JP2006054159A - Anode active material for non-aqueous secondary battery, and its manufacturing method - Google Patents

Anode active material for non-aqueous secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2006054159A
JP2006054159A JP2004315683A JP2004315683A JP2006054159A JP 2006054159 A JP2006054159 A JP 2006054159A JP 2004315683 A JP2004315683 A JP 2004315683A JP 2004315683 A JP2004315683 A JP 2004315683A JP 2006054159 A JP2006054159 A JP 2006054159A
Authority
JP
Japan
Prior art keywords
compound
nickel
lithium
positive electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004315683A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004315683A priority Critical patent/JP2006054159A/en
Publication of JP2006054159A publication Critical patent/JP2006054159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium nickel complex oxide suitable for a positive electrode active material for a lithium ion secondary battery, which is low in reaction characteristics to an electrolytic solution, low in internal electric resistance when used as a battery, and strong against pressure in molding. <P>SOLUTION: A composition is expressed by a following general formula Li<SB>x</SB>Ni<SB>1-p-q-r</SB>Co<SB>p</SB>Al<SB>q</SB>A<SB>r</SB>O<SB>2-y</SB>(in the formula, a range of values of x, p, q, and y are 0.8≤x≤1.3, 0<p≤0.2, 0<q≤0.1, 0≤r≤0.1, -0.3<y<0.1, and A in the formula shows at least one kind of element chosen from a group composed of Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge, Nb, Ta, Be, Ca, Sr, Ba, and Sc), and composed of primary particles which is a single crystal and of which the average particle diameter is 2 to 8 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池用正極活物質およびその製造方法に関し、特にリチウムニッケル複合酸化物を用いた正極活物質およびその製造方法に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery and a method for producing the same, and more particularly to a positive electrode active material using a lithium nickel composite oxide and a method for producing the same.

リチウムイオン二次電池用に用いられる正極活物質としては、コバルト主体のLiCoO2がその代表的材料であるが、コバルトは埋蔵量が少ないため高価であり、かつ、供給も不安定である。このため、ニッケルやマンガンを主体とした正極活物質への移行が進んでいる。このうち、マンガンを主体とした材料については、安全性では優れるものの、容量が他の材料に比べ非常に小さく、寿命を示すサイクル特性も非常に短いことから、大型電池へ利用することは難しい。そのため、ニッケルを主体とした正極活物質の検討が進んでいる。 As a positive electrode active material used for a lithium ion secondary battery, LiCoO 2 mainly composed of cobalt is a typical material. However, cobalt is expensive because it has a small reserve, and supply is also unstable. For this reason, a shift to a positive electrode active material mainly composed of nickel or manganese is in progress. Among these materials, manganese-based materials are excellent in safety, but their capacity is very small compared to other materials and their cycle characteristics indicating their lifetime are very short, so that it is difficult to use them for large batteries. For this reason, studies on a positive electrode active material mainly composed of nickel are in progress.

ニッケルを主体とした正極活物質であるリチウムニッケル複合酸化物を、二次電池の正極活物質として用いた場合、リチウムイオンがニッケル酸リチウムの結晶構造中から脱離すること、およびニッケル酸リチウムの結晶構造中へ挿入されることによって、充放電が行われる。   When lithium nickel composite oxide, which is a positive electrode active material mainly composed of nickel, is used as a positive electrode active material for a secondary battery, lithium ions are desorbed from the lithium nickelate crystal structure, and lithium nickelate Charging / discharging is performed by being inserted into the crystal structure.

一般に、ニッケル原子が他の金属元素などで置換されていない純粋なニッケル酸リチウムは、充放電サイクルに伴う体積変化による結晶構造の相転移が急激なため、粒子に亀裂が発生したり、粒界に大きな隙間を生じたりすることがある。   In general, pure lithium nickelate, in which nickel atoms are not substituted with other metal elements, has a sharp crystal structure phase transition due to volume change associated with the charge / discharge cycle. A large gap may be generated.

また、純粋なニッケル酸リチウムは、電池の熱安定性においても問題がある。特に過充電をしたとき、210℃付近において瞬間的に非常に激しい発熱を起こす。ニッケル酸リチウムの結晶構造中からリチウムイオンが脱離する時に結晶構造は不安定となるが、さらに熱エネルギーが加えられると結晶構造が崩壊し、酸素が放出され、電解液の酸化および分解が急激に進むことが原因と考えられている。   Also, pure lithium nickelate has a problem in the thermal stability of the battery. In particular, when overcharged, extremely intense heat generation occurs instantaneously at around 210 ° C. When lithium ions are desorbed from the lithium nickelate crystal structure, the crystal structure becomes unstable. However, when further heat energy is applied, the crystal structure collapses, oxygen is released, and the electrolyte is rapidly oxidized and decomposed. It is thought that the cause is to proceed.

これらの問題点は、すべて結晶構造の不安定さに起因したものであるが、相転移防止に効くコバルト、結晶構造の安定化に効くアルミニウムをニッケルの一部と置換する形で固溶させることにより解決できることがわかっている(非特許文献1参照)。このため、現在では、コバルトおよびアルミニウムは、ニッケルを主体とした正極活物質においては必須元素とされている。したがって、ニッケルを主体とした正極活物質の中でもコバルト、アルミニウムが固溶されている安全性の高い正極活物質の開発が現在盛んに行われている。   These problems are all caused by the instability of the crystal structure, but it is necessary to make solid solution by replacing cobalt, which is effective in preventing phase transition, and aluminum, which is effective in stabilizing the crystal structure, with a part of nickel. (See Non-Patent Document 1). Therefore, at present, cobalt and aluminum are regarded as essential elements in the positive electrode active material mainly composed of nickel. Therefore, development of a highly safe positive electrode active material in which cobalt and aluminum are solid-dissolved among positive electrode active materials mainly composed of nickel is being actively performed.

ニッケルを主体とした正極活物質には、LiNiO2に代表されるリチウムとニッケルを主成分とするリチウムニッケル複合酸化物がある。その形態としては、一次粒子が二次粒子を形成せずに単分散した粉体となっているものや、一次粒子が集合して形成されており、空隙を有する二次粒子となっているものがある。しかし、いずれの形態においても、一次粒子径は、平均粒子径1μm程度以下と小さく、このため、その比表面積は大きくなっている。 Examples of the positive electrode active material mainly composed of nickel include lithium-nickel composite oxides mainly composed of lithium and nickel represented by LiNiO 2 . As its form, the primary particles are monodispersed powder without forming secondary particles, or the primary particles are aggregated and formed into secondary particles having voids There is. However, in any form, the primary particle diameter is as small as an average particle diameter of about 1 μm or less, and thus the specific surface area is large.

一次粒子径の小さいリチウムニッケル複合酸化物を正極活物質として用いた二次電池においては、正極活物質が電解液と接触する面積が大きく、リチウムイオンの挿入脱離が容易である。このため、一次粒子径の小さいリチウムニッケル複合酸化物を正極活物質として用いると、高負荷電流を流す能力やサイクル特性、出力特性が向上するとも考えられる。   In a secondary battery using a lithium nickel composite oxide having a small primary particle size as a positive electrode active material, the area where the positive electrode active material comes into contact with the electrolytic solution is large, and lithium ions can be easily inserted and desorbed. For this reason, when lithium nickel composite oxide with a small primary particle diameter is used as the positive electrode active material, it is considered that the ability to flow a high load current, cycle characteristics, and output characteristics are improved.

しかし、実際は、一次粒子径の小さいリチウムニッケル複合酸化物を用いると、電解液と固相の界面である活性な粒子表面が多くなるため電解液との接触により粒子表面に電解液の変質に伴う皮膜が多量に生じて電池内部の電気抵抗が大きくなってしまったり、一次粒子同士の接触面が多いことに起因して電池内部の電気抵抗が大きくなってしまうことがある。   However, in reality, when a lithium nickel composite oxide with a small primary particle size is used, the active particle surface that is the interface between the electrolyte and the solid phase increases, so that contact with the electrolyte causes alteration of the electrolyte on the particle surface. A large amount of film may be generated to increase the electric resistance inside the battery, or the electric resistance inside the battery may increase due to the large number of contact surfaces between the primary particles.

さらに、一次粒子の集合体である二次粒子のリチウムニッケル複合酸化物には、プレス圧に弱いという問題点がある。このため、電極作製時のロールプレスによる成形の時点で粒子形骸が崩れ、導電材との接触の無い導電不良の孤立粒子が多数発生し、電池性能が低下するという問題点もある。また、充放電に伴う体積変化により、二次粒子が崩壊してしまうこともある。   Furthermore, the secondary nickel-nickel composite oxide, which is an aggregate of primary particles, has a problem that it is weak against press pressure. For this reason, there is also a problem that the particle shape collapses at the time of forming by the roll press at the time of electrode production, a large number of isolated particles having poor conductivity without contact with the conductive material are generated, and the battery performance is lowered. In addition, secondary particles may collapse due to volume changes accompanying charging and discharging.

また、1μmに満たない一次粒子の単分散状の粉体では、粒子内部には粒界はないものの、一次粒子のほぼ全表面が電解液と接しているため活性な反応面積は二次凝集体以上に大きく多量の変質膜が発生する。このため、電気抵抗は二次凝集体以上に上昇してしまい高出力・高寿命を得られない。さらに、電極作成時の充填性も悪くなる。   In the case of a monodispersed powder of primary particles less than 1 μm, although there are no grain boundaries inside the particles, the active reaction area is secondary aggregate because almost the entire surface of the primary particles is in contact with the electrolyte. Larger and more altered films are generated. For this reason, electrical resistance rises more than the secondary aggregate, and high output and long life cannot be obtained. Furthermore, the filling property at the time of electrode preparation also deteriorates.

このため、リチウムイオン二次電池の出力特性やサイクル特性の性能向上は難しいとされていた。   For this reason, it has been considered difficult to improve the output characteristics and cycle characteristics of the lithium ion secondary battery.

この問題点を解決する方法としては、活性表面積や結晶粒界の数を減らすことが考えられる。このためには、粒子をこれまでよりも大きく成長させることが一つの手法として考えられる。   As a method for solving this problem, it is conceivable to reduce the active surface area and the number of crystal grain boundaries. For this purpose, it is conceivable as one method to grow particles larger than before.

ニッケル化合物の一次粒子径は、特許文献1に記載されているようにニッケル化合物製造時に粒子を加熱成長させることで大きくすることが可能である。しかし、特許文献1に記載の方法は、アルミニウムを含有しない場合の方法であり、これにより製造されたリチウムニッケル複合酸化物は熱安定性が非常に悪く、発熱・発火・破裂の危険がある。したがって、リチウムニッケル複合酸化物にAlを含有させることは必要不可欠である。   As described in Patent Document 1, the primary particle size of the nickel compound can be increased by heating and growing the particles during the production of the nickel compound. However, the method described in Patent Document 1 is a method in the case of not containing aluminum, and the lithium nickel composite oxide produced thereby has very poor thermal stability, and there is a risk of heat generation, ignition, and explosion. Therefore, it is indispensable that the lithium nickel composite oxide contains Al.

しかしながら、アルミニウムの存在下では、特許文献1に記載の手法または高温での熱処理を施す手法でも、一次粒子径はほとんど成長せず1μmに満たない。   However, in the presence of aluminum, the primary particle size hardly grows to less than 1 μm even with the method described in Patent Document 1 or the method of performing heat treatment at high temperature.

特開平11−1324号公報Japanese Patent Laid-Open No. 11-1324

第43回電池討論会 公演要旨集(福岡) 1A04(2002)The 43rd Battery Symposium Performance Summary (Fukuoka) 1A04 (2002)

リチウムニッケル複合酸化物を正極活物質としたリチウムイオン二次電池の高出力化、高寿命化を達成するためには、リチウムニッケル複合酸化物粒子表面での電解液との反応により皮膜が多量に生じ電池内部の電気抵抗が大きくなってしまうという問題点、および、一次粒子同士の接触面が多いことに起因して電池内部の電気抵抗が大きくなってしまうという問題点、並びに従来の方法により得られた二次粒子体では、電極作製時のロールプレスによる成形によって粒子の形態が崩れてしまい、導電不良の孤立粒子が発生してしまうという問題点を解決する必要がある。   In order to achieve higher output and longer life of lithium ion secondary batteries using lithium nickel composite oxide as the positive electrode active material, a large amount of film is formed by reaction with the electrolyte on the surface of lithium nickel composite oxide particles. The problem that the electric resistance inside the battery increases, the problem that the electric resistance inside the battery increases due to the large number of contact surfaces between the primary particles, and the conventional method. In the obtained secondary particle body, it is necessary to solve the problem that the shape of the particles collapses due to the molding by the roll press at the time of producing the electrode, and the isolated particles having poor conductivity are generated.

本発明は、かかる問題点に鑑みてなされたものであって、電解液との反応性が低く、かつ、電池として用いたときの内部の電気抵抗も低く、さらに、成形時の圧力にも強いリチウムニッケル複合酸化物を提供することを目的とする。   The present invention has been made in view of such problems, and has low reactivity with an electrolytic solution, low internal electrical resistance when used as a battery, and is also strong against pressure during molding. An object is to provide a lithium nickel composite oxide.

本第一発明に係る非水系二次電池用正極活物質は、ニッケルとリチウムとを主成分にする非水系二次電池用正極活物質であって、組成が下記化学式1で表され、かつ、単結晶で平均粒子径が2〜8μmである一次粒子からなることを特徴とする。   The positive electrode active material for a non-aqueous secondary battery according to the first invention is a positive electrode active material for a non-aqueous secondary battery mainly composed of nickel and lithium, the composition is represented by the following chemical formula 1, and It consists of primary particles which are single crystals and have an average particle diameter of 2 to 8 μm.

ただし、化学式1中のx、p、q、r、yの値の範囲は、0.8≦x≦1.3、0<p≦0.2、0<q≦0.1、0≦r≦0.1、−0.3<y<0.1であり、化学式1中のAは、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選択された少なくとも一種の元素を示す。   However, the ranges of the values of x, p, q, r, and y in Chemical Formula 1 are 0.8 ≦ x ≦ 1.3, 0 <p ≦ 0.2, 0 <q ≦ 0.1, and 0 ≦ r. ≦ 0.1, −0.3 <y <0.1, and A in chemical formula 1 is Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co And at least one element selected from the group consisting of Zr, Bi, Ge, Nb, Ta, Be, Ca, Sr, Ba, and Sc.

本第一発明に係る非水系二次電池用正極活物質の製造方法は、ニッケル化合物とコバルト化合物とからコバルトを含有するニッケル化合物を得る工程と、前記コバルトを含有するニッケル化合物に、該化合物中のニッケルのモル数とコバルトのモル数の合計モル数に対して塩素のモル数が0.1〜15%の範囲となるように無機塩化物または無機塩化酸化物を添加し、混合して混合物を得る工程と、前記混合物を温度800〜1300℃で焙焼して平均粒子径が2〜8μmの単結晶からなる酸化物を得る工程と、前記酸化物にアルミニウム化合物とリチウム化合物を混合するか、または前記酸化物の表面にアルミニウム化合物を被覆した後にリチウム化合物を混合することにより混合物を得る工程と、該混合物を600〜800℃で焼成して、リチウムニッケル複合酸化物を得る工程と、からなることを特徴とする。   The method for producing a positive electrode active material for a non-aqueous secondary battery according to the first invention includes a step of obtaining a nickel compound containing cobalt from a nickel compound and a cobalt compound, and the nickel compound containing cobalt in the compound. Inorganic chloride or inorganic chloride oxide is added so that the number of moles of chlorine is in the range of 0.1 to 15% with respect to the total number of moles of nickel and cobalt. A step of obtaining an oxide composed of a single crystal having an average particle size of 2 to 8 μm by baking the mixture at a temperature of 800 to 1300 ° C., and an aluminum compound and a lithium compound mixed with the oxide Or a step of obtaining a mixture by coating the surface of the oxide with an aluminum compound and then mixing a lithium compound, and firing the mixture at 600 to 800 ° C. Wherein the step of obtaining a lithium-nickel composite oxide, in that it consists of.

前記無機塩化物又は無機塩化酸化物は、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選択された少なくとも一種以上の元素の塩化物または塩化酸化物であることが好ましい。   The inorganic chloride or inorganic chloride oxide is Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge, Nb, Ta, Be, Ca. It is preferably a chloride or chloride oxide of at least one element selected from the group consisting of Sr, Ba and Sc.

本第二発明に係る非水系二次電池用正極活物質は、ニッケルとリチウムとを主成分にする非水系二次電池用正極活物質であって、組成が下記化学式2で表され、かつ、単結晶で平均粒子径が2〜12μmである一次粒子からなることを特徴とする。   The positive electrode active material for a non-aqueous secondary battery according to the second invention is a positive electrode active material for a non-aqueous secondary battery mainly composed of nickel and lithium, and the composition is represented by the following chemical formula 2; It consists of primary particles which are single crystals and have an average particle diameter of 2 to 12 μm.

ただし、式中のx、p、q、r、yの値の範囲は、0.8≦x≦1.3、0<p≦0.2、0<q≦0.1、0<r≦0.05、−0.3<y<0.1である。   However, the ranges of the values of x, p, q, r, and y in the formula are 0.8 ≦ x ≦ 1.3, 0 <p ≦ 0.2, 0 <q ≦ 0.1, 0 <r ≦ 0.05, -0.3 <y <0.1.

本第二発明に係る非水系二次電池用正極活物質の製造方法は、ニッケル化合物、コバルト化合物およびアルミニウム化合物からコバルトおよびアルミニウムを含有するニッケル化合物を得る工程、または、ニッケル化合物およびコバルト化合物からコバルトを含有するニッケル化合物を得た後、該ニッケル化合物の表面にアルミニウム化合物を被覆してアルミニウム化合物の被覆されたコバルト含有ニッケル化合物を得る工程と、前記ニッケルを主成分とする化合物に、該化合物中のニッケル、コバルト、アルミニウムの合計モル数に対して塩素のモル数が0.5〜15%の範囲となるように、塩化バナジウムを添加し、混合して混合物を得る工程と、前記混合物を温度900〜1300℃で焙焼して酸化物とする工程と、前記酸化物にリチウム化合物を混合してリチウムニッケルを主成分とする混合物を得る工程と、該混合物を600〜800℃で焼成して、リチウムニッケル複合酸化物を得る工程と、からなることを特徴とする。   The method for producing a positive electrode active material for a non-aqueous secondary battery according to the second invention includes a step of obtaining a nickel compound containing cobalt and aluminum from a nickel compound, a cobalt compound, and an aluminum compound, or cobalt from a nickel compound and a cobalt compound. And obtaining a cobalt-containing nickel compound coated with an aluminum compound by coating the surface of the nickel compound with an aluminum compound, and the compound containing nickel as a main component. Adding vanadium chloride and mixing the mixture so that the number of moles of chlorine is in the range of 0.5 to 15% with respect to the total number of moles of nickel, cobalt, and aluminum; and A process of roasting at 900 to 1300 ° C. to make an oxide, Obtaining a mixture composed mainly of lithium nickel mixed beam compound was firing the mixture at 600 to 800 ° C., for obtaining a lithium-nickel composite oxide, characterized in that it consists.

本第一発明および第二発明に係る非水系二次電池用正極活物質の製造方法において、前記ニッケル化合物(本第一発明においてはコバルトを含有するニッケル化合物、本第二発明においてはコバルトおよびアルミニウムを含有するニッケル化合物)は、例えば、水酸化物、オキシ水酸化物および炭酸塩のうちの少なくとも1つからなり、前記アルミニウム化合物は、例えば、水酸化物、オキシ水酸化物、酸化物、硫酸塩およびアルミン酸塩のうちの少なくとも1つからなり、前記リチウム化合物は、例えば、水酸化物、オキシ水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩、ジカルボン酸塩、脂肪酸塩、クエン酸塩、アルキル化合物およびハロゲン化合物のうちの少なくとも1つからなる。   In the method for producing a positive electrode active material for a non-aqueous secondary battery according to the first invention and the second invention, the nickel compound (a nickel compound containing cobalt in the first invention, cobalt and aluminum in the second invention) The nickel compound) comprises, for example, at least one of hydroxide, oxyhydroxide and carbonate, and the aluminum compound includes, for example, hydroxide, oxyhydroxide, oxide, sulfuric acid The lithium compound comprises at least one of a salt and an aluminate, and the lithium compound is, for example, hydroxide, oxyhydroxide, oxide, carbonate, sulfate, nitrate, dicarboxylate, fatty acid salt, citric acid It consists of at least one of a salt, an alkyl compound, and a halogen compound.

本発明に係るニッケルとリチウムとを主成分にする非水系二次電池用正極活物質は、アルミニウムを含有しながら、単結晶で、かつ、平均粒子径を2〜8μm、特にバナジウムを用いて特定の製法を用いた場合には2〜12μmまで成長した一次粒子からなるので、電解液との反応性が低く、かつ、電池として用いたときの内部の電気抵抗も低く、さらに、成形時の圧力にも強い。このため、本発明に係る非水系二次電池用正極活物質をリチウムイオン二次電池に用いると、その出力や寿命を向上させることができる。   The positive electrode active material for a non-aqueous secondary battery containing nickel and lithium as main components according to the present invention is a single crystal and contains an average particle size of 2 to 8 μm, particularly vanadium, while containing aluminum. In the case of using the manufacturing method, since it consists of primary particles grown to 2 to 12 μm, the reactivity with the electrolytic solution is low, the internal electrical resistance when used as a battery is low, and the pressure during molding Also strong. For this reason, when the positive electrode active material for a non-aqueous secondary battery according to the present invention is used in a lithium ion secondary battery, the output and life can be improved.

本第一発明に係る非水系二次電池用正極活物質の製造方法では、アルミニウムを添加する前に焙焼することにより、効果的にコバルトを含有するニッケル化合物を粒成長させることができる。
本第二発明に係る非水系二次電池用正極活物質の製造方法では、塩化バナジウム(VCl3)を用いているので、アルミニウムが存在していても、酸化物にするための焙焼時およびリチウムを導入するための焼成時の両時において、ニッケルを主成分とする化合物が粒成長をするため、工程が複雑化せず低コストに高機能材料を製造することができる。
In the method for producing a positive electrode active material for a non-aqueous secondary battery according to the first invention, a nickel compound containing cobalt can be effectively grown by baking it before adding aluminum.
In the method for producing a positive electrode active material for a non-aqueous secondary battery according to the second invention, vanadium chloride (VCl 3 ) is used. At both times during firing for introducing lithium, a compound containing nickel as a main component undergoes grain growth, so that a highly functional material can be produced at low cost without complicating the process.

[1.本第一発明に係る二次電池用正極活物質およびその製造方法]
前述した課題を解決するため、本発明者は、鋭意試験研究を行った結果、リチウムニッケル複合酸化物の一次粒子を平均粒子径2〜8μmの単結晶とすることにより、上述した3つの課題(リチウム複合酸化物粒子表面における粒子と電解液との反応性、一次粒子同士の接触面が多いことに起因した内部抵抗、プレス成形による粒子の形態の崩れ)を解決できるとの知見を得た。
[1. Positive electrode active material for secondary battery according to the first invention and method for producing the same]
In order to solve the above-described problems, the present inventor conducted intensive test research, and as a result, the primary particles of the lithium-nickel composite oxide were formed into a single crystal having an average particle diameter of 2 to 8 μm. The inventors have obtained knowledge that the reactivity between the particles and the electrolyte solution on the surface of the lithium composite oxide particles, the internal resistance due to the large number of contact surfaces between the primary particles, and the deformation of the particles caused by press molding can be solved.

また、本発明者は、アルミニウムを含有するリチウムニッケル複合酸化物の一次粒子で平均粒子径2〜8μmの単結晶のものを安定的に得るための製造技術の確立にも、試験研究を重ねた。その結果、コバルトを含有したニッケル化合物をニッケル化合物とコバルト化合物とから製造し、それに所定量の無機塩化物または無機塩化酸化物を添加し、所定の温度で焙焼して大幅に粒成長させることで、単結晶で平均粒子径2〜8μmのリチウムニッケル複合酸化物の一次粒子を安定的に得ることができるとの知見を得た。   In addition, the inventor has also conducted experimental research to establish a production technique for stably obtaining a single crystal having an average particle diameter of 2 to 8 μm as primary particles of lithium nickel composite oxide containing aluminum. . As a result, a nickel compound containing cobalt is produced from a nickel compound and a cobalt compound, and a predetermined amount of inorganic chloride or inorganic chloride oxide is added thereto, followed by roasting at a predetermined temperature to greatly grow grains. Thus, it was found that primary particles of lithium nickel composite oxide having a single crystal and an average particle diameter of 2 to 8 μm can be stably obtained.

以下、本第一発明に係る二次電池用正極活物質およびその製造方法の各構成要件における数値限定理由等について説明する。   Hereinafter, the reason for the numerical limitation in each constituent requirement of the positive electrode active material for a secondary battery according to the first invention and the manufacturing method thereof will be described.

「単結晶で平均粒子径が2〜8μmである一次粒子」
単結晶とすることで一次粒子内の結晶粒界がなくなり、電気抵抗を小さくすることができる。また、平均粒子径を2〜8μmとした理由は、2μmより小さいと、電解液と接触する表面積が大きくなり、電解液と粒子との反応により変質した皮膜が多く形成されるからである。一方、平均粒子径が12μm程度まで粒成長した方が電池特性は向上するが、12μmより大きいと、Liイオンの結晶内移動速度が律速となり負荷電流特性が低下していく。ただし、第一発明では、平均粒子径が8μm以上となるように粒成長させることは困難である。
“Primary particles with a single crystal and an average particle size of 2-8 μm”
By using a single crystal, there is no crystal grain boundary in the primary particles, and the electrical resistance can be reduced. The reason why the average particle diameter is 2 to 8 μm is that when the average particle size is smaller than 2 μm, the surface area in contact with the electrolytic solution is increased, and a large number of coatings that are altered by the reaction between the electrolytic solution and the particles are formed. On the other hand, when the average particle size grows to about 12 μm, the battery characteristics are improved. However, when the average particle diameter is larger than 12 μm, the Li ion movement speed in the crystal becomes rate-determined, and the load current characteristics decrease. However, in the first invention, it is difficult to grow the grains so that the average particle diameter is 8 μm or more.

また、単結晶の一次粒子を単分散させたもので、二次粒子を構成していないので、圧縮力が加わった場合や充放電に伴う体積変化があっても粒子の形態が崩れにくく、例えば、プレス圧3ton/cm2の圧力が加わっても粒子の形態は崩れることはない。 In addition, since the primary particles of the single crystal are monodispersed and do not constitute secondary particles, the shape of the particles is not easily collapsed even when there is a volume change due to compression force or charging / discharging, for example, Even when a press pressure of 3 ton / cm 2 is applied, the particle shape does not collapse.

さらに、タップ密度の測定結果も2.0g/cc以上であり、充填性も良好である。この数値は球状の二次粒子を形成している従来のものと比べても遜色ない数値である。   Furthermore, the measurement result of the tap density is 2.0 g / cc or more, and the filling property is also good. This numerical value is comparable to the conventional one that forms spherical secondary particles.

したがって、本構成要件を満たすことで、二次電池用正極活物質として用いた場合に、二次電池の高出力、高寿命が可能となる。   Therefore, by satisfying this configuration requirement, when used as a positive electrode active material for a secondary battery, a high output and a long life of the secondary battery are possible.

「LixNi1-p-q-rCopAlqr2-y
ただし、0.8≦x≦1.3、0<p≦0.2、0<q≦0.1、0≦r≦0.1、−0.3<y<0.1の範囲であり、Aは、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選ばれる少なくとも一種以上の元素を示す。」
p、qおよびrは、Co、AlおよびAのNiに対する置換量を示しており、全く置換されていないときのNiの原子数を1としたとき、Niを置換するCo、AlおよびAの原子数をそれぞれp、qおよびrとしている。
"Li x Ni 1-pqr Co p Al q A r O 2-y
However, 0.8 ≦ x ≦ 1.3, 0 <p ≦ 0.2, 0 <q ≦ 0.1, 0 ≦ r ≦ 0.1, −0.3 <y <0.1. , A is from Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge, Nb, Ta, Be, Ca, Sr, Ba, Sc. At least one element selected from the group consisting of: "
p, q, and r indicate the amount of substitution of Co, Al, and A with respect to Ni, and when the number of Ni atoms when not substituted at all is 1, the atoms of Co, Al, and A that replace Ni The numbers are p, q and r, respectively.

p、qの範囲としては、0<p≦0.2、0<q≦0.1の範囲がよく、より好ましくは0.1≦p≦0.2、0.02≦q≦0.05の範囲が望ましい。これは、Co、Alとも少なすぎるとその添加効果が薄れ、サイクル寿命や熱安定性の問題が解決されず、多すぎると電池容量が低下し、他のリチウム遷移金属酸化物よりも高容量であるという利点がなくなるためである。   The ranges of p and q are preferably 0 <p ≦ 0.2 and 0 <q ≦ 0.1, more preferably 0.1 ≦ p ≦ 0.2 and 0.02 ≦ q ≦ 0.05. A range of is desirable. This is because if both Co and Al are too small, the effect of addition is reduced, the problem of cycle life and thermal stability is not solved, and if it is too large, the battery capacity is lowered, and the capacity is higher than other lithium transition metal oxides. This is because there is no advantage of being.

xは、含有されるLi量を示しており、xの範囲としては、0.8≦x≦1.3の範囲が好ましい。xの値が0.8を下回るとリチウムニッケル複合酸化物のLi量が不足し、電池の容量が減るからであり、1.3を上回ると粉体表面に余剰のLiが炭酸リチウムとして残り、リチウムイオンの挿入脱離を阻害するほか、余剰のLiがNiとOとからなる層状構造中の格子欠陥に入り込み、充放電時のリチウムイオンの移動箇所を減少させて固相内拡散を阻害し、電池容量やサイクル寿命を大きく低下させるからである。   x represents the amount of Li contained, and the range of x is preferably in the range of 0.8 ≦ x ≦ 1.3. If the value of x is less than 0.8, the amount of lithium in the lithium nickel composite oxide is insufficient, and the capacity of the battery is reduced. If it exceeds 1.3, excess Li remains as lithium carbonate on the powder surface, In addition to inhibiting lithium ion insertion and desorption, excess Li enters the lattice defects in the layered structure consisting of Ni and O, reducing the migration of lithium ions during charge and discharge and inhibiting diffusion in the solid phase. This is because the battery capacity and cycle life are greatly reduced.

rは、金属元素Aの含有量を示しており、金属元素Aは、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選ばれる少なくとも一種以上の元素である。金属元素Aを前記金属元素に限定した理由は、焼成時の焼結促進や電池特性、安全性を向上させる効果を有する元素だからである。また、rの範囲としては、0≦r≦0.1の範囲が好ましい。rの値が0.1を上回ると、固溶限界を超えることになるか、または電池容量が大きく低下することになるからである。   r represents the content of the metal element A, and the metal element A is Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge. , Nb, Ta, Be, Ca, Sr, Ba, Sc. At least one element selected from the group consisting of Nb, Ta, Be, Ca, Sr, Ba, and Sc. The reason why the metal element A is limited to the metal element is that it has an effect of promoting sintering during firing, battery characteristics, and safety. The range of r is preferably in the range of 0 ≦ r ≦ 0.1. This is because if the value of r exceeds 0.1, the solid solution limit will be exceeded, or the battery capacity will be greatly reduced.

yは、酸素欠損量または酸素過剰量を示す。yの範囲としては、−0.3<y<0.1の範囲が好ましい。yの値がこの範囲にないと、酸素欠損量または酸素過剰量が多くなりすぎ、結晶構造が歪み充放電時の可逆性を損ねることとなるからである。   y represents an oxygen deficiency amount or an oxygen excess amount. The range of y is preferably in the range of −0.3 <y <0.1. This is because if the value of y is not within this range, the amount of oxygen deficiency or excess amount of oxygen becomes excessive, and the crystal structure impairs reversibility during strain charge / discharge.

「本第一発明に係るCo、Alを固溶させたリチウムニッケル複合酸化物の製造方法」
本第一発明に係るCo、Alを固溶させたリチウムニッケル複合酸化物の製造方法としては、種々の方法が考えられる。例えば、Li以外の金属元素(Co、Al)を含有したニッケル化合物を晶析などにより得て、これにリチウム化合物を混合して焼成する方法や、必要とされる金属元素を含有する溶液を全て混合した液を噴霧して熱分解処理する方法や、ボールミルなどを用いた機械粉砕により必要とされる金属元素の化合物を全て粉砕して混合した後、焼成して製造する方法などが考えられる。
“Method for Producing Lithium Nickel Composite Oxide with Co and Al Solid Solution According to the First Invention”
Various methods are conceivable as a method for producing a lithium nickel composite oxide in which Co and Al are dissolved in the first invention. For example, a nickel compound containing a metal element other than Li (Co, Al) is obtained by crystallization, etc., and a method in which a lithium compound is mixed and fired, or a solution containing a required metal element A method of spraying the mixed liquid and performing a thermal decomposition treatment, a method of pulverizing and mixing all the metal element compounds required by mechanical pulverization using a ball mill, and the like, followed by firing, can be considered.

しかし、いずれの方法を用いてもAlの存在下では、一次粒子の成長は著しく抑制され、1μm以上の平均粒子径にするのは非常に難しい。Alはニッケル酸化物の結晶粒の成長を阻害するからである。   However, in any method, the growth of primary particles is remarkably suppressed in the presence of Al, and it is very difficult to obtain an average particle size of 1 μm or more. This is because Al inhibits the growth of nickel oxide crystal grains.

これに対して、本発明では、Alが未だ含有されていない状態で熱処理を施し、Coを固溶させたニッケル酸化物の結晶粒を成長させ、その後にアルミニウム化合物およびリチウム化合物を添加することに特徴があり、該方法により、平均粒子径を2〜8μmまで粒成長させた、Co、Alを固溶させたリチウムニッケル複合酸化物を製造することを達成している。   In contrast, in the present invention, heat treatment is performed in a state in which Al is not yet contained, and nickel oxide crystal grains in which Co is dissolved are grown, and then an aluminum compound and a lithium compound are added. There is a feature, and by this method, it is possible to produce a lithium nickel composite oxide in which Co and Al are solid-solved, in which the average particle size is grown to 2 to 8 μm.

以下、本第一発明に係る製造方法についてさらに詳細に説明する。   Hereinafter, the manufacturing method according to the first invention will be described in more detail.

粒成長させる熱処理(焙焼)温度は800℃以上である必要がある。一次粒子の粒径を1μm以上にするためである。しかし、1300℃を超えると焼結が急激に進み、Coが固相内拡散したNi酸化物粒子中の空隙が非常に小さくなってしまう。その結果、その後にNi酸化物粒子をリチウム化合物と反応させても、Ni酸化物粒子の表面積が小さいため、Li化合物が十分には反応できず、LiOやLi2CO3といった形で粒子表面に残留してしまう。このため、粒成長させる熱処理(焙焼)温度は800〜1300℃の範囲がよく、より好ましくは、900〜1100℃の範囲が望ましい。 The heat treatment (roasting) temperature for grain growth needs to be 800 ° C. or higher. This is because the primary particles have a particle size of 1 μm or more. However, if the temperature exceeds 1300 ° C., the sintering proceeds rapidly, and the voids in the Ni oxide particles in which Co is diffused in the solid phase become very small. As a result, even if Ni oxide particles are subsequently reacted with a lithium compound, the surface area of the Ni oxide particles is so small that the Li compound cannot react sufficiently, and LiO or Li 2 CO 3 is formed on the particle surface. It will remain. For this reason, the heat treatment (roasting) temperature for grain growth is preferably in the range of 800 to 1300 ° C, more preferably in the range of 900 to 1100 ° C.

しかし、この熱処理温度範囲でAl、Liを除く必要な金属元素を含有するニッケル化合物を単に焼成しただけでは、粒径を2μm程度までにしか粒成長させることはできない。   However, by merely firing a nickel compound containing the necessary metal elements excluding Al and Li in this heat treatment temperature range, the grain size can be grown only to about 2 μm.

これに対しては、本発明では、粒成長をさらに促進させるために、無機塩化物または無機塩化酸化物を液体あるいは固体で添加しており、この点にも本発明の特徴がある。数値的にはニッケルを主成分とした化合物中の金属元素の総モル数(Niのモル数+Coのモル数)に対して塩素のモル数が0.1〜15%の範囲となるようにすることが必要であり、より好ましくは1.0〜10%が望ましい。0.1%未満であると、どの無機塩化物あるいは無機塩化酸化物を使用しても無添加の場合と比べ粒成長の効果が見られない。15%を超えると無機塩化物あるいは無機塩化酸化物のニッケル酸化物結晶内の拡散限界を超えてしまい、表面層にClの高いリチウムニッケル複合酸化物層が形成されてしまうため、電池性能が低下する。また、それ以上無機塩化物または無機塩化酸化物を添加しても粒成長が限界に到達して変化が見られなくなる。   On the other hand, in the present invention, in order to further promote the grain growth, an inorganic chloride or an inorganic chloride oxide is added as a liquid or solid, and this is another feature of the present invention. Numerically, the number of moles of chlorine is in the range of 0.1 to 15% with respect to the total number of moles of metal elements in the compound containing nickel as the main component (number of moles of Ni + number of moles of Co). More preferably 1.0 to 10%. If it is less than 0.1%, no matter what inorganic chloride or inorganic chloride oxide is used, the effect of grain growth is not seen compared to the case of no addition. If it exceeds 15%, the diffusion limit of the inorganic chloride or inorganic chloride oxide in the nickel oxide crystal will be exceeded, and a lithium-nickel composite oxide layer with high Cl content will be formed on the surface layer. To do. Further, even if inorganic chloride or inorganic chloride oxide is further added, grain growth reaches the limit and no change is observed.

Clを添加するための無機塩化物または無機塩化酸化物としては、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選ばれる少なくとも一種以上の元素からなる無機塩化物または無機塩化酸化物がよい。アルカリ金属元素からなる塩化物を用いた場合には、粒成長はするが結晶内のLiサイトをアルカリ金属が置換するため、電池の容量が極端に低下してしまう。3B〜6B族の元素からなる塩化物を用いた場合には、ニッケル化合物の粒子内部に固溶・拡散するか単独の酸化物等に変化するだけで粒成長に寄与しないか、逆に抑制してしまうという問題がある。   Inorganic chlorides or inorganic chlorides for adding Cl include Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge, and Nb. An inorganic chloride or an inorganic chloride oxide composed of at least one element selected from the group consisting of Ta, Be, Ca, Sr, Ba and Sc. When a chloride composed of an alkali metal element is used, grain growth occurs, but the lithium site in the crystal is replaced by alkali metal, so that the capacity of the battery is extremely reduced. In the case of using chlorides composed of elements of 3B-6B group, it does not contribute to the grain growth only by solid solution / diffusion inside the nickel compound particles or changing to single oxide etc. There is a problem that it ends up.

このようにして得られた粒成長させたニッケル複合酸化物に対して、AlおよびLiの化合物を加えて反応させることで、目的とするリチウムニッケル複合酸化物(単結晶で、平均粒子径が2〜8μm)を得ることができる。具体的には、次のような方法が考えられる。一つは、該ニッケル複合酸化物の表面にアルミニウムを含む化合物を被覆(晶析に代表される化学的析出やメカノケミカルに代表される機械的打ち込み等)した後、さらにリチウム化合物と混合して焼成する方法である。もう一つは、該ニッケル複合酸化物とアルミニウム化合物とリチウム化合物とを混合して焼成する方法である。   The thus obtained grain-grown nickel composite oxide is reacted by adding an Al and Li compound to obtain a target lithium-nickel composite oxide (single crystal having an average particle size of 2). ˜8 μm) can be obtained. Specifically, the following method can be considered. One is that the surface of the nickel composite oxide is coated with a compound containing aluminum (chemical precipitation represented by crystallization, mechanical implantation represented by mechanochemical, etc.), and then mixed with a lithium compound. It is a method of baking. The other is a method in which the nickel composite oxide, an aluminum compound, and a lithium compound are mixed and fired.

かかる方法において、リチウム化合物との混合は、Vブレンダー等の乾式混合機あるいは混合造粒装置等により所望の組成になるように行う。その後、酸素雰囲気あるいは除湿、除炭酸処理をした乾燥空気雰囲気において電気炉、キルン、管状炉、プッシャー炉等の中で焼成を行う。   In such a method, the mixing with the lithium compound is performed so as to obtain a desired composition by a dry mixer such as a V blender or a mixing granulator. Thereafter, firing is performed in an electric furnace, kiln, tubular furnace, pusher furnace or the like in an oxygen atmosphere or a dry air atmosphere subjected to dehumidification and carbonation treatment.

この際、焼成温度については、600〜800℃の範囲がよいが、より好ましくは700〜780℃の範囲が望ましい。これは、600℃未満でも500℃を超えるような温度で熱処理すればニッケル酸リチウムが生成されるが、結晶が未発達で構造的に不安定であり、充放電による相転移などにより容易に構造が破壊されてしまうからである。また、800℃を超えると層状構造が崩れ、リチウムイオン二次電池に重要なリチウムイオンの挿入脱離ができないニッケル酸リチウムとなったり、ニッケル複合酸化物が分解されて酸化ニッケルなどが生成されてしまうためである。   At this time, the firing temperature is preferably in the range of 600 to 800 ° C, more preferably in the range of 700 to 780 ° C. This is because lithium nickelate is produced if heat treatment is performed at a temperature lower than 600 ° C. or higher than 500 ° C., but the crystal is undeveloped and structurally unstable, and the structure is easily formed by phase transition due to charge / discharge. Because it will be destroyed. In addition, when the temperature exceeds 800 ° C., the layered structure collapses, resulting in lithium nickelate that cannot insert and desorb lithium ions, which is important for lithium ion secondary batteries, and nickel composite oxide is decomposed to generate nickel oxide and the like. It is because it ends.

以上の工程に用いる化合物としては、以下のものを用いることができる。Al、Liを除く必要な金属元素を含有するニッケル化合物としては、水酸化物、オキシ水酸化物、炭酸塩から選ばれるものを用いることができる。被覆または混合するアルミニウム化合物としては、水酸化物、オキシ水酸化物、酸化物、硫酸塩、アルミン酸塩から選ばれるものを用いることができる。リチウム化合物としては、水酸化物、オキシ水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩、ジカルボン酸塩、脂肪酸塩、クエン酸塩、アルキル化合物、ハロゲン化合物から選ばれる少なくとも一種のものを用いることができる。   As the compound used in the above steps, the following can be used. As the nickel compound containing necessary metal elements excluding Al and Li, those selected from hydroxides, oxyhydroxides and carbonates can be used. As the aluminum compound to be coated or mixed, one selected from hydroxide, oxyhydroxide, oxide, sulfate and aluminate can be used. As the lithium compound, at least one selected from hydroxide, oxyhydroxide, oxide, carbonate, sulfate, nitrate, dicarboxylate, fatty acid salt, citrate, alkyl compound, and halogen compound is used. be able to.

[2.本第二発明に係る二次電池用正極活物質およびその製造方法]
本第一発明に係る製造方法では、Alが未だ含有されていない状態で熱処理を施し、Coを固溶させたニッケル酸化物の結晶粒を成長させ、その後にアルミニウム化合物およびリチウム化合物を添加することで、平均粒子径が2〜8μmのCo、Alを固溶させたリチウムニッケル複合酸化物を製造するが、本発明者は、Alが含有された状態で熱処理を施しても結晶粒を成長させることができないか、さらに試験研究を行った。
[2. Positive electrode active material for secondary battery according to the second invention and method for producing the same]
In the manufacturing method according to the first invention, heat treatment is performed in a state where Al is not yet contained, and nickel oxide crystal grains in which Co is dissolved are grown, and then an aluminum compound and a lithium compound are added. Thus, a lithium nickel composite oxide in which Co and Al are dissolved in an average particle diameter of 2 to 8 μm is manufactured, but the present inventor grows crystal grains even when heat treatment is performed in a state in which Al is contained. Further studies were conducted to see if this could be done.

その結果、所定量の塩化バナジウム(VCl3)を添加・混合することにより、Alが含有されている状態で熱処理を施すことにより、単結晶で平均粒子径が2〜12μmまで粒成長したCo、Alを固溶させたリチウムニッケル複合酸化物を安定的に製造することができるとの知見を得た。具体的には、ニッケル塩とコバルト塩とアルミニウム塩から、CoとAlを含有するニッケル化合物を製造し、このニッケル化合物に所定量のVCl3を添加し、所定の温度で焙焼後、リチウム化合物と混合し所定の温度で焼成することで大幅に粒成長をさせ、単結晶で粒径2〜12μmのリチウムニッケル複合酸化物の一次粒子を安定的に得ることができる。 As a result, by adding and mixing a predetermined amount of vanadium chloride (VCl 3 ), by performing heat treatment in a state of containing Al, Co having grown into an average particle diameter of 2 to 12 μm in a single crystal, The present inventors have obtained knowledge that a lithium nickel composite oxide in which Al is dissolved can be stably produced. Specifically, a nickel compound containing Co and Al is produced from a nickel salt, a cobalt salt, and an aluminum salt, a predetermined amount of VCl 3 is added to the nickel compound, roasted at a predetermined temperature, and then a lithium compound. And firing at a predetermined temperature, the grains can be greatly grown, and primary particles of lithium nickel composite oxide having a particle size of 2 to 12 μm can be stably obtained.

本第二発明に係る二次電池用正極活物質の各構成要件は第一発明と同様であるが、第二発明では、単結晶で平均粒子径が12μmのものまで得られる。   The constituent requirements of the positive electrode active material for a secondary battery according to the second invention are the same as those of the first invention, but in the second invention, a single crystal having an average particle diameter of 12 μm is obtained.

「Co、Alを固溶させたリチウムニッケル複合酸化物の製造方法」
第二発明では、所定量のVCl3を添加して焙焼することにより、Alが存在していてもニッケル酸化物を粒成長させ、その後粒成長したニッケル酸化物にリチウム化合物を所定量混合して反応させることで、最終的に粒径が2〜12μmのCo、Alを固溶させたリチウムニッケル複合酸化物を得ている。VCl3を添加して焙焼することで、Alが存在していてもニッケル酸化物が粒成長する理由は、Vのイオン価が変動しやすいため、Niも安定な2価から不安定な他の価数へ移行しやすくなり、その結果構造が不安定となり、Alの存在下でもニッケル酸化物が粒成長するためと思われる。
"Method for producing lithium nickel composite oxide in which Co and Al are dissolved"
In the second invention, by adding a predetermined amount of VCl 3 and baking, nickel oxide grains are grown even if Al is present, and then a predetermined amount of lithium compound is mixed with the grown nickel oxide. Thus, a lithium nickel composite oxide in which Co and Al having a particle diameter of 2 to 12 μm are finally dissolved is obtained. The reason why nickel oxide grows even when Al is present by adding VCl 3 and baking is because the ionic valence of V is likely to fluctuate. This is probably because the structure becomes unstable as a result of which the nickel oxide grains grow even in the presence of Al.

以下、本第二発明に係る製造方法についてさらに詳細に説明する。   Hereinafter, the production method according to the second invention will be described in more detail.

粒成長させる熱処理温度は900℃以上であることが必要である。一次粒子の粒径を1μm以上にするためである。しかし、1300℃を超えると焼結が急激に進み、Co、Alが固相内拡散したNi酸化物粒子中の空隙が非常に小さくなってしまう。その結果、その後にNi酸化物粒子をリチウム化合物と反応させても、Ni酸化物粒子の表面積が小さいため、Li化合物が十分には反応できず、LiOやLi2CO3といった形で粒子表面に残留してしまう。このため、粒成長させる熱処理温度は900〜1300℃の範囲が良く、より好ましくは900〜1100℃の範囲である。 The heat treatment temperature for grain growth needs to be 900 ° C. or higher. This is because the primary particles have a particle size of 1 μm or more. However, if the temperature exceeds 1300 ° C., the sintering proceeds rapidly, and the voids in the Ni oxide particles in which Co and Al diffuse in the solid phase become very small. As a result, even if Ni oxide particles are subsequently reacted with a lithium compound, the surface area of the Ni oxide particles is so small that the Li compound cannot react sufficiently, and LiO or Li 2 CO 3 is formed on the particle surface. It will remain. For this reason, the heat treatment temperature for grain growth is preferably in the range of 900 to 1300 ° C, more preferably in the range of 900 to 1100 ° C.

しかし、この熱処理温度範囲でLi以外の必要な金属元素(Co、Al)を含有するニッケル化合物を単に焙焼しただけでは、サブミクロンオーダーの粒成長しか期待できないため、リチウムニッケル複合酸化物合成後の一次粒子径は最大でも1μmが限界である。   However, only the submicron order grain growth can be expected by simply roasting a nickel compound containing necessary metal elements (Co, Al) other than Li in this heat treatment temperature range. The primary particle diameter is 1 μm at the maximum.

これに対しては、第二発明では、粒成長を促進させるため、Co、Alの含有するニッケル化合物を焙焼する際にVCl3を液体あるいは固体で添加する点に特徴がある。数値的には、Niを主成分とした化合物中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対して塩素のモル数が0.5〜15%の範囲となるようにすることが必要であり、より好ましくは1.0〜10%が望ましい。0.5%未満であると、VCl3を使用しても無添加の場合と比べ粒成長の効果が見られない。15%を超えるとVCl3のニッケル酸化物結晶内の拡散限界を超えてしまい、表面層にClやVの濃度の高いリチウムニッケル複合酸化物層が形成されてしまうため、電池性能が低下する。 In contrast, the second invention is characterized in that VCl 3 is added as a liquid or solid when roasting a nickel compound containing Co and Al in order to promote grain growth. Numerically, the number of moles of chlorine is in the range of 0.5 to 15% with respect to the total number of moles of metal elements in the compound containing Ni as the main component (number of moles of Ni + number of moles of Co + number of moles of Al). It is necessary to be such that 1.0 to 10% is desirable. If it is less than 0.5%, the effect of grain growth is not seen even when VCl 3 is used compared to the case of no addition. If it exceeds 15%, the diffusion limit of VCl 3 in the nickel oxide crystal will be exceeded, and a lithium nickel composite oxide layer having a high concentration of Cl or V will be formed on the surface layer.

このようにして得られたニッケル複合酸化物に対して、リチウム化合物を加えて反応させることで、目的とするリチウムニッケル複合酸化物(単結晶で、平均粒子径が2〜12μm)を得ることができる。具体的には、該ニッケル酸化物とリチウム化合物とを乾式混合後に焼成する。   The target lithium nickel composite oxide (single crystal, average particle diameter of 2 to 12 μm) can be obtained by adding a lithium compound to the nickel composite oxide thus obtained and reacting it. it can. Specifically, the nickel oxide and the lithium compound are baked after dry mixing.

かかる方法において、リチウム化合物との混合は、Vブレンダー等の乾式混合機あるいは混合造粒装置等により所望の組成になるように行う。その後酸素雰囲気あるいは除湿、除炭酸処理をした乾燥空気雰囲気において電気炉、キルン、管状炉、プッシャー炉等の中で焼成を行う。   In such a method, the mixing with the lithium compound is performed so as to obtain a desired composition by a dry mixer such as a V blender or a mixing granulator. Thereafter, firing is performed in an electric furnace, kiln, tubular furnace, pusher furnace or the like in an oxygen atmosphere or a dry air atmosphere subjected to dehumidification and carbonation treatment.

この際、焼成温度については、600〜800℃の範囲がよいが、より好ましくは700〜780℃の範囲が望ましい。これは、600℃未満でも500℃を超えるような温度で熱処理すればニッケル酸リチウムが生成されるが、結晶が未発達で構造的に不安定であり充放電による相転移などにより容易に構造が破壊されてしまうからである。また、800℃を超えると層状構造が崩れ、リチウムイオン二次電池に重要なリチウムイオンの挿入脱離ができないニッケル酸リチウムとなったり、ニッケル複合酸化物が分解されて酸化ニッケルなどが生成されてしまうためである。   At this time, the firing temperature is preferably in the range of 600 to 800 ° C, more preferably in the range of 700 to 780 ° C. This is because lithium nickelate is produced if heat treatment is performed at a temperature lower than 600 ° C. or higher than 500 ° C., but the crystal is undeveloped and structurally unstable, and the structure is easily formed by phase transition due to charge / discharge. It will be destroyed. In addition, when the temperature exceeds 800 ° C., the layered structure collapses, resulting in lithium nickelate that cannot insert and desorb lithium ions, which is important for lithium ion secondary batteries, and nickel composite oxide is decomposed to generate nickel oxide and the like. It is because it ends.

以上の工程に用いる化合物としては、以下のようなものを用いることができる。Liを除く必要な金属元素(Co、Al)を含有するニッケル化合物としては、水酸化物、オキシ水酸化物、炭酸塩から選ばれるものを用いることができる。また、Coを含有するニッケル化合物にアルミニウム化合物を被覆することによりAlを含有させる場合は、そのアルミニウム化合物としては、水酸化物、オキシ水酸化物、酸化物、硫酸塩、アルミン酸塩から選ばれるものを用いることができる。リチウム化合物としては、水酸化物、オキシ水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩、ジカルボン酸塩、脂肪酸塩、クエン酸塩、アルキル化合物、ハロゲン化合物から選ばれる少なくとも一種のものを用いることができる。   The following compounds can be used as compounds used in the above steps. As the nickel compound containing the necessary metal elements (Co, Al) excluding Li, those selected from hydroxides, oxyhydroxides, and carbonates can be used. Further, when Al is contained by coating a nickel compound containing Co with an aluminum compound, the aluminum compound is selected from hydroxide, oxyhydroxide, oxide, sulfate, and aluminate. Things can be used. As the lithium compound, at least one selected from hydroxide, oxyhydroxide, oxide, carbonate, sulfate, nitrate, dicarboxylate, fatty acid salt, citrate, alkyl compound, and halogen compound is used. be able to.

実施例1〜6は本第一発明に係る実施例であり、実施例7〜10は本第二発明に係る実施例である。比較例1〜4は本第一発明に対応した比較例であり、比較例5〜8は本第二発明に対応した比較例である。   Examples 1 to 6 are examples according to the first invention, and Examples 7 to 10 are examples according to the second invention. Comparative Examples 1 to 4 are comparative examples corresponding to the first invention, and Comparative Examples 5 to 8 are comparative examples corresponding to the second invention.

「実施例1〜6、比較例1〜4」
(実施例1)
硫酸ニッケル六水和物(和光純薬製)および硫酸コバルト七水和物(和光純薬製)を所望の比となるように混合し、水溶液を調製した。この水溶液をアンモニア水(和光純薬製)および苛性ソーダ水溶液(和光純薬製)と同時に、50℃に保温された水をはった吐出口付攪拌反応槽中に滴下した。pHは11.5に保持し、滞留時間は11時間となるように制御した。このようにして、反応晶析法により、コバルトを含有する球状水酸化ニッケルを製造した。該水酸化ニッケルは一次粒子の凝集した球状の二次粒子であった。
"Examples 1-6, Comparative Examples 1-4"
Example 1
Nickel sulfate hexahydrate (manufactured by Wako Pure Chemical Industries) and cobalt sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed at a desired ratio to prepare an aqueous solution. This aqueous solution was dropped into an agitated reaction tank with a discharge port with water kept at 50 ° C. simultaneously with aqueous ammonia (manufactured by Wako Pure Chemical Industries) and aqueous caustic soda (manufactured by Wako Pure Chemical Industries). The pH was maintained at 11.5 and the residence time was controlled to be 11 hours. In this way, spherical nickel hydroxide containing cobalt was produced by a reactive crystallization method. The nickel hydroxide was spherical secondary particles in which primary particles were aggregated.

得られたコバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し、コバルト含有水酸化ニッケル中のClのモル数が2.5%になるように、塩化カルシウム(CaCl2)(和光純薬製)を計算・秤量した。そして、秤量した塩化カルシウムの粉体を純水中に溶かしたが、純水の量は塩化カルシウムの粉体を溶かし込んでもペースト状にならない程度の量とした。得られた塩化カルシウム水溶液をコバルト含有水酸化ニッケルに均一に噴霧して混合を行った。この混合粉末を1000℃にて焙焼して酸化物とした後、該酸化物を水酸化アルミニウム(和光純薬製)および水酸化リチウム一水和物(和光純薬製)と、所望の組成になるようにVブレンダーにて混合した。この混合物を電気炉にて酸素雰囲気中で、時間:3時間、温度:500℃の条件で仮焼をした後、時間:20時間、温度:730℃の条件で焼成し、その後室温まで炉冷した。炉冷後、粉砕処理することで一次粒子の単分散状のリチウムニッケル複合酸化物を製造した。 With respect to the total number of moles of metal elements in the obtained cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co), the number of moles of Cl in the cobalt-containing nickel hydroxide is 2.5%. Calcium chloride (CaCl 2 ) (manufactured by Wako Pure Chemical Industries) was calculated and weighed. The weighed calcium chloride powder was dissolved in pure water, but the amount of pure water was such that it did not become a paste even when the calcium chloride powder was dissolved. The obtained calcium chloride aqueous solution was uniformly sprayed and mixed with cobalt-containing nickel hydroxide. The mixed powder is roasted at 1000 ° C. to form an oxide, and then the oxide is mixed with aluminum hydroxide (Wako Pure Chemical) and lithium hydroxide monohydrate (Wako Pure Chemical) with a desired composition. It mixed with the V blender so that it might become. The mixture was calcined in an electric furnace in an oxygen atmosphere at a time of 3 hours and at a temperature of 500 ° C., then fired at a time of 20 hours and a temperature of 730 ° C., and then cooled to room temperature. did. After furnace cooling, a monodispersed lithium nickel composite oxide of primary particles was produced by pulverization.

得られた一次粒子が単結晶であることは、日本電子製走査型電子顕微鏡「JSM-5510」により確認した。このときの一次粒子の平均粒子径は4.5μmであった。図1に、得られた一次粒子のSEM写真を示す。   It was confirmed by JEOL scanning electron microscope “JSM-5510” that the obtained primary particles were single crystals. At this time, the average particle diameter of the primary particles was 4.5 μm. FIG. 1 shows an SEM photograph of the obtained primary particles.

上記工程において用いた原料の各質量は、最終的な目的物であるリチウムニッケル複合酸化物中の各元素のモル比が、Ni:Co:Al:Li=0.82:0.15:0.03:1.05となるように秤量した。その結果、リチウムニッケル複合酸化物の化学組成はLi1.048Ni0.808Co0.150Al0.032Ca0.012.12となった。 Each mass of the raw material used in the above process is such that the molar ratio of each element in the lithium nickel composite oxide as the final target product is Ni: Co: Al: Li = 0.82: 0.15: 0. 03: Weighed to 1.05. As a result, the chemical composition of the lithium nickel composite oxide was Li 1.048 Ni 0.808 Co 0.150 Al 0.032 Ca 0.01 O 2.12 .

得られたリチウムニッケル複合酸化物を2.0g採取し、圧粉処理用の冶具に装填して、アムスラー型油圧式圧縮試験機により3.0ton/cm2となるまで圧力をかけ、リチウムニッケル複合酸化物の粉体を構成する粒子に破損が生じるかどうか確認する試験(以下、「加圧試験」と記す。)を行った。加圧試験は、電極作製時のロールプレスによる成形を想定した試験であり、電極作製時のロールプレスによる成形を経てもリチウムニッケル複合酸化物の粉体を構成する粒子に破損が生じないことを確認するための試験である。 2.0 g of the obtained lithium nickel composite oxide was sampled, loaded into a jig for compaction treatment, and pressurized to 3.0 ton / cm 2 with an Amsler type hydraulic compression tester. A test (hereinafter referred to as “pressure test”) was conducted to confirm whether or not the particles constituting the oxide powder were damaged. The pressure test is a test that assumes molding by a roll press at the time of electrode production, and that the particles constituting the lithium nickel composite oxide powder do not break even after molding by the roll press at the time of electrode production. This is a test to confirm.

前記した方法でリチウムニッケル複合酸化物の粉体に3.0ton/cm2の圧力を加えたところ、リチウムニッケル複合酸化物の粉体は一体化してペレット状となったが、ペレット状となった粉体の一部をSEMで観察して、リチウムニッケル複合酸化物の粉体を構成する粒子に破損が生じていないかどうかを調べた。具体的には、観察像中から無作為に粒子を50個選び、そのうちの壊れた粒子数を数えた。表1に壊れた粒子数を示す。 When a pressure of 3.0 ton / cm 2 was applied to the lithium nickel composite oxide powder by the above-described method, the lithium nickel composite oxide powder was integrated into a pellet, but became a pellet. A part of the powder was observed with an SEM to examine whether or not the particles constituting the lithium nickel composite oxide powder were damaged. Specifically, 50 particles were randomly selected from the observed image, and the number of broken particles was counted. Table 1 shows the number of broken particles.

さらに、得られたリチウムニッケル複合酸化物を用いて以下のようにして電池を作製し、充放電容量を測定した。   Furthermore, using the obtained lithium nickel composite oxide, a battery was prepared as follows, and the charge / discharge capacity was measured.

まず、活物質粉末であるリチウムニッケル複合酸化物90質量%にアセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)5質量%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に塗布した。塗布量は、乾燥後の活物質重量が0.05g/cm2になるようにした。そして、120℃で真空乾燥を行い、直径1cmの円板状に打ち抜いて正極とした。負極にはリチウム金属を用い、電解液には濃度1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。ポリエチレンからなるセパレータに、この電解液を染み込ませ、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図2に示すような2032型のコイン電池を作製した。 First, 90% by mass of lithium nickel composite oxide as an active material powder was mixed with 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to make a paste. This was applied to a 20 μm thick aluminum foil. The coating amount was set so that the weight of the active material after drying was 0.05 g / cm 2 . And it vacuum-dried at 120 degreeC, and it punched in the disk shape of diameter 1cm, and set it as the positive electrode. Lithium metal was used for the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using LiClO 4 at a concentration of 1 M as a supporting salt was used for the electrolyte. A separator made of polyethylene was impregnated with this electrolytic solution, and a 2032 type coin battery as shown in FIG. 2 was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C.

図2に示すように、作製した2032型のコイン電池は、評価用電極である正極1とリチウム金属からなる負極3との間に前記電解液が含浸されたセパレータ2が配置されており、その全体を負極側からは負極缶6が覆い、正極側からは正極缶5が覆っている。正極缶5と負極缶6との間にはガスケット4が配置され、正極缶5と負極缶6が短絡するのを防ぐとともに、2032型のコイン電池7の内部を外界から遮蔽している。   As shown in FIG. 2, in the produced 2032 type coin battery, a separator 2 impregnated with the electrolytic solution is disposed between a positive electrode 1 as an evaluation electrode and a negative electrode 3 made of lithium metal. The whole is covered with a negative electrode can 6 from the negative electrode side, and covered with a positive electrode can 5 from the positive electrode side. A gasket 4 is disposed between the positive electrode can 5 and the negative electrode can 6 to prevent the positive electrode can 5 and the negative electrode can 6 from being short-circuited and to shield the interior of the 2032 type coin battery 7 from the outside.

作製した電池は24時間程度放置し、OCVが安定した後、初期放電容量およびサイクル特性並びに出力特性の測定を行った。   The produced battery was left for about 24 hours, and after the OCV was stabilized, the initial discharge capacity, cycle characteristics, and output characteristics were measured.

初期放電容量およびサイクル特性を調べる場合は、正極に対する電流密度0.5mA、カットオフ電圧4.3−3.0Vで充放電試験を行った。サイクル特性については1サイクル目の放電容量に対する20サイクル目の放電容量の比(容量維持率)を算出して評価した。表2にその結果を示す。   When examining the initial discharge capacity and cycle characteristics, a charge / discharge test was performed at a current density of 0.5 mA with respect to the positive electrode and a cut-off voltage of 4.3 to 3.0 V. The cycle characteristics were evaluated by calculating the ratio (capacity maintenance ratio) of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle. Table 2 shows the results.

出力特性を調べる場合は、まず、正極に対する電流密度を0.1mA/cm2としてSOC(State Of Charge)が40%になるまで緩やかに充電を行った。そして、その後電流密度を3.0mA/cm2に変化させて10秒間の充電と放電を行った。そして、その際の放電開始電圧(V2)とSOC40%での電圧値(V1)との差を、電流密度すなわち正極1cm2あたりに流れる電流値3.0mAで割算し、正極1cm2あたりに流れる電流と電圧の勾配dV/dAを求めた(下記数式1参照)。そして、求めた勾配dV/dAの値を用いて放電開始電圧が3.0Vまで降下した際の正極1cm2あたりの電流値(A1)を下記数式2により算出した。求めた正極1cm2あたりの電流値A1と放電電圧3.0Vを掛けた値を正極1cm2あたりの出力値(mW)として算出して評価した(下記数式3参照)。表2にその結果を示す。 When examining the output characteristics, first, the current density with respect to the positive electrode was set to 0.1 mA / cm 2 , and the battery was slowly charged until the SOC (State Of Charge) reached 40%. Then, the current density was changed to 3.0 mA / cm 2 and charging and discharging were performed for 10 seconds. Then, the difference between the voltage value at SOC 40% and a discharge starting voltage at that time (V2) (V1), divided by the current value 3.0mA flowing through the current density or per positive electrode 1 cm 2, per positive electrode 1 cm 2 The gradient dV / dA of the flowing current and voltage was obtained (see the following formula 1). Then, using the value of the obtained gradient dV / dA, the current value (A1) per 1 cm 2 of the positive electrode when the discharge start voltage dropped to 3.0 V was calculated by the following formula 2. A value obtained by multiplying the obtained current value A1 per 1 cm 2 of the positive electrode by a discharge voltage of 3.0 V was calculated and evaluated as an output value (mW) per 1 cm 2 of the positive electrode (see Formula 3 below). Table 2 shows the results.

(実施例2)
実施例1においては、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、実施例2においては、0.13%となるようにサンプルを調製した。それ以外の条件については、実施例1と同様としたところ、平均粒子径が2.2μm、化学組成Li1.048Ni0.815Co0.151Al0.033Ca0.0012.08のリチウムニッケル複合酸化物が得られた。なお、コバルト含有水酸化ニッケル中にClを導入するために用いた塩化物は塩化カルシウム(CaCl2)であり、実施例1と同じである。
(Example 2)
In Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is 2.5% with respect to the total number of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). Thus, the sample was prepared, but in Example 2, the sample was prepared to be 0.13%. Other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle size of 2.2 μm and a chemical composition of Li 1.048 Ni 0.815 Co 0.151 Al 0.033 Ca 0.001 O 2.08 was obtained. The chloride used to introduce Cl into the cobalt-containing nickel hydroxide is calcium chloride (CaCl 2 ), which is the same as in Example 1.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(実施例3)
実施例1においては、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、実施例2においては、14.0%となるようにサンプルを調製した。それ以外の条件については、実施例1と同様としたところ、平均粒子径が7.5μm、化学組成Li1.051Ni0.777Co0.144Al0.031Ca0.0482.03のリチウムニッケル複合酸化物が得られた。なお、コバルト含有水酸化ニッケル中にClを導入するために用いた塩化物は塩化カルシウム(CaCl2)であり、実施例1と同じである。
(Example 3)
In Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is 2.5% with respect to the total number of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). Thus, the sample was prepared, but in Example 2, the sample was prepared to be 14.0%. The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle diameter of 7.5 μm and a chemical composition of Li 1.051 Ni 0.777 Co 0.144 Al 0.031 Ca 0.048 O 2.03 was obtained. The chloride used to introduce Cl into the cobalt-containing nickel hydroxide is calcium chloride (CaCl 2 ), which is the same as in Example 1.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(実施例4)
本実施例においても、実施例1と同様に、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、コバルト含有水酸化ニッケル中にClを導入するのに用いた塩化物は実施例1では塩化カルシウム(CaCl2)であるのに対し、本実施例では塩化ニッケルNiCl2(和光純薬製)である点が実施例1と異なる。それ以外の条件については、実施例1と同様としたところ、平均粒子径が3.7μm、化学組成Li1.053Ni0.821Co0.150Al0.0292.13のリチウムニッケル複合酸化物が得られた。
Example 4
In this example, as in Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is equal to the total number of moles of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). The sample was prepared to 2.5%, but the chloride used to introduce Cl into the cobalt-containing nickel hydroxide was calcium chloride (CaCl 2 ) in Example 1, whereas This example differs from Example 1 in that it is nickel chloride NiCl 2 (manufactured by Wako Pure Chemical Industries). The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle size of 3.7 μm and a chemical composition of Li 1.053 Ni 0.821 Co 0.150 Al 0.029 O 2.13 was obtained.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(実施例5)
本実施例においても、実施例1と同様に、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、コバルト含有水酸化ニッケル中にClを導入するのに用いた塩化物は実施例1では塩化カルシウム(CaCl2)であるのに対し、本実施例では塩化コバルトCoCl2(和光純薬製)である点が実施例1と異なる。それ以外の条件については、実施例1と同様としたところ、平均粒子径が3.8μm、化学組成Li1.047Ni0.810Co0.159Al0.0312.06のリチウムニッケル複合酸化物が得られた。
(Example 5)
In this example, as in Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is equal to the total number of moles of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). The sample was prepared to 2.5%, but the chloride used to introduce Cl into the cobalt-containing nickel hydroxide was calcium chloride (CaCl 2 ) in Example 1, whereas This example is different from Example 1 in that it is cobalt chloride CoCl 2 (manufactured by Wako Pure Chemical Industries). The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle diameter of 3.8 μm and a chemical composition of Li 1.047 Ni 0.810 Co 0.159 Al 0.031 O 2.06 was obtained.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(実施例6)
本実施例においても、実施例1と同様に、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、コバルト含有水酸化ニッケル中にClを導入するのに用いた塩化物は実施例1では塩化カルシウム(CaCl2)であるのに対し、本実施例では塩化マンガンMnCl2(和光純薬製)である点が実施例1と異なる。それ以外の条件については、実施例1と同様としたところ、平均粒子径が4.1μm、化学組成Li1.048Ni0.806Co0.152Al0.029Mn0.0132.08のリチウムニッケル複合酸化物が得られた。
(Example 6)
In this example, as in Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is equal to the total number of moles of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). The sample was prepared to 2.5%, but the chloride used to introduce Cl into the cobalt-containing nickel hydroxide was calcium chloride (CaCl 2 ) in Example 1, whereas This example is different from Example 1 in that it is manganese chloride MnCl 2 (manufactured by Wako Pure Chemical Industries). The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle size of 4.1 μm and a chemical composition of Li 1.048 Ni 0.806 Co 0.152 Al 0.029 Mn 0.013 O 2.08 was obtained.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(比較例1)
実施例1においては、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、比較例1においては、0.05%となるようにサンプルを調製した。それ以外の条件については、実施例1と同様としたところ、平均粒子径が1.4μm、化学組成Li1.050Ni0.815Co0.151Al0.033Ca0.00022.12のリチウムニッケル複合酸化物が得られた。なお、コバルト含有水酸化ニッケル中にClを導入するために用いた塩化物は塩化カルシウム(CaCl2)であり、実施例1と同じである。
(Comparative Example 1)
In Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is 2.5% with respect to the total number of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). Thus, although the sample was prepared, in Comparative Example 1, the sample was prepared to be 0.05%. The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle size of 1.4 μm and a chemical composition of Li 1.050 Ni 0.815 Co 0.151 Al 0.033 Ca 0.0002 O 2.12 . The chloride used to introduce Cl into the cobalt-containing nickel hydroxide is calcium chloride (CaCl 2 ), which is the same as in Example 1.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(比較例2)
実施例1においては、コバルト含有水酸化ニッケル中のClのモル数が、コバルト含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数)に対し2.5%になるように、サンプルを調製したが、比較例2においては、17%となるようにサンプルを調製した。それ以外の条件については、実施例1と同様としたところ、平均粒子径が7.8μm、化学組成Li1.048Ni0.774Co0.143Al0.029Ca0.0542.07のリチウムニッケル複合酸化物が得られた。なお、コバルト含有水酸化ニッケル中にClを導入するために用いた塩化物は塩化カルシウム(CaCl2)であり、実施例1と同じである。
(Comparative Example 2)
In Example 1, the number of moles of Cl in the cobalt-containing nickel hydroxide is 2.5% with respect to the total number of metal elements in the cobalt-containing nickel hydroxide (number of moles of Ni + number of moles of Co). Thus, although the sample was prepared, in Comparative Example 2, the sample was prepared to be 17%. The other conditions were the same as in Example 1. As a result, a lithium nickel composite oxide having an average particle size of 7.8 μm and a chemical composition of Li 1.048 Ni 0.774 Co 0.143 Al 0.029 Ca 0.054 O 2.07 was obtained. The chloride used to introduce Cl into the cobalt-containing nickel hydroxide is calcium chloride (CaCl 2 ), which is the same as in Example 1.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(比較例3)
実施例1〜6では、コバルト固溶水酸化ニッケルと塩化カルシウムとの混合粉末を1000℃にて焙焼して酸化物とした後、水酸化アルミニウムを混合しているが、本比較例では、1000℃における焙焼の前に、アルミニウムが添加されている点が実施例1〜6と異なる。また、本比較例では、実施例1〜6とは異なり、塩素が加えられていない。
(Comparative Example 3)
In Examples 1 to 6, aluminum hydroxide was mixed after roasting a mixed powder of cobalt solid solution nickel hydroxide and calcium chloride at 1000 ° C., and in this comparative example, The point from which aluminum was added before baking at 1000 degreeC differs from Examples 1-6. Moreover, in this comparative example, unlike Examples 1-6, chlorine is not added.

以下、比較例3のサンプルの作製方法について説明する。   Hereinafter, a method for manufacturing the sample of Comparative Example 3 will be described.

硫酸ニッケル六水和物(和光純薬製)、硫酸コバルト七水和物(和光純薬製)、および硫酸アルミニウム(和光純薬製)を所望の比となるよう混合し、水溶液を調製した。この水溶液をアンモニア水(和光純薬製)および苛性ソーダ水溶液(和光純薬製)と同時に、50℃に保温された水をはった吐出口付攪拌反応槽中に滴下した。pHは11.5に保持し、滞留時間は11時間となるよう制御した。このようにして、反応晶析法により、コバルトを含有する球状水酸化ニッケルを製造したが、該水酸化ニッケルは一次粒子の凝集した球状の二次粒子であった。   Nickel sulfate hexahydrate (manufactured by Wako Pure Chemical Industries), cobalt sulfate heptahydrate (manufactured by Wako Pure Chemical Industries), and aluminum sulfate (manufactured by Wako Pure Chemical Industries) were mixed in a desired ratio to prepare an aqueous solution. This aqueous solution was dropped into an agitated reaction tank with a discharge port with water kept at 50 ° C. simultaneously with aqueous ammonia (manufactured by Wako Pure Chemical Industries) and aqueous caustic soda (manufactured by Wako Pure Chemical Industries). The pH was kept at 11.5 and the residence time was controlled to be 11 hours. Thus, spherical nickel hydroxide containing cobalt was produced by a reactive crystallization method. The nickel hydroxide was spherical secondary particles in which primary particles were aggregated.

この粉末を1000℃にて焙焼して酸化物とした後、水酸化リチウム一水和物(和光純薬製)と所望の組成になるようVブレンダーにて混合した。この混合物を電気炉にて酸素雰囲気中で、時間:3時間、温度:500℃の条件で仮焼をした後、時間:20時間、温度:730℃の条件で焼成し、その後室温まで炉冷して、一次粒子の凝集体である球状二次粒子のリチウムニッケル複合酸化物を製造した。このときの二次粒子の平均粒子径は8.9μmであり、一次粒子径はSEM観察像から判断しておよそ0.5μmであった。図3に得られた二次粒子のSEM写真を示す。   This powder was roasted at 1000 ° C. to form an oxide, and then mixed with lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries) in a V blender so as to have a desired composition. The mixture was calcined in an electric furnace in an oxygen atmosphere at a time of 3 hours and at a temperature of 500 ° C., then fired at a time of 20 hours and a temperature of 730 ° C., and then cooled to room temperature. Thus, a lithium nickel composite oxide of spherical secondary particles which is an aggregate of primary particles was produced. The average particle size of the secondary particles at this time was 8.9 μm, and the primary particle size was about 0.5 μm as judged from the SEM observation image. FIG. 3 shows a SEM photograph of the secondary particles obtained.

上記工程に用いた原料の各質量は、最終的な目的物であるリチウムニッケル複合酸化物中の各元素のモル比がNi:Co:Al:Li=0.82:0.15:0.03:1.05となるように秤量した。その結果、リチウムニッケル複合酸化物の化学組成はLi1.050Ni0.821Co0.147Al0.0322.06となった。 Each mass of the raw material used in the above process is such that the molar ratio of each element in the lithium nickel composite oxide which is the final target product is Ni: Co: Al: Li = 0.82: 0.15: 0.03. : Weighed to 1.05. As a result, the chemical composition of the lithium nickel composite oxide was Li 1.050 Ni 0.821 Co 0.147 Al 0.032 O 2.06 .

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

(比較例4)
酸化コバルト(和光純薬製)、酸化ニッケル(和光純薬製)、水酸化アルミニウム(和光純薬製)、および水酸化リチウム一水和物(和光純薬製)を実施例1と同じモル比となるように秤量した後、ボールミルにて粉砕・混合を行った。そして、この混合物を電気炉にて酸素雰囲気中で、時間:3時間、温度:500℃の仮焼をした後、時間:20時間、温度:730℃の条件で焼成し、その後室温まで炉冷した。炉冷後、粉砕処理することで、平均粒子径が0.8μmである一次粒子が単分散したリチウムニッケル複合酸化物を製造した。得られたリチウムニッケル複合酸化物の化学組成はLi1.053Ni0.819Co0.149Al0.0322.08となった。
(Comparative Example 4)
Cobalt oxide (manufactured by Wako Pure Chemical Industries), nickel oxide (manufactured by Wako Pure Chemical Industries), aluminum hydroxide (manufactured by Wako Pure Chemical Industries), and lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) have the same molar ratio as in Example 1. And weighed and mixed with a ball mill. The mixture was calcined in an electric furnace in an oxygen atmosphere for a time: 3 hours and a temperature: 500 ° C., then fired under conditions of a time: 20 hours, a temperature: 730 ° C., and then cooled to the room temperature. did. Lithium nickel composite oxide in which primary particles having an average particle diameter of 0.8 μm were monodispersed was manufactured by pulverization after furnace cooling. The chemical composition of the obtained lithium nickel composite oxide was Li 1.053 Ni 0.819 Co 0.149 Al 0.032 O 2.08 .

したがって、比較例4では、1000℃における焙焼の前に、アルミニウムが添加されている点が実施例1〜6と異なる。また、比較例4では、実施例1〜6とは異なり、塩素が加えられていない。さらに、比較例4では得られた二次粒子の破砕処理をすることで一次粒子を得ている点で、比較例3と異なる。   Therefore, Comparative Example 4 differs from Examples 1 to 6 in that aluminum is added before roasting at 1000 ° C. Moreover, in Comparative Example 4, unlike Examples 1-6, chlorine is not added. Further, Comparative Example 4 differs from Comparative Example 3 in that primary particles are obtained by crushing the obtained secondary particles.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表1、2に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 1 and 2, respectively.

本第一発明の範囲内にある実施例1〜6は、表1に示すように、一次粒子の平均粒子径はいずれも2〜8μmの範囲に入っており、また、前述の加圧試験を行っても壊れた粒子はなかった。なお、SEM、粉末X線回折装置による測定により、実施例1〜6のリチウムニッケル複合酸化物はいずれも単結晶となっていたことを確認した。実施例1〜6のリチウムニッケル複合酸化物を正極に用いて作製した電池の特性は、表2に示すように、初期放電容量は188〜194(mAh/g)、容量維持率は88〜91(%)、出力値は77.5〜84.7(mW)であり、いずれの特性とも良好であった。   In Examples 1 to 6 within the scope of the first invention, as shown in Table 1, the average particle diameter of the primary particles is in the range of 2 to 8 μm. There were no broken particles. In addition, it was confirmed by the measurement by SEM and a powder X-ray-diffraction apparatus that all the lithium nickel complex oxides of Examples 1 to 6 were single crystals. The characteristics of the batteries produced using the lithium nickel composite oxides of Examples 1 to 6 as the positive electrode are as shown in Table 2. The initial discharge capacity is 188 to 194 (mAh / g), and the capacity retention rate is 88 to 91. (%) And the output value was 77.5 to 84.7 (mW), both of which were good.

実施例1〜3は、本発明に係るリチウムニッケル複合酸化物を1000℃で焙焼する前に添加する塩素のモル比を変化させているが、塩素モル比はいずれも本発明に係る製造方法の範囲内にあるので、前述の通り、得られたリチウムニッケル複合酸化物の特性、得られたリチウムニッケル複合酸化物を正極に用いて作製した電池の特性とも良好であった。ただし、添加した塩素モル比が 本発明の範囲の下限値に近い実施例2の一次粒子径が2.2μmと小さく、作製した電池の容量維持率および出力値も実施例1および3と比較するとやや小さかった。   In Examples 1 to 3, the molar ratio of chlorine added before roasting the lithium nickel composite oxide according to the present invention at 1000 ° C. was changed. Therefore, as described above, the characteristics of the obtained lithium nickel composite oxide and the characteristics of the battery produced using the obtained lithium nickel composite oxide as the positive electrode were also good. However, when the added chlorine molar ratio is close to the lower limit of the range of the present invention, the primary particle diameter of Example 2 is as small as 2.2 μm, and the capacity retention rate and output value of the fabricated battery are also compared with Examples 1 and 3. It was a little small.

実施例4〜6は、リチウムニッケル複合酸化物を1000℃で焙焼する前に添加する塩化物の種類を変えている(塩素モル比はいずれも2.5%であり同じである。)が、リチウム電池の初期放電容量、容量維持率、出力値は概ね同じであり、リチウム電池の特性に影響を与えるものは添加する塩素のモル比であると考えられる。   In Examples 4 to 6, the kind of the chloride added before roasting the lithium nickel composite oxide at 1000 ° C. is changed (the chlorine molar ratio is 2.5%, which is the same). The initial discharge capacity, the capacity retention rate, and the output value of the lithium battery are almost the same, and it is thought that the molar ratio of chlorine to be added affects the characteristics of the lithium battery.

比較例1は、添加する塩素のモル比が0.05%であり、本第一発明に係る製造方法における塩素モル比の下限値を下回っているので、あまり粒成長せず、一次粒子の平均粒子径は1.4μmとなり、2μmを下回った。作製した電池の特性についても、容量維持率は実施例1〜6と比較して15%程度小さく、また、出力値は実施例1〜6と比較して30%程度小さい結果となった。   In Comparative Example 1, the molar ratio of chlorine to be added is 0.05%, which is lower than the lower limit value of the molar ratio of chlorine in the production method according to the first invention. The particle size was 1.4 μm, which was less than 2 μm. As for the characteristics of the produced battery, the capacity retention rate was about 15% smaller than those in Examples 1 to 6, and the output value was about 30% smaller than those in Examples 1 to 6.

比較例2は、添加する塩素のモル比が20%であり、本第一発明に係る製造方法における塩素モル比の上限値を上回っている。添加している塩素のモル比が多いので、粒成長自体は良好であり、平均粒子径は7.8μmと大きくなっているが、作製した電池の初期放電容量は実施例1〜6と比較して10%程度小さく、また容量維持率も8%程度小さい結果となった。   In Comparative Example 2, the molar ratio of chlorine to be added is 20%, which exceeds the upper limit value of the chlorine molar ratio in the production method according to the first invention. Since the molar ratio of the added chlorine is large, the grain growth itself is good and the average particle diameter is as large as 7.8 μm. However, the initial discharge capacity of the fabricated battery is compared with Examples 1-6. The result was about 10% smaller and the capacity retention rate was about 8% smaller.

比較例3は、1000℃における焙焼の前にアルミニウムが添加されている点で実施例1〜6と異なり、また、塩素が添加されていない点が実施例1〜6と異なる。塩素が添加されていないため粒成長をほとんどせず、一次粒子の平均粒子径は0.5μmであった。また、得られたリチウムニッケル複合酸化物は二次粒子を形成していたため、加圧試験により全体の15%程度の粒子が壊れた。図4に加圧試験後の二次粒子のSEM写真を示す。また、作製した電池の出力値は実施例1〜6と比較して35%程度小さく、また容量維持率も10%程度小さい結果となった。   Comparative Example 3 is different from Examples 1 to 6 in that aluminum is added before roasting at 1000 ° C., and is different from Examples 1 to 6 in that chlorine is not added. Since no chlorine was added, grain growth was hardly carried out, and the average primary particle diameter was 0.5 μm. Further, since the obtained lithium nickel composite oxide formed secondary particles, about 15% of the particles were broken by the pressure test. FIG. 4 shows an SEM photograph of the secondary particles after the pressure test. Moreover, the output value of the produced battery was about 35% smaller than those of Examples 1 to 6, and the capacity retention rate was also about 10% smaller.

比較例4は、1000℃における焙焼の前にアルミニウムが添加されている点で実施例1〜6と異なり、また、塩素が添加されていない点が実施例1〜6と異なる。さらに、得られた二次粒子の破砕処理をすることで一次粒子を得ている点で、比較例3と異なる。塩素が添加されていないため粒成長をほとんどせず、一次粒子の平均粒子径は0.8μmであった。また、作製した電池の出力値は実施例1〜6と比較して30%程度小さく、また容量維持率も14%程度小さい結果となった。   Comparative Example 4 is different from Examples 1 to 6 in that aluminum is added before roasting at 1000 ° C., and is different from Examples 1 to 6 in that chlorine is not added. Furthermore, it differs from Comparative Example 3 in that primary particles are obtained by crushing the obtained secondary particles. Since no chlorine was added, the grain growth was hardly carried out, and the average particle diameter of the primary particles was 0.8 μm. Moreover, the output value of the produced battery was about 30% smaller than those of Examples 1 to 6, and the capacity retention rate was also about 14% smaller.

「実施例7〜10、比較例5〜8」
(実施例7)
硫酸ニッケル六水和物(和光純薬製)および硫酸コバルト七水和物(和光純薬製)、硫酸アルミニウム(和光純薬製)を所望の比となるように混合し、水溶液を調製した。この水溶液をアンモニア水(和光純薬製)および苛性ソーダ水溶液(和光純薬製)と同時に、50℃に保温された水をはった吐出口付攪拌反応槽中に滴下した。pHは11.5に保持し、滞留時間は11時間となるように制御した。このようにして、反応晶析法により、CoおよびAlを含有する球状水酸化ニッケルを製造したが、該水酸化ニッケルは一次粒子の凝集した球状の二次粒子であった。
"Examples 7 to 10, Comparative Examples 5 to 8"
(Example 7)
Nickel sulfate hexahydrate (manufactured by Wako Pure Chemical Industries), cobalt sulfate heptahydrate (manufactured by Wako Pure Chemical Industries), and aluminum sulfate (manufactured by Wako Pure Chemical Industries) were mixed in a desired ratio to prepare an aqueous solution. This aqueous solution was dropped into an agitated reaction tank with a discharge port with water kept at 50 ° C. simultaneously with aqueous ammonia (manufactured by Wako Pure Chemical Industries) and aqueous caustic soda (manufactured by Wako Pure Chemical Industries). The pH was maintained at 11.5 and the residence time was controlled to be 11 hours. Thus, spherical nickel hydroxide containing Co and Al was produced by a reactive crystallization method. The nickel hydroxide was spherical secondary particles in which primary particles were aggregated.

得られたCoおよびAl含有水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対し、該水酸化ニッケル中のClのモル数が5.7%になるように、塩化バナジウム(VCl3)(和光純薬製)を計算・秤量した。そして、秤量したVCl3の粉体を純水中に溶かしたが、純水の量はVCl3の粉体を溶かし込んでもペースト状にならない程度の量とした。得られたVCl3水溶液を該水酸化ニッケルに均一に噴霧して混合を行った。この混合粉末を1000℃にて焙焼して酸化物とした後、水酸化リチウム一水和物(和光純薬製)と所望の組成になるようにVブレンダーにて混合した。この混合物を電気炉にて酸素雰囲気中で、時間:3時間、温度:500℃の条件で仮焼をした後、時間:20時間、温度:730℃の条件で焼成し、その後室温まで炉冷した。炉冷後、粉砕処理することで一次粒子の単分散状のリチウムニッケル複合酸化物を製造した。 The number of moles of Cl in the nickel hydroxide was 5.7% with respect to the total number of moles of metal elements in the obtained Co and Al-containing nickel hydroxide (number of moles of Ni + number of moles of Co + number of moles of Al). Then, vanadium chloride (VCl 3 ) (manufactured by Wako Pure Chemical Industries) was calculated and weighed. The weighed VCl 3 powder was dissolved in pure water, but the amount of pure water was such that it did not become a paste even when the VCl 3 powder was dissolved. The obtained VCl 3 aqueous solution was uniformly sprayed on the nickel hydroxide and mixed. The mixed powder was roasted at 1000 ° C. to form an oxide, and then mixed with lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries) in a V blender so as to have a desired composition. The mixture was calcined in an electric furnace in an oxygen atmosphere at a time of 3 hours and at a temperature of 500 ° C., then fired at a time of 20 hours and a temperature of 730 ° C., and then cooled to room temperature. did. After furnace cooling, a monodispersed lithium nickel composite oxide of primary particles was produced by pulverization.

得られた一次粒子が単結晶であることは、日本電子製走査型電子顕微鏡「JSM-5510」により確認した。このときの一次粒子の平均粒子径は6.2μmであった。図5に得られた一次粒子のSEM写真を示す。   It was confirmed by JEOL scanning electron microscope “JSM-5510” that the obtained primary particles were single crystals. At this time, the average particle diameter of the primary particles was 6.2 μm. FIG. 5 shows an SEM photograph of the primary particles obtained.

上記工程において用いた原料の各質量は、最終的な目的物であるリチウムニッケル複合酸化物中の各元素のモル比がNi:Co:Al:Li=0.82:0.15:0.03:1.05となるように秤量した。その結果、得られたリチウムニッケル複合酸化物の化学組成はLi1.049Ni0.811Co0.142Al0.0280.0192.05となった。 Each mass of the raw material used in the above process is such that the molar ratio of each element in the lithium nickel composite oxide as the final target product is Ni: Co: Al: Li = 0.82: 0.15: 0.03. : Weighed to 1.05. As a result, the chemical composition of the obtained lithium nickel composite oxide was Li 1.049 Ni 0.811 Co 0.142 Al 0.028 V 0.019 O 2.05 .

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(実施例8)
実施例7においては、Co・Al含有水酸化ニッケル中のClのモル数が、該水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対し5.7%になるように、サンプルを調製したが、実施例8においては、1.0%となるようにサンプルを調製した。それ以外の条件については、実施例7と同様としたところ、平均粒子径が2.3μm、化学組成Li1.053Ni0.820Co0.146Al0.0310.0032.12のリチウムニッケル複合酸化物が得られた。なお、水酸化ニッケル中にClを導入するために用いた塩化物は塩化バナジウム(VCl3)であり、実施例7と同じである。
(Example 8)
In Example 7, the number of moles of Cl in the Co.Al-containing nickel hydroxide was 5 with respect to the total number of moles of metal elements in the nickel hydroxide (number of moles of Ni + number of moles of Co + number of moles of Al). The sample was prepared to be 0.7%, but in Example 8, the sample was prepared to be 1.0%. The other conditions were the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle size of 2.3 μm and a chemical composition of Li 1.053 Ni 0.820 Co 0.146 Al 0.031 V 0.003 O 2.12 . The chloride used to introduce Cl into nickel hydroxide is vanadium chloride (VCl 3 ), which is the same as in Example 7.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(実施例9)
実施例7においては、Co・Al含有水酸化ニッケル中のClのモル数が、該水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対し5.7%になるように、サンプルを調製したが、実施例9においては、14.3%となるようにサンプルを調製した。それ以外の条件については、実施例7と同様としたところ、平均粒子径が10.2μm、化学組成Li1.051Ni0.785Co0.143Al0.0270.0452.08のリチウムニッケル複合酸化物が得られた。なお、水酸化ニッケル中にClを導入するために用いた塩化物は塩化バナジウム(VCl3)であり、実施例7と同じである。
Example 9
In Example 7, the number of moles of Cl in the Co.Al-containing nickel hydroxide was 5 with respect to the total number of moles of metal elements in the nickel hydroxide (number of moles of Ni + number of moles of Co + number of moles of Al). The sample was prepared to be 0.7%, but in Example 9, the sample was prepared to be 14.3%. The other conditions were the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle size of 10.2 μm and a chemical composition of Li 1.051 Ni 0.785 Co 0.143 Al 0.027 V 0.045 O 2.08 was obtained. The chloride used to introduce Cl into nickel hydroxide is vanadium chloride (VCl 3 ), which is the same as in Example 7.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(実施例10)
硫酸ニッケル六水和物(和光純薬製)および硫酸コバルト六水和物(和光純薬製)を所望の比となるよう混合して調整した。この水溶液を、アンモニア水(和光純薬製)および苛性ソーダ水溶液(和光純薬製)と同時に、50℃に保温された水をはった吐出口付攪拌反応槽中へ滴下した。pHは11.5に保持し、滞留時間は11時間となるよう制御した。このようにして、反応晶析法により、Coを含有する球状水酸化ニッケルを製造した。該水酸化ニッケルは一次粒子の凝集した球状の二次粒子であった。
(Example 10)
Nickel sulfate hexahydrate (manufactured by Wako Pure Chemical Industries) and cobalt sulfate hexahydrate (manufactured by Wako Pure Chemical Industries) were mixed and adjusted so as to have a desired ratio. This aqueous solution was dropped into an agitated reaction tank with a discharge port with water kept at 50 ° C. simultaneously with aqueous ammonia (manufactured by Wako Pure Chemical Industries) and aqueous caustic soda (manufactured by Wako Pure Chemical Industries). The pH was kept at 11.5 and the residence time was controlled to be 11 hours. In this way, spherical nickel hydroxide containing Co was produced by a reactive crystallization method. The nickel hydroxide was spherical secondary particles in which primary particles were aggregated.

該水酸化ニッケルをスラリー濃度130g/Lとなるように水を張った容器に投入し、攪拌した。これに、所望の比となるように、アルミン酸ソーダ(和光純薬製)を加えて1時間攪拌した後、希硫酸でpH9.5となるよう調整し、水酸化アルミニウムが被覆されたCo含有水酸化ニッケルを製造した。   The nickel hydroxide was put into a container filled with water so as to have a slurry concentration of 130 g / L and stirred. To this, sodium aluminate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for 1 hour so that the desired ratio was obtained, and then adjusted to pH 9.5 with dilute sulfuric acid, and Co-containing aluminum hydroxide was coated. Nickel hydroxide was produced.

上記の製造条件以外の条件については、実施例7と同様としたところ、平均粒子径が5.8μm、化学組成Li1.048Ni0.807Co0.146Al0.0290.0182.04のリチウムニッケル複合酸化物が得られた。なお、水酸化ニッケル中にClを導入するために用いた塩化物は塩化バナジウム(VCl3)であり、実施例7と同じである。 The conditions other than the above production conditions were the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle size of 5.8 μm and a chemical composition of Li 1.048 Ni 0.807 Co 0.146 Al 0.029 V 0.018 O 2.04 was obtained. It was. The chloride used to introduce Cl into nickel hydroxide is vanadium chloride (VCl 3 ), which is the same as in Example 7.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例7と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 7. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(比較例5)
実施例7においては、Co・Al含有水酸化ニッケル中のClのモル数が、該水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対し5.7%になるように、サンプルを調製したが、比較例5においては、0.2%となるようにサンプルを調製した。それ以外の条件については、実施例7と同様としたところ、平均粒子径が0.8μm、化学組成Li1.053Ni0.821Co0.145Al0.0330.0012.17のリチウムニッケル複合酸化物が得られた。なお、水酸化ニッケル中にClを導入するために用いた塩化物は塩化バナジウム(VCl3)であり、実施例7と同じである。
(Comparative Example 5)
In Example 7, the number of moles of Cl in the Co.Al-containing nickel hydroxide was 5 with respect to the total number of moles of metal elements in the nickel hydroxide (number of moles of Ni + number of moles of Co + number of moles of Al). The sample was prepared to be 0.7%, but in Comparative Example 5, the sample was prepared to be 0.2%. The other conditions were the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle diameter of 0.8 μm and a chemical composition of Li 1.053 Ni 0.821 Co 0.145 Al 0.033 V 0.001 O 2.17 was obtained. The chloride used to introduce Cl into nickel hydroxide is vanadium chloride (VCl 3 ), which is the same as in Example 7.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(比較例6)
実施例7においては、Co・Al含有水酸化ニッケル中のClのモル数が、水酸化ニッケル中の金属元素の総モル数(Niのモル数+Coのモル数+Alのモル数)に対し5.7%になるように、サンプルを調製したが、比較例6においては、19.8%となるようにサンプルを調製した。それ以外の条件については、実施例7と同様としたところ、平均粒子径が13.3μm、化学組成Li1.052Ni0.769Co0.141Al0.0280.0622.10のリチウムニッケル複合酸化物が得られた。なお、水酸化ニッケル中にClを導入するために用いた塩化物は塩化バナジウム(VCl3)であり、実施例7と同じである。
(Comparative Example 6)
In Example 7, the number of moles of Cl in the Co.Al-containing nickel hydroxide was 5 with respect to the total number of metal elements in the nickel hydroxide (number of moles of Ni + number of moles of Co + number of moles of Al). The sample was prepared so as to be 7%, but in Comparative Example 6, the sample was prepared so as to be 19.8%. The other conditions were the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle size of 13.3 μm and a chemical composition of Li 1.052 Ni 0.769 Co 0.141 Al 0.028 V 0.062 O 2.10 was obtained. The chloride used to introduce Cl into nickel hydroxide is vanadium chloride (VCl 3 ), which is the same as in Example 7.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(比較例7)
実施例9と同様にして、Co・Al含有水酸化ニッケルに、塩化バナジウム水溶液を均一に噴霧して混合を行い、混合粉末を得た。
(Comparative Example 7)
In the same manner as in Example 9, the Co.Al-containing nickel hydroxide was uniformly sprayed with an aqueous vanadium chloride solution and mixed to obtain a mixed powder.

この混合粉末を800℃で焙焼して酸化物としたが、それ以降の処理については実施例7と同様とした。その結果、平均粒子径が1.2μm、化学組成Li1.048Ni0.782Co0.146Al0.0290.0432.08のリチウムニッケル複合酸化物が得られた。 The mixed powder was roasted at 800 ° C. to obtain an oxide, and the subsequent treatment was the same as in Example 7. As a result, a lithium nickel composite oxide having an average particle size of 1.2 μm and a chemical composition of Li 1.048 Ni 0.782 Co 0.146 Al 0.029 V 0.043 O 2.08 was obtained.

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

(比較例8)
実施例8と同様にして、Co・Al含有水酸化ニッケルに、塩化バナジウム水溶液を均一に噴霧して混合を行い、混合粉末を得た。
(Comparative Example 8)
In the same manner as in Example 8, the Co.Al-containing nickel hydroxide was uniformly sprayed with an aqueous vanadium chloride solution and mixed to obtain a mixed powder.

この混合粉末を1500℃で焙焼して酸化物としたが、それ以降の処理については実施例7と同様とした。その結果、Li化合物の偏析反応により一次粒子径が十数μmのリチウムニッケル複合酸化物と数μmのニッケル複合酸化物が混在した粉体が得られた。   This mixed powder was roasted at 1500 ° C. to obtain an oxide, and the subsequent treatment was the same as in Example 7. As a result, a powder in which a lithium nickel composite oxide having a primary particle size of several tens of μm and a nickel composite oxide of several μm was mixed by a segregation reaction of a Li compound was obtained.

得られた混在物の粉体を粉末X線回折により測定した結果を図6に示す。図6からわかるように、得られた混在物の粉体は、リチウムニッケル複合酸化物の割合が多いものの、ニッケル複合酸化物もある程度混在していることがわかる。したがって、一次粒子径が十数μmのものはリチウムニッケル複合酸化物と考えられ、一次粒子径が数μmのものはニッケル複合酸化物と考えられる。   FIG. 6 shows the result of measurement of the obtained mixed powder by powder X-ray diffraction. As can be seen from FIG. 6, the obtained mixed powder has a large proportion of the lithium nickel composite oxide, but it is understood that the nickel composite oxide is also mixed to some extent. Accordingly, one having a primary particle size of more than 10 μm is considered a lithium nickel composite oxide, and one having a primary particle size of several μm is considered a nickel composite oxide.

(比較例9)
実施例7と同様の工程で球状Co・Al含有水酸化ニッケルを製造後、水酸化リチウム一水和物(和光純薬製)を所望の組成になるようにVブレンダーにて混合した。この混合物を電気炉にて酸素雰囲気中で、時間:3時間、温度:500℃の条件で仮焼をした後、時間:20時間、温度:730℃の条件で焼成し、その後室温まで炉冷した。炉冷後解砕し、球状二次粒子のリチウムニッケル複合酸化物を製造した。
(Comparative Example 9)
After producing spherical Co.Al-containing nickel hydroxide in the same process as in Example 7, lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries) was mixed in a V blender so as to have a desired composition. The mixture was calcined in an electric furnace in an oxygen atmosphere at a time of 3 hours and at a temperature of 500 ° C., then fired at a time of 20 hours and a temperature of 730 ° C., and then cooled to room temperature. did. After the furnace cooling, pulverization was performed to produce lithium nickel composite oxide with spherical secondary particles.

得られた二次粒子の形状を走査型電子顕微鏡「JSM-5510」(日本電子製)により確認した。一次粒子の平均粒子径は0.3μm、二次粒子の平均粒子径は8.3μmであった。   The shape of the obtained secondary particles was confirmed with a scanning electron microscope “JSM-5510” (manufactured by JEOL Ltd.). The average particle diameter of the primary particles was 0.3 μm, and the average particle diameter of the secondary particles was 8.3 μm.

上記工程において用いた原料の各質量は、最終的な目的物であるリチウムニッケル複合酸化物中の各元素のモル比がNi:Co:Al:Li=0.82:0.15:0.03:1.05となるように秤量し、その結果得られたリチウムニッケル複合酸化物の化学組成はLi1.049Ni0.818Co0.147Al0.0352.21となった。 Each mass of the raw material used in the above process is such that the molar ratio of each element in the lithium nickel composite oxide as the final target product is Ni: Co: Al: Li = 0.82: 0.15: 0.03. : Weighed to 1.05, and the resulting lithium nickel composite oxide had a chemical composition of Li 1.049 Ni 0.818 Co 0.147 Al 0.035 O 2.21 .

得られたリチウムニッケル複合酸化物の粉体への加圧試験後に粒子破壊が生じているかどうかのSEMによる計測、および得られた電池の特性評価については、実施例1と同様の方法で行った。その計測および評価の結果は、それぞれ表3、4に示す。   Measurement by SEM as to whether or not particle breakage occurred after a pressure test on the obtained lithium nickel composite oxide powder and evaluation of the characteristics of the obtained battery were performed in the same manner as in Example 1. . The measurement and evaluation results are shown in Tables 3 and 4, respectively.

本第二発明の範囲内にある実施例7〜10は、表3に示すように、一次粒子の平均粒子径はいずれも2〜12μmの範囲に入っており、また、前述の加圧試験を行っても壊れた粒子はなかった。なお、SEM, 粉末X線回折装置による測定により、実施例7〜10のリチウムニッケル複合酸化物はいずれも単結晶となっていたことを確認した。実施例7〜10のリチウムニッケル複合酸化物を正極に用いて作製した電池の特性は、表4に示すように、初期放電容量は183〜194(mAh/g)、容量維持率は85〜92(%)、出力値は79.2〜84.6(mW)であり、いずれの特性とも良好であった。   In Examples 7 to 10 within the scope of the second invention, as shown in Table 3, the average particle diameter of the primary particles is in the range of 2 to 12 μm. There were no broken particles. In addition, it was confirmed by the measurement by SEM and a powder X-ray-diffraction apparatus that all the lithium nickel complex oxides of Examples 7 to 10 were single crystals. The characteristics of the batteries produced using the lithium nickel composite oxides of Examples 7 to 10 as the positive electrode are as shown in Table 4. The initial discharge capacity is 183 to 194 (mAh / g), and the capacity retention rate is 85 to 92. (%) And the output value was 79.2 to 84.6 (mW), both of which were good.

実施例7〜10は、本発明に係るリチウムニッケル複合酸化物を1000℃で焙焼する前に添加する塩素のモル比を変化させているが、塩素モル比はいずれも本発明に係る製造方法の範囲内にあるので、前述の通り、得られたリチウムニッケル複合酸化物の特性、得られたリチウムニッケル複合酸化物を正極に用いて作製した電池の特性とも良好であった。ただし、添加した塩素モル比が 本発明の範囲の下限値に近い実施例8の一次粒子径は2.3μmと小さく、また、作製した電池の容量維持率および出力値も実施例7、9および10と比較するとやや小さかった。   In Examples 7 to 10, the molar ratio of chlorine added before roasting the lithium nickel composite oxide according to the present invention at 1000 ° C. was changed. Therefore, as described above, the characteristics of the obtained lithium nickel composite oxide and the characteristics of the battery produced using the obtained lithium nickel composite oxide as the positive electrode were also good. However, the primary particle diameter of Example 8 in which the added chlorine molar ratio is close to the lower limit of the range of the present invention is as small as 2.3 μm, and the capacity retention rate and output value of the produced batteries are also as described in Examples 7, 9 and Compared to 10, it was slightly smaller.

実施例10は、水酸化アルミニウムが被覆されたCo含有水酸化ニッケルに塩化バナジウム(VCl3)を混合した後1000℃で焙焼している点で、CoおよびAl含有水酸化ニッケルに塩化バナジウム(VCl3)を混合した後1000℃で焙焼している実施例7〜9とは異なるが、実施例10の初期放電容量(194(mAh/g))、容量維持率(90%)および出力値(82.8mW)はいずれも実施例7〜9と比較して遜色ない。したがって、表面にアルミニウム化合物が被覆されているCo含有ニッケル化合物に塩化バナジウム(VCl3)を混合して焙焼することでも、Co・Al含有水酸化ニッケルに塩化バナジウム(VCl3)を混合して焙焼する場合と同様の効果が得られることがわかる。 In Example 10, vanadium chloride (VCl 3 ) was mixed with Co-containing nickel hydroxide coated with aluminum hydroxide and then roasted at 1000 ° C., so that vanadium chloride ( VCl 3 ) is mixed and then roasted at 1000 ° C., but different from Examples 7-9, the initial discharge capacity (194 (mAh / g)), capacity retention rate (90%) and output of Example 10 All values (82.8 mW) are comparable to Examples 7-9. Therefore, even by roasting a mixture of vanadium chloride (VCl 3) the Co-containing nickel compound aluminum compound is coated on the surface, a mixture of vanadium chloride (VCl 3) to Co · Al-containing nickel hydroxide It turns out that the same effect as the case of roasting is acquired.

比較例5は、添加する塩素のモル比が0.2%であり、本発明に係る製造方法における塩素モル比の下限値を下回っているので、あまり粒成長せず、一次粒子の平均粒子径は0.8μmとなり、2μmを下回った。作製した電池の特性についても、容量維持率は実施例1〜4と比較して13%程度小さく、また、出力値は実施例1〜4と比較して30%程度小さい結果となった。   In Comparative Example 5, the molar ratio of chlorine to be added is 0.2%, which is lower than the lower limit value of the chlorine molar ratio in the production method according to the present invention. Was 0.8 μm, which was less than 2 μm. As for the characteristics of the manufactured battery, the capacity retention rate was about 13% smaller than those in Examples 1 to 4, and the output value was about 30% smaller than those in Examples 1 to 4.

比較例6は、添加する塩素のモル比が19.8%であり、本発明に係る製造方法における塩素モル比の上限値を上回っている。添加している塩素のモル比が大きいため粒成長が過大となり、平均粒子径は13.3μmと大きくなった。このため、作製した電池の初期放電容量は実施例1〜4と比較して10%程度小さく、また容量維持率も8%程度小さく、さらに出力値は12%程度小さい結果となった。   In Comparative Example 6, the molar ratio of chlorine to be added is 19.8%, which exceeds the upper limit value of the chlorine molar ratio in the production method according to the present invention. Since the molar ratio of added chlorine was large, the grain growth was excessive, and the average particle size was as large as 13.3 μm. For this reason, the initial discharge capacity of the fabricated battery was about 10% smaller than those of Examples 1 to 4, the capacity retention rate was about 8% smaller, and the output value was about 12% smaller.

比較例7は、実施例3と同量の塩素モル比であるが、焙焼温度を1000℃から800℃に下げており、本第二発明に係る製造方法の焙焼温度(900〜1300℃)の下限値よりも低い焙焼温度である。このため、塩素量は十分であるものの、焙焼温度が低すぎるため、一次粒子の平均粒子径は1.2μmと小さく、2μmに達しなかった。作製した電池も一次粒子径が小さいため、実施例3と比較して容量維持率で23%程度、出力値で30%程度小さい結果となった。   Comparative Example 7 is the same molar ratio of chlorine as Example 3, but the roasting temperature was lowered from 1000 ° C to 800 ° C, and the roasting temperature (900-1300 ° C of the production method according to the second invention). ) Is lower than the lower limit value. For this reason, although the amount of chlorine was sufficient, since the roasting temperature was too low, the average particle diameter of the primary particles was as small as 1.2 μm and did not reach 2 μm. Since the produced battery also has a small primary particle size, the capacity retention rate was about 23% smaller and the output value about 30% smaller than Example 3.

比較例8は、実施例2と同量の塩素モル比であるが、焙焼温度を1000℃から1500℃に上げており、本第二発明に係る製造方法の焙焼温度(900〜1300℃)の上限値よりも高い焙焼温度である。このため、塩素量は本第二発明に係る製造方法における下限に近いものの、高い焙焼温度であることにより、Co・Al含有ニッケル酸化物を製造した時点で径が6.8μm程度と非常に大きな一次粒子となってしまった。このため、Li化合物との反応性が悪くなった。また、反応前に重力により溶体が下方へ流れてしまい一次粒子の平均粒子径が十数μmと非常に大きなリチウムニッケル複合酸化物と数μmのニッケル複合酸化物の混在物となった。   Although the comparative example 8 is the chlorine molar ratio of the same amount as Example 2, the roasting temperature is raised from 1000 degreeC to 1500 degreeC, and the roasting temperature (900-1300 degreeC of the manufacturing method which concerns on this 2nd invention is carried out. The baking temperature is higher than the upper limit value. For this reason, although the amount of chlorine is close to the lower limit in the production method according to the second invention, the diameter is very high at about 6.8 μm at the time when the Co / Al-containing nickel oxide is produced due to the high roasting temperature. It became large primary particles. For this reason, the reactivity with Li compound worsened. In addition, the solution flowed downward due to gravity before the reaction, resulting in a mixture of a lithium nickel composite oxide having a very large average particle diameter of several tens of μm and a nickel composite oxide of several μm.

比較例9は、塩素が添加されていない点が実施例1〜3と異なる。塩化バナジウムが添加されていないため粒成長をほとんどせず、一次粒子の平均粒子径は0.3μmであった。また、得られたリチウムニッケル複合酸化物は粒成長をほとんどしていないため二次粒子を維持しており、加圧試験により全体の20%程度の粒子が壊れた。また、作製した電池の出力値は実施例1〜3と比較して30%程度小さく、また容量維持率も8%程度小さい結果となった。   Comparative Example 9 is different from Examples 1 to 3 in that chlorine is not added. Since vanadium chloride was not added, the grain growth was hardly carried out, and the average particle diameter of the primary particles was 0.3 μm. Moreover, since the obtained lithium nickel composite oxide hardly caused grain growth, secondary particles were maintained, and about 20% of the whole particles were broken by the pressure test. Moreover, the output value of the produced battery was about 30% smaller than those of Examples 1 to 3, and the capacity retention rate was about 8% smaller.

実施例1の一次粒子のSEM写真である。2 is a SEM photograph of primary particles of Example 1. 正極活物質の評価のために作製した2032型のコイン電池の断面図である。It is sectional drawing of a 2032 type coin battery produced for evaluation of a positive electrode active material. 比較例3の二次粒子のSEM写真である。4 is a SEM photograph of secondary particles of Comparative Example 3. 比較例3の二次粒子の加圧試験後のSEM写真である。6 is a SEM photograph after a pressure test of secondary particles of Comparative Example 3. 実施例7の一次粒子のSEM写真である。10 is a SEM photograph of primary particles of Example 7. 比較例8で製造した混在物の粉末X線回折パターンである。10 is a powder X-ray diffraction pattern of a mixture produced in Comparative Example 8.

符号の説明Explanation of symbols

1:正極
2:セパレーター
3:負極
4:ガスケット
5:正極缶
6:負極缶
7:コイン電池
1: Positive electrode 2: Separator 3: Negative electrode 4: Gasket 5: Positive electrode can 6: Negative electrode can 7: Coin battery

Claims (11)

ニッケルとリチウムとを主成分にする非水系二次電池用正極活物質であって、組成が下記一般式で表され、
LixNi1-p-q-rCopAlqr2-y
(ただし、式中のx、p、q、r、yの値の範囲は、0.8≦x≦1.3、0<p≦0.2、0<q≦0.1、0≦r≦0.1、−0.3<y<0.1であり、式中のAは、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選択された少なくとも一種の元素を示す。)
かつ、単結晶で平均粒子径が2〜8μmである一次粒子からなることを特徴とする非水系二次電池用正極活物質。
A positive electrode active material for a non-aqueous secondary battery containing nickel and lithium as main components, the composition is represented by the following general formula,
Li x Ni 1-pqr Co p Al q A r O 2-y
(However, the range of values of x, p, q, r, y in the formula is 0.8 ≦ x ≦ 1.3, 0 <p ≦ 0.2, 0 <q ≦ 0.1, 0 ≦ r. ≦ 0.1, −0.3 <y <0.1, and A in the formula is Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, (It represents at least one element selected from the group consisting of Zr, Bi, Ge, Nb, Ta, Be, Ca, Sr, Ba, and Sc.)
And the positive electrode active material for non-aqueous secondary batteries characterized by consisting of primary particles which are single crystals and have an average particle diameter of 2 to 8 μm.
ニッケル化合物とコバルト化合物とからコバルトを含有するニッケル化合物を得る工程と、
前記コバルトを含有するニッケル化合物に、該化合物中のニッケルのモル数とコバルトのモル数の合計モル数に対して塩素のモル数が0.1〜15%の範囲となるように無機塩化物または無機塩化酸化物を添加し、混合して混合物を得る工程と、
前記混合物を温度800〜1300℃で焙焼して平均粒子径が2〜8μmの単結晶からなる酸化物を得る工程と、
前記酸化物にアルミニウム化合物とリチウム化合物を混合するか、または前記酸化物の表面にアルミニウム化合物を被覆した後にリチウム化合物を混合することにより混合物を得る工程と、該混合物を600〜800℃で焼成して、リチウムニッケル複合酸化物を得る工程と、
からなることを特徴とする非水系二次電池用正極活物質の製造方法。
Obtaining a nickel compound containing cobalt from the nickel compound and the cobalt compound;
An inorganic chloride or a nickel compound containing cobalt so that the number of moles of chlorine is in the range of 0.1 to 15% with respect to the total number of moles of nickel and cobalt in the compound. Adding an inorganic chloride oxide and mixing to obtain a mixture;
Roasting the mixture at a temperature of 800-1300 ° C. to obtain an oxide composed of a single crystal having an average particle size of 2-8 μm;
A step of obtaining a mixture by mixing the oxide with an aluminum compound and a lithium compound, or coating the surface of the oxide with an aluminum compound and then mixing the lithium compound; and firing the mixture at 600 to 800 ° C. Obtaining a lithium nickel composite oxide;
The manufacturing method of the positive electrode active material for non-aqueous secondary batteries characterized by comprising.
前記無機塩化物又は無機塩化酸化物は、Ti、V、In、Cr、Fe、Sn、Cu、Zn、Mn、Mg、Ga、Ni、Co、Zr、Bi、Ge、Nb、Ta、Be、Ca、Sr、Ba、Scからなる群から選択された少なくとも一種以上の元素の塩化物または塩化酸化物である請求項2に記載の非水系二次電池用正極活物質の製造方法。   The inorganic chloride or inorganic chloride oxide is Ti, V, In, Cr, Fe, Sn, Cu, Zn, Mn, Mg, Ga, Ni, Co, Zr, Bi, Ge, Nb, Ta, Be, Ca. The method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 2, which is a chloride or a chloride oxide of at least one element selected from the group consisting of Sr, Ba, and Sc. 前記コバルトを含有するニッケル化合物が、水酸化物、オキシ水酸化物および炭酸塩のうちの少なくとも1つからなる請求項2または3に記載の非水系二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 2 or 3, wherein the nickel compound containing cobalt is composed of at least one of a hydroxide, an oxyhydroxide, and a carbonate. 前記アルミニウム化合物が、水酸化物、オキシ水酸化物、酸化物、硫酸塩およびアルミン酸塩のうちの少なくとも1つからなる請求項2〜4のいずれかに記載の非水系二次電池用正極活物質の製造方法。   The positive electrode active for a non-aqueous secondary battery according to any one of claims 2 to 4, wherein the aluminum compound comprises at least one of a hydroxide, an oxyhydroxide, an oxide, a sulfate, and an aluminate. A method for producing a substance. 前記リチウム化合物が、水酸化物、オキシ水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩、ジカルボン酸塩、脂肪酸塩、クエン酸塩、アルキル化合物およびハロゲン化合物のうちの少なくとも1つからなる請求項2〜5のいずれかに記載の非水系二次電池用正極活物質の製造方法。   The lithium compound comprises at least one of hydroxide, oxyhydroxide, oxide, carbonate, sulfate, nitrate, dicarboxylate, fatty acid salt, citrate, alkyl compound and halogen compound. The manufacturing method of the positive electrode active material for non-aqueous secondary batteries in any one of claim | item 2 -5. ニッケルとリチウムとを主成分にする非水系二次電池用正極活物質であって、組成が下記一般式で表され、
LixNi1-p-q-rCopAlqr2-y
(ただし、式中のx、p、q、r、yの値の範囲は、0.8≦x≦1.3、0<p≦0.2、0<q≦0.1、0<r≦0.05、−0.3<y<0.1である。)
かつ、単結晶で平均粒子径が2〜12μmである一次粒子からなることを特徴とする非水系二次電池用正極活物質。
A positive electrode active material for a non-aqueous secondary battery containing nickel and lithium as main components, the composition is represented by the following general formula,
Li x Ni 1-pqr Co p Al q V r O 2-y
(However, the ranges of values of x, p, q, r, and y in the formula are 0.8 ≦ x ≦ 1.3, 0 <p ≦ 0.2, 0 <q ≦ 0.1, 0 <r. ≦ 0.05, −0.3 <y <0.1.)
And the positive electrode active material for non-aqueous secondary batteries characterized by consisting of primary particles which are single crystals and have an average particle diameter of 2 to 12 μm.
ニッケル化合物、コバルト化合物およびアルミニウム化合物からコバルトおよびアルミニウムを含有するニッケル化合物を得る工程、または、ニッケル化合物およびコバルト化合物からコバルトを含有するニッケル化合物を得た後、該ニッケル化合物の表面にアルミニウム化合物を被覆してアルミニウム化合物の被覆されたコバルト含有ニッケル化合物を得る工程と、
前記ニッケルを主成分とする化合物に、該化合物中のニッケル、コバルト、アルミニウムの合計モル数に対して塩素のモル数が0.5〜15%の範囲となるように、塩化バナジウムを添加し、混合して混合物を得る工程と、
前記混合物を温度900〜1300℃で焙焼して酸化物とする工程と、
前記酸化物にリチウム化合物を混合してリチウムニッケルを主成分とする混合物を得る工程と、
該混合物を600〜800℃で焼成して、リチウムニッケル複合酸化物を得る工程と、
からなることを特徴とする非水系二次電池用正極活物質の製造方法。
Step of obtaining nickel compound containing cobalt and aluminum from nickel compound, cobalt compound and aluminum compound, or obtaining nickel compound containing cobalt from nickel compound and cobalt compound, and then coating the surface of nickel compound with aluminum compound And obtaining a cobalt-containing nickel compound coated with an aluminum compound,
Vanadium chloride is added to the compound containing nickel as a main component so that the number of moles of chlorine is in the range of 0.5 to 15% with respect to the total number of moles of nickel, cobalt, and aluminum in the compound. Mixing to obtain a mixture;
Roasting the mixture at a temperature of 900-1300 ° C. to form an oxide;
A step of mixing a lithium compound with the oxide to obtain a mixture mainly composed of lithium nickel;
Firing the mixture at 600 to 800 ° C. to obtain a lithium nickel composite oxide;
The manufacturing method of the positive electrode active material for non-aqueous secondary batteries characterized by comprising.
前記ニッケルを主成分とする化合物が、水酸化物、オキシ水酸化物および炭酸塩のうちの少なくとも1つからなることを特徴とする請求項8に記載の非水系二次電池用正極活物質の製造方法。   9. The positive electrode active material for a non-aqueous secondary battery according to claim 8, wherein the nickel-based compound comprises at least one of a hydroxide, an oxyhydroxide, and a carbonate. Production method. 前記表面被覆に用いられるアルミニウム化合物が、水酸化物、オキシ水酸化物、酸化物、硫酸塩およびアルミン酸塩のうちの少なくとも1つからなることを特徴とする請求項8または9に記載の非水系二次電池用正極活物質の製造方法。   The aluminum compound used for said surface coating consists of at least one of a hydroxide, an oxyhydroxide, an oxide, a sulfate, and an aluminate, The non-of Claim 8 or 9 characterized by the above-mentioned. A method for producing a positive electrode active material for an aqueous secondary battery. 前記リチウム化合物が、水酸化物、オキシ水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩、ジカルボン酸塩、脂肪酸塩、クエン酸塩、アルキル化合物およびハロゲン化合物のうちの少なくとも1つからなることを特徴とする請求項8〜10のいずれかに記載の非水系二次電池用正極活物質の製造方法。   The lithium compound is composed of at least one of hydroxide, oxyhydroxide, oxide, carbonate, sulfate, nitrate, dicarboxylate, fatty acid salt, citrate, alkyl compound and halogen compound. The manufacturing method of the positive electrode active material for non-aqueous secondary batteries in any one of Claims 8-10 characterized by these.
JP2004315683A 2004-07-15 2004-10-29 Anode active material for non-aqueous secondary battery, and its manufacturing method Pending JP2006054159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315683A JP2006054159A (en) 2004-07-15 2004-10-29 Anode active material for non-aqueous secondary battery, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004209206 2004-07-15
JP2004315683A JP2006054159A (en) 2004-07-15 2004-10-29 Anode active material for non-aqueous secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006054159A true JP2006054159A (en) 2006-02-23

Family

ID=36031483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315683A Pending JP2006054159A (en) 2004-07-15 2004-10-29 Anode active material for non-aqueous secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006054159A (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273108A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using the same
WO2007135973A1 (en) * 2006-05-19 2007-11-29 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2008147160A (en) * 2006-11-17 2008-06-26 Nippon Chem Ind Co Ltd Cathode active substance for lithium secondary battery, its manufacturing method and lithium secondary cell
JP2008181839A (en) * 2007-01-26 2008-08-07 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
EP2104163A1 (en) * 2006-12-06 2009-09-23 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
EP2110871A1 (en) * 2006-12-26 2009-10-21 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
WO2010091611A1 (en) * 2009-02-13 2010-08-19 成都晶元新材料技术有限公司 Ni-, co- and mn- multi-doped positive material for lithium ion battery and preparation method thereof
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
WO2011065423A1 (en) * 2009-11-27 2011-06-03 戸田工業株式会社 Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2011096522A1 (en) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011096525A1 (en) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20110136000A (en) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2012073551A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012073550A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012073548A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012128289A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2012128288A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2013012336A (en) * 2011-06-28 2013-01-17 Toyota Industries Corp Secondary battery and charging method of the same
JP2013033764A (en) * 2012-11-15 2013-02-14 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
CN103098272A (en) * 2010-07-23 2013-05-08 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US20130230782A1 (en) * 2012-03-02 2013-09-05 Samsung Sdi Co., Ltd. Lithium battery
WO2014097569A1 (en) * 2012-12-21 2014-06-26 Jfeミネラル株式会社 Positive electrode material for lithium secondary batteries
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
JP2014527267A (en) * 2012-07-13 2014-10-09 エルジー・ケム・リミテッド Bimodal type negative electrode active material and lithium secondary battery including the same
JP2014199778A (en) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9397335B2 (en) 2012-07-13 2016-07-19 Lg Chem, Ltd. Bimodal type anode active material and lithium secondary battery including the same
WO2017169129A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2018041746A (en) * 2017-12-05 2018-03-15 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
JP2018063951A (en) * 2016-03-31 2018-04-19 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
CN108539151A (en) * 2018-03-27 2018-09-14 游萃蓉 Electrode for secondary battery material and secondary cell
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2019050107A (en) * 2017-09-08 2019-03-28 セイコーエプソン株式会社 Battery, manufacturing method for battery, and electronic apparatus
KR20190044327A (en) * 2017-10-20 2019-04-30 울산과학기술원 positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery
WO2019221497A1 (en) * 2018-05-17 2019-11-21 주식회사 엘지화학 Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019235885A1 (en) * 2018-06-07 2019-12-12 주식회사 엘지화학 Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
CN110957463A (en) * 2019-10-30 2020-04-03 深圳市卓能新能源股份有限公司 Positive pole piece, lithium ion battery and manufacturing method thereof
CN111009646A (en) * 2019-12-09 2020-04-14 宁波容百新能源科技股份有限公司 High-rate monocrystal-like nickel-cobalt lithium aluminate cathode material with coating layer and preparation method thereof
KR20200099425A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200099424A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200099426A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
WO2020175781A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Cathode active material, method for preparing same, and secondary battery including cathode comprising same
WO2020175782A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Positive active material, method for manufacturing same and lithium secondary battery comprising positive electrode comprising positive active material
KR20200105390A (en) * 2019-02-28 2020-09-07 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102178781B1 (en) * 2019-12-24 2020-11-13 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
JPWO2019163483A1 (en) * 2018-02-22 2021-02-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2021039751A1 (en) 2019-08-30 2021-03-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2021508410A (en) * 2017-12-22 2021-03-04 ユミコア Positive electrode material for rechargeable lithium-ion batteries
JP2021517721A (en) * 2018-03-29 2021-07-26 ユミコア How to Prepare Positive Electrode Material for Rechargeable Lithium Ion Batteries
WO2021200397A1 (en) 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, and secondary battery
US11271203B2 (en) 2017-12-22 2022-03-08 Umicore Positive electrode material for rechargeable lithium ion batteries and methods of making thereof
CN114197046A (en) * 2021-12-10 2022-03-18 合肥国轩高科动力能源有限公司 Single crystal lithium-containing metal composite oxide material and preparation method and application thereof
CN115084457A (en) * 2021-09-16 2022-09-20 宁夏汉尧石墨烯储能材料科技有限公司 High-compaction long-life ternary cathode material and preparation method thereof
WO2022227494A1 (en) * 2021-04-28 2022-11-03 蜂巢能源科技有限公司 Single-crystal high-nickel positive electrode material and preparation method therefor and application thereof
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
WO2023038473A1 (en) * 2021-09-10 2023-03-16 주식회사 엘지에너지솔루션 Cathode active material, and cathode and lithium secondary battery comprising same
JP7405655B2 (en) 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US11916224B2 (en) 2018-03-02 2024-02-27 Umicore Positive electrode material for rechargeable lithium ion batteries
US11973209B2 (en) 2018-06-07 2024-04-30 Lg Chem, Ltd. Positive electrode active material including single particles of lithium nickel composite transition metal oxide, method of preparing the same, and lithium secondary battery including the same

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273108A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using the same
US8187747B2 (en) 2006-03-30 2012-05-29 Sumitomo Metal Mining Co., Ltd. Positive Electrode active material for non-aqueous electrolyte-based secondary battery, production method therefor and non-aqueous electrolyte-based secondary battery using the same
WO2007135973A1 (en) * 2006-05-19 2007-11-29 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2008147160A (en) * 2006-11-17 2008-06-26 Nippon Chem Ind Co Ltd Cathode active substance for lithium secondary battery, its manufacturing method and lithium secondary cell
EP2104163A1 (en) * 2006-12-06 2009-09-23 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
EP2104163A4 (en) * 2006-12-06 2013-05-15 Toda Kogyo Corp Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
US8920687B2 (en) 2006-12-26 2014-12-30 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
EP2110871A1 (en) * 2006-12-26 2009-10-21 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
EP2110871A4 (en) * 2006-12-26 2010-04-14 Santoku Corp Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JPWO2008078784A1 (en) * 2006-12-26 2010-04-30 株式会社三徳 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and secondary battery
JP2008181839A (en) * 2007-01-26 2008-08-07 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
WO2010091611A1 (en) * 2009-02-13 2010-08-19 成都晶元新材料技术有限公司 Ni-, co- and mn- multi-doped positive material for lithium ion battery and preparation method thereof
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2011113885A (en) * 2009-11-27 2011-06-09 Toda Kogyo Corp Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
WO2011065423A1 (en) * 2009-11-27 2011-06-03 戸田工業株式会社 Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
WO2011096525A1 (en) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011096522A1 (en) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819199B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102792496A (en) * 2010-02-05 2012-11-21 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101683204B1 (en) * 2010-06-13 2016-12-07 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9899677B2 (en) 2010-06-13 2018-02-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR20110136000A (en) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN103098272A (en) * 2010-07-23 2013-05-08 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2012073551A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP5973352B2 (en) * 2010-12-03 2016-08-23 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2012073548A1 (en) * 2010-12-03 2014-05-19 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012073548A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP5805104B2 (en) * 2010-12-03 2015-11-04 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012073550A1 (en) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP6026404B2 (en) * 2011-03-24 2016-11-16 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012128289A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2012128288A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP6026403B2 (en) * 2011-03-24 2016-11-16 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2013012336A (en) * 2011-06-28 2013-01-17 Toyota Industries Corp Secondary battery and charging method of the same
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US20130230782A1 (en) * 2012-03-02 2013-09-05 Samsung Sdi Co., Ltd. Lithium battery
US9397335B2 (en) 2012-07-13 2016-07-19 Lg Chem, Ltd. Bimodal type anode active material and lithium secondary battery including the same
JP2014527267A (en) * 2012-07-13 2014-10-09 エルジー・ケム・リミテッド Bimodal type negative electrode active material and lithium secondary battery including the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2013033764A (en) * 2012-11-15 2013-02-14 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
CN104885266A (en) * 2012-12-21 2015-09-02 杰富意矿物股份有限公司 Positive electrode material for lithium secondary batteries
JP2014123529A (en) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery
WO2014097569A1 (en) * 2012-12-21 2014-06-26 Jfeミネラル株式会社 Positive electrode material for lithium secondary batteries
JP2014199778A (en) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
JP2018063951A (en) * 2016-03-31 2018-04-19 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7107666B2 (en) 2016-03-31 2022-07-27 本田技研工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
US11005099B2 (en) 2016-03-31 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2017169129A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
CN109075336A (en) * 2016-03-31 2018-12-21 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
JPWO2017169129A1 (en) * 2016-03-31 2019-02-07 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP7400033B2 (en) 2016-03-31 2023-12-18 本田技研工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2022132449A (en) * 2016-03-31 2022-09-08 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7021479B2 (en) 2017-09-08 2022-02-17 セイコーエプソン株式会社 Batteries, battery manufacturing methods and electronic devices
JP2019050107A (en) * 2017-09-08 2019-03-28 セイコーエプソン株式会社 Battery, manufacturing method for battery, and electronic apparatus
KR102005513B1 (en) * 2017-10-20 2019-07-30 울산과학기술원 positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
CN109952671A (en) * 2017-10-20 2019-06-28 蔚山科学技术院 For the positive active material of lithium secondary battery, preparation method, comprising it electrode and include the lithium secondary battery of the electrode
KR20190044327A (en) * 2017-10-20 2019-04-30 울산과학기술원 positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
US10790498B2 (en) 2017-10-20 2020-09-29 Unist (Ulsan National Institute Of Science And Technology) Positive active material for rechargeable lithium battery, method of preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
JP2018041746A (en) * 2017-12-05 2018-03-15 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
JP7052072B2 (en) 2017-12-22 2022-04-11 ユミコア Positive electrode material for rechargeable lithium-ion batteries
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
US11522187B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
US11271203B2 (en) 2017-12-22 2022-03-08 Umicore Positive electrode material for rechargeable lithium ion batteries and methods of making thereof
JP2021508410A (en) * 2017-12-22 2021-03-04 ユミコア Positive electrode material for rechargeable lithium-ion batteries
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery
US11888147B2 (en) 2018-02-22 2024-01-30 Panasonic Holdings Corporation Nonaqueous electrolyte secondary batteries
JPWO2019163483A1 (en) * 2018-02-22 2021-02-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US11949096B2 (en) 2018-03-02 2024-04-02 Umicore Positive electrode material for rechargeable lithium ion batteries
US11916224B2 (en) 2018-03-02 2024-02-27 Umicore Positive electrode material for rechargeable lithium ion batteries
CN108539151A (en) * 2018-03-27 2018-09-14 游萃蓉 Electrode for secondary battery material and secondary cell
JP2021517721A (en) * 2018-03-29 2021-07-26 ユミコア How to Prepare Positive Electrode Material for Rechargeable Lithium Ion Batteries
JP7202393B2 (en) 2018-03-29 2023-01-11 ユミコア Method for preparing cathode material for rechargeable lithium-ion batteries
JP2021516424A (en) * 2018-05-17 2021-07-01 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
WO2019221497A1 (en) * 2018-05-17 2019-11-21 주식회사 엘지화학 Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
JP7139008B2 (en) 2018-05-17 2022-09-20 エルジー エナジー ソリューション リミテッド Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP7191342B2 (en) 2018-06-07 2022-12-19 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
WO2019235885A1 (en) * 2018-06-07 2019-12-12 주식회사 엘지화학 Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR20190139033A (en) * 2018-06-07 2019-12-17 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP2021514524A (en) * 2018-06-07 2021-06-10 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, their manufacturing methods, and lithium secondary batteries containing them
KR102288292B1 (en) * 2018-06-07 2021-08-10 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
US11973209B2 (en) 2018-06-07 2024-04-30 Lg Chem, Ltd. Positive electrode active material including single particles of lithium nickel composite transition metal oxide, method of preparing the same, and lithium secondary battery including the same
KR20200099424A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102172381B1 (en) * 2019-02-14 2020-10-30 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200099425A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200099426A (en) * 2019-02-14 2020-08-24 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102175126B1 (en) * 2019-02-14 2020-11-06 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102214463B1 (en) * 2019-02-14 2021-02-09 울산과학기술원 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
WO2020175782A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Positive active material, method for manufacturing same and lithium secondary battery comprising positive electrode comprising positive active material
WO2020175781A1 (en) * 2019-02-28 2020-09-03 주식회사 에스엠랩 Cathode active material, method for preparing same, and secondary battery including cathode comprising same
KR102178780B1 (en) * 2019-02-28 2020-11-13 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
CN113412548A (en) * 2019-02-28 2021-09-17 Sm研究所股份有限公司 Anode active material, method of preparing the same, and lithium secondary battery including anode of the anode active material
CN113424340A (en) * 2019-02-28 2021-09-21 Sm研究所股份有限公司 Anode active material, method of preparing the same, and lithium secondary battery including anode of the anode active material
KR102159701B1 (en) * 2019-02-28 2020-09-25 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200105391A (en) * 2019-02-28 2020-09-07 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR20200105390A (en) * 2019-02-28 2020-09-07 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
WO2021039751A1 (en) 2019-08-30 2021-03-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN110957463A (en) * 2019-10-30 2020-04-03 深圳市卓能新能源股份有限公司 Positive pole piece, lithium ion battery and manufacturing method thereof
CN111009646A (en) * 2019-12-09 2020-04-14 宁波容百新能源科技股份有限公司 High-rate monocrystal-like nickel-cobalt lithium aluminate cathode material with coating layer and preparation method thereof
JP2023509595A (en) * 2019-12-24 2023-03-09 エスエム ラブ コーポレーション リミテッド Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
WO2021132763A1 (en) * 2019-12-24 2021-07-01 주식회사 에스엠랩 Positive electrode active material, method for preparing same, and lithium secondary battery comprising positive electrode comprising same
KR102178781B1 (en) * 2019-12-24 2020-11-13 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
JP7405655B2 (en) 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2021200397A1 (en) 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, and secondary battery
WO2022227494A1 (en) * 2021-04-28 2022-11-03 蜂巢能源科技有限公司 Single-crystal high-nickel positive electrode material and preparation method therefor and application thereof
WO2023038473A1 (en) * 2021-09-10 2023-03-16 주식회사 엘지에너지솔루션 Cathode active material, and cathode and lithium secondary battery comprising same
CN115084457A (en) * 2021-09-16 2022-09-20 宁夏汉尧石墨烯储能材料科技有限公司 High-compaction long-life ternary cathode material and preparation method thereof
CN114197046B (en) * 2021-12-10 2023-11-03 合肥国轩高科动力能源有限公司 Single crystal lithium-containing metal composite oxide material and preparation method and application thereof
CN114197046A (en) * 2021-12-10 2022-03-18 合肥国轩高科动力能源有限公司 Single crystal lithium-containing metal composite oxide material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2006054159A (en) Anode active material for non-aqueous secondary battery, and its manufacturing method
US10038189B2 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries
JP2006127955A (en) Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
KR101860596B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5708277B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP6287771B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPWO2012169274A1 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP6650956B2 (en) Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6614202B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US20170050864A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2017117700A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7135354B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7110647B2 (en) Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide
JP2009064585A (en) Manufacturing method of transition metal based compound for lithium secondary battery
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7119302B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2019021426A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP5354112B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery