JP2011113885A - Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery - Google Patents

Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011113885A
JP2011113885A JP2009270637A JP2009270637A JP2011113885A JP 2011113885 A JP2011113885 A JP 2011113885A JP 2009270637 A JP2009270637 A JP 2009270637A JP 2009270637 A JP2009270637 A JP 2009270637A JP 2011113885 A JP2011113885 A JP 2011113885A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
secondary battery
hydroxide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270637A
Other languages
Japanese (ja)
Other versions
JP5218782B2 (en
Inventor
Kazuhiko Kikutani
和彦 菊谷
Hiroki Imahashi
大樹 今橋
Kazutoshi Ishizaki
和俊 石▲崎▼
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009270637A priority Critical patent/JP5218782B2/en
Priority to PCT/JP2010/071021 priority patent/WO2011065423A1/en
Publication of JP2011113885A publication Critical patent/JP2011113885A/en
Application granted granted Critical
Publication of JP5218782B2 publication Critical patent/JP5218782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide Li-Ni composite oxide particle powder large in discharge capacity and small in gas generation in high-temperature charging when used as a positive electrode active material of a nonaqueous electrolyte secondary battery. <P>SOLUTION: In relation to a Li-Ni composite oxide having a composition of Li<SB>x</SB>Ni<SB>1-y-z</SB>Co<SB>y</SB>M<SB>z</SB>Zr<SB>a</SB>Bi<SB>b</SB>Sb<SB>c</SB>O<SB>2</SB>, wherein 0.9≤x≤1.3, 0.1≤y≤0.35, 0<z≤0.35, 0≤a≤0.025, 0.0002≤b≤0.004, 0≤c≤0.002, 1.2≤b/c when c≠0, and M is at least one kind of an element selected from Al and Mn, in the Li-Ni composite oxide particle powder for the nonaqueous electrolyte secondary battery, the average primary particle diameter of primary particles constituting a secondary particle is 1-4 μm; and a surplus lithium hydroxide and lithium carbonate which are left during a baking reaction are removed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池の正極活物質として用いた場合に、充放電容量が大きく、ガス発生量の少ないLi−Ni複合酸化物粒子粉末に関するものである。   The present invention relates to a Li—Ni composite oxide particle powder having a large charge / discharge capacity and a small gas generation amount when used as a positive electrode active material of a non-aqueous electrolyte secondary battery.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、保存特性が良いという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and good storage characteristics has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い充放電容量を有する電池として注目されてきた。しかし、この材料は、充電時の熱安定性及び充放電サイクル耐久性に劣る為、更なる特性改善が求められている。 Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiNiO 2 and the like are generally known, and lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high charge / discharge capacity. However, since this material is inferior in thermal stability during charging and charge / discharge cycle durability, further improvement in characteristics is required.

即ち、LiNiOはリチウムを引き抜いた際に、Ni3+がNi4+となりヤーンテラー歪を生じ、Liを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶へと結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、サイクル特性が悪くなる、又酸素放出による電解液との反応などが起こり、電池の熱安定性及び保存特性が悪くなるといった特徴があった。この課題を解決する為に、LiNiOのNiの一部にCo及びAlを添加した材料の研究が行われてきたが、未だにこれらの課題を解決した材料は得られておらず、より結晶構造の安定したLi−Ni複合酸化物が求められている。 That is, when LiNiO 2 pulls out lithium, Ni 3+ becomes Ni 4+ and yarn teller distortion occurs, and in the region where Li is pulled out 0.45, from hexagonal to monoclinic, and when further extracted, from monoclinic to hexagonal. And the crystal structure changes. Therefore, repeating the charge / discharge reaction makes the crystal structure unstable, the cycle characteristics deteriorate, and the reaction with the electrolyte solution due to oxygen release occurs, resulting in poor battery thermal stability and storage characteristics. there were. In order to solve this problem, research has been conducted on materials in which Co and Al are added to a part of Ni in LiNiO 2 , but no material that has solved these problems has yet been obtained, and a more crystalline structure. A stable Li—Ni composite oxide is demanded.

またLi−Ni複合酸化物は、粉末を構成する一次粒子径が小さい為、充填密度の高いLi−Ni複合酸化物を得るにはそれらが密に凝集した二次粒子を形成するように物性を制御する必要がある。しかし、二次粒子が形成されたLi−Ni複合酸化物は、電極作製時のコンプレッションによって二次粒子破壊が発生して表面積が増加し、高温充電状態保存時に電解液との反応が促進され電極界面に形成した不導体膜によって二次電池としての抵抗が上昇するといった特徴がある。そこで、高温保存時のガス発生を抑制するためには、放電容量が低下しない程度に一次粒子径を効率的に大きくして、電解液との反応を抑える必要がある。   In addition, since the primary particle size of the Li-Ni composite oxide is small, in order to obtain a Li-Ni composite oxide with a high packing density, the physical properties should be set so that they form densely aggregated secondary particles. Need to control. However, the Li-Ni composite oxide formed with secondary particles has an increased surface area due to secondary particle destruction due to compression during electrode fabrication, and the reaction with the electrolyte is promoted during storage at high temperature charge state. The non-conductive film formed at the interface is characterized in that the resistance as a secondary battery increases. Therefore, in order to suppress gas generation during high-temperature storage, it is necessary to efficiently increase the primary particle size to such an extent that the discharge capacity does not decrease, thereby suppressing reaction with the electrolytic solution.

即ち、非水電解質二次電池用の正極活物質として放電容量が大きく、高温充電時のガス発生が少ないLi−Ni複合酸化物が要求されている。   That is, a Li—Ni composite oxide having a large discharge capacity and a small amount of gas generation during high-temperature charging is required as a positive electrode active material for a nonaqueous electrolyte secondary battery.

従来、一次粒子の大粒子径化、結晶構造の安定化、ガス発生などの諸特性改善のために、Li−Ni複合酸化物粉末に対して種々の改良が行われている。例えば、AMO(AはLi及びNaのうちの1種以上を表し、MはCo、Ni、Fe及びCrの内の1種以上を表す。)の結晶子の表面又は結晶子間にBi、Pb及びBから選ばれる少なくとも1種の添加物を酸化物の形で存在させ、結晶子径を2μm以上にする技術(特許文献1)、Li−Ni複合酸化物のNiの一部をCoと種々の金属元素の中から選ばれた1種以上の元素で置換することによって結晶構造を安定させる技術(特許文献2)、Li−Ni複合酸化物の表面に種々の金属元素の中から選ばれた1種以上の元素を付着させ、電解液との反応を抑制する技術(特許文献3)、Li−Ni複合酸化物の表面に平均粒径1μm以下の種々の金属元素の中から選ばれた1種以上の元素の酸化物粒子及びカーボン粒子の少なくとも一方を付着させることにより、放電レート特性を改善する技術(特許文献4)、Li−Ni複合酸化物とSb、Bi及びこれらの化合物から選ばれるものと酸素を除く第16元素の酸化物塩を含有させることで高温充放電サイクル時のインピーダンス増加を抑える技術(特許文献5)、種々の金属元素の中から選ばれた1種以上の元素を含んだLi−Ni複合酸化物の一次粒子を1〜3μmにすることで電解液との反応性を抑制する技術(特許文献6)、種々の金属元素の中から選ばれた1種以上の元素を含んだLi−Ni複合酸化物の表面に種々の金属元素の中から選ばれた1種以上の元素の化合物粒子を添着させ、高温での充放電における電解液との反応を抑制する技術(特許文献7)、種々の金属元素の中から選ばれた1種以上の元素を含んだLi−Ni複合酸化物であって表面の金属元素及びハロゲン元素のNiに対する濃度を、二次粒子中心部に対して高くすることにより、高温環境下での化学的特性を改善する技術(特許文献8)、Li−Ni複合酸化物にBiを置換することで、Li−Ni複合酸化物電池正極の嵩密度を向上させる技術(特許文献9)等が知られている。 Conventionally, various improvements have been made to Li—Ni composite oxide powders in order to improve various properties such as increasing the primary particle size, stabilizing the crystal structure, and generating gas. For example, Bi, between the crystallite surfaces or crystallites of AMO 2 (A represents one or more of Li and Na, and M represents one or more of Co, Ni, Fe, and Cr). A technique (Patent Document 1) in which at least one additive selected from Pb and B is present in the form of an oxide and the crystallite diameter is 2 μm or more, and part of Ni in the Li—Ni composite oxide is Co and A technique for stabilizing the crystal structure by substituting with one or more elements selected from various metal elements (Patent Document 2), selected from various metal elements on the surface of the Li-Ni composite oxide In addition, a technique for adhering one or more elements to suppress a reaction with an electrolytic solution (Patent Document 3) was selected from various metal elements having an average particle diameter of 1 μm or less on the surface of a Li—Ni composite oxide. At least one of oxide particles and carbon particles of one or more elements A technique for improving discharge rate characteristics by attaching a metal (Patent Document 4), a Li-Ni composite oxide, Sb, Bi, and a compound selected from these compounds and an oxide salt of a 16th element excluding oxygen A technique for suppressing an increase in impedance during a high-temperature charge / discharge cycle (Patent Document 5); primary particles of Li—Ni composite oxide containing one or more elements selected from various metal elements; 3 μm for suppressing the reactivity with the electrolytic solution (Patent Document 6), variously on the surface of the Li—Ni composite oxide containing one or more elements selected from various metal elements A technique (Patent Document 7) that suppresses the reaction with the electrolyte during charging / discharging at high temperature by attaching compound particles of one or more elements selected from metal elements, selected from various metal elements Containing one or more elements A technology for improving chemical properties in a high-temperature environment by increasing the concentration of metallic elements and halogen elements on the surface of Ni-Ni composite oxide with respect to Ni in the center of the secondary particles ( Patent Document 8), a technique for improving the bulk density of a Li—Ni composite oxide battery positive electrode by replacing Bi with Li—Ni composite oxide (Patent Document 9), and the like are known.

特開平8−055624号公報JP-A-8-055624 特開平8−78005号公報JP-A-8-78005 特開平8−279357号公報JP-A-8-279357 特開2003−109599号公報JP 2003-109599 A 特開2004−288501号公報JP 2004-288501 A 特開2006−127955号公報JP 2006-127955 A 特開2007−59142号公報JP 2007-59142 A 特開2007−66745号公報JP 2007-66745 A 特開2005−50582号公報Japanese Patent Laid-Open No. 2005-50582

非水電解質二次電池用の正極活物質として前記諸特性を満たすLi−Ni複合酸化物について、現在最も要求されているところであるが、未だ得られていない。   As a positive electrode active material for a non-aqueous electrolyte secondary battery, a Li—Ni composite oxide that satisfies the above-mentioned characteristics is currently most demanded, but has not yet been obtained.

即ち、特許文献1では、Biを添加し、焼成温度を1000℃以上で焼成することで一次粒子の大きさを2μm以上のLi−Ni複合酸化物を得ているが、1000℃以上の焼成ではNiイオンのLi層へのカチオンミキシングが発生し、放電容量が低下することが容易に推察され、また粒子界面に存在する余剰リチウムに関する記述が無く、この技術のみで高温充放電時のガス発生を抑制するには不十分である。   That is, in Patent Document 1, Li is added to Bi, and a Li—Ni composite oxide having a primary particle size of 2 μm or more is obtained by baking at a baking temperature of 1000 ° C. or higher. It is presumed that the cation mixing of the Ni ions into the Li layer occurs and the discharge capacity decreases, and there is no description of the excess lithium existing at the particle interface. Insufficient to suppress.

また、特許文献2では、Li−Ni複合酸化物のNiの一部をCoと種々の金属元素の中から選ばれた1種以上の元素で置換することによって結晶構造を安定させているが、Li−Ni複合酸化物の一次粒子の大きさに関する記述及び余剰リチウムに関する記述が無く、この技術のみで高温充放電時のガス発生を抑制するには不十分である。   In Patent Document 2, the crystal structure is stabilized by substituting a part of Ni in the Li—Ni composite oxide with one or more elements selected from Co and various metal elements. There is no description about the size of primary particles of Li—Ni composite oxide and no description about excess lithium, and this technique alone is insufficient to suppress gas generation during high-temperature charge / discharge.

更に、特許文献3、4、5、7、8では、Li−Ni複合酸化物の表面に種々の金属元素の中から選ばれた1種以上の元素を付着もしくは添着させるか、表面の金属元素量を多くすることで、電解液との反応を抑制しているが、一次粒子の大きさと、粒子界面に存在する余剰リチウムに関する記述が無く、この技術のみで高温充放電時のガス発生を抑制するには不十分である。   Further, in Patent Documents 3, 4, 5, 7, and 8, one or more elements selected from various metal elements are attached to or attached to the surface of the Li—Ni composite oxide, or the surface metal elements. Although the reaction with the electrolyte is suppressed by increasing the amount, there is no description about the size of the primary particles and excess lithium present at the particle interface, and this technology alone suppresses gas generation during high-temperature charge / discharge. Not enough to

また、特許文献6では、一度焼成したNi−Co水酸化物もしくはNi−Co−Mn水酸化物粒子を酸化物にして、更に塩化物もしくは塩化酸化物の形で種々の金属元素の中から選ばれた1種以上の元素を添加し、Li−Ni複合酸化物の一次粒子を1〜3μmにすることで電解液との反応性を抑制しているが、使用する水酸化物を酸化物にすることによるエネルギーの消費また、塩化物もしくは塩化酸化物の残存による電解液の副反応が推察されるとともに、粒子界面に存在する余剰リチウムに関する記述が無く、この技術のみで高温充放電時のガス発生を抑制するには十分とは言い難い。   In Patent Document 6, Ni-Co hydroxide or Ni-Co-Mn hydroxide particles that have been fired once are converted into oxides, and further selected from various metal elements in the form of chlorides or chloride oxides. Although the reactivity with electrolyte solution is suppressed by adding 1 or more types of elements and making primary particle | grains of Li-Ni complex oxide 1-3 micrometers, the hydroxide to be used is made into an oxide. In addition, it is assumed that there is a side reaction of the electrolyte due to residual chloride or chloride oxide, and there is no description of excess lithium existing at the particle interface. It is hard to say that it is enough to suppress the occurrence.

更に、特許文献9記載の技術は、Li−Ni複合酸化物にBiを置換することで、Li−Ni複合酸化物電池正極の嵩密度を向上させる技術であるが、高温充放電サイクル中のガス発生改善のための一次粒子の大きさ規定が曖昧で、またBi置換のみで、電極作製時のコンプレッションによる粒子破壊の際に発生する小さい一次粒子界面での電解液との反応を抑制出来るとは言い難く、ガス発生を抑制したLi−Ni複合酸化物を得る方法としては十分とは言い難い。   Furthermore, the technique described in Patent Document 9 is a technique for improving the bulk density of the Li—Ni composite oxide battery positive electrode by substituting Bi for the Li—Ni composite oxide. The definition of primary particle size for improving generation is ambiguous, and it is possible to suppress reaction with the electrolyte at the interface of small primary particles that occurs when particles are destroyed by compression during electrode production only by Bi substitution. It is difficult to say that it is not sufficient as a method for obtaining a Li—Ni composite oxide with suppressed gas generation.

そこで、本発明は、非水電解質二次電池の正極活物質として用いた場合に、放電容量が大きく、高温充電時のガス発生が少ないLi−Ni複合酸化物粒子粉末を得ることを技術的課題とする。   Therefore, the present invention provides a technical problem of obtaining Li-Ni composite oxide particle powder having a large discharge capacity and low gas generation during high-temperature charging when used as a positive electrode active material of a non-aqueous electrolyte secondary battery. And

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、上記目的を達成する為に、リチウム金属或いはリチウムイオンを吸蔵放出可能な材料から成る負極と正極とを有する非水電解質二次電池において、上記正極の活物質の組成がLiNi1−y−zCoZrBiSb(0.9≦x≦1.3、0.1≦y≦0.35、0<z≦0.35、0≦a≦0.025、0.0002≦b≦0.004、0≦c≦0.002、かつc≠0の場合、1.2≦b/c、MはAl、Mnの中から選択される少なくとも1種以上の元素)であるLi−Ni複合酸化物において、二次粒子を構成する一次粒子の平均一次粒子径が1〜4μmであることを特徴とする非水電解質二次電池用Li−Ni複合酸化物粒子粉末である(本発明1)。 That is, in order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery having a negative electrode and a positive electrode made of a material capable of occluding and releasing lithium metal or lithium ions. x Ni 1-y-z Co y M z Zr a Bi b Sb c O 2 (0.9 ≦ x ≦ 1.3,0.1 ≦ y ≦ 0.35,0 <z ≦ 0.35,0 ≦ When a ≦ 0.025, 0.0002 ≦ b ≦ 0.004, 0 ≦ c ≦ 0.002, and c ≠ 0, 1.2 ≦ b / c, M is selected from Al and Mn Li—Ni composite oxide, which is at least one element), the primary particles constituting the secondary particles have an average primary particle diameter of 1 to 4 μm, and Li— for a non-aqueous electrolyte secondary battery Ni composite oxide particle powder (Invention 1).

また、本発明は、上記Li−Ni複合酸化物粒子粉末20gを100mlの水に20分間攪拌した後の上澄み液を濾別した後、0.2Nの塩酸を用いて滴定して求める、溶出する水酸化リチウムの量が0.25%以下、かつ炭酸リチウムの量が0.15%以下であることを特徴とする本発明1記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末である(本発明2)。   Further, in the present invention, 20 g of the Li—Ni composite oxide particle powder is stirred in 100 ml of water for 20 minutes, and then the supernatant liquid is filtered off and then titrated with 0.2 N hydrochloric acid to be obtained and eluted. The Li-Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery according to the present invention 1, wherein the amount of lithium hydroxide is 0.25% or less and the amount of lithium carbonate is 0.15% or less (Invention 2).

また、本発明は、上記Li−Ni複合酸化物粒子粉末を正極活物質として用い、リチウム金属或いはリチウムイオンを吸蔵放出可能な材料からなる負極を用いて成る非水電解質二次電池において、4.2V充電状態で85℃、24時間保存したときのガス発生量が0.4ml/g以下であることを特徴とする本発明1又は2記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末である(本発明3)。   Further, the present invention relates to a nonaqueous electrolyte secondary battery using the Li—Ni composite oxide particle powder as a positive electrode active material and a negative electrode made of a material capable of occluding and releasing lithium metal or lithium ions. The Li-Ni composite oxide for a non-aqueous electrolyte secondary battery according to the present invention 1 or 2, wherein the amount of gas generated when stored at 85 ° C for 24 hours in a 2V charged state is 0.4 ml / g or less It is a particle powder (Invention 3).

また、本発明は、Ni−Co水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することを特徴とする本発明1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末の製造方法である(本発明4)。   In addition, the present invention provides a Ni-Co hydroxide, at least one bismuth compound selected from an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound, a lithium compound, The non-aqueous electrolyte according to any one of the present invention 1 to 3, wherein the obtained mixture is fired, and then lithium hydroxide and lithium carbonate are removed in an acidic aqueous solution and fired again. It is a manufacturing method of the Li-Ni complex oxide particle powder for secondary batteries (this invention 4).

また、本発明は、Ni−Co−Mn水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することを特徴とする本発明1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末の製造方法である(本発明5)。   In addition, the present invention provides a Ni—Co—Mn hydroxide, at least one kind containing at least a bismuth compound selected from an aluminum compound, a zirconium compound, a bismuth compound, and an antimony compound having an average primary particle size of 1 μm or less, lithium The mixture according to the present invention is calcined, the resulting mixture is calcined, lithium hydroxide and lithium carbonate are then removed in an acidic aqueous solution, and calcined again. It is a manufacturing method of the Li-Ni complex oxide particle powder for water electrolyte secondary batteries (this invention 5).

また、本発明は、本発明1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末からなる正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池である(本発明6)。   In addition, the present invention uses a positive electrode containing a positive electrode active material comprising the Li—Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery according to any one of the first to third aspects of the present invention. It is a water electrolyte secondary battery (Invention 6).

本発明に係るLi−Ni複合酸化物粒子粉末は、二次粒子を構成する一次粒子の平均一次粒子径が1〜4μmであるので、電極作製時のコンプレッションによる粒子破壊の際に、一次粒子単位まで破壊されても、表面積の上昇が抑えられ、粒子界面での電解液との反応を抑制出来、高温充放電時のガス発生を抑えることが可能になる。   In the Li—Ni composite oxide particle powder according to the present invention, since the average primary particle diameter of the primary particles constituting the secondary particles is 1 to 4 μm, the primary particle unit at the time of particle breakage due to compression at the time of electrode preparation Even if it is destroyed, the increase in the surface area can be suppressed, the reaction with the electrolyte solution at the particle interface can be suppressed, and the gas generation during high-temperature charge / discharge can be suppressed.

また、本発明に係るLi−Ni複合酸化物粒子粉末は、上記Li−Ni複合酸化物粒子粉末20gを100mlの水に20分間攪拌した後の上澄み液を濾別した後、0.2Nの塩酸を用いて滴定して求める、溶出する水酸化リチウムの量が0.25%以下、かつ炭酸リチウムの量が0.15%以下であるので、高温充放電時のアルカリによる電解液の分解が抑制され、ガス発生を抑制ことができる。   In addition, the Li—Ni composite oxide particle powder according to the present invention was prepared by filtering 20 ml of the Li—Ni composite oxide particle powder in 100 ml of water for 20 minutes, filtering the supernatant, and then adding 0.2N hydrochloric acid. The amount of lithium hydroxide to be eluted is 0.25% or less and the amount of lithium carbonate is 0.15% or less, which is determined by titration with the use of an electrolyte, so that decomposition of the electrolyte by alkali during high-temperature charge / discharge is suppressed. Gas generation can be suppressed.

従って、本発明に係るLi−Ni複合酸化物粒子粉末は、非水電解質二次電池用の正極活物質として好適である。   Therefore, the Li—Ni composite oxide particle powder according to the present invention is suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

実施例1で得られたLi−Ni複合酸化物粒子粉末のSEM像である。2 is a SEM image of Li—Ni composite oxide particle powder obtained in Example 1. FIG. 比較例1で得られたLi−Ni複合酸化物粒子粉末のSEM像である。3 is a SEM image of Li—Ni composite oxide particle powder obtained in Comparative Example 1. FIG. 実施例1、9、17で得られたLi−Ni複合酸化物粒子粉末の粉末X線回折図である。2 is a powder X-ray diffraction pattern of Li—Ni composite oxide particle powders obtained in Examples 1, 9, and 17. FIG.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る非水電解質二次電池用Li−Ni複合酸化物粒子粉末について述べる。   First, the Li-Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery according to the present invention will be described.

本発明に係るLi−Ni複合酸化物粒子粉末の組成は、LiNi1−y−zCoZrBiSb(0.9≦x≦1.3、0.1≦y≦0.35、0<z≦0.35、0≦a≦0.025、0.0002≦b≦0.004、0≦c≦0.002、かつc≠0の場合、1.2≦b/c、MはAl、Mnの中から選択される少なくとも1種以上の元素)である。
xが前記範囲外の場合には、高い電池容量のLi−Ni複合酸化物粒子粉末を得ることができない。好ましくは0.98≦x≦1.10である。
yが0.1より小さい場合には、Ni3+がNi4+となるヤーンテラーひずみを抑制できず、初期充放電サイクルにおける充放電効率が低下し、コバルトを添加するメリットが少ない。yが0.35より大きい場合には、金属コストの高いコバルト含有量が増える為、LiCoOよりも金属コストが安いというLi−Ni複合酸化物のメリットが少なくなり、また初期充放電容量の低下が著しくなる。好ましくは0.1≦y≦0.3、より好ましくは0.15≦y≦0.25である。
zが0.35より大きい場合には、正極活物質の真密度が低下することから充填性の高い材料を得ることが困難となると共に、充放電容量が著しく低下し、充放電容量が高いというLi−Ni複合酸化物のメリットが少なくなる。Alとしては、好ましくは0<z≦0.2、より好ましくは0<z≦0.1であり、Mnとしては、好ましくは0<z≦0.34、より好ましくは0.1≦z≦0.33である。
aが0.025より大きい場合には、一次粒子の界面へのZrの偏析が起きて、リチウムイオンの表面抵抗が高くなるため、初期の放電容量が低下する。好ましくは0≦a≦0.02、より好ましくは0.001≦a≦0.02である。
bが0.0002より小さい場合には、一次粒子の大きさが小さくなり、電極作製時のコンプレッションによる粒子破壊の際に、小さい一次粒子が発生し、その粒子界面での電解液との反応が激しくなる。bが0.004より大きい場合には、一次粒子が異常成長し、リチウムイオンの拡散抵抗が高くなるため、初期の放電容量が低下する。好ましくは0.0003≦b≦0.004、より好ましくは0.0004≦b≦0.003である。
また、cが0.002より大きい場合には、不純物効果によって一次粒子の大きさが小さくなり、電極作製時のコンプレッションによる粒子破壊の際に、小さい一次粒子が発生し、その粒子界面での電解液との反応が激しくなる。好ましくは0≦c≦0.001である。
さらに、cが0ではないとき、b/cが1.2よりも小さい場合には一次粒子の大きさが小さくなり、電極作製時のコンプレッションによる粒子破壊の際に、小さい一次粒子が発生し、その粒子界面での電解液との反応が激しくなる。好ましくは1.2≦b/c≦8.0、より好ましくは1.3≦b/c≦6.0である。
The composition of the Li—Ni composite oxide particle powder according to the present invention is Li x Ni 1-yz Co y M z Zr a Bi b Sb c O 2 (0.9 ≦ x ≦ 1.3, 0.1 When ≦ y ≦ 0.35, 0 <z ≦ 0.35, 0 ≦ a ≦ 0.025, 0.0002 ≦ b ≦ 0.004, 0 ≦ c ≦ 0.002, and c ≠ 0, 2 ≦ b / c, where M is at least one element selected from Al and Mn.
When x is out of the above range, a high battery capacity Li—Ni composite oxide particle powder cannot be obtained. Preferably 0.98 ≦ x ≦ 1.10.
When y is smaller than 0.1, the yarn teller strain in which Ni 3+ becomes Ni 4+ cannot be suppressed, the charge / discharge efficiency in the initial charge / discharge cycle is lowered, and there are few merits of adding cobalt. When y is larger than 0.35, the cobalt content with a high metal cost increases, so the merit of the Li-Ni composite oxide is lower than that of LiCoO 2 and the initial charge / discharge capacity is reduced. Becomes remarkable. Preferably 0.1 ≦ y ≦ 0.3, more preferably 0.15 ≦ y ≦ 0.25.
When z is larger than 0.35, the true density of the positive electrode active material is lowered, so that it is difficult to obtain a material with high filling properties, the charge / discharge capacity is remarkably lowered, and the charge / discharge capacity is high. The merit of the Li—Ni composite oxide is reduced. Al is preferably 0 <z ≦ 0.2, more preferably 0 <z ≦ 0.1, and Mn is preferably 0 <z ≦ 0.34, more preferably 0.1 ≦ z ≦ 0.1. 0.33.
When a is larger than 0.025, segregation of Zr to the interface of the primary particles occurs, and the surface resistance of lithium ions increases, so the initial discharge capacity decreases. Preferably 0 ≦ a ≦ 0.02, more preferably 0.001 ≦ a ≦ 0.02.
When b is smaller than 0.0002, the size of the primary particles becomes small, and when primary particles are broken due to compression during electrode production, small primary particles are generated, and the reaction with the electrolytic solution at the particle interface occurs. Become intense. When b is larger than 0.004, primary particles grow abnormally and the diffusion resistance of lithium ions increases, so the initial discharge capacity decreases. Preferably it is 0.0003 <= b <= 0.004, More preferably, it is 0.0004 <= b <= 0.003.
On the other hand, when c is larger than 0.002, the size of the primary particles becomes small due to the impurity effect, and small primary particles are generated at the time of particle breakage due to compression during electrode preparation, and electrolysis at the particle interface is caused. Reaction with liquid becomes intense. Preferably 0 ≦ c ≦ 0.001.
Furthermore, when c is not 0, when b / c is smaller than 1.2, the size of the primary particles becomes small, and small primary particles are generated in the case of particle breakage due to compression during electrode production, The reaction with the electrolyte at the particle interface becomes intense. Preferably 1.2 ≦ b / c ≦ 8.0, more preferably 1.3 ≦ b / c ≦ 6.0.

本発明に係るLi−Ni複合酸化物粒子粉末のBET比表面積は0.1〜1.6m/gが好ましい。BET比表面積値が0.1m/g未満の場合には、工業的に生産することが困難となる。1.6m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。より好ましいBET比表面積は0.3〜1.0m/gである。 The BET specific surface area of the Li—Ni composite oxide particle powder according to the present invention is preferably 0.1 to 1.6 m 2 / g. When the BET specific surface area value is less than 0.1 m 2 / g, it is difficult to produce industrially. When it exceeds 1.6 m < 2 > / g, since the fall with a packing density and the reactivity with electrolyte solution increase, it is unpreferable. A more preferable BET specific surface area is 0.3 to 1.0 m 2 / g.

本発明に係るLi−Ni複合酸化物粒子粉末の二次粒子を構成する一次粒子の平均一次粒子径は、1〜4μmであり、非水電解質二次電池においてガス発生の少ない良好な高温充放電特性が得られる。平均一次粒子径が4μmを超える場合、リチウムイオンの拡散抵抗が高くなるため、初期の放電容量が低下する。1μmよりも小さい場合には、電極作製時のコンプレッションによる粒子破壊の際に、小さい一次粒子が発生し、その粒子界面での電解液との反応が激しくなる。好ましい平均一次粒子径は1〜3μmである。   The average primary particle diameter of the primary particles constituting the secondary particles of the Li—Ni composite oxide particles according to the present invention is 1 to 4 μm, and good high-temperature charge / discharge with less gas generation in the nonaqueous electrolyte secondary battery. Characteristics are obtained. When the average primary particle diameter exceeds 4 μm, the diffusion resistance of lithium ions becomes high, so that the initial discharge capacity decreases. When it is smaller than 1 μm, small primary particles are generated at the time of particle destruction due to compression during electrode production, and the reaction with the electrolyte at the particle interface becomes intense. A preferable average primary particle diameter is 1 to 3 μm.

本発明に係るLi−Ni複合酸化物粒子粉末の平均二次粒子径は1.0〜20μmが好ましい。平均二次粒子径が1.0μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。20μmを超える場合には、工業的に生産することが困難となる。より好ましい平均二次粒子径は3.0〜17.0μmである。   The average secondary particle diameter of the Li—Ni composite oxide particle powder according to the present invention is preferably 1.0 to 20 μm. An average secondary particle size of less than 1.0 μm is not preferable because a decrease in packing density and an increase in reactivity with the electrolytic solution. When it exceeds 20 μm, it is difficult to produce industrially. A more preferable average secondary particle size is 3.0 to 17.0 μm.

本発明に係るLi−Ni複合酸化物粒子粉末は、該粉末20gを100mlの水に20分間攪拌した後の上澄み液を濾別した後、0.2Nの塩酸を用いて滴定して求める、溶出する水酸化リチウムの量が0.25%以下であり、かつ炭酸リチウムの量は0.15%以下であり、非水電解質二次電池においてガス発生の少ない良好な高温充放電特性が得られる。水酸化リチウムの溶出量が0.25%かつ炭酸リチウムの溶出量が0.15%を超えた場合、高温充放電時のアルカリによる電解液の分解が促進され、ガス発生が激しくなる。より好ましくは水酸化リチウムの溶出量が0.20%以下かつ炭酸リチウムの溶出量が0.1%以下であり、少ないほどよい。   The Li-Ni composite oxide particle powder according to the present invention is obtained by eluating 20 g of the powder after stirring for 20 minutes in 100 ml of water, and then titrating with 0.2 N hydrochloric acid after filtration. The amount of lithium hydroxide to be added is 0.25% or less and the amount of lithium carbonate is 0.15% or less, and good high-temperature charge / discharge characteristics with less gas generation can be obtained in the nonaqueous electrolyte secondary battery. When the elution amount of lithium hydroxide exceeds 0.25% and the elution amount of lithium carbonate exceeds 0.15%, decomposition of the electrolyte solution by alkali during high-temperature charge / discharge is accelerated, and gas generation becomes intense. More preferably, the elution amount of lithium hydroxide is 0.20% or less and the elution amount of lithium carbonate is 0.1% or less.

本発明に係るLi−Ni複合酸化物粒子粉末の二次粒子の粒子形状は、球状であり鋭角部が少ないことが好ましい。   The secondary particles of the Li—Ni composite oxide particles according to the present invention preferably have a secondary particle shape that is spherical and has few acute angles.

次に、本発明に係るLi−Ni複合酸化物粒子粉末の製造法について述べる。   Next, a method for producing the Li—Ni composite oxide particle powder according to the present invention will be described.

本発明に係るLi−Ni複合酸化物粒子粉末は、Ni−Co水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することによって得ることができる。   The Li—Ni composite oxide particle powder according to the present invention includes Ni—Co hydroxide and at least a bismuth compound selected from an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound. It can be obtained by mixing one or more types and a lithium compound, firing the resulting mixture, removing lithium hydroxide and lithium carbonate in an acidic aqueous solution, and firing again.

また、本発明に係るLi−Ni複合酸化物粒子粉末は、Ni−Co−Mn水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することによって得ることができる。   The Li—Ni composite oxide particle powder according to the present invention is at least selected from Ni—Co—Mn hydroxide, an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound. It can be obtained by mixing one or more kinds containing a bismuth compound and a lithium compound, firing the resulting mixture, removing lithium hydroxide and lithium carbonate in an acidic aqueous solution, and firing again.

本発明におけるNi−Co水酸化物もしくはNi−Co−Mn水酸化物粒子粉末は、0.1〜2.0mol/lの硫酸ニッケルと硫酸コバルトもしくは硫酸ニッケル、硫酸コバルト、及び硫酸マンガンを所定のmol比となるように混合した溶液と1.0〜15.0mol/lのアンモニア水溶液を同時に常に攪拌された反応槽へ供給し、同時にpHを10.0〜12.0になるように0.1〜2.0mol/lの水酸化ナトリウム溶液を添加し、オーバーフローした懸濁液をオーバーフロー管に連結された濃縮槽で濃縮速度を調整しながら反応槽へ生成粒子を循環し、反応槽と濃縮槽中のNi−Co水酸化物濃度が2〜4mol/lになるまで反応を行い、機械的衝突による粒子制御を行って得ることができる。   The Ni—Co hydroxide or Ni—Co—Mn hydroxide particle powder in the present invention contains 0.1 to 2.0 mol / l nickel sulfate and cobalt sulfate or nickel sulfate, cobalt sulfate, and manganese sulfate. A solution mixed so as to have a molar ratio and a 1.0 to 15.0 mol / l aqueous ammonia solution are simultaneously supplied to a stirred reaction tank at the same time, and at the same time the pH is adjusted to 10.0 to 12.0. Add 1-2.0 mol / l sodium hydroxide solution, and circulate the generated particles to the reaction tank while adjusting the concentration rate in the overflow tank connected to the overflow pipe. The reaction can be performed until the Ni—Co hydroxide concentration in the tank reaches 2 to 4 mol / l, and particle control by mechanical collision can be performed.

更にNi−Co水酸化物もしくはNi−Co−Mn水酸化物粒子粉末は、反応の際に生成した共存可溶性塩を除去する為、フィルタープレス、もしくはバキュームフィルター、フィルターシックナー等を用いて、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物スラリー重量に対して1〜10倍の水を用いて水洗を行い、乾燥することによって、得ることができる。   Further, Ni—Co hydroxide or Ni—Co—Mn hydroxide particle powder is obtained by using a filter press, a vacuum filter, a filter thickener, or the like to remove the coexisting soluble salts generated during the reaction. It can be obtained by washing with water using 1 to 10 times as much water as the Co hydroxide or Ni-Co-Mn hydroxide slurry weight and drying.

本発明におけるNi−Co水酸化物もしくはNi−Co−Mn水酸化物粒子粉末は、平均一次粒子径が1μm以下、平均二次粒子径が2〜30μm、BET比表面積が1〜15m/gであることが好ましい。 The Ni—Co hydroxide or Ni—Co—Mn hydroxide particle powder in the present invention has an average primary particle diameter of 1 μm or less, an average secondary particle diameter of 2 to 30 μm, and a BET specific surface area of 1 to 15 m 2 / g. It is preferable that

本発明に使用するアルミニウム化合物は、水酸化物が好ましく、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物は酸化物が好ましい。また、アルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物の平均一次粒子径は1μm以下であることが好ましく、平均二次粒子径は5μm以下であることが好ましく、より好ましくは2μm以下である。   The aluminum compound used in the present invention is preferably a hydroxide, and the zirconium compound, bismuth compound, and antimony compound are preferably oxides. The average primary particle diameter of the aluminum compound, zirconium compound, bismuth compound, and antimony compound is preferably 1 μm or less, and the average secondary particle diameter is preferably 5 μm or less, more preferably 2 μm or less.

アルミニウム化合物の添加量は、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物に対して、Al換算によるモル比で0〜35%が好ましく、より好ましくは0〜20%、更により好ましくは2〜10%である。2%よりも少ない場合は、熱安定性が低下し、10%を超えると放電容量が低下する場合がある。   The addition amount of the aluminum compound is preferably 0 to 35%, more preferably 0 to 20%, and still more preferably the molar ratio in terms of Al with respect to the Ni—Co hydroxide or Ni—Co—Mn hydroxide. Is 2 to 10%. If it is less than 2%, the thermal stability is lowered, and if it exceeds 10%, the discharge capacity may be lowered.

ビスマス化合物の添加量は、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物に対して、Bi換算によるモル比で0.02〜0.4%が好ましい。0.02よりも少ない場合、一次粒子の大きさが小さくなり、0.4%を超えると一次粒子が異常成長し、放電容量が低下する。より好ましくは0.03〜0.4%である。   The addition amount of the bismuth compound is preferably 0.02 to 0.4% in terms of a molar ratio in terms of Bi with respect to Ni-Co hydroxide or Ni-Co-Mn hydroxide. When the amount is less than 0.02, the size of the primary particles becomes small. When the amount exceeds 0.4%, the primary particles grow abnormally and the discharge capacity decreases. More preferably, it is 0.03 to 0.4%.

ジルコニウム化合物の添加量は、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物に対して、Zr換算によるモル比で0〜2.5%が好ましく、より好ましくは0.1〜2%である。2.5%をこえると、放電容量が低下する。0.1%よりも少ない場合、高温充放電時のガス発生が多くなる場合もある。   The addition amount of the zirconium compound is preferably 0 to 2.5%, more preferably 0.1 to 2% in terms of a molar ratio in terms of Zr with respect to the Ni—Co hydroxide or Ni—Co—Mn hydroxide. It is. When it exceeds 2.5%, the discharge capacity decreases. If it is less than 0.1%, gas generation during high-temperature charge / discharge may increase.

アンチモン化合物の添加量は、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物に対して、Sb換算によるモル比で0〜0.2%が好ましく、より好ましくは0.0125〜0.2%である。0.2%を超えると、一次粒子の大きさが小さくなり、高温充放電時のガス発生が激しくなる。0.0125%よりも少ない場合、一次粒子の大きさが不均一になり、ガス発生の改善効果が低下する場合もある。   The addition amount of the antimony compound is preferably 0 to 0.2% in terms of a molar ratio in terms of Sb with respect to Ni—Co hydroxide or Ni—Co—Mn hydroxide, and more preferably 0.0125 to 0. 2%. If it exceeds 0.2%, the size of the primary particles becomes small, and gas generation during high-temperature charge / discharge becomes intense. When it is less than 0.0125%, the primary particle size becomes non-uniform, and the effect of improving gas generation may be reduced.

Ni−Co水酸化物もしくはNi−Co−Mn水酸化物と、アルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物、リチウム化合物との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   Mixing treatment of Ni-Co hydroxide or Ni-Co-Mn hydroxide with aluminum compound, zirconium compound, bismuth compound, antimony compound and lithium compound is either dry or wet as long as they can be mixed uniformly. But you can.

リチウム化合物の混合比は、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物とアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物の総金属モル数に対して0.9〜1.3であることが好ましく、より好ましくは0.98〜1.10である。   The mixing ratio of the lithium compound is 0.9 to 1.3 with respect to the total number of moles of metal of Ni—Co hydroxide or Ni—Co—Mn hydroxide and aluminum compound, zirconium compound, bismuth compound, and antimony compound. It is preferable that it is 0.98 to 1.10.

使用するリチウム化合物としては、Ni−Co水酸化物と混合する場合は、水酸化リチウムが好ましく、Ni−Co−Mn水酸化物と混合する場合は、水酸化リチウム若しくは炭酸リチウムのどちらでもよい。   The lithium compound used is preferably lithium hydroxide when mixed with Ni-Co hydroxide, and may be either lithium hydroxide or lithium carbonate when mixed with Ni-Co-Mn hydroxide.

また、用いるリチウム化合物は平均粒子径が50μm以下であることが好ましく、より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、Ni−Co水酸化物もしくはNi−Co−Mn水酸化物と平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物との混合が不均一となり、結晶性の良いLi−Ni複合酸化物粒子粉末を得るのが困難となる。なお、リチウム化合物の平均粒子径はレーザー式粒度分布測定装置LMS−30[セイシン企業(株)製]を用いて測定した。   Moreover, it is preferable that the average particle diameter of the lithium compound to be used is 50 micrometers or less, More preferably, it is 30 micrometers or less. When the average particle size of the lithium compound exceeds 50 μm, Ni—Co hydroxide or Ni—Co—Mn hydroxide and an aluminum compound, zirconium compound, bismuth compound, and antimony compound having an average primary particle size of 1 μm or less Mixing becomes uneven and it becomes difficult to obtain Li—Ni composite oxide particle powder having good crystallinity. In addition, the average particle diameter of the lithium compound was measured using a laser type particle size distribution measuring apparatus LMS-30 [manufactured by Seishin Enterprise Co., Ltd.].

混合物の焼成温度は、置換元素の種類と量によるが、650℃〜980℃であることが好ましい。650℃未満の場合にはLiとNiの反応が十分に進まず、Li−Ni複合酸化物粒子の一次粒子の成長が不十分となる。本発明に係るLi−Ni複合酸化物粒子粉末の組成において、Ni/(Ni+Co+M)が0.8以上の場合、焼成温度800℃を超えると、Ni3+が還元されてNi2+となってLi相へ混入し、層状構造を維持できなくなる。Ni/(Ni+Co+M)が0.8よりも少ない場合、980℃を超えると、Ni3+が還元されてNi2+となってLi相へ混入し、層状構造を維持できなくなる。焼成時の雰囲気は酸化性ガス雰囲気が好ましく、より好ましくは雰囲気中の酸素濃度が70%以上である。焼成時間は3〜20時間が好ましい。 The firing temperature of the mixture is preferably 650 ° C. to 980 ° C., depending on the type and amount of the substitution element. When the temperature is lower than 650 ° C., the reaction between Li and Ni does not proceed sufficiently, and the growth of primary particles of Li—Ni composite oxide particles becomes insufficient. In the composition of the Li—Ni composite oxide particles according to the present invention, when Ni / (Ni + Co + M) is 0.8 or more, when the firing temperature exceeds 800 ° C., Ni 3+ is reduced to Ni 2+ to form the Li phase. The layered structure cannot be maintained. When Ni / (Ni + Co + M) is less than 0.8, if it exceeds 980 ° C., Ni 3+ is reduced to Ni 2+ and mixed into the Li phase, and the layered structure cannot be maintained. The atmosphere during firing is preferably an oxidizing gas atmosphere, and more preferably the oxygen concentration in the atmosphere is 70% or more. The firing time is preferably 3 to 20 hours.

本発明は、焼成により得られたLi−Ni複合酸化物を硫酸、リン酸、硝酸、塩酸などの酸性溶液中に分散攪拌することによって、焼成反応中に残った余剰の水酸化リチウム及び炭酸リチウムを取り除くことで、水酸化リチウム量と炭酸リチウム量の少ないLi−Ni複合酸化物粒子粉末を得ることができる。以下、水酸化リチウム及び炭酸リチウムを余剰リチウムと言う。   In the present invention, the Li—Ni composite oxide obtained by firing is dispersed and stirred in an acidic solution such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, etc., so that excess lithium hydroxide and lithium carbonate remaining during the firing reaction are obtained. The Li—Ni composite oxide particle powder with a small amount of lithium hydroxide and a small amount of lithium carbonate can be obtained. Hereinafter, lithium hydroxide and lithium carbonate are referred to as excess lithium.

余剰リチウム除去に用いる溶液は特に限定されないが、工業的生産性を考慮すると、硫酸が好ましい。この硫酸溶液の濃度は1/100N〜1/10Nが好ましい。1/100Nよりも薄い場合には、余剰リチウム除去の際に結晶中のAlの溶出が多くなり、結晶構造を破壊する。1/10Nをこえた場合、余剰リチウム除去の際に結晶中のLiの溶出が多くなり、結晶構造を破壊する。   The solution used for removing excess lithium is not particularly limited, but sulfuric acid is preferable in view of industrial productivity. The concentration of the sulfuric acid solution is preferably 1 / 100N to 1 / 10N. When it is thinner than 1/100 N, the elution of Al in the crystal increases when the excess lithium is removed, and the crystal structure is destroyed. When the amount exceeds 1/10 N, elution of Li in the crystal increases during the removal of excess lithium, and the crystal structure is destroyed.

さらに、余剰リチウムを除去したLi−Ni複合酸化物を、400℃〜850℃で焼成することが好ましい。400℃未満の場合には余剰リチウム除去の際に残存した炭酸リチウムとLi−Ni複合酸化物の再焼成反応が進行せず、充放電サイクル特性が低下する。本発明に係るLi−Ni複合酸化物粒子粉末の組成において、Ni/(Ni+Co+M)が0.8以上となるとき、焼成温度800℃を超える場合にはNi3+が還元されてNi2+となってLi相へ混入し、層状構造を維持できなくなる。Ni/(Ni+Co+M)が0.8よりも少ない場合にも、焼成温度850℃を超えるとNi3+が還元されてNi2+となってLi相へ混入し、層状構造を維持できなくなる。焼成時の雰囲気は酸化性ガス雰囲気が好ましく、より好ましくは雰囲気中の酸素濃度が70%以上である。焼成時間は1〜10時間が好ましい。 Furthermore, it is preferable to fire the Li—Ni composite oxide from which excess lithium has been removed at 400 ° C. to 850 ° C. When the temperature is lower than 400 ° C., the refiring reaction between the lithium carbonate remaining during the removal of excess lithium and the Li—Ni composite oxide does not proceed, and the charge / discharge cycle characteristics deteriorate. In the composition of the Li—Ni composite oxide particles according to the present invention, when Ni / (Ni + Co + M) is 0.8 or more, Ni 3+ is reduced to Ni 2+ when the firing temperature exceeds 800 ° C. It mixes into the Li phase and the layered structure cannot be maintained. Even when Ni / (Ni + Co + M) is less than 0.8, when the firing temperature exceeds 850 ° C., Ni 3+ is reduced to Ni 2+ and mixed into the Li phase, and the layered structure cannot be maintained. The atmosphere during firing is preferably an oxidizing gas atmosphere, and more preferably the oxygen concentration in the atmosphere is 70% or more. The firing time is preferably 1 to 10 hours.

次に、本発明に係るLi−Ni複合酸化物粒子粉末からなる正極活物質を用いた正極について述べる。   Next, the positive electrode using the positive electrode active material which consists of Li-Ni complex oxide particle powder concerning this invention is described.

本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode active material according to the present invention includes the positive electrode, the negative electrode, and an electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が160〜195mAh/g程度であり、後述する評価法で測定した高温保存後のガス発生量が0.44ml/g以下の優れた特性を示す。   The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of about 160 to 195 mAh / g, and a gas generation amount after high-temperature storage measured by an evaluation method described later is 0.44 ml / g. The following excellent properties are shown.

<作用>
非水電解質二次電池の高温充放電時のガス発生の要因としては、Li−Ni複合酸化物の一次粒子が小さく、電極作製時のコンプレッションによる粒子破壊の際に、小さい一次粒子が発生し、その粒子界面での電解液との反応が激しくなることによる。前記課題を解決する為には、Li−Ni複合酸化物の一次粒子を大きくすることまた、電極作製時のコンプレッションによる粒子破壊の際に発生した新たな界面の余剰リチウムを少なくすることが重要であり、先行技術文献に挙げられる技術のみでは高温充放電時のガス発生を抑制するには十分とは言い難い。
<Action>
As the cause of gas generation at the time of high-temperature charge / discharge of the nonaqueous electrolyte secondary battery, the primary particles of the Li-Ni composite oxide are small, and small primary particles are generated at the time of particle destruction due to compression during electrode production, This is because the reaction with the electrolyte at the particle interface becomes intense. In order to solve the above-mentioned problems, it is important to increase the primary particles of the Li—Ni composite oxide and to reduce the excess lithium at the new interface that was generated when the particles were destroyed by the compression during electrode preparation. In other words, it is difficult to say that only the techniques listed in the prior art documents are sufficient to suppress gas generation during high-temperature charge / discharge.

そこで、本発明においては、二次粒子を構成する一次粒子の平均一次粒子径を1〜4μmとすることによって、圧縮・成形した際に新たな界面が露出しても表面積の大幅な増加が抑制されたものである。その結果、高温充放電時の電解液との反応が抑制され、ガス発生量を少なくすることが可能になる。   Therefore, in the present invention, by setting the average primary particle diameter of the primary particles constituting the secondary particles to 1 to 4 μm, a large increase in surface area is suppressed even when a new interface is exposed during compression and molding. It has been done. As a result, the reaction with the electrolytic solution during high-temperature charge / discharge is suppressed, and the amount of gas generated can be reduced.

また、本発明に係るLi−Ni複合酸化物粒子粉末は、該粉末20gを100mlの水に20分間攪拌した後の上澄み液を濾別した後、0.2Nの塩酸を用いて滴定して求める溶出する水酸化リチウムの量が0.25%以下、かつ炭酸リチウムの量が0.15%以下であるので、高温充放電時のアルカリによる電解液の分解反応が抑制され、ガス発生量を少なくすることが可能になる。   The Li—Ni composite oxide particles according to the present invention are obtained by titrating with 0.2N hydrochloric acid after filtering the supernatant after 20 g of the powder is stirred in 100 ml of water for 20 minutes. Since the amount of lithium hydroxide to be eluted is 0.25% or less and the amount of lithium carbonate is 0.15% or less, the decomposition reaction of the electrolytic solution by alkali during high-temperature charge / discharge is suppressed, and the amount of gas generation is reduced. It becomes possible to do.

そして、本発明に係るLi−Ni複合酸化物粒子粉末は、Ni−Co水酸化物と平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することによって、反応が均一に進行し、結晶性の高いLi−Ni複合酸化物粒子粉末が得られ、高い放電容量及び充電時の安全性を維持したまま、高温充放電時のガス発生を抑制することが出来る。   The Li—Ni composite oxide particle powder according to the present invention comprises at least a bismuth compound selected from an Ni—Co hydroxide and an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound. One or more types and a lithium compound are mixed and baked, and then the lithium hydroxide and lithium carbonate are removed in an acidic aqueous solution and baked again, whereby the reaction proceeds uniformly, and Li having high crystallinity -Ni composite oxide particle powder is obtained, and gas generation at high temperature charge / discharge can be suppressed while maintaining high discharge capacity and safety during charging.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

本発明に係るLi−Ni複合酸化物粒子粉末の組成は、該粉末を酸で溶解し、「プラズマ発光分光分析装置 ICPS−7500((株)島津製作所)」で測定して求めた。   The composition of the Li—Ni composite oxide particles according to the present invention was determined by dissolving the powder with an acid and measuring with “Plasma emission spectroscopic analyzer ICPS-7500 (Shimadzu Corporation)”.

平均二次粒子径はレーザー式粒度分布測定装置LMS−30[セイシン企業(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。   The average secondary particle diameter is a volume-based average particle diameter measured by a wet laser method using a laser particle size distribution analyzer LMS-30 [manufactured by Seishin Enterprise Co., Ltd.].

平均一次粒子径はエネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察したときの二次粒子を構成する一次粒子の粒子径である。   The average primary particle diameter is the particle diameter of primary particles constituting secondary particles when observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

余剰リチウムである水酸化リチウムと炭酸リチウム量は、水100mlに対して、Li−Ni複合酸化物粒子粉末20gを添加し、20分間室温下で攪拌した後、固形分を濾別、除去して得られた上澄み液について、0.2Nの塩酸を用いて滴定して求めた。横軸に滴定量(ml)、縦軸に上澄み液のpHをプロットして描くことのできるpH曲線上で、傾きの最も大きくなる二つの点を、滴定量の少ない方から第一滴定点及び第二滴定点とし、それら点での滴定量からそれぞれの量を以下の計算式を用いて計算した。
水酸化リチウム量(%)=[(第二滴定点までの滴定量:ml)−2×{(第二滴定点までの滴定量)−(第一滴定点までの滴定量:ml)}]×(滴定に使用した塩酸の濃度:mol/l)×(滴定に使用した塩酸のファクター)×(水酸化リチウムの分子量)×2×100/((粉末重量:g)×1000)
炭酸リチウム量(%)={(第二滴定点までの滴定量:ml)−(第一滴定点までの滴定量:ml)}×(滴定に使用した塩酸の濃度:mol/l)×(滴定に使用した塩酸のファクター)×(炭酸リチウムの分子量)×2×100/{(粉末重量:g)×1000}
The amount of lithium hydroxide and lithium carbonate, which are excess lithium, is obtained by adding 20 g of Li-Ni composite oxide particle powder to 100 ml of water and stirring for 20 minutes at room temperature. The obtained supernatant was titrated with 0.2N hydrochloric acid. On the pH curve that can be drawn by plotting the titration amount (ml) on the horizontal axis and the pH of the supernatant on the vertical axis, the two points with the largest slope are the first titration point and The second titration point was used, and each amount was calculated from the titration amount at those points using the following calculation formula.
Lithium hydroxide amount (%) = [(Titration to the second titration point: ml) −2 × {(Titration to the second titration point) − (Titration to the first titration point: ml)}] X (concentration of hydrochloric acid used for titration: mol / l) x (factor of hydrochloric acid used for titration) x (molecular weight of lithium hydroxide) x 2 x 100 / ((powder weight: g) x 1000)
Lithium carbonate amount (%) = {(Titration to the second titration point: ml) − (Titration to the first titration point: ml)} × (Concentration of hydrochloric acid used for titration: mol / l) × ( Factor of hydrochloric acid used for titration) × (molecular weight of lithium carbonate) × 2 × 100 / {(powder weight: g) × 1000}

X線回折は、X線回折装置RINT−2000[(株)リガク製]を用いて、Cu−Kα、40kV、40mAの条件に於いて実施した。   X-ray diffraction was performed under the conditions of Cu-Kα, 40 kV, and 40 mA using an X-ray diffractometer RINT-2000 [manufactured by Rigaku Corporation].

Li−Ni複合酸化物粒子粉末を用いてコインセルによる初期充放電特性及びラミネートセルによる高温保存特性評価を行った。   Using the Li-Ni composite oxide particle powder, initial charge / discharge characteristics using a coin cell and high-temperature storage characteristics using a laminate cell were evaluated.

まず、正極活物質としてLi−Ni複合酸化物粒子粉末を90重量%、導電材としてアセチレンブラックを3重量%及びグラファイトKS−16を3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し150℃にて乾燥した。このシートを16mmφに打ち抜いた後、1t/cmで圧着し、電極厚みを50μmとした物を正極に用いた。負極は16mmφに打ち抜いた金属リチウムとし、電解液は1mol/lのLiPFを溶解したECとDMCを体積比で1:2で混合した溶液を用いてCR2032型コインセルを作製した。 First, 90% by weight of Li—Ni composite oxide particle powder as a positive electrode active material, 3% by weight of acetylene black as a conductive material, 3% by weight of graphite KS-16, and polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder After mixing 4% by weight, it was applied to an Al metal foil and dried at 150 ° C. The sheet was punched to 16 mmφ, and then pressure-bonded at 1 t / cm 2 to make the electrode thickness 50 μm. A CR2032-type coin cell was manufactured using a lithium mixed with 1 mol / l of LiPF 6 dissolved in EC and DMC at a volume ratio of 1: 2 with a negative electrode made of metallic lithium punched to 16 mmφ.

初期充放電特性は、上記コインセルにおいて、室温で充電は4.3Vまで0.2mA/cmにて行った後、放電を3.0Vまで0.2mA/cmにて行い、そのときの初期放電容量を測定した。 The initial charge / discharge characteristics are as follows. In the above coin cell, after charging at room temperature to 0.2V / 0.2 mA / cm 2 , discharge to 3.0V / 0.2 mA / cm 2 and initial charge at that time The discharge capacity was measured.

また、初期充放電特性の評価と同様の電極を用いて、40×100mmの正極と同サイズの金属リチウムを4セット対向するように組み合わせてラミネートセルを作製した。   In addition, a laminate cell was fabricated by using the same electrode as in the evaluation of the initial charge / discharge characteristics and combining 4 sets of metal lithium having the same size as the 40 × 100 mm positive electrode so as to face each other.

高温保存特性評価は、上記ラミネートセルにおいて、まず室温で初期の充放電を行った後、4.2Vまで充電を行い、この電圧でのラミネートセルの容積を測定した。次に、測定後のセルを85℃環境下で24時間保存した後、再度ラミネートセルの容積を測定し、高温保存前後の容積変化からガス発生量を評価した。   The high-temperature storage characteristic evaluation was performed by first charging and discharging at room temperature in the laminate cell, then charging to 4.2 V, and measuring the volume of the laminate cell at this voltage. Next, after storing the cell after measurement for 24 hours in an environment of 85 ° C., the volume of the laminate cell was measured again, and the amount of gas generation was evaluated from the volume change before and after high-temperature storage.

[実施例1]
2mol/lの硫酸ニッケルと硫酸コバルトをNi:Co=84:16となるように混合した水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。
反応槽は羽根型攪拌機で常に攪拌を行い、同時にpH=11.5±0.5となるように2mol/lの水酸化ナトリウム水溶液を自動供給した。生成したNi−Co水酸化物はオーバーフローされ、オーバーフロー管に連結された濃縮槽で濃縮し、濃縮液を反応槽へ循環を行い、反応槽と濃縮槽中のNi−Co水酸化物濃度が4mol/lになるまで40時間反応を行った。
[Example 1]
An aqueous solution in which 2 mol / l nickel sulfate and cobalt sulfate were mixed so that Ni: Co = 84: 16 and a 5.0 mol / l ammonia aqueous solution were simultaneously supplied into the reaction vessel.
The reaction tank was always stirred with a blade-type stirrer, and at the same time, a 2 mol / l sodium hydroxide aqueous solution was automatically supplied so that the pH was 11.5 ± 0.5. The produced Ni—Co hydroxide is overflowed and concentrated in a concentration tank connected to the overflow pipe, and the concentrate is circulated to the reaction tank. The concentration of Ni—Co hydroxide in the reaction tank and the concentration tank is 4 mol. The reaction was continued for 40 hours until it reached / l.

反応後、取り出した懸濁液を、フィルタープレスを用いてNi−Co水酸化物の重量に対して10倍の水により水洗を行った後、乾燥を行い、Ni:Co=84.2:15.8の水酸化物粒子を得た。   After the reaction, the taken-out suspension was washed with water 10 times the weight of Ni—Co hydroxide using a filter press, dried, and Ni: Co = 84.2: 15. .8 hydroxide particles were obtained.

Ni−Co水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径1.5μmの水酸化アルミニウム、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマス、予め粉砕機によって粒度調整を行った炭酸リチウム含有量が0.3wt%、平均粒子径20μmの水酸化リチウム・1水塩をモル比でLi/(Ni+Co+Al+Bi)=1.02となるように混合した。   Ni-Co hydroxide, aluminum hydroxide having an average primary particle size of 0.5 μm and an average secondary particle size of 1.5 μm, bismuth oxide having an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, Lithium hydroxide monohydrate having a lithium carbonate content of 0.3 wt% and an average particle size of 20 μm, whose particle size was adjusted by a pulverizer, was mixed so that the molar ratio was Li / (Ni + Co + Al + Bi) = 1.02.

この混合物を酸素雰囲気下、750℃にて10時間焼成し、解砕した。このLi−Ni複合酸化物粒子粉末1kgを1/50Nの硫酸溶液に10分間懸濁攪拌した後、更に10倍の水で水洗、乾燥し、再度酸素雰囲気で700℃、2時間焼成を行い解砕した。得られた焼成物の化学組成はLi0.99Ni0.8Co0.15Al0.04Bi0.0005であり、平均二次粒子径は15μm、SEM観察による平均一次粒子径は1.1μmであった。このLi−Ni複合酸化物粒子粉末のSEM写真を図1に示す。 This mixture was fired at 750 ° C. for 10 hours in an oxygen atmosphere and crushed. 1 kg of this Li-Ni composite oxide particle powder was suspended and stirred in a 1/50 N sulfuric acid solution for 10 minutes, then washed with 10 times more water, dried, and baked again at 700 ° C. for 2 hours in an oxygen atmosphere. Crushed. The chemical composition of the obtained fired product is Li 0.99 Ni 0.8 Co 0.15 Al 0.04 Bi 0.0005 O 2 , the average secondary particle diameter is 15 μm, and the average primary particle diameter by SEM observation is It was 1.1 μm. An SEM photograph of this Li-Ni composite oxide particle powder is shown in FIG.

このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.22%、炭酸リチウム量は0.09%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は193mAh/gであり、85℃、24時間保存後のガス発生量は0.39ml/gであった。   After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the amount of lithium hydroxide was 0.22%, and the amount of lithium carbonate was 0.09%. Moreover, the discharge capacity of the cell using this Li-Ni complex oxide particle powder was 193 mAh / g, and the amount of gas generated after storage at 85 ° C. for 24 hours was 0.39 ml / g.

[実施例2〜実施例8]
実施例1と同様に行って、得られたNi−Co水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径1.5μmの水酸化アルミニウム、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマス、平均一次粒子径が0.6μmで平均二次粒子径2.3μmの酸化アンチモン、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ジルコニウム、予め粉砕機によって粒度調整を行った炭酸リチウム含有量が0.3wt%、平均粒子径20μmの水酸化リチウム・1水塩をモル比で所定の組成比になるように、Li/(Ni+Co+Al+Bi+Sb+Zr)=1.02となるように混合した以外は実施例1と同様に行って、化学組成の異なるLi−Ni−Co−Al−Zr−Bi−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表1に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表2に示す。
[Examples 2 to 8]
Performed in the same manner as in Example 1, the obtained Ni—Co hydroxide, aluminum hydroxide having an average primary particle size of 0.5 μm and an average secondary particle size of 1.5 μm, and an average primary particle size of 0.5 μm Bismuth oxide with an average secondary particle size of 2 μm, antimony oxide with an average primary particle size of 0.6 μm and an average secondary particle size of 2.3 μm, zirconium oxide with an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm Li / (Ni + Co + Al + Bi + Sb + Zr) so that the lithium carbonate monohydrate having a lithium carbonate content of 0.3 wt% and an average particle diameter of 20 μm, which has been adjusted in particle size by a pulverizer, has a molar composition of a predetermined composition ratio. Except for mixing so as to be equal to 1.02, the same procedure as in Example 1 was performed to obtain Li—Ni—Co—Al—Zr—Bi—Sb composite oxide particle powders having different chemical compositions. The composition and production conditions of these materials are shown in Table 1, and the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount are shown in Table 2.

[実施例9]
2mol/lの硫酸ニッケルと硫酸コバルト及び硫酸マンガンをNi:Co:Mn=60:20:20となるように混合した水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。
反応槽は羽根型攪拌機で常に攪拌を行い、同時にpH=11.5±0.5となるように2mol/lの水酸化ナトリウム水溶液を自動供給した。生成したNi−Co−Mn水酸化物はオーバーフローされ、オーバーフロー管に連結された濃縮槽で濃縮し、濃縮液を反応槽へ循環を行い、反応槽と濃縮槽中のNi−Co−Mn水酸化物濃度が4mol/lになるまで40時間反応を行った。
[Example 9]
An aqueous solution in which 2 mol / l nickel sulfate, cobalt sulfate, and manganese sulfate were mixed so that Ni: Co: Mn = 60: 20: 20 and an aqueous 5.0 mol / l ammonia solution were simultaneously supplied into the reaction vessel.
The reaction tank was always stirred with a blade-type stirrer, and at the same time, a 2 mol / l sodium hydroxide aqueous solution was automatically supplied so that the pH was 11.5 ± 0.5. The produced Ni—Co—Mn hydroxide is overflowed and concentrated in a concentration tank connected to the overflow pipe, and the concentrate is circulated to the reaction tank, and Ni—Co—Mn hydroxylation in the reaction tank and the concentration tank is obtained. The reaction was carried out for 40 hours until the product concentration reached 4 mol / l.

反応後、取り出した懸濁液を、フィルタープレスを用いてNi−Co−Mn水酸化物の重量に対して10倍の水により水洗を行った後、乾燥を行い、Ni:Co:Mn=60:20:20の平均二次粒子径が9.5μmであるNi−Co−Mn水酸化物粒子を得た。   After the reaction, the taken-out suspension was washed with water 10 times the weight of the Ni—Co—Mn hydroxide using a filter press, dried, and Ni: Co: Mn = 60. : Ni: Co-Mn hydroxide particles having an average secondary particle size of 20:20 of 9.5 μm were obtained.

Ni−Co−Mn水酸化物、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマスと炭酸リチウムとをモル比でLi/(Ni+Co+Mn)=1.05となるように混合した。   Ni—Co—Mn hydroxide, bismuth oxide having an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, and lithium carbonate were mixed in a molar ratio of Li / (Ni + Co + Mn) = 1.05. .

この混合物を酸素雰囲気下、890℃にて5時間焼成し、解砕した。このLi−Ni複合酸化物粒子粉末1kgを1/50Nの硫酸溶液に10分間懸濁攪拌した後、更に10倍の水で水洗、乾燥し、再度酸素雰囲気で800℃、2時間焼成を行い解砕した。得られた焼成物の化学組成は、ICP分析の結果、Li1.03Ni0.60Co0.20Mn0.20Bi0.0005であり、平均二次粒子径は9.5μm、SEM観察による平均一次粒子径は1.3μmであった。 This mixture was fired at 890 ° C. for 5 hours in an oxygen atmosphere and crushed. 1 kg of this Li-Ni composite oxide particle powder was suspended and stirred in a 1/50 N sulfuric acid solution for 10 minutes, then washed with 10 times more water, dried, and baked again at 800 ° C. for 2 hours in an oxygen atmosphere. Crushed. The chemical composition of the obtained fired product is Li 1.03 Ni 0.60 Co 0.20 Mn 0.20 Bi 0.0005 O 2 as a result of ICP analysis, and the average secondary particle size is 9.5 μm, The average primary particle diameter by SEM observation was 1.3 μm.

このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.06%、炭酸リチウム量は0.05%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は177mAh/gであり、85℃、24時間保存後のガス発生量は0.31ml/gであった。   After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the amount of lithium hydroxide was 0.06%, and the amount of lithium carbonate was 0.05%. Moreover, the discharge capacity of the cell using this Li-Ni complex oxide particle powder was 177 mAh / g, and the amount of gas generated after storage at 85 ° C. for 24 hours was 0.31 ml / g.

[実施例10〜16]
実施例9と同じように行って得たNi−Co−Mn水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマス、平均一次粒子径が0.6μmで平均二次粒子径2.3μmの酸化アンチモン、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ジルコニウム、と炭酸リチウムとを所定の組成比になるように、モル比でLi/(Ni+Co+Mn−Zr−Bi−Sb)=1.05となるように混合した以外は、実施例9と同様に行って、化学組成の異なるLi−Ni−Co−Mn−Zr−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表1に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表2に示す。
[Examples 10 to 16]
Ni—Co—Mn hydroxide obtained in the same manner as in Example 9, bismuth oxide having an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, and an average primary particle size of 0.6 μm and an average Antimony oxide with a secondary particle size of 2.3 μm, zirconium oxide with an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, and lithium carbonate in a molar ratio of Li / ( Li-Ni-Co-Mn-Zr-Sb composite oxide particles having a different chemical composition were carried out in the same manner as in Example 9 except that Ni + Co + Mn-Zr-Bi-Sb) = 1.05. Got. The composition and production conditions of these materials are shown in Table 1, and the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount are shown in Table 2.

[実施例17〜24]
2mol/lの硫酸ニッケルと硫酸コバルト及び硫酸マンガンをNi:Co:Mn=50:20:30なるように混合水溶液を使用し、上記Ni−Co−Mn水酸化物粒子を得たこと及び空気雰囲気下、950℃にて5時間焼成し、解砕した後、このLi−Ni複合酸化物粒子粉末1kgを1/50Nの硫酸溶液に10分間懸濁攪拌し、更に10倍の水で水洗、乾燥し、再度空気雰囲気で800℃、2時間焼成を行い解砕した以外は、実施例9及び実施例10〜16と同様に行って、化学組成の異なるLi−Ni−Co−Mn−Zr−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表1に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表2に示す。
[Examples 17 to 24]
Using a mixed aqueous solution of 2 mol / l nickel sulfate, cobalt sulfate, and manganese sulfate such that Ni: Co: Mn = 50: 20: 30, the Ni—Co—Mn hydroxide particles were obtained, and the air atmosphere Then, after calcination for 5 hours at 950 ° C. and pulverization, 1 kg of this Li—Ni composite oxide particle powder is suspended and stirred in a 1/50 N sulfuric acid solution for 10 minutes, further washed with 10 times water and dried. Then, Li-Ni-Co-Mn-Zr-Sb having a different chemical composition was carried out in the same manner as in Example 9 and Examples 10-16 except that calcination was carried out at 800 ° C. for 2 hours in an air atmosphere. A composite oxide particle powder was obtained. The composition and production conditions of these materials are shown in Table 1, and the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount are shown in Table 2.

[比較例1]
実施例1と同様に行って得たNi−Co水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径1.5μmの水酸化アルミニウム、予め粉砕機によって粒度調整を行った炭酸リチウム含有量が0.3wt%、平均粒子径20μmの水酸化リチウム・1水塩をモル比でLi/(Ni+Co+Al)=1.02となるように混合した混合物を酸素雰囲気下、750℃にて10時間焼成した後、解砕し、Li−Ni複合酸化物粒子粉末得た。得られた焼成物の化学組成はLi1.02Ni0.8Co0.15Al0.04であり、平均二次粒子径は15μm、SEM観察による平均一次粒子径は0.7μmであった。このLi−Ni複合酸化物粒子のSEM写真を図2に示す。このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.51%、炭酸リチウム量は0.38%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は192mAh/gであり、85℃、24時間保存後のガス発生量は1.88ml/gであった。
[Comparative Example 1]
Ni—Co hydroxide obtained in the same manner as in Example 1, aluminum hydroxide having an average primary particle size of 0.5 μm and an average secondary particle size of 1.5 μm, and carbonic acid whose particle size was adjusted in advance by a pulverizer A mixture obtained by mixing lithium hydroxide monohydrate having a lithium content of 0.3 wt% and an average particle diameter of 20 μm in a molar ratio of Li / (Ni + Co + Al) = 1.02 in an oxygen atmosphere at 750 ° C. After firing for 10 hours, the powder was crushed to obtain Li-Ni composite oxide particle powder. The obtained fired product has a chemical composition of Li 1.02 Ni 0.8 Co 0.15 Al 0.04 O 2 , an average secondary particle size of 15 μm, and an average primary particle size by SEM observation of 0.7 μm. there were. An SEM photograph of the Li—Ni composite oxide particles is shown in FIG. After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the lithium hydroxide amount was 0.51% and the lithium carbonate amount was 0.38%. Moreover, the discharge capacity of the cell using this Li-Ni complex oxide particle powder was 192 mAh / g, and the amount of gas generated after storage at 85 ° C. for 24 hours was 1.88 ml / g.

[比較例2]
実施例1と同様に行って得たNi−Co水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径1.5μmの水酸化アルミニウム、予め粉砕機によって粒度調整を行った炭酸リチウム含有量が0.3wt%、平均粒子径20μmの水酸化リチウム・1水塩をモル比でLi/(Ni+Co+Al)=1.02となるように混合した以外は、実施例1と同様に行って、Li−Ni複合酸化物粒子粉末得た。得られた焼成物の化学組成はLi0.99Ni0.8Co0.15Al0.04であり、平均二次粒子径は15μm、SEM観察による平均一次粒子径は0.7μmであった。このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.28%、炭酸リチウム量は0.16%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は193mAh/gであり、85℃、24時間保存後のガス発生量は0.45ml/gであった。
[Comparative Example 2]
Ni—Co hydroxide obtained in the same manner as in Example 1, aluminum hydroxide having an average primary particle size of 0.5 μm and an average secondary particle size of 1.5 μm, and carbonic acid whose particle size was adjusted in advance by a pulverizer Except that lithium hydroxide monohydrate having a lithium content of 0.3 wt% and an average particle diameter of 20 μm was mixed in a molar ratio of Li / (Ni + Co + Al) = 1.02, the same as in Example 1 Thus, Li—Ni composite oxide particle powder was obtained. The chemical composition of the obtained fired product is Li 0.99 Ni 0.8 Co 0.15 Al 0.04 O 2 , the average secondary particle size is 15 μm, and the average primary particle size by SEM observation is 0.7 μm. there were. After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the amount of lithium hydroxide was 0.28%, and the amount of lithium carbonate was 0.16%. Moreover, the discharge capacity of the cell using this Li-Ni complex oxide particle powder was 193 mAh / g, and the amount of gas generated after storage at 85 ° C. for 24 hours was 0.45 ml / g.

[比較例3〜7]
実施例1と同様に行って、得られたNi−Co水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径1.5μmの水酸化アルミニウム、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマス、平均一次粒子径が0.6μmで平均二次粒子径2.3μmの酸化アンチモン、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ジルコニウム、予め粉砕機によって粒度調整を行った炭酸リチウム含有量が0.3wt%、平均粒子径20μmの水酸化リチウム・1水塩をモル比で所定の組成比になるように、Li/(Ni+Co+Al+Bi+Sb+Zr)=1.02となるように混合した以外は実施例1と同様に行って、化学組成の異なるLi−Ni−Co−Al−Zr−Bi−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表3に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表4に示す。
[Comparative Examples 3 to 7]
Performed in the same manner as in Example 1, the obtained Ni—Co hydroxide, aluminum hydroxide having an average primary particle size of 0.5 μm and an average secondary particle size of 1.5 μm, and an average primary particle size of 0.5 μm Bismuth oxide with an average secondary particle size of 2 μm, antimony oxide with an average primary particle size of 0.6 μm and an average secondary particle size of 2.3 μm, zirconium oxide with an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm Li / (Ni + Co + Al + Bi + Sb + Zr) so that the lithium carbonate monohydrate having a lithium carbonate content of 0.3 wt% and an average particle diameter of 20 μm, which has been adjusted in particle size by a pulverizer, has a molar composition of a predetermined composition ratio. Except for mixing so as to be equal to 1.02, the same procedure as in Example 1 was performed to obtain Li—Ni—Co—Al—Zr—Bi—Sb composite oxide particle powders having different chemical compositions. Table 3 shows the composition and production conditions of these materials, and Table 4 shows the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount.

[比較例8]
実施例9と同様に行って得たNi−Co−Mn水酸化物と、炭酸リチウムとをモル比でLi/(Ni+Co+Mn)=1.05となるように混合した混合物を酸素雰囲気下、890℃にて5時間焼成した後、解砕し、Li−Ni複合酸化物粒子粉末得た。得られた焼成物の化学組成はLi1.05Ni0.60Co0.20Mn0.20であり、平均二次粒子径は15μm、SEM観察による平均一次粒子径は0.7μmであった。
[Comparative Example 8]
A mixture obtained by mixing Ni—Co—Mn hydroxide obtained in the same manner as in Example 9 and lithium carbonate so as to have a molar ratio of Li / (Ni + Co + Mn) = 1.05 was 890 ° C. in an oxygen atmosphere. And then pulverized to obtain Li—Ni composite oxide particle powder. The obtained fired product has a chemical composition of Li 1.05 Ni 0.60 Co 0.20 Mn 0.20 O 2 , an average secondary particle size of 15 μm, and an average primary particle size by SEM observation of 0.7 μm. there were.

このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.27%、炭酸リチウム量は0.17%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は177mAh/gであり、85℃、24時間保存後のガス発生量は0.74ml/gであった。   After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the amount of lithium hydroxide was 0.27% and the amount of lithium carbonate was 0.17%. Further, the discharge capacity of the cell using this Li—Ni composite oxide particle powder was 177 mAh / g, and the gas generation amount after storage at 85 ° C. for 24 hours was 0.74 ml / g.

[比較例9]
実施例9と同様に行って得たNi−Co−Mn水酸化物と、炭酸リチウムとをモル比でLi/(Ni+Co+Mn)=1.05となるように混合した以外は、実施例9と同様に行って、Li−Ni複合酸化物粒子粉末得た。得られた焼成物の化学組成はLi1.05Ni0.60Co0.20Mn0.20であり、平均二次粒子径は15μm、SEM観察による平均一次粒子径は0.7μmであった。
[Comparative Example 9]
Similar to Example 9, except that Ni—Co—Mn hydroxide obtained in the same manner as in Example 9 and lithium carbonate were mixed so that the molar ratio was Li / (Ni + Co + Mn) = 1.05. To obtain Li—Ni composite oxide particle powder. The obtained fired product has a chemical composition of Li 1.05 Ni 0.60 Co 0.20 Mn 0.20 O 2 , an average secondary particle size of 15 μm, and an average primary particle size by SEM observation of 0.7 μm. there were.

このLi−Ni複合酸化物粒子粉末20gを100mlの水に10分間懸濁攪拌した後、上澄み液を濾別し、その中の水酸化リチウム量と炭酸リチウム量を、滴定法を用いて評価した結果、水酸化リチウム量は0.06%、炭酸リチウム量は0.07%であった。また、このLi−Ni複合酸化物粒子粉末を用いたセルの放電容量は177mAh/gであり、85℃、24時間保存後のガス発生量は0.44ml/gであった。   After 20 g of this Li-Ni composite oxide particle powder was suspended and stirred in 100 ml of water for 10 minutes, the supernatant was filtered off, and the lithium hydroxide content and lithium carbonate content therein were evaluated using a titration method. As a result, the amount of lithium hydroxide was 0.06%, and the amount of lithium carbonate was 0.07%. Further, the discharge capacity of the cell using this Li—Ni composite oxide particle powder was 177 mAh / g, and the gas generation amount after storage at 85 ° C. for 24 hours was 0.44 ml / g.

[比較例10〜14]
実施例9と同様に行って得たNi−Co−Mn水酸化物と、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ビスマス、平均一次粒子径が0.6μmで平均二次粒子径2.3μmの酸化アンチモン、平均一次粒子径が0.5μmで平均二次粒子径2μmの酸化ジルコニウム、と炭酸リチウムとを所定の組成比になるように、モル比でLi/(Ni+Co+Mn−Zr−Bi−Sb)=1.05となるように混合した以外は、実施例9と同様に行って、化学組成の異なるLi−Ni−Co−Mn−Zr−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表3に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表4に示す。
[Comparative Examples 10-14]
Ni—Co—Mn hydroxide obtained in the same manner as in Example 9, bismuth oxide having an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, an average primary particle size of 0.6 μm and an average of 2 Li / (Ni + Co + Mn) at a molar ratio of antimony oxide having a secondary particle size of 2.3 μm, zirconium oxide having an average primary particle size of 0.5 μm and an average secondary particle size of 2 μm, and lithium carbonate so as to have a predetermined composition ratio. -Zr-Bi-Sb) = 1.05 Except for mixing, Li-Ni-Co-Mn-Zr-Sb composite oxide particles having different chemical compositions were performed in the same manner as in Example 9. Obtained. Table 3 shows the composition and production conditions of these materials, and Table 4 shows the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount.

[比較例15〜21]
2mol/lの硫酸ニッケルと硫酸コバルト及び硫酸マンガンをNi:Co:Mn=50:20:30なるように混合水溶液を使用し、上記Ni−Co−Mn水酸化物粒子を得たこと及び空気雰囲気下、950℃にて5時間焼成し、解砕した後、このLi−Ni複合酸化物粒子粉末1kgを1/50Nの硫酸溶液に10分間懸濁攪拌し、更に10倍の水で水洗、乾燥し、再度空気雰囲気で800℃、2時間焼成を行い解砕した以外は、比較例8〜14と同様に行って、化学組成の異なるLi−Ni−Co−Mn−Zr−Sb複合酸化物粒子粉末を得た。これらの材料の組成と製造条件は表3に、平均一次粒子径、水酸化リチウム量、炭酸リチウム量、初期放電容量及びガス発生量は表4に示す。
[Comparative Examples 15 to 21]
Using a mixed aqueous solution of 2 mol / l nickel sulfate, cobalt sulfate, and manganese sulfate such that Ni: Co: Mn = 50: 20: 30, the Ni—Co—Mn hydroxide particles were obtained, and the air atmosphere Then, after calcination for 5 hours at 950 ° C. and pulverization, 1 kg of this Li—Ni composite oxide particle powder is suspended and stirred in a 1/50 N sulfuric acid solution for 10 minutes, further washed with 10 times water and dried. The Li—Ni—Co—Mn—Zr—Sb composite oxide particles having different chemical compositions were obtained in the same manner as in Comparative Examples 8 to 14 except that calcination was performed again at 800 ° C. for 2 hours in an air atmosphere. A powder was obtained. Table 3 shows the composition and production conditions of these materials, and Table 4 shows the average primary particle diameter, lithium hydroxide amount, lithium carbonate amount, initial discharge capacity, and gas generation amount.

実施例1〜24で得られたLi−Ni複合酸化物粒子粉末は、二次粒子を構成する一次粒子の平均一次粒子径が1μm以上であり、電極作製時のコンプレッションによる粒子破壊による新しい粒子界面の発生が抑制され、高温環境下での電解液との反応性が抑制されガス発生が改善された優れた正極材料である。
また、本発明に係るLi−Ni複合酸化物粒子粉末は、該粉末20gを100mlの水に10分間懸濁攪拌したときの、上澄み液中の水酸化リチウム量は0.25%以下、炭酸リチウム量は0.15%以下であり、高温環境下でのアルカリ成分による電解液の分解反応が抑制され、ガス発生が改善された優れた正極材料である。
更に、Li−Ni複合酸化物粒子粉末を正極活物質に用いた非水電解質二次電池において、85℃、24時間保存後のガス発生量は0.4ml/g以下であり、高温環境下での電解液との反応性が抑制されガス発生が改善された優れた正極材料であるということが言える。
The Li—Ni composite oxide particle powders obtained in Examples 1 to 24 have a primary particle constituting the secondary particles having an average primary particle diameter of 1 μm or more, and a new particle interface due to particle breakage due to compression during electrode production. Is an excellent positive electrode material in which the generation of gas is suppressed, the reactivity with the electrolyte in a high temperature environment is suppressed, and the gas generation is improved.
In addition, the Li—Ni composite oxide particle powder according to the present invention has a lithium hydroxide content of 0.25% or less when 20 g of the powder is suspended and stirred in 100 ml of water for 10 minutes. The amount is 0.15% or less, and is an excellent positive electrode material in which the decomposition reaction of the electrolytic solution by the alkali component in a high temperature environment is suppressed and gas generation is improved.
Furthermore, in a non-aqueous electrolyte secondary battery using Li—Ni composite oxide particle powder as a positive electrode active material, the amount of gas generated after storage at 85 ° C. for 24 hours is 0.4 ml / g or less, under a high temperature environment. It can be said that this is an excellent positive electrode material in which the reactivity with the electrolyte is suppressed and gas generation is improved.

次に、上記実施例1、9、及び17によって得られたLi−Ni複合酸化物粒子粉末の粉末X線回折図を図3に示す。   Next, FIG. 3 shows a powder X-ray diffraction pattern of the Li—Ni composite oxide particles obtained in Examples 1, 9, and 17.

同図から明らかなように、何れの実施例においても副生物によるピークは認められず、均一に固溶した層状構造を有していることが分かる。   As can be seen from the figure, no peak due to by-products is observed in any of the examples, and it has a layered structure in which the solid solution is uniformly formed.

以上の結果から、本発明に係るLi−Ni複合酸化物粒子粉末は充放電容量が大きく、ガス発生量の少ない高温充放電特性に優れた非水電解質二次電池用正極活物質として有効であることが確認された。   From the above results, the Li-Ni composite oxide particle powder according to the present invention is effective as a positive electrode active material for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and a small amount of gas generation and excellent high-temperature charge / discharge characteristics. It was confirmed.

本発明に係るNi−Co水酸化物もしくはNi−Co−Mn水酸化物と平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上との混合物を、リチウム化合物と混合し、得られた混合物を焼成したLi−Ni複合酸化物粒子粉末を用いることで、充放電容量が大きくガス発生量の少ない高温充放電特性に優れた非水電解質二次電池を得ることができる。   One kind containing at least a bismuth compound selected from an Ni-Co hydroxide or Ni-Co-Mn hydroxide according to the present invention and an aluminum compound, zirconium compound, bismuth compound, and antimony compound having an average primary particle size of 1 μm or less By using a Li-Ni composite oxide particle powder obtained by mixing the above mixture with a lithium compound and calcining the obtained mixture, the charge / discharge capacity is large and the amount of gas generated is small and the high temperature charge / discharge characteristics are excellent. A water electrolyte secondary battery can be obtained.

Claims (6)

組成がLiNi1−y−zCoZrBiSb(0.9≦x≦1.3、0.1≦y≦0.35、0<z≦0.35、0≦a≦0.025、0.0002≦b≦0.004、0≦c≦0.002、かつc≠0の場合、1.2≦b/c、MはAl、Mnの中から選択される少なくとも1種以上の元素)であるLi−Ni複合酸化物において、二次粒子を構成する一次粒子の平均一次粒子径が1〜4μmであることを特徴とする非水電解質二次電池用Li−Ni複合酸化物粒子粉末。 Composition Li x Ni 1-y-z Co y M z Zr a Bi b Sb c O 2 (0.9 ≦ x ≦ 1.3,0.1 ≦ y ≦ 0.35,0 <z ≦ 0.35 , 0 ≦ a ≦ 0.025, 0.0002 ≦ b ≦ 0.004, 0 ≦ c ≦ 0.002, and c ≠ 0, 1.2 ≦ b / c, M is selected from Al and Mn A non-aqueous electrolyte secondary battery characterized in that, in the Li—Ni composite oxide which is at least one selected element), the primary particles constituting the secondary particles have an average primary particle diameter of 1 to 4 μm. Li-Ni composite oxide particle powder for use. 上記Li−Ni複合酸化物粒子粉末20gを100mlの水に20分間攪拌した後の上澄み液を濾別した後、0.2Nの塩酸を用いて滴定して求める、溶出する水酸化リチウムの量が0.25%以下、かつ炭酸リチウムの量が0.15%以下であることを特徴とする請求項1記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末。 The amount of lithium hydroxide eluted is determined by titrating with 0.2 N hydrochloric acid after filtering the supernatant after stirring 20 g of the Li-Ni composite oxide particle powder in 100 ml of water for 20 minutes. The Li-Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery according to claim 1, wherein the powder is 0.25% or less and the amount of lithium carbonate is 0.15% or less. 上記Li−Ni複合酸化物粒子粉末を正極活物質として用い、リチウム金属或いはリチウムイオンを吸蔵放出可能な材料からなる負極を用いて成る非水電解質二次電池において、4.2V充電状態で85℃、24時間保存したときのガス発生量が0.4ml/g以下であることを特徴とする請求項1又は2記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末。 In the non-aqueous electrolyte secondary battery using the above Li-Ni composite oxide particle powder as a positive electrode active material and using a negative electrode made of a material capable of occluding and releasing lithium metal or lithium ions, it is 85 ° C in a 4.2 V charged state 3. The Li—Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery according to claim 1, wherein a gas generation amount when stored for 24 hours is 0.4 ml / g or less. Ni−Co水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末の製造方法。 It is obtained by mixing a lithium compound with at least one bismuth compound selected from Ni-Co hydroxide, an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound, and a lithium compound. The lithium-hydride for non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the mixture is baked, and then lithium hydroxide and lithium carbonate are removed in an acidic aqueous solution and baked again. Manufacturing method of Ni composite oxide particle powder. Ni−Co−Mn水酸化物と、平均一次粒子径が1μm以下のアルミニウム化合物、ジルコニウム化合物、ビスマス化合物、及びアンチモン化合物から選ばれる少なくともビスマス化合物を含む1種以上と、リチウム化合物とを混合し、得られた混合物を焼成し、次いで、酸性水溶液中で水酸化リチウム及び炭酸リチウムを除去し、再度焼成することを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末の製造方法。 Mixing a lithium compound with at least one bismuth compound selected from Ni-Co-Mn hydroxide, an aluminum compound having an average primary particle size of 1 μm or less, a zirconium compound, a bismuth compound, and an antimony compound, The obtained mixture is fired, then lithium hydroxide and lithium carbonate are removed in an acidic aqueous solution, and fired again. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, The manufacturing method of Li-Ni complex oxide particle powder. 請求項1〜3のいずれかに記載の非水電解質二次電池用Li−Ni複合酸化物粒子粉末からなる正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material comprising the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3.
JP2009270637A 2009-11-27 2009-11-27 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP5218782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009270637A JP5218782B2 (en) 2009-11-27 2009-11-27 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
PCT/JP2010/071021 WO2011065423A1 (en) 2009-11-27 2010-11-25 Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270637A JP5218782B2 (en) 2009-11-27 2009-11-27 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011113885A true JP2011113885A (en) 2011-06-09
JP5218782B2 JP5218782B2 (en) 2013-06-26

Family

ID=44066528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270637A Active JP5218782B2 (en) 2009-11-27 2009-11-27 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5218782B2 (en)
WO (1) WO2011065423A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077441A1 (en) * 2011-11-25 2013-05-30 三井金属鉱業株式会社 Lithium metal complex oxide having layered structure
WO2013137380A1 (en) * 2012-03-15 2013-09-19 戸田工業株式会社 Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP2016081903A (en) * 2014-10-20 2016-05-16 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method of producing the same, and lithium ion secondary battery
US9515315B2 (en) 2012-02-23 2016-12-06 Toda Kogyo Corp. Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JPWO2015049862A1 (en) * 2013-10-03 2017-03-09 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery, and power storage device
JP2017130409A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped and coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017130410A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017130413A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
WO2018079809A1 (en) 2016-10-31 2018-05-03 住友金属鉱山株式会社 Nickel manganese composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
WO2020027204A1 (en) * 2018-08-03 2020-02-06 住友金属鉱山株式会社 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell
JP2020100541A (en) * 2018-12-20 2020-07-02 住友化学株式会社 Lithium metal complex oxide powder, positive electrode active substance for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11011751B2 (en) 2014-10-20 2021-05-18 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963745B2 (en) * 2011-03-31 2016-08-03 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012133436A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
JP6586220B2 (en) * 2016-02-26 2019-10-02 三井金属鉱業株式会社 Lithium metal composite oxide with layer structure
CN108682800B (en) * 2018-04-24 2021-07-30 西安建筑科技大学 High-nickel ternary modified cathode material and preparation method thereof
CN110459760B (en) * 2019-08-20 2022-05-24 湖北融通高科先进材料有限公司 Method for preparing nickel cobalt lithium manganate single crystal ternary material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP2009245949A (en) * 2002-03-28 2009-10-22 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery and secondary battery using the same, and method of manufacturing positive electrode material for lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138668A (en) * 1994-11-14 1996-05-31 Nikko Rika Kk Lithium-transition metal-compounded oxide particle and manufacture thereof
JP2007258094A (en) * 2006-03-24 2007-10-04 Sony Corp Positive-electrode active material, positive electrode, and battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245949A (en) * 2002-03-28 2009-10-22 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery and secondary battery using the same, and method of manufacturing positive electrode material for lithium secondary battery
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
JP5308600B1 (en) * 2011-11-25 2013-10-09 三井金属鉱業株式会社 Lithium metal composite oxide with layer structure
WO2013077441A1 (en) * 2011-11-25 2013-05-30 三井金属鉱業株式会社 Lithium metal complex oxide having layered structure
US9515315B2 (en) 2012-02-23 2016-12-06 Toda Kogyo Corp. Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
WO2013137380A1 (en) * 2012-03-15 2013-09-19 戸田工業株式会社 Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP2013193888A (en) * 2012-03-15 2013-09-30 Toda Kogyo Corp Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN104169222A (en) * 2012-03-15 2014-11-26 户田工业株式会社 Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JPWO2015049862A1 (en) * 2013-10-03 2017-03-09 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery, and power storage device
JP2016081903A (en) * 2014-10-20 2016-05-16 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method of producing the same, and lithium ion secondary battery
US11011751B2 (en) 2014-10-20 2021-05-18 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017130409A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped and coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017130413A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017130410A (en) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 Doped positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
WO2018079809A1 (en) 2016-10-31 2018-05-03 住友金属鉱山株式会社 Nickel manganese composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
KR20190078603A (en) 2016-10-31 2019-07-04 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, a positive electrode active material for a nonaqueous electrolyte secondary battery, a production method thereof, and a nonaqueous electrolyte secondary battery
WO2020027204A1 (en) * 2018-08-03 2020-02-06 住友金属鉱山株式会社 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell
JPWO2020027204A1 (en) * 2018-08-03 2020-08-06 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
US11894555B2 (en) 2018-08-03 2024-02-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020100541A (en) * 2018-12-20 2020-07-02 住友化学株式会社 Lithium metal complex oxide powder, positive electrode active substance for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Also Published As

Publication number Publication date
WO2011065423A1 (en) 2011-06-03
JP5218782B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP5187520B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
TWI502793B (en) Lithium composite oxide particle powder for nonaqueous electrolyte storage battery, method for producing the same, and nonaqueous electrolyte storage battery
JP5903956B2 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5656012B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP2018107131A (en) Nickel composite oxide, and positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5218782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250