造方法に関する。
【0002】
【従来の技術】
リチウム二次電池(リチウムイオン二次電池)は、単位電気量当たりの重量が小さく、それでいてエネルギー密度が高いため、ビデオカメラ、ノートパソコン、携帯電話などの携帯型電子機器の電源や、自動車用電源などとして急速に普及している。
【0003】
この種のリチウム二次電池は、一般的に負極にはリチウムの挿入脱離が可能なカーボンやグラファイトが用いられ、正極には各種リチウム複合酸化物を用いられる。
充電時には正極の結晶の中にあったリチウム原子がリチウムイオンとして電解液中に放出され、同時に電解液中のリチウムイオンが負極の結晶の中に侵入し、放電時には負極中のリチウム原子が正極中に戻るように動作する。例えば、正極活物質としてコバルト酸リチウム、負極活物質として黒鉛を用いた場合、次のように充放電反応する。
正極: LiCoO2 ⇔ xLi+ + Li1-xCoO2 + xe-
負極: 6xC+xLi++xe- ⇔ xC6Li
電池:LiCoO2 + 6xC ⇔ Li1-xCoO2 + xC6Li
【0004】
リチウム二次電池の高いエネルギー密度は主に正極材料の電位に起因し、この正極活物質には、層状構造をもつLiCoO2、LiNiO2及びLiMnO2、スピネル構造をもつLiMn24などが代表的に用いられている。
また、リチウム複合酸化物(LiXY)のMの一部を異種金属で置換することで特性が向上することが知られるようになり、例えばリチウムマンガン酸化物(LiMn24)のMnの一部をNi、Cr、Fe、Coなどの異種金属で置換することで(LiMn2-xx4(M=Ni、Cr、Fe、Coなど))、結晶構造が安定化し、サイクル特性も向上することなどが開示されている(特開平4−141954、特開平4−160758、特開平4−160769、特開平4−169076、特開平4−237970、特開平4−282560、特開平4−289662、特開平5−28991、特開平7−14572、特開平9−213333、特開平9−270259等参照)。また、リチウムマンガン酸化物(LiMn24)のMnの一部を異種金属で置換する(LiCoMnO4、Li2FeMn38、Li2CuMn38、Li2CrMn38、Li2NiMn38)ことで5V級の電位で動作することも報告されている(芳尾真幸/小沢昭弥編「リチウムイオン二次電池」2000年1月27日 日刊工業新聞社p53の表3.9参照)。
【0005】
このような正極活物質の合成方法は、リチウム塩粉末(LiOH、Li2Co3等)と遷移金属酸化物(MnO2、CoO、NiO等)粉末とを混合し、これを焼成して合成するのが通常であり、得られた正極活物質は、電気伝導性の良い炭素粉等の導電助材やPVdF等の結着剤などと混練してペ−スト状とし、これを集電体箔に塗布し、その後プレスするなどして正電極に用いるのが一般的である。
【0006】
ところが、上記の如き方法で合成された正極活物質粒子は、活物質の結晶形を反映して成長した一次粒子と、この一次粒子が凝集してなる二次粒子とが混在するため、粒径が数ミクロンから数百ミクロンと幅広くなり、粒子形状も様々で一定しない。そのため、そのまま電極上に塗布すると、凝集粒子の内部まで導電助剤が行き届かなくなり、電気的に接触不良を起して容量劣化の原因となる。また、数百ミクロンという大きな二次粒子が存在すると充放電時の結晶の膨張収縮が大きくなって粒子界面に亀裂が生じたり、導電体との間に隙間が生じてその有効面積が減少したりもする。
【0007】
そこで従来、正極活物質の二次粒子径を比較的小さくし、かつ粒度分布を狭くするように制御することにより、電気伝導性を確保しつつ容量劣化を防ぐ試みがなされてきた。
【0008】
例えば、特許文献1は、可燃性液体中に活物質原料を乳濁させた溶液を噴霧焼成後、熱処理することにより、得られる粉末状活物質の粒子径を0.1μm程度の微粒子の二次集合体とし、高電流密度での充放電特性を改良することを開示している。
また、特許文献2は、平均粒径0.01〜5.0μmの一次粒子が凝集してなる平均粒径0.1〜15μmの一次粒子凝集体(二次粒子)を、特許文献3は、リチウムとニッケルの複合酸化物の粒径を0.1〜3μmとし、その二次粒子の粒径を5〜50μmとすることを、特許文献4は、正極活物質の比表面積と一次、二次粒子の平均粒径及び空隙率を所定範囲に制御することによって容量低下を抑制することを提案している。
また、特許文献5は、炭酸リチウムと二酸化マンガンを所定のモル比で混合焼成し、粉砕して原料粉を作製し、これに純水およびポリビニルアルコールを加えスラリー化にしてディスクスプレーで凝集させて球状の2次粒子を形成し、焼成後、一定形状の2次粒子を得てこれを正極活物質とすることにより、リチウム酸化物の粒子形状をほぼ球状で一定の粒径をもつ粒子を得る方法を提案している。
【0009】
しかし、正極活物質を微粒子化しただけでは、導電材や結着剤の必要量が増加し、正極板への活物質の充填率が制約されることになるため、従来、ある粒度範囲内で大きめの二次粒子と小さめの一次粒子とを混在させ、正極板への活物質の充填率を高めるという提案がなされている。
【0010】
例えば特許文献6は、SEM観察における定方向径が0.1〜2μmの微小結晶粒子と、SEM観察における定方向径が2〜20μmの球状二次粒子との混合物を正極活物質に用いることにより、電池極板への活物質の充填性を改良する技術を開示している。
また、特許文献7は、スピネル型構造のリチウムマンガン複合酸化物からなる非水系リチウム二次電池用正極活物質の製造において、マンガン酸化物と炭酸リチウム等のリチウム塩の混合物を造粒して顆粒状となし、マンガン酸化物と炭酸リチウム等のリチウム塩の混合物を大気雰囲気中で1000℃以上1100℃以下の温度で第1の焼成を行うことによって略八面体様の一次粒子を成長させた後、一旦解砕を行い、その後再度600℃±100℃の温度で第2の焼成を行うことによって、略八面体様の一次粒子が凝集し、かつその凝集が解しやすい二次粒子を作成し、電極密度と共に粒度分布の範囲と粒径の比を規制する方法を開示している。
【0011】
【特許文献1】
特開平9−320603号
【特許文献2】
特開平6−325791
【特許文献3】
特開平7−183047
【特許文献4】
特開平10−321227
【特許文献5】
特開2000−223118
【特許文献6】
特開平9−129230号
【特許文献7】
特開2001−155728
【0012】
【発明が解決しようとする課題】
ところで、リチウムイオン二次電池の正極活物質は、正極電極を製造する際、高密度充填するために合剤(スラリー)を塗布した後にロールプレス等を行って電極のかさ密度を大きくするのが一般であるが、崩れ難い二次粒子では、二次粒子内部の粒子まで導電材が行き届かないために正極材の利用率が低下することが懸念される。また、ロールプレスの際或いは充放電を繰り返すうちに、二次粒子が潰れて隙間を生じ、これに伴って導電材との接触が悪くなり、電池容量が低下してサイクル特性が悪化するという問題も考えられる。
【0013】
また、正極活物質はその比表面積によっても放電特性等が大きく変化することが知られている。比表面積の大きい粒子からなる正極活物質は、反応面積が大きく、かつ活物質内でのイオンの移動距離が短いため、電極反応が高密度でかつ高効率で行われる反面、比表面積が大きいほど電解液との接触も多くなり、保存中に著しい容量低下を引き起こす可能性が指摘されており(特開平10-162830の[0014]の記載等参照)、特に高い信頼性と再現性とが求められる実用電池においてはこの点は重要な課題となっている。
【0014】
そこで本発明は、一次粒子の凝集力が弱い二次粒子からなり、適度な解砕によって或いは電極作製過程で自然に一次粒子に分散し、しかも、分散後の粒経が小さい割には比表面積が小さく、それでいて混合性が良いという特性を備えた正極活物質を提供せんとするものである。
【0015】
【課題を解決するための手段】
本発明は、層状構造或いはスピネル構造のリチウム複合酸化物からなることを第1の特徴とし、各粒子が、平均粒径約0.5〜3μmの一次粒子が凝集してなる平均凝集径約10〜100μmの二次粒子からなることを第2の特徴とし、その二次粒子は、ロールプレスなどの電極作製工程で自然に一次粒子に解砕する程度に解砕され易いことを第3の特徴とし、二次粒子解砕後は、一次粒子に単分散(その粒子がほとんどを占める分散状態)、その一次粒子の比表面積が約2.0m2/g以下であることを第4の特徴とするリチウム二次電池用正極活物質(但し、一般式LixCo2-x2で表わされ、式中のxの値が0.945≦x≦1.052であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、一般式Li x Co 2-x-y-z y Mg z 2 で表わされ、式中 x= 0.97〜1.005、 y= 0.01〜0.04、 z= 0.01〜0.05であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、一般式Li x Co 2-x-y y 2 で表わされ、式中 x= 0.97〜1.005、 y= 0.01〜0.12であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、一般式LiCo 0.92 Mg 0.08 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、Li 0.96 Co 0.96 0.05 Mg 0.03 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、一般式LiCoO 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、一般式LiCoB 0.147 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、及び、原料粉体を湿式粉砕混合し、その混合物を350〜600℃で一次焼成し、45℃以下に冷却し、湿式粉砕混合し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を酸素気流中600〜1000℃で二次焼成することにより得られるリチウム複合酸化物からなるリチウム二次電池用正極活物質、及び、水酸化酸化アルミニウムを原料としてなるリチウム複合酸化物からなるリチウム二次電池用正極活物質を除く。)を提案する。
【0016】
上記リチウム二次電池用正極活物質において、二次粒子の解砕され易さは、10.5mmφのダイスに粉1gを入れて一軸方向へ圧力をかける試験において、2tの圧力をかけたときの粉の粒度分布のd50の値が、圧力をかける前の約70%以下になる程度であるのが好ましく、更に好ましくは1tの圧力をかけたときの粉のd50値が、圧力をかける前の約50%以下になる程度である。
また、二次粒子が一次粒子に解砕した後の比表面積が約2.0cm2/g以下、特に約1.5cm2/g以下であるのが好ましい。
【0017】
このようなリチウム二次電池用正極活物質によれば、一次粒子間の凝集力が弱いために、適度な解砕或いは電極作製工程で簡単に一次粒子に解砕され、しかも二次粒子が解砕する過程において一次粒子自体が崩れることがないため、一次粒子がその大きさ・形状を保ったまま単分散(その粒子がほとんどを占める分散)した状態となる。更には、一次粒子が分散した粉体は平均粒径が小さい割には比表面積が小さくなるという特徴を示す。
【0018】
上記リチウム二次電池用正極活物質は、粒度分布のd50の値が解砕前の約70%以下になるまで解砕してなるリチウム二次電池用正極活物質としても提供することができる。
【0019】
本発明のリチウム二次電池用正極活物質を電池材料に用いれば、電極作製過程等で二次粒子が解れて一次粒子のレベルで単分散するため、電極の密度を高くすることができ、電池に充填する正極活物質量を多くすることができる。そればかりか、導電材との混合性が良くなり、導電材が全ての一次粒子に行き届き易くなり、接触面積が増加して放電容量、レート特性に優れた電池材料とすることができる。しかも、充放電に伴う体積変化による割れが生じにくく、サイクル特性も向上する。
【0020】
本発明のリチウム二次電池用正極活物質は、Li原料粉体と、遷移金属原料粉体と、必要に応じて置換元素原料粉体とを混合し、水を加えてスラリー化し、湿式粉砕機を用いて平均粒径が約3μm以下、例えば約0.5〜3μmになるまで粉砕し、乾燥させ、この際好ましくは平均粒径約30μm〜50μmに造粒し、その後、品温約850〜1000℃で約0.5〜30時間保持するように焼成することにより製造することができる。
【0021】
なお、本発明において「その二次粒子は、電極作製工程で自然に一次粒子に解砕する程度に解砕され易い」とは、二次粒子の解砕され易さの程度を示すものであり、必ずしも電極作製工程で解砕される必要はない。例えば、電極作製工程前に解砕工程を挿入して一次粒子に解砕されるものであってもよい。また、後述する「適度な解砕で自然に一次粒子に解砕される程度」を包含する意であり、これを排除する意ではない。
また、「一次粒子に単分散する」とは、一次粒子がほとんどを占める分散状態となるという意であり、一次粒子の粒子径範囲で約80重量%以上、中でも約90重量%以上を占める状態が好ましい。
さらに、本発明において「約」とは、その数値の前後であっても同様の効果を示せば特に許容する意である。但し、約を付さない値を厳格に解するという意はない。
【0022】
【発明の実施形態】
以下、本発明の実施形態の一例について説明するが、本発明の範囲がこの実施形態に制限されるものではない。特に、ここでは層状構造のリチウム複合酸化物について説明するが、スピネル構造のものについても同様に考えられる。
【0023】
(正極活物質:層状構造リチウム複合酸化物)
本発明の一例としてのリチウム二次電池用正極活物質は、層状構造のリチウム複合酸化物からなり、各粒子は一次粒子が凝集してなる二次粒子からなり、その二次粒子は、平均粒子径約0.5〜3μmの一次粒子が凝集してなる平均粒子径約10〜100μmの粒子であり、各二次粒子は一次粒子に解砕され易く、解砕後は一次粒子がその形状及び大きさを確保しつつ単分散するという特徴を備えている。
【0024】
二次粒子の大きさは、平均凝集径約10〜70μmであるのが好ましい。
ここでの凝集径は、MIE散乱理論を用いたレーザー回折式粒度分布測定法で測定することができる。
【0025】
二次粒子の解砕され易さ(言い換えれば一次粒子間の凝集力)は、適度な解砕或いは電極作製工程で自然に一次粒子に解砕される程度であるのが好ましい。
ここで、「適度な解砕で自然に一次粒子に解砕される程度」とは、振動ミルやローラーミルで解砕処理する過程で、自然に一次粒子に解砕する程度を言う。
また、「電極作製工程で自然に一次粒子に解砕される程度」とは、電極作製工程に通常用いられるロールプレス(クリアランス50〜200μm)を用いてプレスする過程で、自然に一次粒子に解砕する程度を言う。
具体的には、二次粒子の解砕され易さは、10.5mmφのダイスに粉1gを入れて一軸方向へ圧力をかける試験において、2tの圧力をかけたときの粉の粒度分布のd50の値が、圧力をかける前の70%以下、好ましくは50%以下、特に30%以下になる程度であるのが好ましい。また、同試験において、1tの圧力をかけたときの粉の粒度分布のd50の値が、圧力をかける前の70%以下、好ましくは50%になる程度であれば更に好ましい。
【0026】
二次粒子の比表面積は、約0.2〜2.0m2 /gの範囲にあることが好ましく、約0.5〜1.0m2 /gの範囲にあることが特に好ましい。比表面積が約0.2m2 /gよりも小さいときは、リチウムイオン二次電池の正極活物質として用いた場合に、急速に多量の電気量を取り出すことができないおそれがある。他方、比表面積が約2.0m2 /gを越えるときは、リチウムイオン二次電池中の電解液への遷移金属の溶出量が大きくなり充放電容量の低下(サイクル性)が生じる可能性がある。
なお、本発明において、二次粒子の比表面積は、自動表面積測定装置(例えばユアサアイオニクス社製 monosorb MS−15)を用いて、BET一点法にて求めることができる。
【0027】
二次粒子が解砕されて生じる粒子としての一次粒子、言い換えれば二次粒子の構成単位としての一次粒子は、SEM(走査型電子顕微鏡写真)観察による平均粒子径が約0.5〜3μm、特に約1〜2μmであるのが好ましく、その形状はほぼ球状或いは楕円球状であるのが好ましい。
粒子径が約0.5μmよりも小さいときは、比表面積が増大し、粉体としての流動性が悪化したり、有機溶剤と混合して塗料化する際にスラリー粘度が上昇したり、タップ密度の低下につながり、容積当りの充填量が減少し、充放電容量が低くなる可能性がある。反対に、粒子径が約3μmを越えると、比表面積が小さくなり、電子伝導性が低下して負荷特性が劣化する可能性がある。
なお、上記の「ほぼ球形」とは「真球状」である必要はなく、概ね「球状」であればよいという意であり、「楕円球状」とは「真楕円球状」である必要はなく、概ね「楕円球状」であればよいという意である。
また、一次粒子の平均粒子径は、SEM(走査型電子顕微鏡写真)から任意の200個(200個程度以上であれば任意)の一次粒子を選び出し、その長径の加重平均を平均粒径として求めることができる。
【0028】
二次粒子解砕後は、一次粒子に単分散(その粒子がほとんどを占める分散状態)した状態となるのが好ましい。所定範囲の大きさを備えた一次粒子が単分散した状態であれば、負極に対する安定性、内部抵抗、感度、充放電中の応答速度、電気容量等の特性に対して高い信頼性と再現性を得ることができる。
ここで、一次粒子が単分散した状態とは、一次粒子がほとんどを占める分散状態の意であり、二次粒子解砕後の粒度分布において、一次粒子の粒子径範囲(0.5〜3μm)が約80重量%以上、好ましくは約90重量%以上を占め、サブミクロンオーダー(粒子径0.5μm以下)の超微粒子の含有割合が約10重量%、好ましくは約5%以下であるのが好ましい。
【0029】
また、二次粒子が解砕した後の粉体の比表面積は約2.0m2/g以下、特に約1.5m2/g以下であるのが好ましい。この程度の比表面積の上昇率であれば、二次粒子が解砕した後、平均粒径が小さい割には比表面積が小さいと評価することができる。
なお、二次粒子が解砕した後の粉体の比表面積は、自動表面積測定装置(例えばユアサアイオニクス社製 monosorb MS−15)を用いて、BET一点法により求めることができる。
【0030】
一次粒子の強度(破壊され難さ)は、10.5mmφのダイスに粉1gを入れて一軸方向へ圧力をかける試験において、1tの圧力をかけた時の0.5μm以下の含有割合が約5%以下になる程度であるのが好ましい。
このような強度を備えていれば、二次粒子が解砕される程度の解砕或いは電極作製工程では一次粒子が崩れることがなく、適度な粒度分布と粒径とを保持した正電極を製造することができる。
【0031】
また、二次粒子が解砕されて生じる一次粒子のタップ密度は約1.8〜2.5g/cm3の範囲にあるのが好ましい。
ここでのタップ密度は、50mL容量のメスシリンダーに粉体を10g採取し、水平且つ平坦な硬質ゴム板上に50mmの高さから垂直に50回落下させた後、タッピング後の容積V(cm3)を測定し、そのときの10/V(g/cm3)の値からも止めることができる(タップ密度はJIS Z 2504 に基づくタップ法で測定する。)。
【0032】
本発明の正極活物質は、上記特性を備えているから、必要に応じて振動ミルやローラーミルで解砕処理した後、これに導電材、結着剤、充填材等を配合して混練して合剤(ペースト)とし、これを例えばステンレスメッシュからなる正極集電体に塗布し、ロールプレスした後、減圧下で加熱乾燥させて正極を製造することができる。
また、必要に応じて、上記合剤を円板状等、適宜の形状に加圧成形し、必要に応じて、真空下に熱処理するようにして正極を製造することもできる。
得られた正極は、その組成において上記の如き一次粒子が単分散した状態となり、しかも充放電を繰り返しても一次粒子は潰れないから、電池容量の低下やサイクル特性の悪化を防止することができる。
【0033】
なお、使用する導電材としては、リチウムイオン二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維、ポリフェニレン誘導体等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。
結着剤としては、例えばデンプン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースポリビニルクロライド、ポリビニルピロリドン、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体(EPDM)、スルホン化EPDM、スチレン−ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキサイド等を挙げることができる。
充填材としては、リチウムイオン二次電池において化学変化を起こさない繊維状材料であれば特に限定されず、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維等を挙げることができる。
【0034】
本発明から得られた正極を用いたリチウム二次電池は、例えば、ノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリーカード等の電子機器、ペースメーカー、補聴器等の医療機器等に使用することができる。これらに限定するものではない。
【0035】
(正極活物質:層状構造リチウム複合酸化物の製造方法)
次に、本発明の正極活物質の製造方法について説明するが、ここで説明するのは製造方法のあくまでも一例であり、この製造方法に限定するものではない。
【0036】
本発明の正極活物質は、Li原料粉体と、遷移金属原料粉体と、必要に応じて置換元素原料粉体とを混合し、水を加えてスラリーとすると共に必要に応じてこれにバインダー、消泡剤、分散剤などを加え、湿式粉砕機を用いて平均粒径が約0.5〜3μmになるまで粉砕し、乾燥させた後、得られた原料粉を所定温度・所定時間で焼成して層状構造リチウム複合酸化物を合成して得ることができる。この際、乾燥と同時に造粒するのが好ましく、その目安の一例としては平均粒径約30μm〜50μmに造粒するのが好ましい。
【0037】
(原料及び原料の混合)
リチウム原料としては、リチウム(金属リチウム)及びリチウム化合物の少なくとも1種を用いることができ、リチウム化合物としては、リチウムを含有するものであれば特に制限されず、例えば酢酸リチウム、シュウ酸リチウム等の有機酸リチウム、水酸化リチウム、炭酸リチウム、硝酸リチウム等の無機リチウム塩が用いることができる。中でも、価格、操作性等の観点から、炭酸リチウム(Li2CO3)、硝酸リチウム(Li2NO3)、水酸化リチウム(LiOH)等が好ましい。リチウム原料の平均粒径は1〜20μmが好ましい。
【0038】
遷移金属としては、Mn、Co又はNiを用いることができる。
Mn原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いることができ、マンガン化合物としてはMnO2、Mn23、Mn34及びMnCO3を用いるのが好ましい。Mn原料の平均粒径は1〜30μmが好ましい。
Co原料としては、コバルト(金属コバルト)及びコバルト化合物の少なくとも1種を用いることができ、コバルト化合物としては、コバルトを含有するものであれば特に制限されず、例えば、Co34、CoO等の酸化物、CoCO3、Co(NO32、CoCl2等の塩類、Co(OH)2等の水酸化物、CoOOH等の酸化水酸化物等が挙げられる。これらの中でも、特にCo34或いはCo(OH)2などが好ましい。Co原料の平均粒径は1〜30μmが好ましい。
Ni原料としては、ニッケル(金属ニッケル)及びニッケル化合物の少なくとも1種を用いることができ、ニッケル化合物としては、ニッケルを含有するものであれば特に制限されず、例えばNiO等の酸化物、NiCO3、Ni(NO32・6H2O、NiCl2等の塩類、Ni(OH)2等の水酸化物、NiOOH等の酸化水酸化物等が挙げられる。これらの中でも、特にNiO或いはNi(OH)2などが好ましい。Ni原料の平均粒径は1〜30μmが好ましい。
【0039】
置換元素、すなわち層状構造において上記遷移金属の一部を置換する元素としては、Cr、Al、B、Mg、Si、Sc、Ti、V、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、Ce、Pr、Nd、Hf、Ta及びPbよりなる群から選ばれる少なくとも一種或いは二種以上からなる混合物又は固溶体を挙げることができ、中でも好ましくはAl、Mg、Ti、Feである。
置換元素原料としては、例えば、酸化クロム、水酸化クロム、硝酸クロム、硫酸クロム、酢酸クロム、水酸化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、酢酸アルミニウム、ホウ酸、水酸化マグネシウム、炭酸マグネシウム、塩化マグネシウム、酢酸マグネシウム、二酸化ケイ素、ケイ酸、酸化スカンジウム、二酸化チタン、水酸化チタン、五酸化バナジウム、メタバナジン酸アンモニウム、水酸化鉄、硝酸鉄、硫酸鉄、塩化鉄、水酸化コバルト、硝酸コバルト、硫酸コバルト、塩化コバルト、水酸化ニッケル、硝酸ニッケル、硫酸ニッケル、硝酸銅、硫酸銅、硝酸亜鉛、硫酸亜鉛、酸化ガリウム、酸化イットリウム、硝酸イットリウム、酸化ジルコニウム、硝酸ジルコニル、酸化ニオブ、塩化ニオブ、酸化モリブデン、塩化ルテニウム、酸化スズ、塩化スズ、塩化アンチモン、酸化セリウム、硝酸セリウム、硝酸プラセオジム、塩化ネオジム、塩化ハフニウム、塩化タンタル、硫酸鉛、酢酸鉛、塩化鉛等の酸化物、水酸化物、無機塩、有機塩を挙げることができる。
【0040】
上記Li原料、遷移金属原料及び置換元素原料は、原料混合前或いは後に粉砕するようにしてもよい。
なお、この際の混合方法は、これらを均一に混合できる限り特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で配合し、湿式又は乾式で混合すれば良い。
【0041】
(スラリーの作製工程)
上記混合物を湿式粉砕機に投入し、水のほか、必要に応じてバインダー及び分散剤などを添加して混合し、平均粒径が約3μm以下になるまで粉砕し、均一な粒径のスラリーを作製する。また、必要に応じて希釈剤や分散剤を添加してスラリーの粘度調整をするのもよい。
【0042】
(乾燥工程)
得られたスラリーは、噴霧熱乾燥、熱風乾燥、真空乾燥、フリーズドライなどの公知の乾燥方法によって乾燥させればよい。
【0043】
(焼成工程)
乾燥後、得られた原料粉を焼成炉にて、大気雰囲気において約850〜1000℃、中でも約950〜980℃の温度で約0.5〜30時間保持するように焼成し、層状構造リチウム複合酸化物を合成する。なお、ここでの焼成温度は焼成炉内の品温を意味する。
焼成温度が約1000℃を上回ると、一次粒子が大きくなり、比表面積は小さくなるが単分散し難くなる。一方、約850℃を下回ると、一次粒子が小さくなり、比表面積が大きくなる。
焼成時間は、均一な反応を得るため約0.5時間以上、特に約10〜20時間とするのが好ましい。
焼成炉としては、ロータリーキルン或いは静置炉等を用いることができる。
焼成雰囲気は、大気雰囲気下のほか、酸化性雰囲気を採用することもできる。
【0044】
このようにして合成された正極活物質の各粒子のほとんどが、上記の如く層状構造のリチウム複合酸化物からなる平均粒子径約0.5〜3μmの一次粒子が凝集してなる平均粒子径約10〜100μmの二次粒子であり、各二次粒子は多くの隙間を持ち、かつ容易に一次粒子に解砕され易く、振動ミルやローラーミルで解砕するか、或いはロールプレスなどの電極作製過程で一次粒子に解砕され、解砕した一次粒子はその形状及び大きさを確保できるという特徴を備えている。
よって、正極を製造すれば、その組成において上記の如き一次粒子が単分散した状態となり、しかも充放電を繰り返しても一次粒子は潰れないから、電池容量の低下やサイクル特性の悪化を防止することができる。
【0045】
次に実施例と比較例を比較しながら説明するが、本発明が実施例に限定されるものではない。
【0046】
(実施例1)
原料として、平均粒径約23μmの炭酸リチウム、平均粒径約6μmの電解二酸化マンガン、平均粒径約23μmの水酸化ニッケル、平均粒径約18μmの水酸化コバルトを、モル比Li:Mn:Ni:Co=1.15:0.33:0.33:0.33となるように秤量し、これに水を固形分比1:1となるように加え、更にバインダー、分散剤を添加して湿式粉砕機を用いて平均粒径が約0.5〜3.0μmとなるまで粉砕し、これをスプレードライを用いて造粒・乾燥し、平均粒径約30〜50μmの原料粉を得た。得られた原料粉を、大気中にて約970℃(品温)、約20時間の焼成を行い目的とする層構造化合物を得た。
【0047】
得られた層構造化合物は、層構造化合物:導電材:バインダー=0.67:0.22:0.11の割合で混合し、乳鉢を用いてシート状に形成した後、13mmφのポンチで打ち抜いて正極とした。そして、電解液に1M−LiPF6/PC:DMC(1:1)、負極にLiメタルを用いてコイン型電池を作製し、サイクル試験を行った。
【0048】
得られた粉体の解砕のし易さの指標を求めるため、圧力をかけた場合に二次粒子がどの程度解砕されるかを測定した。
上記で得られた層構造化合物1gを10.5mmφのダイスに入れて一軸方向へ0.2〜3tの圧力をかけた後に粉体の粒度分布を測定し、圧力と粒度d10、d50、d90の関係を調査した。
【0049】
(比較例1)
共沈法により、pHを約11.6にコントロールしたアルカリ溶液中に、モル比でNi:Co:Mn=1:1:1のNi、Co、Mn混合硫酸水溶液を連続的に供給し、原料水酸化物を得た。得られた原料をモル比(Li:Ni、Co、Mn)=1.15:1となるように炭酸リチウムと混合し、大気中にて約970℃(品温)、約20時間の焼成を行い層構造化合物を得た。得られた化合物は、上記と同じ方法で評価した。
【0050】
(比較例2)
実施例1と同様な方法で原料粉を調整した後に、大気中にて約1100℃(品温)、約20時間の焼成を行い層構造化合物を得た。得られた層構造化合物は、上記と同様な方法で評価を行った。
【0051】
(結果)
実施例1及び比較例1で得られたサンプル(層構造化合物)のプレス試験結果を表1、図1、図2に示す。
【0052】
【表1】

Figure 0003709446
【0053】
実施例1のサンプルは、圧力の上昇に伴い二次粒子が解砕され、d50、d90が低下していることがわかる。また、d10は圧力が上昇してもそれほど変化していない。これは、圧力をかけても二次粒子が解砕されるだけで、解砕された一次粒子はそれ以上崩れないことを意味している。
これに対して比較例1のサンプルは、圧力が上昇しても粒度d10、d50、d90のいずれも殆ど変化していない。圧力を上げても二次粒子が解砕されず、一次粒子が凝集したままであることが分かる。
【0054】
二次粒子が解砕されやすいということは、弱い力で二次粒子が解砕され一次粒子が分散した状態にすることができるということである。そのため、実施例1のような材料は、予め二次粒子を解砕して電極材料に使用した場合であっても、一次粒子が粉砕することなく、比表面積を比較的低く保ったまま一次粒子を単分散させることができる。
【0055】
表2に各サンプルの電池特性の結果を示す。
【0056】
【表2】
Figure 0003709446
【0057】
これより実施例1のサンプルは、他のサンプルと比較してサイクル特性に優れることが分かる。これの原因を調査するために、電極のSEM像を観察した。図3に実施例1の電極(0.2tの圧力負荷)のSEM像を、図4に比較例1の電極(0.2tの圧力負荷)のSEM像を示す。
【0058】
実施例1では、二次粒子が解砕されて一次粒子のレベルで分散していることが分かる。これにより、導電材が一次粒子にまで行き届いているのが分かる。
これに対して、比較例1の電極では二次粒子が解砕されずそのまま残っており、二次粒子内部の一次粒子は導電剤と接していない。このため、電池の充放電サイクルに伴う体積膨張・収縮により二次粒子に割れが発生すると、その部分で導電性が損なわれてサイクルが劣化すると考えられる。
【図面の簡単な説明】
【図1】 実施例1で得られたサンプル(層構造化合物)のプレス試験結果を示したグラフである。
【図2】 比較例1で得られたサンプル(層構造化合物)のプレス試験結果を示したグラフである。
【図3】 実施例1で得られた電極(0.2tの圧力負荷)のSEM写真である。
【図4】 比較例1で得られた電極(0.2tの圧力負荷)のSEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a lithium secondary battery and a method for producing the same.
[0002]
[Prior art]
Lithium secondary batteries (lithium ion secondary batteries) are small in weight per unit of electricity and yet high in energy density, so power sources for portable electronic devices such as video cameras, laptop computers, and mobile phones, and power sources for automobiles And so on.
[0003]
In this type of lithium secondary battery, carbon or graphite capable of lithium insertion / extraction is generally used for the negative electrode, and various lithium composite oxides are used for the positive electrode.
At the time of charging, lithium atoms in the positive electrode crystal are released into the electrolyte as lithium ions. At the same time, lithium ions in the electrolytic solution enter the negative electrode crystal, and at the time of discharge, the lithium atoms in the negative electrode are in the positive electrode. Operate to return. For example, when lithium cobaltate is used as the positive electrode active material and graphite is used as the negative electrode active material, the charge / discharge reaction is performed as follows.
Positive electrode: LiCoO2  Li xLi++ Li1-xCoO2+ Xe-
Negative electrode: 6xC + xLi++ Xe-  ⇔ xC6Li
Battery: LiCoO2 + 6xC Li Li1-xCoO2+ XC6Li
[0004]
  The high energy density of the lithium secondary battery is mainly due to the potential of the positive electrode material, and this positive electrode active material includes LiCoO having a layered structure.2, LiNiO2And LiMnO2LiMn with spinel structure2OFourEtc. are typically used.
In addition, lithium composite oxide (LiMXOY) Has been known to improve characteristics by substituting a part of M with a different metal, for example, lithium manganese oxide (LiMn2OFour) By substituting a part of Mn with a dissimilar metal such as Ni, Cr, Fe, Co (LiMn)2-xMxOFour(M = Ni, Cr, Fe, Co, etc.)), it is disclosed that the crystal structure is stabilized and the cycle characteristics are improved (Japanese Patent Laid-Open Nos. 4-119554, 4-160758, 4-160769). JP-A-4-16976, JP-A-4-237970, JP-A-4-282560, JP-A-4-28962, JP-A-5-28991, JP-A-7-14572, JP-A-9-213333, JP-A-9-270259, etc. ). In addition, lithium manganese oxide (LiMn2OFour) Is replaced with a dissimilar metal (LiCoMnO)Four, Li2FeMnThreeO8, Li2CuMnThreeO8, Li2CrMnThreeO8, Li2NiMnThreeO8It is also reported that the device operates at a potential of 5 V class (see Masao Yoshio / Akiya Ozawa, “Lithium ion secondary battery”, January 27, 2000, Nikkan Kogyo Shimbun, p. 53, Table 3.9).
[0005]
The synthesis method of such a positive electrode active material is lithium salt powder (LiOH, LiOH,2CoThreeEtc.) and transition metal oxides (MnO)2In general, the positive electrode active material is obtained by mixing conductive powders such as carbon powder having good electrical conductivity and PVdF. In general, it is kneaded with an adhesive or the like to form a paste, which is applied to a current collector foil and then pressed to be used for a positive electrode.
[0006]
However, the positive electrode active material particles synthesized by the above method have a mixture of primary particles grown reflecting the crystal form of the active material and secondary particles formed by aggregation of the primary particles. Has a wide range from several microns to several hundred microns, and the particle shape varies and is not constant. Therefore, if it is applied as it is on the electrode, the conductive auxiliary agent does not reach the inside of the aggregated particles, causing electrical contact failure and causing capacity deterioration. In addition, when there are large secondary particles of several hundred microns, the expansion and contraction of crystals during charge and discharge increase, cracking occurs at the particle interface, and a gap is formed between the conductor and the effective area decreases. I also do.
[0007]
Thus, conventionally, attempts have been made to prevent capacity deterioration while ensuring electrical conductivity by controlling the secondary particle diameter of the positive electrode active material to be relatively small and to narrow the particle size distribution.
[0008]
For example, Patent Document 1 discloses that a powdered active material obtained by spraying and firing a solution in which an active material raw material is emulsified in a flammable liquid is subjected to heat treatment. It is disclosed to improve the charge / discharge characteristics at high current density as an aggregate.
Patent Document 2 discloses primary particle aggregates (secondary particles) having an average particle diameter of 0.1 to 15 μm formed by aggregation of primary particles having an average particle diameter of 0.01 to 5.0 μm. Patent Document 4 states that the particle size of the composite oxide of lithium and nickel is 0.1 to 3 μm and the particle size of the secondary particles is 5 to 50 μm. It has been proposed to suppress the decrease in capacity by controlling the average particle diameter and porosity of the particles within a predetermined range.
In Patent Document 5, lithium carbonate and manganese dioxide are mixed and fired at a predetermined molar ratio, pulverized to produce a raw material powder, and pure water and polyvinyl alcohol are added to this to make a slurry, which is aggregated by a disk spray. Spherical secondary particles are formed, and after firing, secondary particles having a fixed shape are obtained and used as a positive electrode active material, thereby obtaining particles having a substantially spherical lithium oxide particle shape and a fixed particle size. Proposed method.
[0009]
However, simply making the positive electrode active material finer increases the required amount of conductive material and binder and restricts the filling rate of the active material into the positive electrode plate. Proposals have been made to increase the filling ratio of the active material into the positive electrode plate by mixing larger secondary particles and smaller primary particles.
[0010]
For example, Patent Document 6 discloses that a mixture of microcrystalline particles having a fixed direction diameter of 0.1 to 2 μm in SEM observation and spherical secondary particles having a fixed direction diameter of 2 to 20 μm in SEM observation is used as the positive electrode active material. Discloses a technique for improving the filling of the active material into the battery electrode plate.
Patent Document 7 discloses that in the production of a positive electrode active material for a non-aqueous lithium secondary battery comprising a lithium manganese composite oxide having a spinel structure, a mixture of manganese oxide and a lithium salt such as lithium carbonate is granulated to produce granules. After the first baking of a mixture of a lithium salt such as manganese oxide and lithium carbonate in an air atmosphere at a temperature of 1000 ° C. or higher and 1100 ° C. or lower to grow substantially octahedral-like primary particles , Once crushing, and then performing the second baking again at a temperature of 600 ° C. ± 100 ° C., primary particles that are substantially octahedral-like aggregated, and secondary particles that are easy to break up are formed. Discloses a method for regulating the ratio of the particle size distribution and the particle size together with the electrode density.
[0011]
[Patent Document 1]
JP-A-9-320603
[Patent Document 2]
JP-A-6-325791
[Patent Document 3]
JP-A-7-183047
[Patent Document 4]
JP 10-32227 A
[Patent Document 5]
JP 2000-223118 A
[Patent Document 6]
JP-A-9-129230
[Patent Document 7]
JP 2001-155728 A
[0012]
[Problems to be solved by the invention]
By the way, when manufacturing the positive electrode, the positive electrode active material of the lithium ion secondary battery is to apply a mixture (slurry) for high density filling and then roll press to increase the bulk density of the electrode. In general, secondary particles that are not easily collapsed are concerned that the utilization factor of the positive electrode material is reduced because the conductive material does not reach the particles inside the secondary particles. In addition, during the roll press or repeated charging and discharging, the secondary particles are crushed and gaps are formed, with which the contact with the conductive material is deteriorated, the battery capacity is reduced, and the cycle characteristics are deteriorated. Is also possible.
[0013]
Further, it is known that the discharge characteristics and the like of the positive electrode active material vary greatly depending on its specific surface area. The positive electrode active material composed of particles having a large specific surface area has a large reaction area and a short ion movement distance in the active material, so that the electrode reaction is performed with high density and high efficiency, but the larger the specific surface area, the greater the specific surface area. It has been pointed out that the contact with the electrolyte increases and the capacity may be significantly reduced during storage (see the description of [0014] of JP-A-10-162830), and particularly high reliability and reproducibility are required. This is an important issue for practical batteries.
[0014]
  Therefore, the present invention consists of secondary particles with weak cohesion of primary particles, and is naturally dispersed in primary particles by appropriate crushing or in the process of electrode preparation, and the particle size after dispersion is small.Specific surface areaWith small characteristics and good mixingPositive electrode active materialIt is to be provided.
[0015]
[Means for Solving the Problems]
  The first feature of the present invention is that it is composed of a lithium composite oxide having a layered structure or a spinel structure, and each particle has an average aggregate diameter of about 10 formed by agglomerating primary particles having an average particle diameter of about 0.5 to 3 μm. The second feature is that it consists of secondary particles of ˜100 μm, and the secondary feature is that the secondary particles are easily crushed to such an extent that they are naturally crushed into primary particles in an electrode manufacturing process such as a roll press. And after secondary particle crushing, it is monodispersed in primary particles (dispersed state where most of the particles are dispersed)ShiThe specific surface area of the primary particles is about 2.0 m2/ G or less, wherein the positive electrode active material for a lithium secondary battery has a fourth characteristic (provided that the general formula LixCo2-xO2A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide, wherein x is 0.945 ≦ x ≦ 1.052General formula Li x Co 2-xyz B y Mg z O 2 Represented by the formula x = 0.97 to 1.005, y = 0.01-0.04, z = Positive electrode active material for lithium secondary battery comprising lithium composite oxide of 0.01 to 0.05, general formula Li x Co 2-xy B y O 2 Represented by the formula x = 0.97 to 1.005, y = Positive electrode active material for lithium secondary battery comprising lithium composite oxide of 0.01 to 0.12, general formula LiCo 0.92 Mg 0.08 O 2 Lithium secondary battery positive electrode active material comprising a lithium composite oxide represented by 0.96 Co 0.96 B 0.05 Mg 0.03 O 2 A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula LiCoO 2 A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula LiCoB 0.147 O 2 The positive electrode active material for a lithium secondary battery composed of a lithium composite oxide represented by formula (1) and a raw material powder are wet pulverized and mixed, and the mixture is primarily fired at 350 to 600 ° C, cooled to 45 ° C or lower, and wet pulverized. By mixing and forming particles having an average secondary particle diameter of 0.1 to 100 μm from the resulting slurry using a spray drying granulator, and secondary firing the particles in an oxygen stream at 600 to 1000 ° C. A positive electrode active material for a lithium secondary battery comprising the resulting lithium composite oxide, and a positive electrode active material for a lithium secondary battery comprising a lithium composite oxide obtained from aluminum hydroxide oxide as a raw materialexcept. ) Is proposed.
[0016]
  In the above-described positive electrode active material for a lithium secondary battery, the ease with which the secondary particles are crushed is determined by applying a pressure of 2 t in a test in which 1 g of powder is put in a 10.5 mmφ die and pressure is applied in a uniaxial direction. It is preferable that the value of d50 of the particle size distribution of the powder is about 70% or less before the pressure is applied, and more preferably, the d50 value of the powder when the pressure of 1 t is applied is the value before the pressure is applied. It is about 50% or less.
  In addition, after the secondary particles are crushed into primary particlesSpecific surface areaAbout 2.0cm2/ G or less, especially about 1.5 cm2/ G or less.
[0017]
According to such a positive electrode active material for a lithium secondary battery, since the cohesive force between primary particles is weak, the primary particles can be easily crushed by an appropriate pulverization or electrode preparation process, and the secondary particles can be dissolved. Since the primary particles themselves do not collapse during the crushing process, the primary particles are in a monodispersed state (dispersion in which most of the particles are dispersed) while maintaining the size and shape. Furthermore, the powder in which the primary particles are dispersed has a feature that the specific surface area is small for a small average particle diameter.
[0018]
The positive electrode active material for a lithium secondary battery can also be provided as a positive electrode active material for a lithium secondary battery that is pulverized until the value of d50 in the particle size distribution is about 70% or less before pulverization.
[0019]
If the positive electrode active material for a lithium secondary battery of the present invention is used as a battery material, the secondary particles are released and monodispersed at the primary particle level in the electrode preparation process, etc., so that the density of the electrodes can be increased, and the battery The amount of the positive electrode active material filled in can be increased. In addition, the compatibility with the conductive material is improved, the conductive material can easily reach all the primary particles, the contact area is increased, and a battery material having excellent discharge capacity and rate characteristics can be obtained. In addition, cracks due to volume changes associated with charge / discharge are less likely to occur, and cycle characteristics are also improved.
[0020]
  The positive electrode active material for a lithium secondary battery of the present invention is prepared by mixing a Li raw material powder, a transition metal raw material powder, and, if necessary, a substitution element raw material powder, adding water to form a slurry, and a wet pulverizer. , Until the average particle size is about 3 μm or less, for example, about 0.5 to 3 μm, and dried,In this case, the granule is preferably granulated to an average particle size of about 30 μm to 50 μm, and thenIt can be produced by firing at a temperature of about 850 to 1000 ° C. for about 0.5 to 30 hours.
[0021]
In the present invention, “the secondary particles are easily pulverized to such an extent that they are naturally pulverized into primary particles in the electrode preparation process” means the degree of ease of pulverizing the secondary particles. It is not always necessary to be crushed in the electrode manufacturing process. For example, a crushing step may be inserted before the electrode manufacturing step to crush into primary particles. Moreover, it is meant to include “the extent that it is naturally broken into primary particles by appropriate crushing”, which will be described later, but not to exclude this.
In addition, “monodispersed in primary particles” means that the primary particles are in a dispersed state, and the primary particle size range is about 80% by weight or more, especially about 90% by weight or more. Is preferred.
Further, in the present invention, “about” means that it is particularly permissible if the same effect is exhibited even before and after the numerical value. However, there is no intention of strictly interpreting values that do not have a contract.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described, but the scope of the present invention is not limited to this embodiment. In particular, the lithium composite oxide having a layered structure will be described here, but the same can be considered for a spinel structure.
[0023]
(Positive electrode active material: layered lithium composite oxide)
The positive electrode active material for a lithium secondary battery as an example of the present invention is composed of a lithium composite oxide having a layered structure, each particle is composed of secondary particles formed by aggregation of primary particles, and the secondary particles are average particles. Particles having an average particle diameter of about 10 to 100 μm formed by agglomeration of primary particles having a diameter of about 0.5 to 3 μm, each secondary particle is easily crushed into primary particles, and after pulverization, the primary particles are shaped and It has the feature of monodispersing while ensuring the size.
[0024]
The size of the secondary particles is preferably about 10 to 70 μm in average aggregate diameter.
The agglomerated diameter here can be measured by a laser diffraction particle size distribution measuring method using MIE scattering theory.
[0025]
The ease with which the secondary particles are crushed (in other words, the cohesive force between the primary particles) is preferably such that the secondary particles are naturally crushed into primary particles in an appropriate crushing or electrode preparation process.
Here, “the degree to which the primary particles are naturally crushed by moderate crushing” refers to the degree to which the particles are naturally broken into primary particles in the process of being crushed by a vibration mill or a roller mill.
In addition, “the degree of being naturally crushed into primary particles in the electrode preparation process” means that the primary particles are naturally dissolved in the process of pressing using a roll press (clearance 50 to 200 μm) that is usually used in the electrode preparation process. Say the degree of crushing.
Specifically, the ease with which the secondary particles are crushed is the d50 of the particle size distribution of the powder when a pressure of 2 t is applied in a test in which 1 g of powder is put in a 10.5 mmφ die and pressure is applied in a uniaxial direction. Is preferably about 70% or less, preferably 50% or less, particularly 30% or less before the pressure is applied. In the same test, it is more preferable that the value of d50 of the particle size distribution of the powder when a pressure of 1 t is applied is about 70% or less, preferably 50% before the pressure is applied.
[0026]
The specific surface area of the secondary particles is about 0.2 to 2.0 m2 / G is preferably in the range of about 0.5 to 1.0 m.2 / G is particularly preferable. Specific surface area is about 0.2m2 When it is smaller than / g, when used as a positive electrode active material of a lithium ion secondary battery, there is a possibility that a large amount of electricity cannot be taken out rapidly. On the other hand, specific surface area is about 2.0m2 When exceeding / g, the elution amount of the transition metal into the electrolyte in the lithium ion secondary battery becomes large, and the charge / discharge capacity may decrease (cycleability).
In the present invention, the specific surface area of the secondary particles can be determined by the BET single point method using an automatic surface area measuring device (for example, monosorb MS-15 manufactured by Yuasa Ionics).
[0027]
The primary particles as the particles generated by crushing the secondary particles, in other words, the primary particles as the constituent units of the secondary particles have an average particle diameter of about 0.5 to 3 μm by SEM (scanning electron micrograph) observation, In particular, the thickness is preferably about 1 to 2 μm, and the shape is preferably almost spherical or elliptical.
When the particle diameter is smaller than about 0.5 μm, the specific surface area increases, the fluidity as a powder deteriorates, the slurry viscosity increases when mixed with an organic solvent, and the tap density There is a possibility that the charging amount per volume is reduced and the charge / discharge capacity is lowered. On the other hand, when the particle diameter exceeds about 3 μm, the specific surface area becomes small, the electron conductivity may be lowered, and the load characteristics may be deteriorated.
Note that the above “substantially spherical” does not need to be “spherical”, but generally “spherical”, and “elliptical spherical” does not need to be “true elliptical”, It means that it should be generally “elliptical spherical”.
The average particle diameter of primary particles is determined by selecting 200 arbitrary primary particles (optional if it is about 200 or more) from SEM (scanning electron micrograph), and calculating the weighted average of the major diameters as the average particle diameter. be able to.
[0028]
After secondary particle crushing, it is preferable to be in a state of being monodispersed in primary particles (dispersed state in which most of the particles are dispersed). Highly reliable and reproducible characteristics such as stability against negative electrode, internal resistance, sensitivity, response speed during charge / discharge, capacitance, etc., if primary particles with a certain size range are monodispersed Can be obtained.
Here, the state in which the primary particles are monodispersed means a dispersed state in which the primary particles occupy most, and in the particle size distribution after secondary particle crushing, the particle size range of the primary particles (0.5 to 3 μm). Occupy about 80% by weight or more, preferably about 90% by weight or more, and the content of ultrafine particles of submicron order (particle diameter of 0.5 μm or less) is about 10% by weight, preferably about 5% or less. preferable.
[0029]
The specific surface area of the powder after the secondary particles are crushed is about 2.0 m.2/ G or less, especially about 1.5m2/ G or less. With this rate of increase in specific surface area, after the secondary particles are crushed, it can be evaluated that the specific surface area is small for a small average particle size.
The specific surface area of the powder after the secondary particles have been crushed can be determined by the BET single point method using an automatic surface area measuring device (for example, monosorb MS-15 manufactured by Yuasa Ionics).
[0030]
The strength of primary particles (hardness to break) is about 5 μm or less when a pressure of 1 t is applied in a test in which 1 g of powder is put in a 10.5 mmφ die and pressure is applied in a uniaxial direction. % Or less is preferable.
If it has such strength, the primary particles will not collapse in the crushing or electrode preparation process to the extent that the secondary particles are crushed, and a positive electrode having an appropriate particle size distribution and particle size will be produced. can do.
[0031]
Further, the tap density of the primary particles generated by crushing the secondary particles is about 1.8 to 2.5 g / cm.ThreeIt is preferable that it exists in the range.
The tap density here is 10 g of powder in a 50 mL graduated cylinder, dropped 50 times vertically from a height of 50 mm onto a horizontal and flat hard rubber plate, and then the volume V (cm after tapping).Three) At that time, 10 / V (g / cmThree(The tap density is measured by a tap method based on JIS Z 2504).
[0032]
Since the positive electrode active material of the present invention has the above characteristics, it is crushed with a vibration mill or a roller mill as necessary, and then mixed with a conductive material, a binder, a filler, and the like and kneaded. Thus, a positive electrode can be produced by applying a mixture (paste) to a positive electrode current collector made of, for example, a stainless mesh, performing roll pressing, and then drying by heating under reduced pressure.
If necessary, the positive electrode can be produced by pressure-molding the above mixture into an appropriate shape such as a disc and heat-treating it under vacuum as necessary.
The obtained positive electrode is in a state where the primary particles as described above are monodispersed in the composition, and the primary particles are not crushed even after repeated charge and discharge, so that it is possible to prevent a decrease in battery capacity and a deterioration in cycle characteristics. .
[0033]
The conductive material used is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the lithium ion secondary battery. For example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, Examples thereof include carbon fiber, metal powder, metal fiber, and polyphenylene derivative. These may be used alone or in combination of two or more.
Examples of the binder include starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose polyvinyl chloride, polyvinyl pyrrolidone, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, and ethylene-propylene-diene copolymer. (EPDM), sulfonated EPDM, styrene-butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and the like.
The filler is not particularly limited as long as it is a fibrous material that does not cause a chemical change in the lithium ion secondary battery, and examples thereof include olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon, and the like. .
[0034]
The lithium secondary battery using the positive electrode obtained from the present invention includes, for example, a notebook computer, a mobile phone, a cordless phone, a video movie, a liquid crystal television, an electric shaver, a portable radio, a headphone stereo, a backup power supply, and a memory card. It can be used for electronic devices such as medical devices such as pacemakers and hearing aids. It is not limited to these.
[0035]
(Positive electrode active material: process for producing layered structure lithium composite oxide)
Next, although the manufacturing method of the positive electrode active material of this invention is demonstrated, what is demonstrated here is an example to the last of a manufacturing method, and is not limited to this manufacturing method.
[0036]
  The positive electrode active material of the present invention is prepared by mixing Li raw material powder, transition metal raw material powder, and, if necessary, substitution element raw material powder, adding water to form a slurry, and optionally adding a binder thereto , Defoaming agent, dispersing agent, etc. are added and pulverized with a wet pulverizer until the average particle size becomes about 0.5 to 3 μm and dried. It can be obtained by sintering to synthesize a layered structure lithium composite oxide.In this case, it is preferable to granulate simultaneously with drying, and as an example of the standard, it is preferable to granulate to an average particle size of about 30 μm to 50 μm.
[0037]
(Raw materials and mixing of raw materials)
As the lithium raw material, at least one of lithium (metallic lithium) and a lithium compound can be used. The lithium compound is not particularly limited as long as it contains lithium, and examples thereof include lithium acetate and lithium oxalate. Inorganic lithium salts such as organic acid lithium, lithium hydroxide, lithium carbonate, and lithium nitrate can be used. Among these, lithium carbonate (Li2COThree), Lithium nitrate (Li2NOThree), Lithium hydroxide (LiOH) and the like are preferable. The average particle size of the lithium raw material is preferably 1 to 20 μm.
[0038]
As the transition metal, Mn, Co, or Ni can be used.
As the Mn raw material, at least one of manganese (metallic manganese) and a manganese compound can be used. As the manganese compound, MnO2, Mn2OThree, MnThreeOFourAnd MnCOThreeIs preferably used. The average particle size of the Mn raw material is preferably 1 to 30 μm.
As the Co raw material, at least one of cobalt (metal cobalt) and a cobalt compound can be used. The cobalt compound is not particularly limited as long as it contains cobalt.ThreeOFour, Oxides such as CoO, CoCOThree, Co (NOThree)2CoCl2Salts such as Co (OH)2And hydroxides such as CoOOH and the like. Among these, especially CoThreeOFourOr Co (OH)2Etc. are preferable. The average particle size of the Co raw material is preferably 1 to 30 μm.
As the Ni raw material, at least one of nickel (metallic nickel) and a nickel compound can be used. The nickel compound is not particularly limited as long as it contains nickel. For example, an oxide such as NiO, NiCO, etc.Three, Ni (NOThree)2・ 6H2O, NiCl2Salts such as Ni (OH)2And hydroxides such as NiOOH and the like. Among these, especially NiO or Ni (OH)2Etc. are preferable. The average particle diameter of the Ni raw material is preferably 1 to 30 μm.
[0039]
Substitution elements, that is, elements that substitute part of the transition metal in the layered structure include Cr, Al, B, Mg, Si, Sc, Ti, V, Fe, Co, Ni, Cu, Zn, Ga, Y, Examples include Zr, Nb, Mo, Ru, Sn, Sb, Ce, Pr, Nd, Hf, Ta, and a mixture or solid solution composed of two or more selected from the group consisting of Ta and Pb. Mg, Ti and Fe.
Examples of the substitution element material include chromium oxide, chromium hydroxide, chromium nitrate, chromium sulfate, chromium acetate, aluminum hydroxide, aluminum nitrate, aluminum sulfate, aluminum acetate, boric acid, magnesium hydroxide, magnesium carbonate, magnesium chloride, Magnesium acetate, silicon dioxide, silicic acid, scandium oxide, titanium dioxide, titanium hydroxide, vanadium pentoxide, ammonium metavanadate, iron hydroxide, iron nitrate, iron sulfate, iron chloride, cobalt hydroxide, cobalt nitrate, cobalt sulfate, Cobalt chloride, nickel hydroxide, nickel nitrate, nickel sulfate, copper nitrate, copper sulfate, zinc nitrate, zinc sulfate, gallium oxide, yttrium oxide, yttrium nitrate, zirconium oxide, zirconyl nitrate, niobium oxide, niobium chloride, molybdenum oxide, chloride Lute Umum, tin oxide, tin chloride, antimony chloride, cerium oxide, cerium nitrate, praseodymium nitrate, neodymium chloride, hafnium chloride, tantalum chloride, lead sulfate, lead acetate, lead chloride and other oxides, hydroxides, inorganic salts, organic Mention may be made of salts.
[0040]
You may make it grind | pulverize the said Li raw material, a transition metal raw material, and a substitution element raw material before or after raw material mixing.
In addition, the mixing method in this case is not specifically limited as long as these can be mixed uniformly. For example, the raw materials may be blended simultaneously or in an appropriate order using a known mixer such as a mixer and mixed in a wet or dry manner.
[0041]
(Slurry production process)
  The above mixture is put into a wet pulverizer, mixed with water and, if necessary, a binder and a dispersant as necessary. The mixture is pulverized until the average particle size is about 3 μm or less to obtain a slurry having a uniform particle size. Make it. Moreover, it is good also to adjust the viscosity of a slurry by adding a diluent and a dispersing agent as needed.
[0042]
(Drying process)
The obtained slurry may be dried by a known drying method such as spray heat drying, hot air drying, vacuum drying, freeze drying and the like.
[0043]
(Baking process)
After drying, the obtained raw material powder is fired in a firing furnace in an air atmosphere so as to be held at a temperature of about 850 to 1000 ° C., particularly about 950 to 980 ° C. for about 0.5 to 30 hours. Synthesize oxide. Here, the firing temperature means the product temperature in the firing furnace.
When the firing temperature exceeds about 1000 ° C., the primary particles become large and the specific surface area becomes small, but monodispersion becomes difficult. On the other hand, when the temperature is lower than about 850 ° C., the primary particles become small and the specific surface area becomes large.
The firing time is preferably about 0.5 hours or more, particularly about 10 to 20 hours in order to obtain a uniform reaction.
As the baking furnace, a rotary kiln or a stationary furnace can be used.
As the firing atmosphere, an oxidizing atmosphere can be adopted in addition to an air atmosphere.
[0044]
Most of the particles of the positive electrode active material synthesized in this way have an average particle size of about 0.5 to 3 μm and an average particle size of about 1 to 3 μm. It is a secondary particle of 10 to 100 μm, and each secondary particle has many gaps and is easily crushed into primary particles, and is crushed with a vibration mill or a roller mill, or an electrode such as a roll press is produced. In the process, the primary particles are crushed, and the pulverized primary particles have a feature that their shape and size can be secured.
Therefore, when the positive electrode is manufactured, the primary particles as described above are monodispersed in the composition, and the primary particles are not crushed even after repeated charge and discharge, thereby preventing a decrease in battery capacity and deterioration in cycle characteristics. Can do.
[0045]
Next, although an Example and a comparative example are compared and demonstrated, this invention is not limited to an Example.
[0046]
Example 1
As raw materials, lithium carbonate having an average particle size of about 23 μm, electrolytic manganese dioxide having an average particle size of about 6 μm, nickel hydroxide having an average particle size of about 23 μm, cobalt hydroxide having an average particle size of about 18 μm, and molar ratio Li: Mn: Ni : Co = 1.15: 0.33: 0.33: 0.33 Weighed so that the solid content ratio was 1: 1, and further added a binder and a dispersant. It grind | pulverized until the average particle diameter became about 0.5-3.0 micrometers using the wet grinder, and this was granulated and dried using spray drying, and the raw material powder | flour with an average particle diameter of about 30-50 micrometers was obtained. . The obtained raw material powder was baked in the atmosphere at about 970 ° C. (product temperature) for about 20 hours to obtain the target layer structure compound.
[0047]
The obtained layer structure compound was mixed at a ratio of layer structure compound: conductive material: binder = 0.67: 0.22: 0.11, formed into a sheet shape using a mortar, and then punched with a 13 mmφ punch. To make a positive electrode. Then, a coin-type battery was prepared using 1M-LiPF6 / PC: DMC (1: 1) as the electrolyte and Li metal as the negative electrode, and a cycle test was performed.
[0048]
In order to obtain an index of the ease of crushing of the obtained powder, it was measured how much the secondary particles were crushed when pressure was applied.
After putting 1 g of the layer structure compound obtained above in a 10.5 mmφ die and applying a pressure of 0.2 to 3 t in a uniaxial direction, the particle size distribution of the powder was measured, and the pressure and particle size d10, d50, d90 The relationship was investigated.
[0049]
(Comparative Example 1)
Ni, Co, Mn mixed sulfuric acid aqueous solution of Ni: Co: Mn = 1: 1: 1 in a molar ratio is continuously supplied into an alkaline solution whose pH is controlled to about 11.6 by a coprecipitation method. A hydroxide was obtained. The obtained raw material was mixed with lithium carbonate so that the molar ratio (Li: Ni, Co, Mn) = 1.15: 1, and baked in the atmosphere at about 970 ° C. (product temperature) for about 20 hours. The layer structure compound was obtained. The obtained compound was evaluated by the same method as described above.
[0050]
(Comparative Example 2)
After adjusting the raw material powder in the same manner as in Example 1, baking was performed in the atmosphere at about 1100 ° C. (product temperature) for about 20 hours to obtain a layer structure compound. The obtained layer structure compound was evaluated by the same method as described above.
[0051]
(result)
Table 1, FIG. 1 and FIG. 2 show the press test results of the samples (layer structure compounds) obtained in Example 1 and Comparative Example 1.
[0052]
[Table 1]
Figure 0003709446
[0053]
In the sample of Example 1, it can be seen that the secondary particles are crushed as the pressure increases, and d50 and d90 are lowered. Moreover, d10 does not change so much even if the pressure increases. This means that even if pressure is applied, only the secondary particles are crushed and the pulverized primary particles are not broken further.
On the other hand, in the sample of Comparative Example 1, none of the particle sizes d10, d50, and d90 changed substantially even when the pressure increased. It can be seen that even when the pressure is increased, the secondary particles are not crushed and the primary particles remain aggregated.
[0054]
The fact that the secondary particles are easily crushed means that the secondary particles can be crushed with a weak force and the primary particles can be dispersed. Therefore, even if the material like Example 1 is a case where secondary particles are previously crushed and used as an electrode material, the primary particles are not pulverized and the primary particles are kept relatively low. Can be monodispersed.
[0055]
Table 2 shows the results of battery characteristics of each sample.
[0056]
[Table 2]
Figure 0003709446
[0057]
From this, it can be seen that the sample of Example 1 is superior in cycle characteristics compared to other samples. In order to investigate the cause of this, an SEM image of the electrode was observed. FIG. 3 shows an SEM image of the electrode of Example 1 (0.2 t pressure load), and FIG. 4 shows an SEM image of the electrode of Comparative Example 1 (0.2 t pressure load).
[0058]
In Example 1, it can be seen that the secondary particles are crushed and dispersed at the primary particle level. Thereby, it can be seen that the conductive material reaches the primary particles.
On the other hand, in the electrode of Comparative Example 1, the secondary particles remain as they are without being crushed, and the primary particles inside the secondary particles are not in contact with the conductive agent. For this reason, when cracks occur in the secondary particles due to volume expansion / contraction associated with the charge / discharge cycle of the battery, it is considered that the conductivity deteriorates at that portion and the cycle deteriorates.
[Brief description of the drawings]
1 is a graph showing the results of a press test of a sample (layer structure compound) obtained in Example 1. FIG.
2 is a graph showing the results of a press test of a sample (layer structure compound) obtained in Comparative Example 1. FIG.
3 is a SEM photograph of an electrode (0.2 t pressure load) obtained in Example 1. FIG.
4 is an SEM photograph of an electrode (0.2 t pressure load) obtained in Comparative Example 1. FIG.

Claims (3)

層状構造或いはスピネル構造のリチウム複合酸化物からなることを第1の特徴とし、
各粒子が、平均粒径約0.5〜3μmの一次粒子が凝集してなる平均凝集径約10〜100μmの二次粒子からなることを第2の特徴とし、
その二次粒子は、電極作製工程で自然に一次粒子に解砕する程度に解砕され易いことを第3の特徴とし、
二次粒子解砕後は、一次粒子に単分散し、その一次粒子の比表面積が約2.0m2/g以下であることを第4の特徴とするリチウム二次電池用正極活物質(但し、次のリチウム二次電池用正極活物質を除く。
・ 一般式LixCo2-x2で表わされ、式中のxの値が0.945≦x≦1.052であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
一般式Li x Co 2-x-y-z y Mg z 2 で表わされ、式中 x= 0.97〜1.005、 y= 0.01〜0.04、 z= 0.01〜0.05であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 一般式Li x Co 2-x-y y 2 で表わされ、式中 x= 0.97〜1.005、 y= 0.01〜0.12であるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 一般式LiCo 0.92 Mg 0.08 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 一般式Li 0.96 Co 0.96 0.05 Mg 0.03 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 一般式LiCoO 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 一般式LiCoB 0.147 2 で表わされるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 原料粉体を湿式粉砕混合し、その混合物を350〜600℃で一次焼成し、45℃以下に冷却し、湿式粉砕混合し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を酸素気流中600〜1000℃で二次焼成することにより得られるリチウム複合酸化物からなるリチウム二次電池用正極活物質、
・ 水酸化酸化アルミニウムを原料としてなるリチウム複合酸化物からなるリチウム二次電池用正極活物質。)。
The first characteristic is that it is composed of a lithium composite oxide having a layered structure or a spinel structure,
The second feature is that each particle is composed of secondary particles having an average aggregate diameter of about 10 to 100 μm formed by aggregation of primary particles having an average particle diameter of about 0.5 to 3 μm.
The second feature is that the secondary particles are easily crushed to such an extent that they are naturally crushed into primary particles in the electrode manufacturing process,
After secondary particle crushing, the positive electrode active material for a lithium secondary battery is characterized in that it is monodispersed into primary particles and the primary particles have a specific surface area of about 2.0 m 2 / g or less (provided that The following positive electrode active material for lithium secondary battery is excluded.
A positive electrode active material for a lithium secondary battery represented by a general formula Li x Co 2−x O 2 and comprising a lithium composite oxide in which the value of x in the formula is 0.945 ≦ x ≦ 1.052;
· General formula represented by Li x Co 2-xyz B y Mg z O 2, wherein x = 0.97~1.005, y = 0.01~0.04, z = 0.01~0. A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide of 05,
- represented by the general formula Li x Co 2-xy B y O 2, a lithium secondary consists wherein x = from .97 to 1.005, a y = 0.01 to 0.12 lithium composite oxide primary Positive electrode active materials for batteries,
A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula LiCo 0.92 Mg 0.08 O 2 ;
A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula Li 0.96 Co 0.96 B 0.05 Mg 0.03 O 2 ;
A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula LiCoO 2 ;
A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide represented by the general formula LiCoB 0.147 O 2 ;
・ The raw material powder is wet pulverized and mixed, and the mixture is subjected to primary firing at 350 to 600 ° C., cooled to 45 ° C. or lower, wet pulverized and mixed, and the resulting slurry is averaged using a spray drying granulator. A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide obtained by forming particles having a particle size of 0.1 to 100 μm and subjecting the particles to secondary firing in an oxygen stream at 600 to 1000 ° C .;
A positive electrode active material for a lithium secondary battery comprising a lithium composite oxide made from aluminum hydroxide oxide. ).
二次粒子の解砕され易さが、10.5mmφのダイスに粉1gを入れて一軸方向へ圧力をかける試験において、2tの圧力をかけたときの粉の粒度分布のd50の値が、圧力をかける前の約70%以下になる程度であることを特徴とする請求項1記載のリチウム二次電池用正極活物質。  In a test in which 1 g of powder is put in a 10.5 mmφ die and pressure is applied in a uniaxial direction to determine whether the secondary particles are easily crushed, the value of d50 of the particle size distribution of the powder when pressure of 2 t is applied is the pressure The positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material is about 70% or less before being applied. 請求項1又は2のリチウム二次電池用正極活物質を、粒度分布のd50の値が解砕前の約70%以下になるまで解砕してなるリチウム二次電池用正極活物質。  A positive electrode active material for a lithium secondary battery obtained by crushing the positive electrode active material for a lithium secondary battery according to claim 1 or 2 until the value of d50 of the particle size distribution is about 70% or less before crushing.
JP2002356583A 2002-12-09 2002-12-09 Positive electrode active material for lithium secondary battery and method for producing the same Expired - Lifetime JP3709446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356583A JP3709446B2 (en) 2002-12-09 2002-12-09 Positive electrode active material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356583A JP3709446B2 (en) 2002-12-09 2002-12-09 Positive electrode active material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004192846A JP2004192846A (en) 2004-07-08
JP3709446B2 true JP3709446B2 (en) 2005-10-26

Family

ID=32756883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356583A Expired - Lifetime JP3709446B2 (en) 2002-12-09 2002-12-09 Positive electrode active material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3709446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472809B2 (en) 2011-06-29 2016-10-18 Hitachi Automotive Systems, Ltd. Lithium ion secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740409B2 (en) 2003-06-11 2011-08-03 株式会社日立製作所 Lithium secondary battery for electric vehicle or hybrid vehicle
JP5266861B2 (en) * 2008-04-28 2013-08-21 堺化学工業株式会社 Method for producing positive electrode active material for lithium secondary battery
JPWO2010082240A1 (en) * 2009-01-19 2012-06-28 株式会社村田製作所 Composite oxide and method for producing the same, and nonaqueous electrolyte secondary battery using the composite oxide
JP5828622B2 (en) * 2010-08-31 2015-12-09 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide, its production method and use
JP2012178267A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US10128507B2 (en) * 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
JP6017364B2 (en) * 2013-03-29 2016-10-26 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN107437616B (en) * 2017-07-11 2020-03-10 贵州振华新材料股份有限公司 Lithium ion battery anode material and lithium ion battery
KR102288292B1 (en) * 2018-06-07 2021-08-10 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP7293595B2 (en) * 2018-09-21 2023-06-20 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472809B2 (en) 2011-06-29 2016-10-18 Hitachi Automotive Systems, Ltd. Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2004192846A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
US9640794B2 (en) Lithium transition metal oxide having layered structure
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP3110728B1 (en) Cathode active material and cathode for non-aqueous secondary batteries
JP4287901B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and secondary battery
JP5352736B2 (en) Lithium manganese solid solution cathode material
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2004355824A (en) Cathode active substance for nonaqueous secondary battery and cathode
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5094144B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP5606654B2 (en) Lithium metal composite oxide
KR20190006907A (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
JP2012079464A5 (en)
JP2010199001A (en) Cathode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2005150057A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method, and nonaqueous system lithium secondary battery using the material
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP5951518B2 (en) Method for producing lithium metal composite oxide having layer structure
JP4743804B2 (en) Cathode active material for non-aqueous lithium secondary battery and method for producing the same
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP2000323142A (en) Positive electrode active material for non-aqueous secondary battery, positive electrode and secondary battery
JP6200932B2 (en) Method for producing lithium metal composite oxide having layer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3709446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term