JP5656012B2 - Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5656012B2
JP5656012B2 JP2010263802A JP2010263802A JP5656012B2 JP 5656012 B2 JP5656012 B2 JP 5656012B2 JP 2010263802 A JP2010263802 A JP 2010263802A JP 2010263802 A JP2010263802 A JP 2010263802A JP 5656012 B2 JP5656012 B2 JP 5656012B2
Authority
JP
Japan
Prior art keywords
particles
active material
positive electrode
electrode active
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263802A
Other languages
Japanese (ja)
Other versions
JP2011134708A (en
Inventor
和彦 菊谷
和彦 菊谷
和俊 石▲崎▼
和俊 石▲崎▼
照章 山時
照章 山時
貞村 英昭
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2010263802A priority Critical patent/JP5656012B2/en
Publication of JP2011134708A publication Critical patent/JP2011134708A/en
Application granted granted Critical
Publication of JP5656012B2 publication Critical patent/JP5656012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

高電圧充電時の充放電容量が大きく、初回充放電効率に優れた非水電解質二次電池用正極活物質粒子粉末を提供する。   Provided is a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity during high-voltage charging and excellent initial charge / discharge efficiency.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, a lithium ion secondary battery having an advantage of a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い充放電容量を有する電池として注目されてきた。しかし、この材料は、充電時の熱安定性及び充放電サイクル耐久性に劣る為、更なる特性改善が求められている。 Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiNiO 2 and the like are generally known, and lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high charge / discharge capacity. However, since this material is inferior in thermal stability during charging and charge / discharge cycle durability, further improvement in characteristics is required.

即ち、LiNiOはリチウムを引き抜いた際に、Ni3+がNi4+となりヤーンテラー歪を生じ、Liを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶と結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、サイクル特性が悪くなる、又酸素放出による電解液との反応などが起こり、電池の熱安定性及び保存特性が悪くなるといった特徴があった。この課題を解決する為に、LiNiOのNiの一部にCo及びAlを添加した材料の研究が行われてきたが、未だにこれらの課題を解決した材料は得られておらず、より結晶性の高いLi−Ni複合酸化物が求められている。 That is, when LiNiO 2 pulls out lithium, Ni 3+ becomes Ni 4+ , resulting in a yarn teller strain, and in the region where Li is pulled 0.45, from hexagonal to monoclinic, when further drawn, it changes from monoclinic to hexagonal. The crystal structure changes. Therefore, repeating the charge / discharge reaction makes the crystal structure unstable, the cycle characteristics deteriorate, and the reaction with the electrolyte solution due to oxygen release occurs, resulting in poor battery thermal stability and storage characteristics. there were. In order to solve this problem, research has been conducted on materials in which Co and Al are added to a part of Ni in LiNiO 2 , but no material that has solved these problems has yet been obtained, and more crystalline properties have been obtained. Li-Ni composite oxide having a high C content is demanded.

従来、結晶構造の安定化、充放電サイクル特性などの諸特性改善のために、LiNiO粉末に対して種々の改良が行われている。例えば、LiNiAlOの表面にLi−Ni−Co−Mn複合酸化物を被覆し、サイクル特性と熱安定性を改善する技術(特許文献1)、材料の種類は違うがLi−Co複合酸化物とLi−Ni−Co−Mn複合酸化物を混合し、Li−Co複合酸化物の充放電サイクル特性及び熱安定性を改善する技術(特許文献2)、Li−Co複合酸化物に炭酸リチウム、Ni(OH)、Co(OH)、炭酸マンガンを懸濁させる若しくは、Li−Ni−Co−Mn複合酸化物を機械的処理によって被覆することにより、Li−Co複合酸化物の充放電サイクル特性及び高温特性を改善する技術(特許文献3及び特許文献4)、Li−Co複合酸化物、Li−Ni複合酸化物、Li−Mn複合酸化物を芯粒子と被覆粒子からなる複合化粒子を形成し、高充填性、高エネルギー密度を達成する技術(特許文献5)、Li−Co複合酸化物の表面をLi−Ni複合酸化物で被覆することにより、電解液へのCoの溶出を抑制する技術(特許文献6)、Li−Ni−Co複合酸化物の表面にLi−Ni−Co−Mn複合酸化物を被覆し、充電時の熱安定性を改善する技術(特許文献7)等が知られている。 Conventionally, various improvements have been made to LiNiO 2 powder in order to improve various characteristics such as stabilization of crystal structure and charge / discharge cycle characteristics. For example, a Li-Ni-Co-Mn composite oxide is coated on the surface of LiNiAlO 2 to improve cycle characteristics and thermal stability (Patent Document 1). Li-Ni-Co-Mn composite oxide is mixed to improve the charge / discharge cycle characteristics and thermal stability of Li-Co composite oxide (Patent Document 2), Li-Co composite oxide containing lithium carbonate, Ni Charging / discharging cycle characteristics of Li—Co composite oxide by suspending (OH) 2 , Co (OH) 2 , manganese carbonate, or coating Li—Ni—Co—Mn composite oxide by mechanical treatment And a technology for improving high temperature characteristics (Patent Document 3 and Patent Document 4), Li—Co composite oxide, Li—Ni composite oxide, Li—Mn composite oxide comprising composite particles composed of core particles and coated particles Technology that achieves high fillability and high energy density (Patent Document 5), and coating the surface of Li-Co composite oxide with Li-Ni composite oxide suppresses the elution of Co into the electrolyte Technology (Patent Document 6), a technique of covering the surface of Li-Ni-Co composite oxide with Li-Ni-Co-Mn composite oxide and improving thermal stability during charging (Patent Document 7), etc. Are known.

特開2004−127694号公報JP 2004-127694 A 特開2005−317499号公報JP 2005-317499 A 特開2006−331943号公報JP 2006-319443 A 特開2007−48711号公報JP 2007-48711 A 特開平9−35715号公報Japanese Patent Laid-Open No. 9-35715 特開2000−195517号公報JP 2000-195517 A 特開2008−251532号公報JP 2008-251532 A

高電圧充電時の充放電容量及び初回充放電効率の優れた非水電解質二次電池用の正極活物質は、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料は得られていない。   A positive electrode active material for a non-aqueous electrolyte secondary battery with excellent charge / discharge capacity and initial charge / discharge efficiency at the time of high-voltage charging is currently the most demanded, but a material that satisfies the necessary and sufficient requirements is still available. Not.

そこで、本発明の目的は、高電圧充電時に充放電容量が大きく、初期充放電効率に優れた非水電解質二次電池用正極活物質粒子粉末、その製造方法及び該正極活物質粒子粉末を含有する正極からなる非水電解質二次電池を提供することである。   Accordingly, an object of the present invention is to contain a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity during high-voltage charging and excellent initial charge / discharge efficiency, a production method thereof, and the positive electrode active material particle powder. A nonaqueous electrolyte secondary battery comprising a positive electrode is provided.

本発明は、核となる二次粒子が少なくとも空間群R−3mに属する結晶系と空間群C2/mに属する結晶系とを有する化合物であり、Cu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.5であり、Mn含有量はモル比でMn/(Ni+Co+Mn)が0.55以上であるLi−Mn複合酸化物粒子であって、前記二次粒子の粒子表面若しくは表面近傍に、組成がLix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)、またはLix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)から選ばれる少なくとも1種のLi−Mn化合物粒子を被覆又は存在させた非水電解質二次電池用正極活物質粒子粉末であって、該非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径が核となる二次粒子の平均粒子径の1.1倍以上であり、かつ核となる粒子に対する被覆粒子若しくは表面近傍に存在するLi−Mn化合物粒子の重量百分率が0.5%以上20%以下であることを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明1)。 The present invention is a compound in which secondary particles serving as nuclei have at least a crystal system belonging to space group R-3m and a crystal system belonging to space group C2 / m, and a powder X-ray diffraction diagram using Cu-Kα rays. The relative intensity ratio (a) / (b) between the intensity (a) of the maximum diffraction peak at 2θ = 20.8 ± 1 ° and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0. 0.02 to 0.5, and the Mn content is a Li—Mn composite oxide particle having a molar ratio of Mn / (Ni + Co + Mn) of 0.55 or more, on the particle surface of the secondary particle or in the vicinity of the surface. Li x2 Mn 2 -y2 Ni y2 O 4 (0.95 ≦ x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0.55), or Li x3 Mn 1-y3 Fe y3 PO 4 (0.98) ≦ x3 ≦ 1.10, 0 <y3 ≦ 0.30) A positive electrode active material particle powder for a non-aqueous electrolyte secondary battery in which at least one Li-Mn compound particle is coated or present, and the average of the secondary particles of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery The particle size is 1.1 times or more of the average particle size of the secondary particles serving as the nucleus, and the weight percentage of the Li—Mn compound particles existing in the vicinity of the coated particles or the surface with respect to the core particles is 0.5% or more. It is a positive electrode active material particle powder for a nonaqueous electrolyte secondary battery, characterized by being 20% or less (Invention 1).

また、本発明は、核となる二次粒子が、空間群R−3mに属する結晶系を有する化合物としてLiMMn(1−p)(MはNi及び/またはCo、0<p≦1)を、空間群C2/mに属する結晶系を有する化合物としてLiM’(1−q)Mn(M’はNi及び/またはCo、0<q≦1)を含むことを特徴とする本発明1に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明2)。 Further, in the present invention, LiM p Mn (1-p) O 2 (M is Ni and / or Co, 0 <p ≦ 0 ) as a compound in which the secondary particle serving as a nucleus has a crystal system belonging to the space group R-3m. 1) including Li 2 M ′ (1-q) Mn q O 3 (M ′ is Ni and / or Co, 0 <q ≦ 1) as a compound having a crystal system belonging to the space group C2 / m. It is the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of this invention 1 characterized by the above (this invention 2).

また、本発明は、本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法であって、MnとNi及び/またはCoを含む前駆体粒子粉末とリチウム化合物を含有する混合物を500〜1500℃の範囲で焼成して得たLi−Mn複合酸化物の二次粒子に、二次粒子の平均粒子径が3μm以下のLix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)、またはLix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)から選ばれる少なくとも1種のLi−Mn化合物粒子粉末を摩砕混合することにより被覆又は存在させることを特徴とする非水電解質二次電池用正極活物質粒子粉末の製造方法。(本発明3)。 The present invention also relates to a method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the first or second aspect of the present invention, comprising a precursor particle powder containing Mn, Ni and / or Co, and a lithium compound. Li x2 Mn 2 -y2 Ni y2 O 4 (secondary particles having an average particle diameter of 3 μm or less) was obtained as secondary particles of the Li—Mn composite oxide obtained by firing the contained mixture in the range of 500 to 1500 ° C. 0.95 ≦ x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0.55), or Li x3 Mn 1-y3 Fe y3 PO 4 (0.98 ≦ x3 ≦ 1.10, 0 <y3 ≦ 0.30) A method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, wherein at least one Li—Mn compound particle powder selected from (Invention 3).

また、本発明は、本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末を含有する正極を用いたことを特徴とする非水電解質二次電池である(本発明4)。   Further, the present invention is a non-aqueous electrolyte secondary battery using the positive electrode containing the positive electrode active material particle powder for non-aqueous electrolyte secondary battery according to the first or second invention (Invention 4). ).

本発明に係る正極活物質粒子粉末は、高電圧充電時の初回充放電効率を向上させることができるので、非水電解質二次電池用の正極活物質粒子粉末として好適である。   The positive electrode active material particle powder according to the present invention is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery because it can improve the initial charge / discharge efficiency during high-voltage charging.

参考例1で得られた核となるLi−Mn複合酸化物粒子粉末のX線回折図である。2 is an X-ray diffraction pattern of Li-Mn composite oxide particle powder that is a nucleus obtained in Reference Example 1. FIG. 参考例1で得られた核となるLi−Mn複合酸化物粒子粉末のSEM写真である。4 is a SEM photograph of Li—Mn composite oxide particle powder as a nucleus obtained in Reference Example 1. 参考例1で得られた正極活物質粒子粉末のSEM写真である。4 is a SEM photograph of positive electrode active material particle powder obtained in Reference Example 1. 実施例1で得られた正極活物質粒子粉末のSEM写真である。2 is a SEM photograph of positive electrode active material particle powder obtained in Example 1. 実施例3で得られた正極活物質粒子粉末のSEM写真である。4 is a SEM photograph of positive electrode active material particle powder obtained in Example 3.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る正極活物質粒子粉末は、少なくとも空間群R−3mに属する結晶系と空間群C2/mに属する結晶系とを有する化合物からなるLi−Mn複合酸化物の二次粒子を核とし、該二次粒子の粒子表面若しくは粒子表面近傍に、特定の組成を有するスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子のうち1種以上を被覆又は存在させたものである。すなわち、核となる二次粒子の表面全体を特定の組成を有するスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子のうち1種以上を被覆させたもの、または核となる二次粒子の表面近傍若しくは粒子表面の一部に、特定の組成を有するスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子のうち1種以上を存在若しくは被覆させたものである。   The positive electrode active material powder according to the present invention has, as a nucleus, secondary particles of a Li—Mn composite oxide composed of a compound having at least a crystal system belonging to the space group R-3m and a crystal system belonging to the space group C2 / m. In addition, one or more of spinel type Li—Mn composite oxide particles or olivine type Li—Mn phosphate compound particles having a specific composition were coated or existed on the particle surface of the secondary particles or in the vicinity of the particle surface. Is. That is, the entire surface of the secondary particles serving as nuclei is coated with one or more of spinel-type Li—Mn composite oxide particles having a specific composition or olivine-type Li—Mn phosphate compound particles, or nuclei In the vicinity of the surface of the secondary particles or a part of the particle surface, one or more of spinel-type Li—Mn composite oxide particles or olivine-type Li—Mn phosphate compound particles having a specific composition are present or coated It has been made.

空間群R−3mに属する結晶系を有する化合物としては、LiMMn(1−p)(MはNi及び/又はCo、xの範囲が0<p≦1)が好ましい。具体的には、LiCoMn1−p2、LiNiMn1−p、Li(Ni、Co)Mn1−pなどが好ましい。
なお、空間群R−3mは正式には、R3mの3の上にバーのついた表記が正しいが、ここでは便宜上、R−3mと記す。
As a compound having a crystal system belonging to the space group R-3m, LiM p Mn (1-p) O 2 (M is Ni and / or Co, and the range of x is 0 <p ≦ 1) is preferable. Specifically, LiCo p Mn 1-p O 2, LiNi p Mn 1-p O 2, Li (Ni, Co) such as p Mn 1-p O 2 is preferred.
The space group R-3m is officially written with a bar on 3 of R3m, but for the sake of convenience, it is described as R-3m.

空間群C2/mに属する結晶系を有する化合物としては、LiM’(1−q)Mn(M’はNi及び/又はCo、yの範囲が0<q≦1)が好ましい。 As a compound having a crystal system belonging to the space group C2 / m, Li 2 M ′ (1-q) Mn q O 3 (M ′ is Ni and / or Co, and the range of y is 0 <q ≦ 1) is preferable. .

核となるLi−Mn複合酸化物粒子について、Cu−Kα線を線源とした粉末X線回折を行った場合に、空間群R−3mに属する結晶系に属する化合物であるLiMMn(1−p)に特徴的なピークの一つが2θ=18.6±1°に現れ、空間群C2/mに属する結晶系に属する化合物であるLiM’(1−q)Mnに特徴的なピークの一つが2θ=20.8±1°に現れる。 LiM p Mn (1 ), which is a compound belonging to the crystal system belonging to the space group R-3m, is obtained by performing powder X-ray diffraction on the core Li—Mn composite oxide particles using Cu—Kα rays as a radiation source. -P) One of the peaks characteristic of O 2 appears at 2θ = 18.6 ± 1 °, and Li 2 M ′ (1-q) Mn q O, which is a compound belonging to the crystal system belonging to the space group C2 / m One of the peaks characteristic to 3 appears at 2θ = 20.8 ± 1 °.

核となるLi−Mn複合酸化物粒子の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)は0.02〜0.5である。相対強度比(a)/(b)が0.02未満の場合には、空間群C2/mに属する結晶系を有する化合物が少なすぎて十分な充放電容量が得られず、相対強度比(a)/(b)が0.5を超える場合には、空間群C2/mに属する結晶系を有する化合物が多すぎてスムーズなリチウムイオンの移動ができずに十分な充放電容量が得られない。好ましい相対強度比(a)/(b)は0.02〜0.4であり、より好ましい相対強度比(a)/(b)は0.02〜0.3であり、さらにより好ましい相対強度比(a)/(b)は0.02〜0.2である。   The relative intensity between the intensity (a) of the maximum diffraction peak at 2θ = 20.8 ± 1 ° and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° of the core Li-Mn composite oxide particles The ratio (a) / (b) is 0.02 to 0.5. When the relative intensity ratio (a) / (b) is less than 0.02, the compound having a crystal system belonging to the space group C2 / m is too small to obtain a sufficient charge / discharge capacity, and the relative intensity ratio ( When a) / (b) exceeds 0.5, there are too many compounds having a crystal system belonging to the space group C2 / m, and smooth lithium ion migration cannot be achieved, and sufficient charge / discharge capacity can be obtained. Absent. The preferred relative strength ratio (a) / (b) is 0.02 to 0.4, the more preferred relative strength ratio (a) / (b) is 0.02 to 0.3, and even more preferred relative strength. The ratio (a) / (b) is 0.02 to 0.2.

核となるLi−Mn複合酸化物粒子は、Mn含有量がモル比でMn/(Ni+Co+Mn)が0.55以上である。これを下回ると空間群C2/mに属する結晶系を有する化合物が十分形成されず、充放電容量が低下する。好ましくは0.56以上であり、より好ましくは0.6以上であり、さらにより好ましくは0.65以上である。また、上限は、好ましくは0.95程度である。   The Li—Mn composite oxide particles serving as the nucleus have a Mn content in a molar ratio of Mn / (Ni + Co + Mn) of 0.55 or more. Below this range, a compound having a crystal system belonging to the space group C2 / m is not sufficiently formed, and the charge / discharge capacity decreases. Preferably it is 0.56 or more, More preferably, it is 0.6 or more, More preferably, it is 0.65 or more. The upper limit is preferably about 0.95.

核となるLi−Mn複合酸化物粒子は、ホウ素を0.001〜3wt%含有することが好ましい。ホウ素の含有量が0.001wt%未満の場合、該正極活物質粒子粉末を用いた二次電池のサイクル特性が低くなり好ましくない。3wt%を超える場合には、充放電容量が低下するため好ましくない。好ましいホウ素の含有量は0.003〜2wt%であり、より好ましくは0.005〜1wt%であり、さらにより好ましくは0.02〜0.5wt%である。   It is preferable that the Li—Mn composite oxide particles serving as the nucleus contain 0.001 to 3 wt% of boron. When the boron content is less than 0.001 wt%, the cycle characteristics of the secondary battery using the positive electrode active material particle powder are undesirably lowered. If it exceeds 3 wt%, the charge / discharge capacity decreases, which is not preferable. A preferable boron content is 0.003 to 2 wt%, more preferably 0.005 to 1 wt%, and still more preferably 0.02 to 0.5 wt%.

被覆又は存在させる粒子は、特定の組成を有するスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子から選ばれる少なくとも1種のLi−Mn化合物粒子である。
これら以外の化合物の場合には、高電圧充電時の高い放電容量と高い初回充放電効率を得ることが難しくなる。
The particles to be coated or present are at least one Li—Mn compound particle selected from spinel type Li—Mn composite oxide particles having a specific composition or olivine type Li—Mn phosphate compound particles.
In the case of a compound other than these, it is difficult to obtain a high discharge capacity and high initial charge / discharge efficiency during high-voltage charging.

被覆又は存在させる粒子がスピネル型Li−Mn複合酸化物粒子の場合、組成は、Lix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)である。
組成範囲が前記範囲外となる場合には、高電圧充電時の高い放電容量と高い初回充放電効率を得ることが難しくなる。
When the particles to be coated or present are spinel-type Li—Mn composite oxide particles, the composition is Li x2 Mn 2-y2 Ni y2 O 4 (0.95 ≦ x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0. 55).
When the composition range is out of the above range, it is difficult to obtain a high discharge capacity and high initial charge / discharge efficiency during high-voltage charging.

被覆又は存在させる粒子がオリビン型Li−Mnリン酸化合物粒子の場合、組成は、Lix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)である。
組成範囲が前記範囲外となる場合には、高電圧充電時の高い放電容量と高い初回充放電効率を得ることが難しくなる。
When the particles to be coated or present are olivine-type Li—Mn phosphate compound particles, the composition is Li x3 Mn 1-y3 Fe y3 PO 4 (0.98 ≦ x3 ≦ 1.10, 0 <y3 ≦ 0.30) It is.
When the composition range is out of the above range, it is difficult to obtain a high discharge capacity and high initial charge / discharge efficiency during high-voltage charging.

本発明は、前記核となるLi−Mn複合酸化物の二次粒子に対する被覆又は存在させるLi−Mn化合物粒子の重量百分率が0.5%以上20%以下を満たすものである。
重量百分率が0.5%未満の場合、高電圧充電時にリチウムイオンの脱離が核となる粒子に含まれるLiMnOなどの空間群C2/mに属する結晶系を有する化合物から行われて、核となる粒子の構造が変化し、放電時のリチウムイオンの挿入が行われなくなり、結果として初回の充放電効率が低下する。一方、重量百分率が20%を超えた場合、高電圧充電によっても、高い放電容量を得るのが難しくなる。
高い放電容量及び高い初回充放電効率との両立を考えた場合、被覆又は存在させるLi−Mn化合物粒子は少量であることが好ましい。被覆又は存在させる量は、10%以下が好ましく、さらに好ましくは1%〜5%である。
In the present invention, the weight percentage of the Li—Mn compound particles to be coated or present on the secondary particles of the Li—Mn composite oxide serving as the nucleus satisfies 0.5% or more and 20% or less.
When the weight percentage is less than 0.5%, it is carried out from a compound having a crystal system belonging to the space group C2 / m such as Li 2 MnO 3 contained in particles whose core is the desorption of lithium ions during high voltage charging. As a result, the structure of the core particles changes, and lithium ions are not inserted during discharge, resulting in a decrease in the initial charge / discharge efficiency. On the other hand, when the weight percentage exceeds 20%, it is difficult to obtain a high discharge capacity even by high voltage charging.
When considering both high discharge capacity and high initial charge / discharge efficiency, it is preferable that the amount of Li-Mn compound particles to be coated or present is small. The amount to be coated or present is preferably 10% or less, more preferably 1% to 5%.

本発明に係る非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径は、核となるLi−Mn複合酸化物の二次粒子の平均粒子径に対して、1.1倍以上になるように制御する。平均粒子径の比が1.1倍未満の場合には、Li−Ni化合物粒子を被覆又は付着させる効果がない。好ましい粒径比は1.2以上であり、より好ましくは1.3〜2.0である。   The average particle diameter of the secondary particles of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention is 1.1 with respect to the average particle diameter of the secondary particles of the Li-Mn composite oxide serving as a nucleus. Control to double or more. When the ratio of the average particle diameter is less than 1.1 times, there is no effect of covering or adhering the Li—Ni compound particles. A preferred particle size ratio is 1.2 or more, more preferably 1.3 to 2.0.

なお、本発明に係る非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径は、1〜50μmが好ましい。平均粒子径が1μm以下の場合には、Li−Ni複合酸化物を電極スラリーにする際の分散性が悪くなる。50μmを超える場合には、電極の厚みが厚くなる為、レート特性が悪くなり、放電容量が低下する。   In addition, as for the average particle diameter of the secondary particle of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries which concerns on this invention, 1-50 micrometers is preferable. When the average particle size is 1 μm or less, the dispersibility when the Li—Ni composite oxide is used as an electrode slurry is deteriorated. When the thickness exceeds 50 μm, the thickness of the electrode is increased, so that the rate characteristic is deteriorated and the discharge capacity is lowered.

次に、本発明に係る正極活物質粒子粉末の製造方法について述べる。   Next, the manufacturing method of the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末の核となるLi−Mn複合酸化物粒子は、あらかじめ作製した遷移金属を含む前駆体粒子粉末とリチウム化合物とを混合し、500〜1500℃の温度範囲で焼成して得ることができる。また、ホウ素を含有させる場合には、前駆体粒子粉末とホウ素化合物とリチウム化合物とを混合し、焼成すればよい。   Li-Mn composite oxide particles serving as the core of the positive electrode active material particle powder according to the present invention are prepared by mixing a precursor particle powder containing a transition metal prepared in advance and a lithium compound, and firing in a temperature range of 500 to 1500 ° C. Can be obtained. When boron is contained, the precursor particle powder, the boron compound, and the lithium compound may be mixed and fired.

本発明における遷移金属を含む前駆体粒子粉末は、所定の濃度のニッケル塩、コバルト塩、マンガン塩を含有する混合溶液とアルカリ水溶液とを反応槽へ供給し、pHが7.5〜13になるように制御し、オーバーフローした懸濁液をオーバーフロー管に連結された濃縮槽で濃縮速度を調整しながら反応槽へ種循環し、反応槽と濃縮槽中の前駆体粒子濃度が0.5〜15mol/lになるまで反応を行って得ることができる。反応後は常法に従って、水洗、乾燥、粉砕を行えばよい。   The precursor particle powder containing a transition metal in the present invention supplies a mixed solution containing a nickel salt, a cobalt salt, and a manganese salt having a predetermined concentration and an alkaline aqueous solution to a reaction vessel, and has a pH of 7.5 to 13. In this way, the overflowed suspension is seed-circulated to the reaction tank while adjusting the concentration rate in the concentration tank connected to the overflow pipe, and the precursor particle concentration in the reaction tank and the concentration tank is 0.5 to 15 mol. It can be obtained by carrying out the reaction until it reaches / l. After the reaction, washing with water, drying and pulverization may be performed according to a conventional method.

本発明における遷移金属を含む前駆体粒子粉末としては、特に限定されることなく各種の遷移金属化合物を用いることができるが、例えば、酸化物、水酸化物、炭酸塩又はそれらの混合物が好ましく、より好ましくは遷移金属の水酸化物である。   As the precursor particle powder containing a transition metal in the present invention, various transition metal compounds can be used without any particular limitation. For example, oxides, hydroxides, carbonates or mixtures thereof are preferable, More preferred are transition metal hydroxides.

本発明における前駆体粒子粉末は、平均粒子径が1〜50μm、BET比表面積が3〜120m/gであることが好ましい。 The precursor particle powder in the present invention preferably has an average particle diameter of 1 to 50 μm and a BET specific surface area of 3 to 120 m 2 / g.

本発明に用いることができるホウ素化合物としては、特に限定されることなく各種のホウ素化合物を用いることができるが、例えば、三酸化ニホウ素、ホウ酸(オルトホウ酸)、メタホウ酸、四ホウ酸、ホウ酸リチウム等の各種ホウ酸塩等が挙げられ、ホウ酸が好ましい。ホウ素化合物の混合割合は前記前駆体粒子に対して0.02〜20wt%であることが好ましい。   The boron compound that can be used in the present invention is not particularly limited, and various boron compounds can be used. For example, diboron trioxide, boric acid (orthoboric acid), metaboric acid, tetraboric acid, Various borates such as lithium borate are listed, and boric acid is preferred. The mixing ratio of the boron compound is preferably 0.02 to 20 wt% with respect to the precursor particles.

本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられ、炭酸リチウムが好ましい。リチウム化合物の混合割合は前記前駆体粒子に対して20〜120wt%であることが好ましい。   The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride Examples include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being preferred. The mixing ratio of the lithium compound is preferably 20 to 120 wt% with respect to the precursor particles.

また、用いるリチウム化合物は平均粒子径が50μm以下であることが好ましい。より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、前駆体粒子との混合が不均一となり、結晶性の良いLi−Mn複合酸化物粒子粉末を得るのが困難となる。   Moreover, it is preferable that the lithium compound to be used has an average particle diameter of 50 micrometers or less. More preferably, it is 30 μm or less. When the average particle size of the lithium compound exceeds 50 μm, mixing with the precursor particles becomes non-uniform, and it becomes difficult to obtain Li—Mn composite oxide particle powder with good crystallinity.

遷移金属を含む前駆体粒子粉末とリチウム化合物との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   The mixing treatment of the precursor particle powder containing the transition metal and the lithium compound may be either dry or wet as long as it can be uniformly mixed.

焼成温度は、500℃〜1500℃であることが好ましい。500℃未満の場合にはLiとNi、Co、Mnの反応が十分に進まず、十分に複合化されない。1500℃を超える場合には焼結が進みすぎるので好ましくない。より好ましくは700〜1200℃の温度範囲であり、さらにより好ましくは800〜1050℃の温度範囲である。焼成時の雰囲気は酸化性ガス雰囲気が好ましく、より好ましくは通常の空気である。焼成時間は3〜30時間が好ましい。   The firing temperature is preferably 500 ° C to 1500 ° C. When the temperature is less than 500 ° C., the reaction between Li and Ni, Co, and Mn does not proceed sufficiently and is not sufficiently combined. If the temperature exceeds 1500 ° C., the sintering proceeds excessively, which is not preferable. More preferably, it is a temperature range of 700-1200 degreeC, More preferably, it is a temperature range of 800-1050 degreeC. The atmosphere during firing is preferably an oxidizing gas atmosphere, and more preferably normal air. The firing time is preferably 3 to 30 hours.

本発明に係る正極活物質粒子粉末に被覆又は存在させる粒子であるスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子は、通常の方法で得られるものであり、例えば、固相法若しくは湿式法により各種原料とリチウム塩と混合して、空気若しくは窒素雰囲気下において500℃〜1000℃で焼成して得られる。   The spinel-type Li—Mn composite oxide particles or the olivine-type Li—Mn phosphate compound particles, which are particles to be coated or exist on the positive electrode active material particle powder according to the present invention, are obtained by a usual method, for example It is obtained by mixing various raw materials and a lithium salt by a solid phase method or a wet method, and firing at 500 ° C. to 1000 ° C. in an air or nitrogen atmosphere.

本発明に係る正極活物質粒子粉末は、核となるLi−Mn複合酸化物粒子の粒子表面若しくは表面近傍に、被覆又は存在させるスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子を乾式による機械的処理によって、核となる二次粒子の粒子表面若しくは表面近傍にスピネル型Li−Mn複合酸化物粒子、またはオリビン型Li−Mnリン酸化合物粒子を存在させるものである。より好ましくはLi−Mn複合酸化物粒子粉末の二次粒子と、Li−Mn化合物粒子粉末とを摩砕混合することにより、核となるLi−Mn複合酸化物粒子の粒子表面若しくは表面近傍にLi−Mn化合物粒子を存在させるものである。   The positive electrode active material particle powder according to the present invention comprises spinel-type Li—Mn composite oxide particles or olivine-type Li—Mn phosphorus particles that are coated or exist on or near the particle surface of the core Li—Mn composite oxide particles. The acid compound particles are made to have spinel-type Li—Mn composite oxide particles or olivine-type Li—Mn phosphate compound particles existing on or near the surface of the core secondary particles by mechanical treatment by dry process. . More preferably, the secondary particles of the Li—Mn composite oxide particles and the Li—Mn compound particles are ground and mixed, so that the Li—Mn composite oxide particles serving as the core have Li on the particle surface or in the vicinity of the surface. -Mn compound particles are present.

被覆又は存在させる粉末の二次粒子の平均粒子径および、核となる二次粒子の平均粒子径は、非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径が核となる二次粒子の平均粒子径の1.1倍以上であり、かつ核となる粒子に対する被覆粒子若しくは表面近傍に存在するLi−Mn化合物粒子の重量百分率が0.5%以上20%以下であることを満足すれば特に制限されないが、核となる二次粒子の平均粒子径は通常1〜45μm、好ましくは1.5〜40μmであり、被覆又は存在させる粉末の二次粒子の平均粒子径は通常3.0μm以下、好ましくは0.8〜2.8μmである。上記のように摩砕混合して非水電解質二次電池用正極活物質粒子粉末を製造する場合は、核となる二次粒子の平均粒子径が、被覆又は存在させる粉末の二次粒子の平均粒子径よりも大きいことが好ましく、核となる二次粒子の平均粒子径が、被覆又は存在させる粉末の二次粒子の平均粒子径の4〜25倍であることが更に好ましい。また、核となる粒子の二次粒子は、摩砕混合により破壊されないことが好ましく、核となる粒子のみで被覆処理と同じ条件下で摩砕混合を行ったときに二次粒子径の大きさが、混合前の粒子の大きさに対して±1.5μm以内であることが好ましい。これらの条件下で被覆粒子と核となる粒子との間に非常に強力な圧密・せん断を加えながら摩砕混合を行うことにより、被覆粒子の核となる粒子表面への凝集性を高めることができ、粒子の複合化が達成できる。この際、被覆粒子同士の被覆粒子同士の強い凝集を解き放つためには核となる粒子の二次粒子の凝集力が重要であり、この力が弱いと核となる粒子が摩砕混合により破壊されることによって、被覆粒子同士の強い凝集が解放されず、被覆粒子同士の凝集が起こり、目的とする核となるLi−Mn複合酸化物粒子の粒子表面若しくは表面近傍にLi−Mn化合物粒子を得ることが難しくなる。   The average particle size of the secondary particles of the powder to be coated or present and the average particle size of the secondary secondary particles are the average particle size of the secondary particles of the positive electrode active material particle powder for non-aqueous electrolyte secondary batteries. The average particle diameter of the secondary particles is 1.1 times or more, and the weight percentage of the coated particles or the Li—Mn compound particles existing near the surface with respect to the core particles is 0.5% or more and 20% or less. The average particle size of the secondary secondary particles is usually 1 to 45 μm, preferably 1.5 to 40 μm, and the average particle size of the secondary particles of the powder to be coated or present is Usually, it is 3.0 micrometers or less, Preferably it is 0.8-2.8 micrometers. When producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery by grinding and mixing as described above, the average particle diameter of the secondary secondary particles is the average of the secondary particles of the powder to be coated or present. It is preferably larger than the particle diameter, and the average particle diameter of the secondary secondary particles is more preferably 4 to 25 times the average particle diameter of the powder secondary particles to be coated or present. In addition, the secondary particles of the core particles are preferably not broken by grinding and mixing, and the size of the secondary particle diameter is obtained when grinding and mixing is performed only with the core particles under the same conditions as the coating treatment. Is preferably within ± 1.5 μm with respect to the size of the particles before mixing. Under these conditions, the cohesiveness of the coated particles to the core particle surface can be improved by grinding and mixing while applying very strong compaction and shear between the coated particles and the core particles. And particle compositing can be achieved. At this time, in order to release the strong agglomeration of the coated particles between the coated particles, the agglomeration force of the secondary particles of the core particles is important. If this force is weak, the core particles are destroyed by grinding and mixing. As a result, strong agglomeration between the coated particles is not released, and the agglomeration between the coated particles occurs, and Li-Mn compound particles are obtained on or near the particle surface of the Li-Mn composite oxide particles serving as the target nucleus. It becomes difficult.

必要によってさらに酸素雰囲気下で700℃以上好ましくは730℃以上で2時間以上、熱的処理を施してもよい。   If necessary, thermal treatment may be further performed in an oxygen atmosphere at 700 ° C. or higher, preferably 730 ° C. or higher for 2 hours or longer.

次に、本発明に係る非水電解質二次電池用正極活物質粒子粉末を含有する正極について述べる。   Next, the positive electrode containing the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries according to the present invention will be described.

本発明に係る正極活物質粒子粉末を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing a positive electrode using the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質粒子粉末を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode active material particle powder according to the present invention includes the positive electrode, the negative electrode, and an electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した二次電池は、後述する評価法で初期放電容量が240mAh/g以上であり、より好ましくは高くなるほど良い。また、初期充放電効率が90%以上である。更に、不可逆容量が40mAh/g以下であり、4.6V充電状態における直流抵抗値が85Ω・cm以下である。 The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has an initial discharge capacity of 240 mAh / g or more according to an evaluation method to be described later, and it is more preferable that it be higher. Further, the initial charge / discharge efficiency is 90% or more. Further, the irreversible capacity is 40 mAh / g or less, and the DC resistance value in a 4.6 V charged state is 85 Ω · cm 2 or less.

<作用>
高電圧充電を行う非水電解質二次電池の初回充放電効率低下の原因として、充電時のリチウムの脱離に伴う結晶構造の変化及び電解液の分解が挙げられる。この結晶構造変化の原因として、核となる粒子の結晶構造の不均一さが挙げられる。また、電解液の分解の原因としては、電解液そのものの電気分解によるところも大きいが、材料そのものから発生した酸素による電解液の酸化分解が挙げられる。
前記課題を抑制するための直接的な手法とは言えないが、例として非水電解質二次電池用の正極活物質の表面改質が重要であり、先行技術(特許文献1乃至4)などで改善を行っているが、特許文献1では、核粒子の組成がLi−Ni−Al複合酸化物であり、核となる粒子の充放電効率が悪くなると共に、被覆状態及び、被覆割合についての記述が無く、被覆することによる高電圧充電時の初回充放電効率の改善については考慮されていない。また。特許文献2では、Li−Co複合酸化物へのLi−Ni−Co−Mn複合酸化物の混合による熱安定性改善であり、高電圧充電時の初回充放電効率の改善については考慮されていない。また、特許文献3では、Li−Co複合酸化物へLi−Ni−Co−Mn複合酸化物を表面被覆することで、特許文献4ではCo複合酸化物の表面にリチウム、ニッケル、コバルト、マンガン金属よりなる被覆層を形成することで高容量化及びサイクル特性、高温保存特性の改善を行っているが、高電圧充電時の初回充放電効率の改善については考慮されていない。特許文献5では、Li−Co複合酸化物、Li−Ni複合酸化物、Li−Mn複合酸化物を芯粒子と被覆粒子からなる複合化粒子を形成し、充填性及びエネルギー密度を改善しているが、芯粒子と被覆粒子の組成の記述が不明確であるとともに、高電圧充電時の初回充放電効率の改善については考慮されていない。特許文献6ではLi−Co複合酸化物の表面をLi−Ni複合酸化物で被覆することにより、電解液へのCoの溶出を抑制しているが、充電時の熱安定性に乏しいLi−Co複合酸化物のCoの溶出を制御する技術であり、高電圧充電時の初回充放電効率の改善については考慮されていない。特許文献7ではLi−Ni−Co複合酸化物の表面にLi−Ni−Co−Mn複合酸化物を被覆することで、充電時の熱安定性を改善しているが、高電圧充電時の初回充放電効率の改善については考慮されていない。
<Action>
The cause of the decrease in the initial charge / discharge efficiency of the non-aqueous electrolyte secondary battery that performs high-voltage charging includes a change in crystal structure accompanying the desorption of lithium during charging and decomposition of the electrolytic solution. The cause of this crystal structure change is the non-uniformity of the crystal structure of the core particles. Further, the cause of the decomposition of the electrolytic solution is largely due to the electrolysis of the electrolytic solution itself, but includes the oxidative decomposition of the electrolytic solution by oxygen generated from the material itself.
Although it cannot be said to be a direct method for suppressing the above-mentioned problem, as an example, surface modification of a positive electrode active material for a non-aqueous electrolyte secondary battery is important, and in the prior art (Patent Documents 1 to 4), etc. Although improvement is performed, in Patent Document 1, the composition of the core particles is Li—Ni—Al composite oxide, and the charge / discharge efficiency of the core particles is deteriorated, and the coating state and the coating ratio are described. There is no consideration for improving the initial charge and discharge efficiency during high-voltage charging by coating. Also. In patent document 2, it is thermal stability improvement by mixing Li-Ni-Co-Mn composite oxide to Li-Co composite oxide, and is not considered about the improvement of the first-time charge / discharge efficiency at the time of high voltage charge. . Further, in Patent Document 3, the surface of the Li-Co composite oxide is coated with a Li-Ni-Co-Mn composite oxide, and in Patent Document 4, the surface of the Co composite oxide is made of lithium, nickel, cobalt, manganese metal. Although the capacity is increased and the cycle characteristics and the high-temperature storage characteristics are improved by forming the coating layer, the improvement of the initial charge / discharge efficiency during high-voltage charging is not taken into consideration. In Patent Document 5, Li—Co composite oxide, Li—Ni composite oxide, and Li—Mn composite oxide are formed into composite particles composed of core particles and coated particles to improve the filling property and energy density. However, the description of the composition of the core particles and the covering particles is unclear, and the improvement of the initial charge / discharge efficiency at the time of high-voltage charging is not considered. In Patent Document 6, the surface of the Li—Co composite oxide is coated with the Li—Ni composite oxide to suppress the elution of Co into the electrolyte, but Li—Co which has poor thermal stability during charging. This is a technique for controlling the elution of Co from the composite oxide, and no consideration is given to improving the initial charge / discharge efficiency during high-voltage charging. In Patent Document 7, the Li-Ni-Co-Mn composite oxide is coated on the surface of the Li-Ni-Co composite oxide to improve the thermal stability during charging, but the first time during high-voltage charging. The improvement of charge / discharge efficiency is not considered.

そこで、本発明においては、核となる二次粒子が少なくとも空間群R−3mに属する結晶系と空間群C2/mに属する結晶系とを有する化合物であり、Cu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.5であり、Mn含有量はモル比でMn/(Ni+Co+Mn)が0.55以上であるLi−Mn複合酸化物粒子であって、前記二次粒子の粒子表面若しくは表面近傍に、組成がLix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)、またはLix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)から選ばれる少なくとも1種のLi−Mn化合物粒子を被覆又は存在させた非水電解質二次電池用正極活物質粒子粉末であって、該非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径が核となる二次粒子の平均粒子径の1.1倍以上であり、かつ核となる粒子に対する被覆粒子若しくは表面近傍に存在するLi−Mn化合物粒子の重量百分率が0.5%以上20%以下である正極活物質を非水電解質二次電池に用いることによって、高電圧充電時の高い放電容量を維持したまま、初回充放電効率の改善することが可能になる。 Therefore, in the present invention, a powder X using Cu—Kα rays is a compound in which secondary particles serving as nuclei have a crystal system belonging to at least the space group R-3m and a crystal system belonging to the space group C2 / m. Relative intensity ratio (a) / (b) between the intensity (a) of the maximum diffraction peak at 2θ = 20.8 ± 1 ° and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° in the line diffraction diagram. ) Is 0.02 to 0.5, and the Mn content is Li—Mn composite oxide particles having a molar ratio of Mn / (Ni + Co + Mn) of 0.55 or more, and the particle surface of the secondary particles or Near the surface, the composition is Li x2 Mn 2-y2 Ni y2 O 4 (0.95 ≦ x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0.55), or Li x3 Mn 1-y3 Fe y3 PO 4 ( 0.98 ≦ x3 ≦ 1.10, 0 <y3 ≦ 0.30 A positive electrode active material particle powder for a non-aqueous electrolyte secondary battery coated with or present with at least one Li-Mn compound particle selected from: secondary particles of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery The average particle size of the secondary particles that are nuclei is 1.1 times or more of the average particle size, and the weight percentage of the Li—Mn compound particles existing in the vicinity of the coated particles or the surface of the nuclei particles is 0.5. By using a positive electrode active material that is not less than 20% and not more than 20% in a non-aqueous electrolyte secondary battery, it is possible to improve the initial charge / discharge efficiency while maintaining a high discharge capacity during high-voltage charging.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

Li−Mn複合酸化物粒子粉末及びLi−Mn化合物粒子粉末の組成は誘導プラズマ発光分光法ICP−7500[島津製作所(株)製]を用いて分析し、確認した。   The composition of the Li—Mn composite oxide particle powder and the Li—Mn compound particle powder was analyzed and confirmed using induction plasma emission spectroscopy ICP-7500 [manufactured by Shimadzu Corporation].

粒子の平均一次粒子径はエネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、確認した。   The average primary particle diameter of the particles was observed and confirmed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

平均粒子径はレーザー式粒度分布測定装置LMS−30[セイシン企業(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。   The average particle diameter is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring apparatus LMS-30 [manufactured by Seishin Enterprise Co., Ltd.].

被覆又は存在させる粒子の存在状態はエネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EPMA[(株)日立ハイテクノロジーズ製]を用いて観察した。   The presence state of the particles to be coated or present was observed using a scanning electron microscope SEM-EPMA with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

核となる粒子の相の同定及び強度の測定は、X線回折測定で行った。X線回折装置は「X線回折装置RINT−2000((株)リガク)」(管球:Cu、管電圧:40kV、管電流:40mA、ステップ角度:0.020°、計数時間:0.6s、発散スリット:1°、散乱スリット:1°、受光スリット:0.30mm)を使用した。   Identification of the phase of the core particle and measurement of the intensity were performed by X-ray diffraction measurement. The X-ray diffractometer is “X-ray diffractometer RINT-2000 (Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 40 mA, step angle: 0.020 °, counting time: 0.6 s. Divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.30 mm).

本発明に係る正極活物質粒子粉末を用いたコインセルによる初期充放電特性評価を行った。
まず、正極活物質粒子粉末を90重量%、導電材としてアセチレンブラックを3重量%及びグラファイトKS−6を3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し150℃にて乾燥した。このシートを16mmφに打ち抜いた後、1t/cmで圧着し、電極厚みを50μmとした物を正極に用いた。負極は16mmφに打ち抜いた金属リチウムとし、電解液は1mol/lのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いてCR2032型コインセルを作製した。
初期充放電特性は、室温で充電は4.8Vまで20mA/gにて行った後、放電を2.0Vまで20mA/gにて行い、その時の初期充電容量、初期放電容量及び初期不可逆容量を測定した。
更に、初期放電終了後、再度4.6Vまで充電して、3Cの電流密度で18秒間放電し、その時の放電電圧の電圧差を3Cの電流値で割った値に電極面積をかけて、直流抵抗値を求めた。
The initial charge / discharge characteristics were evaluated by a coin cell using the positive electrode active material particle powder according to the present invention.
First, 90% by weight of the positive electrode active material particle powder, 3% by weight of acetylene black as a conductive material, 3% by weight of graphite KS-6, and 4% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder were mixed. Then, it apply | coated to Al metal foil and dried at 150 degreeC. The sheet was punched to 16 mmφ, and then pressure-bonded at 1 t / cm 2 to make the electrode thickness 50 μm. A CR2032-type coin cell was manufactured using a lithium mixed with a negative electrode of 16 mmφ and a solution in which EC and DMC in which 1 mol / l LiPF 6 was dissolved was mixed at a volume ratio of 1: 2.
The initial charge / discharge characteristics are as follows: at room temperature, charge is performed at 20 mA / g up to 4.8 V, and then discharge is performed at 20 mA / g up to 2.0 V. The initial charge capacity, initial discharge capacity and initial irreversible capacity at that time are It was measured.
Further, after the initial discharge is completed, the battery is charged again to 4.6 V, discharged at a current density of 3 C for 18 seconds, and the electrode area is multiplied by the value obtained by dividing the voltage difference of the discharge voltage by the current value of 3 C to obtain a direct current. The resistance value was determined.

参考例1
まず、核となる粒子を下記製造方法に従って作製した。密閉型反応槽に水を14L(リットル)入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.2(±0.2)となるよう、攪拌しながら連続的に1.5MのNi、Co、Mnの混合硫酸塩水溶液と0.8M炭酸ナトリウム水溶液と2Mアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、20時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、105℃で一晩乾燥させ、共沈前駆体の粉末を得た。
得られた共沈前駆体と炭酸リチウム粉末とホウ酸を秤量し、十分に混合した。これを電気炉を用いて、エアー流通下、800℃で5hr焼成し、Li−Mn複合酸化物粒子粉末を得た。
図1に示すX線回折測定の結果、得られたLi−Mn複合酸化物粒子粉末は、空間群R−3mに属する結晶系と、空間群C2/mに属する結晶系とを含んでおり、ピーク強度比(a)/(b)が0.11であった。
ICP組成分析の結果、それぞれモル比でLi/(Ni+Co+Mn)=1.33、Ni:Co:Mn=21.6:12.4:66であった。また、走査型電子顕微鏡(SEM)によって前記Li−Mn複合酸化物粒子粉末の粒子を観察した結果、平均一次粒子径が0.07μmの一次粒子が凝集して二次粒子を形成していた。また、Li−Mn複合酸化物粒子粉末の平均粒子径は12.1μmであった。また、このLi−Mn複合酸化物粒子粉末を正極活物質に用いたコインセルにおいて、充電容量は306.8mAh/g、放電容量は270mAh/gであり、初期不可逆容量は36.8mAh/gであった。また、4.6V充電状態における直流抵抗値は、86.4Ω・cmであった。
Reference example 1
First, core particles were produced according to the following production method. 14 L (liter) of water was put in a closed reaction tank, and kept at 50 ° C. while nitrogen gas was circulated. Further, 1.5M Ni, Co, Mn mixed sulfate aqueous solution, 0.8M sodium carbonate aqueous solution and 2M ammonia aqueous solution were continuously added with stirring so that pH = 8.2 (± 0.2). . During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction for 20 hours, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 105 ° C. overnight to obtain a coprecipitation precursor powder.
The obtained coprecipitation precursor, lithium carbonate powder and boric acid were weighed and mixed well. Using an electric furnace, this was fired at 800 ° C. for 5 hours under air flow to obtain Li—Mn composite oxide particle powder.
As a result of the X-ray diffraction measurement shown in FIG. 1, the obtained Li—Mn composite oxide particle powder includes a crystal system belonging to the space group R-3m and a crystal system belonging to the space group C2 / m. The peak intensity ratio (a) / (b) was 0.11.
As a result of ICP composition analysis, the molar ratios were Li / (Ni + Co + Mn) = 1.33 and Ni: Co: Mn = 21.6: 12.4: 66, respectively. Moreover, as a result of observing the particles of the Li—Mn composite oxide particles with a scanning electron microscope (SEM), primary particles having an average primary particle diameter of 0.07 μm aggregated to form secondary particles. Moreover, the average particle diameter of Li-Mn complex oxide particle powder was 12.1 micrometers. In the coin cell using this Li—Mn composite oxide particle powder as the positive electrode active material, the charge capacity was 306.8 mAh / g, the discharge capacity was 270 mAh / g, and the initial irreversible capacity was 36.8 mAh / g. It was. Moreover, the DC resistance value in a 4.6V charge state was 86.4 ohm * cm < 2 >.

更に被覆する粒子を下記製造方法に従って作製した。2mol/lの硫酸ニッケルと硫酸コバルト及び硫酸マンガンをNi:Co:Mn=40:20:40なるように混合した水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。
反応槽は羽根型攪拌機で常に攪拌を行い、同時にpH=11.5±0.5となるように2mol/lの水酸化ナトリウム水溶液を自動供給した。生成したNi−Co−Mn水酸化物はオーバーフローされ、オーバーフロー管に連結された濃縮槽で濃縮し、反応槽へ循環を行い、反応槽と濃縮槽中のNi−Co−Mn水酸化物濃度が4mol/lになるまで40時間反応を行った。
反応後、取り出した懸濁液を、フィルタープレスを用いてNi−Co−Mn水酸化物の重量に対して10倍の水により水洗を行った後、乾燥を行い、Ni:Co:Mn=33:33:33の平均粒子径が9.5μmのNi−Co−Mn水酸化物粒子を得た。Ni−Co−Mn水酸化物粒子と炭酸リチウムとをモル比でLi/(Ni+Co+Mn)=1.05となるように混合した。
この混合物を酸素雰囲気下、925℃にて4時間焼成し、解砕した。得られた焼成物の化学組成は、ICP分析の結果、Li1.05Ni0.40Co0.20Mn0.40であった。この粒子を気流式粉砕機によって粉砕し、二次粒子の平均粒子径が2μmのLi−Ni−Co−Mn複合酸化物を得た。
Further, particles to be coated were produced according to the following production method. An aqueous solution prepared by mixing 2 mol / l nickel sulfate, cobalt sulfate, and manganese sulfate so that Ni: Co: Mn = 40: 20: 40 and a 5.0 mol / l aqueous ammonia solution were simultaneously supplied into the reaction vessel.
The reaction tank was always stirred with a blade-type stirrer, and at the same time, a 2 mol / l sodium hydroxide aqueous solution was automatically supplied so that the pH was 11.5 ± 0.5. The produced Ni—Co—Mn hydroxide is overflowed, concentrated in a concentration tank connected to the overflow pipe, circulated to the reaction tank, and the Ni—Co—Mn hydroxide concentration in the reaction tank and the concentration tank is increased. The reaction was continued for 40 hours until reaching 4 mol / l.
After the reaction, the taken-out suspension was washed with water 10 times the weight of the Ni—Co—Mn hydroxide using a filter press, then dried, and Ni: Co: Mn = 33. : Ni: Co-Mn hydroxide particles having an average particle diameter of 9.5 μm were obtained. Ni—Co—Mn hydroxide particles and lithium carbonate were mixed at a molar ratio of Li / (Ni + Co + Mn) = 1.05.
This mixture was calcined at 925 ° C. for 4 hours in an oxygen atmosphere and crushed. As a result of ICP analysis, the chemical composition of the obtained fired product was Li 1.05 Ni 0.40 Co 0.20 Mn 0.40 O 2 . The particles were pulverized by an airflow pulverizer to obtain a Li—Ni—Co—Mn composite oxide having an average secondary particle size of 2 μm.

これら核となる粒子と被覆する粒子とを重量比で、核となる粒子:被覆する粒子=99:1での割合で混合した後、機械式摩砕機を用いて核粒子の表面にLi1.05Ni0.40Co0.20Mn0.40が1%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は13.4μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は、284.4mAh/g、放電容量は256mAh/gであり、初期不可逆容量は28.4mAh/gであった。また、4.6V充電状態における直流抵抗値は、85.0Ω・cmであった。 After mixing these core particles and the particles to be coated in a weight ratio of the ratio of particles to be coated: particles to be coated = 99: 1, Li 1 is applied to the surface of the core particles using a mechanical attritor . Positive electrode active material particle powder coated with 1% of 05 Ni 0.40 Co 0.20 Mn 0.40 O 2 was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 13.4 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 284.4 mAh / g, the discharge capacity was 256 mAh / g, and the initial irreversible capacity was 28.4 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 85.0 Ω · cm 2 .

参考例2
被覆する粒子の重量比を15%にした以外は、参考例1と同様にして核粒子の表面にLi1.05Ni0.40Co0.20Mn0.40が15%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は14.5μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は、275.3mAh/g、放電容量は245mAh/gであり、初期不可逆容量は30.3mAh/gであった。また、4.6V充電状態における直流抵抗値は、82.2Ω・cmであった。
Reference example 2
A positive electrode in which 15% of Li 1.05 Ni 0.40 Co 0.20 Mn 0.40 O 2 was coated on the surface of the core particles in the same manner as in Reference Example 1 except that the weight ratio of the particles to be coated was 15%. Active material particle powder was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 14.5 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 275.3 mAh / g, the discharge capacity was 245 mAh / g, and the initial irreversible capacity was 30.3 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 82.2 Ω · cm 2 .

参考例3
被覆する粒子の組成をLi1.05Ni0.60Co0.20Mn0.20とし、重量比を15%にした以外は、参考例1と同様にして核粒子の表面にLi1.05Ni0.60Co0.20Mn0.20が15%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は14.2μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は、286.5mAh/g、放電容量は255mAh/gであり、初期不可逆容量は31.5mAh/gであった。また、4.6V充電状態における直流抵抗値は、83.6Ω・cmであった。
Reference example 3
The composition of the coating to the particles and Li 1.05 Ni 0.60 Co 0.20 Mn 0.20 O 2, except that the weight ratio 15%, Li 1 on the surface of the core particles in the same manner as in Reference Example 1 .05 Ni 0.60 Co 0.20 Mn 0.20 O 2 A positive electrode active material particle powder coated with 15% was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 14.2 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 286.5 mAh / g, the discharge capacity was 255 mAh / g, and the initial irreversible capacity was 31.5 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 83.6 ohm * cm < 2 >.

実施例1
核となる粒子は参考例1と同様にして得た。
被覆する粒子を下記製造方法に従って作製した。窒素通気のもと、3.5モルの水酸化ナトリウムに0.5モルの硫酸マンガンを加え全量を1Lとし、得られた水酸化マンガンを90℃で1時間熟成させた。熟成後、空気を通気させ90℃で酸化させ、水洗、乾燥後、酸化マンガン粒子粉末を得た。前記酸化マンガン粒子を酸化マンガン粒子の濃度が10wt%となるように邂逅した。この懸濁液に対して0.2mol/lの硫酸ニッケル水溶液をMn:Ni=75:25となるように反応槽内に連続供給した。反応槽は攪拌機で常に攪拌を行いながら、同時に0.2mol/lの水酸化ナトリウム水溶液をpH=10以上となるように自動供給を行い、水酸化ニッケルで被覆した酸化マンガン粒子を含む懸濁液を得た。
この懸濁液を、フィルタープレスを用いて酸化マンガン粒子の重量に対して10倍の水により水洗を行った後、乾燥を行い、Mn:Ni=75:25の平均粒子径が4.8μmの水酸化ニッケルで被覆された酸化マンガン粒子を得た。
得られた水酸化ニッケルで被覆したMn粒子粉末と炭酸リチウムを混合し、960℃、空気雰囲気で3時間焼成してマンガン酸リチウム粒子粉末を得た。この粉末粒子をICP分析組成分析した結果、Li1.01Mn1.51Ni0.49であった。この粒子を気流式粉砕機を用いて粉砕し、二次粒子の平均粒子径が1.5μmのLi−Mn複合酸化物粒子を得た。
Example 1
Core particles were obtained in the same manner as in Reference Example 1.
The particles to be coated were produced according to the following production method. Under nitrogen aeration, 0.5 mol of manganese sulfate was added to 3.5 mol of sodium hydroxide to make the total amount 1 L, and the obtained manganese hydroxide was aged at 90 ° C. for 1 hour. After aging, air was passed through, oxidized at 90 ° C., washed with water and dried to obtain manganese oxide particles. The manganese oxide particles were soaked so that the concentration of the manganese oxide particles was 10 wt%. A 0.2 mol / l nickel sulfate aqueous solution was continuously supplied into the reaction tank so that Mn: Ni = 75: 25. Suspension containing manganese oxide particles coated with nickel hydroxide, while the reaction vessel is constantly stirred with a stirrer and at the same time, 0.2 mol / l sodium hydroxide aqueous solution is automatically supplied so that pH = 10 or more. Got.
The suspension was washed with water 10 times the weight of the manganese oxide particles using a filter press and then dried, and the average particle diameter of Mn: Ni = 75: 25 was 4.8 μm. Manganese oxide particles coated with nickel hydroxide were obtained.
The obtained Mn 3 O 4 particle powder coated with nickel hydroxide and lithium carbonate were mixed and baked in an air atmosphere at 960 ° C. for 3 hours to obtain lithium manganate particle powder. As a result of ICP analysis composition analysis of the powder particles, it was Li 1.01 Mn 1.51 Ni 0.49 O 4 . The particles were pulverized using an airflow pulverizer to obtain Li—Mn composite oxide particles having an average secondary particle size of 1.5 μm.

これら核となる粒子と被覆する粒子を重量比で、核となる粒子:被覆する粒子=99:1での割合で混合した後、機械式摩砕機を用いて核粒子の表面にLi1.01Mn1.51Ni0.49が1%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は14.8μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は、276.9mAh/g、放電容量は252mAh/gであり、初期不可逆容量は24.9mAh/gであった。また、4.6V充電状態における直流抵抗値は、46.8Ω・cmであった。 The core particles and the particles to be coated are mixed at a weight ratio of a ratio of particles to be core: particles to be coated = 99: 1, and then Li 1.01 is applied to the surface of the core particles using a mechanical attritor. A positive electrode active material particle powder coated with 1% of Mn 1.51 Ni 0.49 O 4 was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 14.8 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 276.9 mAh / g, the discharge capacity was 252 mAh / g, and the initial irreversible capacity was 24.9 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 46.8 ohm * cm < 2 >.

実施例2
被覆する粒子の重量比を15%にした以外は、実施例1と同様にして核粒子の表面にLi1.01Mn1.51Ni0.49が15%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は15.8μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は264.1mAh/g、放電容量は243mAh/gであり、初期不可逆容量は21.1mAh/gであった。また、4.6V充電状態における直流抵抗値は、50.1Ω・cmであった。
Example 2
Positive electrode active material particle powder in which 15% of Li 1.01 Mn 1.51 Ni 0.49 O 4 is coated on the surface of the core particles in the same manner as in Example 1 except that the weight ratio of the particles to be coated is 15%. Got. The average particle diameter of secondary particles of the positive electrode active material particle powder was 15.8 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 264.1 mAh / g, the discharge capacity was 243 mAh / g, and the initial irreversible capacity was 21.1 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 50.1 Ω · cm 2 .

実施例3
核となる粒子は、参考例1と同様にして得た。
被覆する粒子を下記製造方法に従って作製した。1.5MのMn、Feの混合硫酸塩水溶液とLiOHを混合し、更に金属モル数に対して2mol%のアスコルビン酸及び1.5Mのリン酸水溶液を混合し、オートクレーブ中で180℃、3時間処理した。その後、2倍の水で洗浄した後、乾燥し、5%のスクロースを混合して、窒素中で650℃、5時間焼成をした後、気流式粉砕機を用いて粉砕し、二次粒子の平均粒子径が2μmのオリビン型Li−Mnリン酸化合物を得た。この材料を組成分析した結果、Li1.02Mn0.8Fe0.2POであった。た。
Example 3
The core particles were obtained in the same manner as in Reference Example 1.
The particles to be coated were produced according to the following production method. Mix 1.5M Mn and Fe mixed sulfate aqueous solution and LiOH, then mix 2mol% ascorbic acid and 1.5M phosphoric acid aqueous solution with respect to the number of moles of metal, and in autoclave at 180 ° C for 3 hours. Processed. Then, after washing with twice the water, drying, mixing 5% sucrose, firing in nitrogen at 650 ° C. for 5 hours, pulverizing using an airflow pulverizer, An olivine-type Li—Mn phosphate compound having an average particle diameter of 2 μm was obtained. As a result of composition analysis of this material, it was Li 1.02 Mn 0.8 Fe 0.2 PO 4 . It was.

これら核となる粒子と被覆する粒子を重量比で、核となる粒子:被覆する粒子=99:1での割合で混合した後、機械式摩砕機を用いて核粒子の表面にLi1.02Mn0.8Fe0.2POが1%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は13.5μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は283.0mAh/g、放電容量は266mAh/gであり、初期不可逆容量は17.0mAh/gであった。また、4.6V充電状態における直流抵抗値は、43.4Ω・cmであった。 These core particles and particles to be coated are mixed in a weight ratio of the ratio of particles to be coated: particles to be coated = 99: 1, and then Li 1.02 is applied to the surface of the core particles using a mechanical attritor. Positive electrode active material particle powder coated with 1% of Mn 0.8 Fe 0.2 PO 4 was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 13.5 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 283.0 mAh / g, the discharge capacity was 266 mAh / g, and the initial irreversible capacity was 17.0 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 43.4 ohm * cm < 2 >.

実施例4
被覆する粒子の重量比を15%にした以外は、実施例3と同様にして核粒子の表面にLi1.02Mn0.8Fe0.2POが15%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は13.8μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は266.0mAh/g、放電容量は250mAh/gであり、初期不可逆容量は16.0mAh/gであった。また、4.6V充電状態における直流抵抗値は、47.4Ω・cmであった。
Example 4
Positive electrode active material particle powder in which 15% of Li 1.02 Mn 0.8 Fe 0.2 PO 4 is coated on the surface of the core particles in the same manner as in Example 3 except that the weight ratio of the particles to be coated is 15% Got. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 13.8 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 266.0 mAh / g, the discharge capacity was 250 mAh / g, and the initial irreversible capacity was 16.0 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 47.4 ohm * cm < 2 >.

参考例4
被覆する粒子の重量比を30%にした以外は、参考例1と同様にして核粒子の表面にLi1.05Ni0.40Co0.20Mn0.40が30%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は16μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は293.0mAh/g、放電容量は208mAh/gであり、初期不可逆容量は85.0mAh/gであった。また、4.6V充電状態における直流抵抗値は、88.6Ω・cmであった。
Reference example 4
A positive electrode in which 30% of Li 1.05 Ni 0.40 Co 0.20 Mn 0.40 O 2 was coated on the surface of the core particles in the same manner as in Reference Example 1 except that the weight ratio of the particles to be coated was 30%. Active material particle powder was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 16 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 293.0 mAh / g, the discharge capacity was 208 mAh / g, and the initial irreversible capacity was 85.0 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 88.6 ohm * cm < 2 >.

参考例5
被覆する粒子の重量比を30%にした以外は、参考例3と同様にして核粒子の表面にLi1.05Ni0.60Co0.20Mn0.20が30%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は16.5μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は269.2mAh/g、放電容量は210mAh/gであり、初期不可逆容量は59.2mAh/gであった。また、4.6V充電状態における直流抵抗値は、87.5Ω・cmであった。
Reference Example 5
Positive electrode in which 30% of Li 1.05 Ni 0.60 Co 0.20 Mn 0.20 O 2 was coated on the surface of the core particles in the same manner as in Reference Example 3 except that the weight ratio of the particles to be coated was 30%. Active material particle powder was obtained. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 16.5 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 269.2 mAh / g, the discharge capacity was 210 mAh / g, and the initial irreversible capacity was 59.2 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 87.5 Ω · cm 2 .

参考例6
被覆する粒子の重量比を30%にした以外は、実施例1と同様にして核粒子の表面にLi1.01Mn1.51Ni0.49が30%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は16.6μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は237.5mAh/g、放電容量は190mAh/gであり、初期不可逆容量は47.5mAh/gであった。また、4.6V充電状態における直流抵抗値は、85.4Ω・cmであった。
Reference Example 6
Cathode active material particle powder in which 30% of Li 1.01 Mn 1.51 Ni 0.49 O 4 is coated on the surface of the core particles in the same manner as in Example 1 except that the weight ratio of the particles to be coated is 30%. Got. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 16.6 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 237.5 mAh / g, the discharge capacity was 190 mAh / g, and the initial irreversible capacity was 47.5 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 85.4 ohm * cm < 2 >.

参考例7
被覆する粒子の重量比を30%にした以外は、実施例3と同様にして核粒子の表面にLi1.02Mn0.8Fe0.2POが30%コートした正極活物質粒子粉末を得た。この正極活物質粒子粉末の二次粒子の平均粒子径は14.3μmであった。また、この正極活物質粒子粉末を用いたコインセルにおいて、充電容量は234.9mAh/g、放電容量は195mAh/gであり、初期不可逆容量は39.9mAh/gであった。また、4.6V充電状態における直流抵抗値は、84.3Ω・cmであった。
Reference Example 7
Cathode active material particle powder in which Li 1.02 Mn 0.8 Fe 0.2 PO 4 is coated on the surface of the core particles in the same manner as in Example 3 except that the weight ratio of the particles to be coated is 30% Got. The average particle diameter of the secondary particles of this positive electrode active material particle powder was 14.3 μm. Moreover, in the coin cell using this positive electrode active material particle powder, the charge capacity was 234.9 mAh / g, the discharge capacity was 195 mAh / g, and the initial irreversible capacity was 39.9 mAh / g. Moreover, the DC resistance value in a 4.6V charge state was 84.3 ohm * cm < 2 >.

実施例1〜4及び参考例1〜7で得られた正極活物質粒子粉末の諸特性を表1に示す。   Table 1 shows various characteristics of the positive electrode active material particle powders obtained in Examples 1 to 4 and Reference Examples 1 to 7.

実施例1〜4で得られた正極活物質粒子粉末は、いずれも初期の放電容量が240mAh/g以上であり、初期充放電効率が90%以上である。また、不可逆容量が40mAh/g以下であり、4.6V充電状態における直流抵抗値が85Ω・cm以下であった。 The positive electrode active material particles obtained in Examples 1 to 4 each have an initial discharge capacity of 240 mAh / g or more and an initial charge / discharge efficiency of 90% or more. Further, the irreversible capacity was 40 mAh / g or less, and the DC resistance value in a 4.6 V charged state was 85 Ω · cm 2 or less.

参考例1で得られた、核となるLi−Mn複合酸化物粒子粉末のSEM写真を図2に、参考例1、実施例1及び3で得られた正極活物質粒子粉末のSEM写真をそれぞれ図3〜5に示す。   The SEM photograph of the Li-Mn composite oxide particle powder used as the nucleus obtained in Reference Example 1 is shown in FIG. 2, and the SEM photograph of the positive electrode active material particle powder obtained in Reference Example 1, Examples 1 and 3 is shown in FIG. Shown in FIGS.

図2及び図3より、参考例1で得られた正極活物質粒子は、核となるLi−Mn複合酸化物の二次粒子の粒子表面に対して、表面状態が変化しているとともに、粒子が大きくなっており、核となるLi−Mn複合酸化物の二次粒子の粒子表面に、Li−Mn化合物粒子が被覆されていることが分かる。   2 and 3, the positive electrode active material particles obtained in Reference Example 1 have a surface state that changes with respect to the particle surfaces of the secondary particles of the Li—Mn composite oxide serving as the nucleus, and the particles It can be seen that Li—Mn compound particles are coated on the surface of the secondary particles of the Li—Mn composite oxide serving as the nucleus.

同様に図4から、実施例1で得られた正極活物質粒子は、核となるLi−Mn複合酸化物粒子の二次粒子の表面に対して、表面状態が変化しているとともに、粒子が大きくなっており、核となるLi−Mn複合酸化物の二次粒子の粒子表面に、Li−Mn化合物粒子が被覆されていることが分かる。   Similarly, from FIG. 4, the positive electrode active material particles obtained in Example 1 have the surface state changed with respect to the surface of the secondary particles of the Li—Mn composite oxide particles serving as the nucleus, and the particles It can be seen that the Li—Mn compound particles are coated on the surface of the secondary particles of the Li—Mn composite oxide serving as the nucleus.

同様に図5から、実施例3で得られた正極活物質粒子は、核となるLi−Mn複合酸化物粒子の二次粒子の表面に対して、表面状態が変化しているとともに、粒子が大きくなっており、核となるLi−Mn複合酸化物の二次粒子の粒子表面に、Li−Mn化合物粒子が被覆されていることが分かる。   Similarly, from FIG. 5, the positive electrode active material particles obtained in Example 3 have the surface state changed with respect to the surface of the secondary particles of the Li—Mn composite oxide particles serving as the nucleus, and the particles are It can be seen that the Li—Mn compound particles are coated on the surface of the secondary particles of the Li—Mn composite oxide serving as the nucleus.

以上の結果から本発明に係る非水電解質二次電池用正極活物質粒子粉末は高電圧充電時の初回充放電効率に優れた高容量非水電解液電池用活物質として有効であることが確認された。   From the above results, it was confirmed that the positive electrode active material particle powder for non-aqueous electrolyte secondary battery according to the present invention is effective as an active material for high-capacity non-aqueous electrolyte battery excellent in initial charge / discharge efficiency during high-voltage charging. It was done.

本発明に係る正極活物質粒子粉末は、高電圧充電時の初回充放電効率が向上しているので、非水電解質二次電池用の正極活物質粒子粉末として好適である。
The positive electrode active material particle powder according to the present invention is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery because the initial charge / discharge efficiency during high voltage charging is improved.

Claims (4)

核となる二次粒子が少なくとも空間群R−3mに属する結晶系と空間群C2/mに属する結晶系とを有する化合物であり、Cu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.5であり、Mn含有量はモル比でMn/(Ni+Co+Mn)が0.55以上であるLi−Mn複合酸化物粒子であって、前記二次粒子の粒子表面に、組成がLix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)、またはLix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)から選ばれる少なくとも1種のLi−Mn化合物粒子を被覆又は存在させた非水電解質二次電池用正極活物質粒子粉末であって、該非水電解質二次電池用正極活物質粒子粉末の二次粒子の平均粒子径が核となる二次粒子の平均粒子径の1.1倍以上であり、かつ核となる粒子に対する被覆粒子であるLi−Mn化合物粒子の重量百分率が0.5%以上20%以下であることを特徴とする非水電解質二次電池用正極活物質粒子粉末。 A secondary particle serving as a nucleus is a compound having at least a crystal system belonging to the space group R-3m and a crystal system belonging to the space group C2 / m, and 2θ = 20 in a powder X-ray diffraction diagram using Cu—Kα rays. The relative intensity ratio (a) / (b) between the intensity (a) of the maximum diffraction peak at 8 ± 1 ° and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0.02 to 0. a .5, Mn content is a Li-Mn composite oxide particles is Mn / (Ni + Co + Mn ) is 0.55 or more in molar ratio, the particle table surface of the secondary particles, the composition is Li x2 Mn 2-y2 Ni y2 O 4 (0.95 ≦ x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0.55), or Li x3 Mn 1-y3 Fe y3 PO 4 (0.98 ≦ x3 ≦ 1.10) , 0 <y3 ≦ 0.30), at least one Li—Mn conversion A cathode active material particle powder for a non-aqueous electrolyte secondary battery in which a product particle is coated or present, and a secondary particle whose average particle diameter is the nucleus of the cathode active material particle powder for the non-aqueous electrolyte secondary battery not less than 1.1 times the average particle diameter of the particles, and the weight percentage of L i-Mn compound particles is coated particle element for the core particle is equal to or less than 20% or more 0.5% Positive electrode active material particle powder for non-aqueous electrolyte secondary battery. 核となる二次粒子が、空間群R−3mに属する結晶系を有する化合物としてLiMMn(1−p)(MはNi及び/またはCo、0<p≦1)を、空間群C2/mに属する結晶系を有する化合物としてLiM’(1−q)Mn(M’はNi及び/またはCo、0<q≦1)を含むことを特徴とする請求項1に記載の非水電解質二次電池用正極活物質粒子粉末。 LiM p Mn (1-p) O 2 (M is Ni and / or Co, 0 <p ≦ 1) as a compound having a crystal system in which the core secondary particle belongs to the space group R-3m, the space group The compound having a crystal system belonging to C2 / m includes Li 2 M ′ (1-q) Mn q O 3 (M ′ is Ni and / or Co, 0 <q ≦ 1). The positive electrode active material particle powder for nonaqueous electrolyte secondary batteries as described in 2. 請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法であって、MnとNi及び/またはCoを含む前駆体粒子粉末とリチウム化合物を含有する混合物を500〜1500℃の範囲で焼成して得たLi−Mn複合酸化物粒子粉末の二次粒子に、二次粒子の平均粒子径が3μm以下のLix2Mn2−y2Niy2(0.95≦x2≦1.10、0.45≦y2≦0.55)、またはLix3Mn1−y3Fey3PO(0.98≦x3≦1.10、0<y3≦0.30)から選ばれる少なくとも1種のLi−Mn化合物粒子粉末を摩砕混合することにより、核となるLi−Mn複合酸化物粒子の粒子表面にLi−Mn化合物粒子を被覆又は存在させたことを特徴とする非水電解質二次電池用正極活物質粒子粉末の製造方法。 It is a manufacturing method of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of Claim 1 or 2, Comprising: The mixture containing the precursor particle powder containing Mn, Ni, and / or Co, and a lithium compound is 500- Li x Mn 2 -y 2 Ni y 2 O 4 (0.95 ≦≦ 5 μm) with secondary particles having an average particle diameter of 3 μm or less is obtained as the secondary particles of Li—Mn composite oxide particles obtained by firing at a temperature of 1500 ° C. x2 ≦ 1.10, 0.45 ≦ y2 ≦ 0.55), or Li x3 Mn 1-y3 Fe y3 PO 4 (0.98 ≦ x3 ≦ 1.10, 0 <y3 ≦ 0.30) by mixing grinding at least one Li-Mn compound particles, non characterized in that is coated or present a Li-Mn compound particles in the particle table surface of the Li-Mn composite oxide particles as a core Cathode active material for water electrolyte secondary battery Method for producing particles. 請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末を含有する正極を用いたことを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to claim 1.
JP2010263802A 2009-11-27 2010-11-26 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP5656012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263802A JP5656012B2 (en) 2009-11-27 2010-11-26 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009270638 2009-11-27
JP2009270638 2009-11-27
JP2010263802A JP5656012B2 (en) 2009-11-27 2010-11-26 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011134708A JP2011134708A (en) 2011-07-07
JP5656012B2 true JP5656012B2 (en) 2015-01-21

Family

ID=44066568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263802A Active JP5656012B2 (en) 2009-11-27 2010-11-26 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5656012B2 (en)
WO (1) WO2011065464A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249034B2 (en) * 2009-09-30 2016-02-02 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2012048865A (en) * 2010-08-24 2012-03-08 Asahi Glass Co Ltd Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
ES2605782T3 (en) 2011-03-30 2017-03-16 Toda Kogyo Corporation Granular powder of positive electrode active material and method of production thereof, and secondary non-aqueous electrolyte battery
JP5737513B2 (en) * 2011-07-07 2015-06-17 戸田工業株式会社 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US10161057B2 (en) 2011-03-31 2018-12-25 Toda Kogyo Corporation Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
JP5991718B2 (en) * 2011-09-12 2016-09-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
KR102057026B1 (en) 2012-02-08 2019-12-18 바스프 에스이 Method for producing mixed carbonates which can contain hydroxide(s)
EP2634148B1 (en) 2012-03-01 2015-04-01 GS Yuasa International Ltd. Active material for non-aqueous electrolyte secondary battery, method for production of the active material, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6052702B2 (en) * 2012-03-07 2016-12-27 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
US9583763B2 (en) 2012-07-06 2017-02-28 Sumitomo Chemical Company, Limited Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
KR101551523B1 (en) 2012-08-02 2015-09-08 주식회사 엘지화학 Positive-electrode active material with improved output and safety, and lithium secondary battery including the same
JP6328096B2 (en) 2013-02-14 2018-05-23 住友化学株式会社 Method for producing carbonate compound and positive electrode active material
WO2014192759A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Positive electrode active material
WO2014192758A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Positive electrode active material
CN104241623A (en) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 Cathode active substance and secondary battery
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
JP6316687B2 (en) * 2014-07-09 2018-04-25 住友化学株式会社 Method for producing lithium-containing composite oxide
JP7198600B2 (en) * 2018-07-04 2023-01-04 本田技研工業株式会社 Positive electrode active material particles
EP3849002A4 (en) * 2018-09-05 2021-12-15 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery comprising same
JP7389598B2 (en) * 2019-09-20 2023-11-30 太平洋セメント株式会社 Mixed positive electrode active material for lithium ion secondary batteries and method for producing positive electrode for lithium ion secondary batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843848B2 (en) * 2001-01-22 2011-12-21 株式会社デンソー Non-aqueous electrolyte secondary battery
JP4811697B2 (en) * 2003-12-26 2011-11-09 株式会社Gsユアサ Lithium secondary battery and initial activation method thereof
JP4317571B2 (en) * 2007-04-27 2009-08-19 Tdk株式会社 Active material, electrode, battery, and method for producing active material
JP5430920B2 (en) * 2008-03-17 2014-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2011065464A1 (en) 2011-06-03
JP2011134708A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5656012B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP5187520B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6176109B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
CN107068995B (en) In-situ precipitated oxide coated lithium ion battery positive electrode material and preparation method and application thereof
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7194493B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5656012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250