JP5737513B2 - Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5737513B2
JP5737513B2 JP2011151283A JP2011151283A JP5737513B2 JP 5737513 B2 JP5737513 B2 JP 5737513B2 JP 2011151283 A JP2011151283 A JP 2011151283A JP 2011151283 A JP2011151283 A JP 2011151283A JP 5737513 B2 JP5737513 B2 JP 5737513B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle powder
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011151283A
Other languages
Japanese (ja)
Other versions
JP2013020736A (en
Inventor
大輔 森田
大輔 森田
一路 古賀
一路 古賀
亮尚 梶山
亮尚 梶山
竜太 正木
竜太 正木
和順 松本
和順 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011151283A priority Critical patent/JP5737513B2/en
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to KR1020137024867A priority patent/KR101948343B1/en
Priority to PL11862158.0T priority patent/PL2693534T3/en
Priority to PCT/JP2011/080075 priority patent/WO2012132155A1/en
Priority to CN201180069617.3A priority patent/CN103460455B/en
Priority to US14/007,732 priority patent/US10161057B2/en
Priority to EP11862158.0A priority patent/EP2693534B1/en
Priority to CA2831756A priority patent/CA2831756A1/en
Priority to TW100148913A priority patent/TWI568068B/en
Publication of JP2013020736A publication Critical patent/JP2013020736A/en
Application granted granted Critical
Publication of JP5737513B2 publication Critical patent/JP5737513B2/en
Priority to US16/057,982 priority patent/US11072869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させた優れた非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池を提供する。   An excellent positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a high discharge voltage, a high discharge capacity, and a reduced side reaction with an electrolytic solution, a method for producing the same, and a non-aqueous electrolyte secondary battery provide.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、放電電圧が高い、または放電容量が大きいという長所を有する高いエネルギーを持ったリチウムイオン二次電池が注目されており、特に、リチウムイオン二次電池を、素早い充放電が求められる電動工具や電気自動車に用いるには優れたレート特性が求められている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, lithium ion secondary batteries having high energy having the advantage of high discharge voltage or large discharge capacity have attracted attention. In particular, lithium ion secondary batteries can be charged and discharged quickly. Excellent rate characteristics are required for use in the required electric tools and electric vehicles.

従来、4V級の電圧をもつリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い放電容量を有する電池として注目されてきた。 Conventionally, as a positive electrode active material useful for a lithium ion secondary battery having a voltage of 4 V class, spinel type LiMn 2 O 4 , zigzag layered structure LiMnO 2 , layered rock salt type structure LiCoO 2 , LiNiO 2, etc. In general, lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high discharge capacity.

しかし、LiNiOは、放電電圧が低く、充電時の熱安定性及びサイクル特性、レート特性にも劣るため、更なる特性改善が求められている。また、高い容量を得ようと高電圧充電を行うと構造が破壊されてしまうという問題もある。 However, since LiNiO 2 has a low discharge voltage and is inferior in thermal stability, cycle characteristics, and rate characteristics during charging, further improvement in characteristics is required. There is also a problem that the structure is destroyed when high voltage charging is performed to obtain a high capacity.

また、LiMnは、レート特性及びサイクル特性には優れるものの、放電容量が低く、高エネルギー正極活物質とは言い難いものである。 LiMn 2 O 4 is excellent in rate characteristics and cycle characteristics, but has a low discharge capacity and is hardly a high-energy positive electrode active material.

そこで近年、放電電圧の高い正極活物質が注目されている。代表的な例として、LiNi0.5Mn1.5、LiCoMnO、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiCoPO、LiFeMnO、LiNiVO等が知られている。 Therefore, in recent years, a positive electrode active material having a high discharge voltage has attracted attention. Representative examples include LiNi 0.5 Mn 1.5 O 4 , LiCoMnO 4 , Li 1.2 Cr 0.4 Mn 0.4 O 4 , Li 1.2 Cr 0.4 Ti 0.4 O 4 , LiCoPO 4 , LiFeMnO 4 , LiNiVO 4 and the like are known.

中でも、LiNi0.5Mn1.5は、4.5V以上に放電プラトー領域が存在する高い放電電圧を持ち、且つレート特性及びサイクル特性にも優れているので次世代正極活物質として特に注目されている。 Among them, LiNi 0.5 Mn 1.5 O 4 has a high discharge voltage in which a discharge plateau region is present at 4.5 V or more, and is excellent in rate characteristics and cycle characteristics. Attention has been paid.

エネルギー密度の観点から、高電圧でより高い容量を持ち、且つ、電解液との副反応を低減させることができる正極活物質は、過去から続く尽きない要求となっている。   From the viewpoint of energy density, a positive electrode active material that has a higher capacity at a high voltage and can reduce side reactions with the electrolyte has been a continuous requirement that has continued since the past.

従来、組成:LiNi0.5Mn1.5を有する正極活物質粒子粉末に対して、種々の改良が行われている(特許文献1〜7、非特許文献1、2)。 Conventionally, the composition: LiNi 0.5 Mn 1.5 O 4 with respect to the positive electrode active material particles having, various improvements have been made (Patent Document 1 to 7 and Non-Patent Documents 1 and 2).

特表2000−515672号公報JP 2000-515672 A 特開平9−147867号公報JP-A-9-147867 特開2001−110421号公報JP 2001-110421 A 特開2001−185145号公報JP 2001-185145 A 特開2002−158007号公報JP 2002-158007 A 特開2003−81637号公報JP 2003-81637 A 特開2004−349109号公報JP 2004-349109 A

第48回電池討論会予稿(2007)2A1648th Battery Discussion Meeting (2007) 2A16 J.Electrochem.Society,148(7)A723−A729(2001)J. et al. Electrochem. Society, 148 (7) A723-A729 (2001)

放電電圧が高く、放電容量に優れ且つ、サイクル特性が良好である非水電解質二次電池用の正極活物質は、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料は得られていない。   A positive electrode active material for a non-aqueous electrolyte secondary battery that has a high discharge voltage, excellent discharge capacity, and good cycle characteristics is currently the most demanded, but a material that satisfies the necessary and sufficient requirements is still available. It is not done.

即ち、前記特許文献1〜7、非特許文献1の技術をもってしても高電圧であり放電容量に優れ、さらに電解液との副反応を低減させることによる長期安定性に対する改善は十分ではなかった。   That is, even with the techniques of Patent Documents 1 to 7 and Non-Patent Document 1, high voltage is excellent, discharge capacity is excellent, and further, improvement in long-term stability by reducing side reactions with the electrolyte is not sufficient. .

特許文献1では、硝酸マンガン、硝酸ニッケル、硝酸リチウムをエタノールに溶解しカーボンブラックを添加してアンモニア溶液と混合するゾルゲル法でNiが均一に固溶したニッケル含有マンガン酸リチウム粒子粉末を得たとの報告があるが、工業的な観点から製造法上多量を製造することが難しい上に、放電容量が100mAh/gを下回っていて実用的ではない。   According to Patent Document 1, nickel-containing lithium manganate particles in which Ni is uniformly dissolved in a sol-gel method in which manganese nitrate, nickel nitrate, and lithium nitrate are dissolved in ethanol, carbon black is added and mixed with an ammonia solution are obtained. Although there are reports, it is difficult to produce a large amount from an industrial viewpoint, and the discharge capacity is less than 100 mAh / g, which is not practical.

特許文献2では、電解二酸化マンガンと硝酸ニッケルと水酸化リチウムを混合し固相法により高電圧作動可能で、サイクル特性に優れた正極活物質が得られたことを報告しているが、電池の放電カーブにおいて、4V付近にMn3+由来であると考えられるプラトーが確認でき、そのプラトーによる容量も10mAh/gを超えていることから、高電圧用正極材料としては不安定であり実用的ではない。 Patent Document 2 reports that a positive electrode active material that can be operated at a high voltage by a solid phase method by mixing electrolytic manganese dioxide, nickel nitrate, and lithium hydroxide and has excellent cycle characteristics is obtained. In the discharge curve, a plateau considered to be derived from Mn 3+ can be confirmed in the vicinity of 4 V, and the capacity due to the plateau exceeds 10 mAh / g. Therefore, it is unstable and not practical as a positive electrode material for high voltage. .

特許文献3では、炭酸リチウムとMnOと硝酸ニッケルをエタノール溶媒によりボールミル混合することでゲル状前駆体を生成し、焼成することにより正極活物質を作製したのちに、同様の手法で前記正極活物質に対してF,Cl,Si,Sといった化合物を表面処理し焼成することで正極活物質粒子に対してF,Cl,Si,Sといった元素が粒子外部に向けて濃度勾配を持った正極活物質を提案し、前記元素の効果により高電圧作動における電池内の電解液との反応を抑えることで電池特性を維持できるといった報告があるが、この手法では表面に存在しているF,Cl,Si,Sが抵抗成分になり、結果として未添加品と比べ、充放電容量が低下する可能性がある。 In Patent Document 3, a positive electrode active material is produced by ball-mixing lithium carbonate, MnO 2 and nickel nitrate with an ethanol solvent to produce a gel-like precursor, followed by firing. Positive electrode active in which elements such as F, Cl, Si, and S have a concentration gradient toward the outside of the particles by subjecting a material such as F, Cl, Si, and S to surface treatment and firing. There is a report that the characteristics of the battery can be maintained by suppressing the reaction with the electrolyte in the battery in the high voltage operation due to the effect of the element, but in this method, F, Cl, Si and S become resistance components, and as a result, the charge / discharge capacity may be reduced as compared with unadded products.

特許文献4では、マンガン化合物とニッケル化合物及び、アンモニウム化合物を用いて共沈させることで一次粒子が針状である球状の前駆体を得ることでLi化合物と混合して焼成する際にNiとMnが反応し易くなり、不純物相になりうる残留Ni(NiO)を減らすことができると報告があるが、高電圧作動で且つ大きい放電容量は得られているが、初期放電容量に関する議論のみで、粒子の表面性の改良による電解液との副反応抑制による安定性については言及されていない。また、特許文献4記載の正極活物質は前駆体生成の際に不純物を多量に含んでしまう可能性があり、その不純物により電池作動において不安定となりうる可能性がある。   In patent document 4, when co-precipitating with a manganese compound, a nickel compound, and an ammonium compound to obtain a spherical precursor whose primary particles are acicular, Ni and Mn are mixed with a Li compound and fired. Although it has been reported that residual Ni (NiO) that can become an impurity phase can be reduced and can be reduced in an impurity phase, high voltage operation and a large discharge capacity have been obtained, but only discussion on the initial discharge capacity, No mention is made of stability due to suppression of side reactions with the electrolyte by improving the surface properties of the particles. Further, the positive electrode active material described in Patent Document 4 may contain a large amount of impurities during precursor generation, and the impurities may cause instability in battery operation.

特許文献5では、水酸化ナトリウム溶液中に、硫酸マンガンと硫酸ニッケルと錯化材としてアンモニアを混合した溶液を徐滴下することで前駆体である球状のマンガンニッケル前駆体を得た後、該前駆体とLi化合物との混合物を850℃以上の温度範囲で本焼成を行い、次いで、アニール工程を行うことで高電圧用正極活物質を得ているが、前駆体の結晶性が低いためにLi化合物との混合後の本焼成にて1000℃近い温度で焼成する必要があり、その結果、充放電カーブの形状から酸素欠損による価数補償のためにMn3+が生成している。また、この製造法では球状粒子内にナトリウム分も硫黄分も多く残留してしまい、電池としたときに不安定となりうる可能性がある。 In patent document 5, after obtaining the spherical manganese nickel precursor which is a precursor by slowly dripping the solution which mixed ammonia as manganese sulfate, nickel sulfate, and a complex material in sodium hydroxide solution, this precursor is obtained. The mixture of the body and the Li compound is subjected to main firing in a temperature range of 850 ° C. or higher, and then an annealing process is performed to obtain a high-voltage positive electrode active material. However, since the crystallinity of the precursor is low, Li It is necessary to calcinate at a temperature close to 1000 ° C. in the main calcination after mixing with the compound, and as a result, Mn 3+ is generated for valence compensation by oxygen deficiency from the shape of the charge / discharge curve. In addition, in this production method, a large amount of sodium and sulfur remain in the spherical particles, which may make the battery unstable.

特許文献6では、硝酸リチウムと硝酸マンガンと硝酸ニッケルを混合後、PVAを滴下して造粒してから最大でも500℃で焼成を行うことで高容量の正極材料を得たと報告があるが、焼成温度が低いので結晶性を上げることが困難であり、結晶性の低さから電解液との副反応が起こり易くなることが考えられ、長期特性が得られない可能性がある。   Patent Document 6 reports that after mixing lithium nitrate, manganese nitrate, and nickel nitrate, PVA was dropped and granulated, and then a high-capacity cathode material was obtained by firing at a maximum of 500 ° C. Since the firing temperature is low, it is difficult to increase the crystallinity, and it is considered that a side reaction with the electrolytic solution is likely to occur due to the low crystallinity, and long-term characteristics may not be obtained.

特許文献7では、水酸化ナトリウム水溶液中に硫酸マンガンと硫酸ニッケルの混合物をpHコントロールし徐滴下することで錯化材を使用することなく、一次粒子が小さい球状のマンガンニッケル水酸化物を生成し、該水酸化物を900℃で熱処理を行うことでNiが均一に粒子内に固溶し、且つタップ密度が高いニッケルマンガン複合酸化物を得、Li化合物と反応させた正極活物質について報告しているが、特許文献7記載の前駆体は錯化材を使用しないため凝集二次粒子の形状がいびつになってしまい(SEM像より)、前駆体を高温で熱処理しても十分なタップ密度は得られていない。   In Patent Document 7, a mixture of manganese sulfate and nickel sulfate in a sodium hydroxide aqueous solution is pH-controlled and slowly dropped to produce spherical manganese nickel hydroxide with small primary particles without using a complexing material. The positive electrode active material in which Ni was uniformly dissolved in the particles by heat-treating the hydroxide at 900 ° C. and the nickel-manganese composite oxide having a high tap density was obtained and reacted with the Li compound was reported. However, since the precursor described in Patent Document 7 does not use a complexing material, the shape of the agglomerated secondary particles becomes distorted (from the SEM image), and sufficient tap density can be obtained even if the precursor is heat-treated at high temperature. Is not obtained.

非特許文献1では、本明細書に記載してある結晶構造を有していることを記載しているが、具体的な製造方法やその形状といった記載がされていない。   Non-Patent Document 1 describes that it has the crystal structure described in this specification, but does not describe a specific manufacturing method or its shape.

また、非特許文献2では、マンガン酸リチウムの酸素欠損による低温時の相転移に伴う発熱/吸熱について論じているが、ニッケル含有マンガン酸リチウムの酸素欠損やMnサイトにNiが置換したことによる影響等が加わったときの低温時の挙動については論じられていない。   Further, Non-Patent Document 2 discusses heat generation / endotherm associated with low-temperature phase transition due to oxygen deficiency of lithium manganate, but influence of oxygen deficiency of nickel-containing lithium manganate and substitution of Mn sites with Ni. There is no discussion of the behavior at low temperatures when such factors are added.

本発明では、高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させた優れた非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池を提供する。   In the present invention, a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a high discharge voltage, a high discharge capacity, and a reduced side reaction with an electrolytic solution, a method for producing the same, and a non-aqueous electrolyte A secondary battery is provided.

即ち、本発明は、スピネル構造を有し、少なくともLiとNiとMnを主成分とする複合酸化物粒子粉末であり、平均一次粒子径が1.0〜4.0μm、平均二次粒子径(D50)が4〜30μm、BET比表面積が0.3〜1.0m/gであり、且つ、該複合酸化物子粉末の平均二次粒子径(D50)とBET比表面積との積をyとしたときに、y≦10.0×10−6/gであることを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明1)。 That is, the present invention is a composite oxide particle powder having a spinel structure and containing at least Li, Ni, and Mn as main components, an average primary particle diameter of 1.0 to 4.0 μm, an average secondary particle diameter ( D50) is 4 to 30 μm, the BET specific surface area is 0.3 to 1.0 m 2 / g, and the product of the average secondary particle diameter (D50) of the composite oxide powder and the BET specific surface area is y In this case, it is a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, wherein y ≦ 10.0 × 10 −6 m 3 / g (Invention 1).

また、本発明は、前記非水電解質二次電池用正極活物質粒子粉末のX線回折について(400)面のピークの半値幅をzとしたときに、z≦0.230degreeの範囲である本発明1記載の非水電解質二次電池用正極活物質粒子粉末である(本発明2)。   Further, the present invention provides a book in which z ≦ 0.230 degree when the half width of the peak of the (400) plane in the X-ray diffraction of the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery is z. It is positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of invention 1, (Invention 2).

また、本発明は、前記非水電解質二次電池用正極活物質粒子粉末を用いるとともに、対極にリチウム金属を使用した二次電池としたとき、初期充電時において、4.8V充電時の電池容量をa、5.0V充電時の電池容量をbとしたときに、(b−a)/bで示される割合が10%より小さい本発明1又は2に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明3)。   Moreover, the present invention uses the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery and a secondary battery using lithium metal as a counter electrode, and at the initial charge, the battery capacity at 4.8 V charge And the battery capacity at the time of 5.0V charge is b, and the ratio represented by (b−a) / b is less than 10%, the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention 1 or 2 Active material particle powder (Invention 3).

また、本発明は、前記非水電解質二次電池用正極活物質粒子粉末を用いるとともに、対極にリチウム金属を使用した二次電池としたとき、初期充放電効率が90%以上である本発明1〜3のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末である(本発明4)。   In addition, the present invention uses the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery and has a charge / discharge efficiency of 90% or more when the secondary battery uses lithium metal as a counter electrode. It is the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries in any one of -3 (this invention 4).

また、本発明は、前記非水電解質二次電池用正極活物質粒子粉末の製造方法において、MnとNiが主成分である複合化合物とLi化合物を混合し、酸化性雰囲気で680℃〜1050℃で焼成(1)を行い、引き続き500〜700℃で焼成(2)を行うことを特徴とする本発明1〜4のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末の製造方法である(本発明5)。   Further, the present invention provides a method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, wherein a composite compound containing Mn and Ni as main components and a Li compound are mixed and 680 ° C. to 1050 ° C. in an oxidizing atmosphere. The positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to any one of the present inventions 1 to 4, which is calcined (1) and subsequently calcined (2) at 500 to 700 ° C. This is a method (Invention 5).

また、本発明は、本発明1〜4のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池である(本発明6)。   Moreover, this invention is a nonaqueous electrolyte secondary battery using the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries in any one of this invention 1-4 (this invention 6).

本発明に係る非水電解質二次電池用正極活物質粒子粉末は高い放電電圧を持ち、放電容量が高く、且つ、電解液との副反応を低減させた優れた非水電解質二次電池用正極活物質粒子粉末である。   The positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to the present invention has a high discharge voltage, a high discharge capacity, and an excellent positive electrode for a nonaqueous electrolyte secondary battery with reduced side reaction with the electrolyte Active material particle powder.

実施例1で得られた非水電解質二次電池用正極活物質粒子粉末のX線回折図である。2 is an X-ray diffraction pattern of a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery obtained in Example 1. FIG. 実施例1で得られた非水電解質二次電池用正極活物質粒子粉末の充放電曲線である。2 is a charge / discharge curve of a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery obtained in Example 1. FIG. 実施例1で得られた非水電解質二次電池用正極活物質粒子粉末のSEM像である。2 is a SEM image of positive electrode active material particle powder for a non-aqueous electrolyte secondary battery obtained in Example 1. FIG. 比較例1で得られた非水電解質二次電池用正極活物質粒子粉末のSEM像である。4 is a SEM image of positive electrode active material particle powder for nonaqueous electrolyte secondary battery obtained in Comparative Example 1.

本発明の構成をより詳しく説明すれば次のとおりである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る非水電解質二次電池用正極活物質粒子粉末(以下、「正極活物質粒子粉末」とする。)は、少なくとも立方晶スピネル構造であり、主成分であるMnとNiが複合的に酸化しており、且つLi、Ni及びMnを含有する化合物である。   The positive electrode active material particle powder for non-aqueous electrolyte secondary battery according to the present invention (hereinafter referred to as “positive electrode active material particle powder”) has at least a cubic spinel structure, and Mn and Ni as main components are composite. It is a compound that is oxidized and contains Li, Ni, and Mn.

本発明に係る正極活物質粒子粉末は、平均一次粒子径が1.0〜4.0μmであって、平均二次粒子径(D50)が4.0〜30μmであって、BET比表面積は0.3〜1.0m/gの範囲であり、且つ、平均二次粒子径(D50)とBET比表面積との積yが10.0×10−6/g以下である(y≦10.0×10−6/g)。 The positive electrode active material particle powder according to the present invention has an average primary particle diameter of 1.0 to 4.0 μm, an average secondary particle diameter (D50) of 4.0 to 30 μm, and a BET specific surface area of 0. in the range of .3~1.0m 2 / g, and the average product y of the secondary particle diameter and (D50) and the BET specific surface area is less 10.0 × 10 -6 m 3 / g (y ≦ 10.0 × 10 −6 m 3 / g).

本発明に係る正極活物質粒子粉末の平均一次粒子径が前記本発明の範囲から外れるとき、電解液との反応性が向上してしまい不安定となってしまう。   When the average primary particle diameter of the positive electrode active material particle powder according to the present invention is out of the range of the present invention, the reactivity with the electrolytic solution is improved and becomes unstable.

また、本発明に係る正極活物質粒子粉末の平均二次粒子径(D50)が4.0μm未満の場合、電解液との接触面積が上がりすぎることによって電解液との反応性が高くなり、充電時の安定性が低下する可能性がある。平均二次粒子径(D50)が30μmを超えると、電極内の抵抗が上昇して、充放電レート特性が低下する可能性がある。平均二次粒子径は4.0〜20μmがより好ましく、更により好ましくは5.0〜15μmである。   Moreover, when the average secondary particle diameter (D50) of the positive electrode active material particle powder according to the present invention is less than 4.0 μm, the contact area with the electrolytic solution is excessively increased, so that the reactivity with the electrolytic solution is increased, and charging is performed. Time stability may be reduced. When the average secondary particle diameter (D50) exceeds 30 μm, the resistance in the electrode increases, and the charge / discharge rate characteristics may be deteriorated. The average secondary particle diameter is more preferably 4.0 to 20 μm, and still more preferably 5.0 to 15 μm.

本発明に係る正極活物質粒子粉末の比表面積(BET比表面積法)は0.3〜1.00m/gが好ましい。比表面積が小さすぎると電解液との接触面積が小さくなりすぎて放電容量が低下し、大きすぎると正極活物質粒子粉末が電解液と反応してしまいガス発生や初期効率が低下する。比表面積は0.35〜0.80m/gが好ましく、より好ましくは0.43〜0.75m/gである。 The specific surface area (BET specific surface area method) of the positive electrode active material particle powder according to the present invention is preferably 0.3 to 1.00 m 2 / g. If the specific surface area is too small, the contact area with the electrolytic solution becomes too small and the discharge capacity decreases, and if it is too large, the positive electrode active material particle powder reacts with the electrolytic solution and gas generation and initial efficiency decrease. The specific surface area is preferably 0.35 to 0.80 m 2 / g, more preferably 0.43 to 0.75 m 2 / g.

本発明に係る正極活物質粒子粉末は、平均二次粒子径(D50)とBET比表面積との積yが10.0×10−6/g以下である。前記積の値が10.0×10−6/gより大きい場合、二次粒子の表面性状に多数の凹凸が形成された状態であり、該正極活物質粒子粉末を用いて二次電池としたときに、電解液と反応してしまいガス発生や、電池特性が悪化してしまうことが考えられる。平均二次粒子径(D50)とBET比表面積との積yは9.5×10−6/g以下が好ましく、より好ましくは1.0×10−6〜9.0×10−6/gであり、更により好ましくは2.0×10−6〜8.8×10−6/gである。 In the positive electrode active material particle powder according to the present invention, the product y of the average secondary particle diameter (D50) and the BET specific surface area is 10.0 × 10 −6 m 3 / g or less. When the value of the product is larger than 10.0 × 10 −6 m 3 / g, a secondary battery is formed using the positive electrode active material particle powder. In this case, it may be considered that the gas reacts with the electrolytic solution and gas generation and battery characteristics deteriorate. The product y of the average secondary particle diameter (D50) and the BET specific surface area is preferably 9.5 × 10 −6 m 3 / g or less, more preferably 1.0 × 10 −6 to 9.0 × 10 −6. m 3 / g, still more preferably 2.0 × 10 −6 to 8.8 × 10 −6 m 3 / g.

平均二次粒子径とBET比表面積との積であるyとは、単位で示すとm/g(密度の逆数)となり、これは単位重量当たりの二次粒子の体積を示すと考えられる。言い換えると、直径(二次粒子径)と形状から最小の表面積がわかる。通常、その値以上の表面積を持ち、その値yは表面状態に起因するパラメータとなる。結果、この数字は粒子の表面性を示すパラメータになりうると考えられる。数字が大きくなると粒子表面に凹凸などが多く存在し、小さくなると粒子表面の凹凸が低減され平滑な状態に近づいていると考えられる。yが本発明の範囲である場合、粒子表面性状が良好となり電解液との副反応を低減することができると考えられる。 The y, which is the product of the average secondary particle size and the BET specific surface area, is m 3 / g (reciprocal of density) in units, which is considered to indicate the volume of secondary particles per unit weight. In other words, the minimum surface area can be found from the diameter (secondary particle diameter) and shape. Usually, it has a surface area greater than that value, and its value y is a parameter resulting from the surface condition. As a result, this number is considered to be a parameter indicating the surface property of the particles. When the number increases, the surface of the particle has a lot of unevenness, and when it becomes smaller, the unevenness of the particle surface is reduced and it is considered that the particle surface is approaching a smooth state. When y is within the range of the present invention, it is considered that the particle surface properties are good and side reactions with the electrolyte can be reduced.

本発明に係る正極活物質粒子粉末のX線回折における(400)面のピークの半値幅(FWMH(400))をzとしたときに、z≦0.230°の範囲となることが好ましい。(400)面のピークの半値幅zが0.230°を超える場合には、結晶として不安定となり、結果として電池特性が悪化する場合がある。より好ましい範囲はz≦0.220°であり、更に好ましくは0.044°≦z≦0.180°である。   In the X-ray diffraction of the positive electrode active material particle powder according to the present invention, when the half-value width (FWMH (400)) of the (400) plane is z, z ≦ 0.230 ° is preferable. When the half width z of the peak of the (400) plane exceeds 0.230 °, the crystal becomes unstable, and as a result, the battery characteristics may deteriorate. A more preferable range is z ≦ 0.220 °, and further preferably 0.044 ° ≦ z ≦ 0.180 °.

また、本発明に係る正極活物質粒子粉末のX線回折における(111)面のピークの半値幅は0.15°以下が好ましく、より好ましくは0.053°〜0.12°であり、(311)面のピークの半値幅は0.18°以下が好ましく、より好ましくは0.044°〜0.14°であり、(440)面のピークの半値幅は0.25°以下が好ましく、より好ましくは0.045°〜0.20°である。   Further, the half width of the peak of the (111) plane in the X-ray diffraction of the positive electrode active material particle powder according to the present invention is preferably 0.15 ° or less, more preferably 0.053 ° to 0.12 °, 311) The full width at half maximum of the plane peak is preferably 0.18 ° or less, more preferably 0.044 ° to 0.14 °, and the full width at half maximum of the (440) plane is preferably 0.25 ° or less, More preferably, it is 0.045 ° to 0.20 °.

本発明に係る正極活物質粒子粉末は、化学式:Li1+xMn2−y−zNi(xの範囲が−0.05≦x≦0.10、yの範囲が0.4≦y≦0.6、zの範囲が0≦z≦0.20)で表すことができる。
また、異種元素Mとして、Mg、Al、Si、Ca、Ti、Co、Zn、Sb、Ba、W及びBiから選ばれる1種または2種以上を置換させてもよい。その前記異種元素Mの含有量は該スピネル型構造を有する化合物に対して20mol%以下が好ましい。本発明に係る正極活物質粒子粉末は、スピネル型構造を有することで5Vという高い電圧で充電を行っても構造が崩壊することなく、充放電サイクルが行える。また、酸素は常識の範囲で酸素欠損を伴っていてもよい(化学式への記載は省いてある)。
The positive electrode active material particle powder according to the present invention has a chemical formula: Li 1 + x Mn 2 -yz Ni y M z O 4 (x range is −0.05 ≦ x ≦ 0.10, y range is 0.4. ≦ y ≦ 0.6, and the range of z is 0 ≦ z ≦ 0.20).
Further, as the different element M, one or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi may be substituted. The content of the different element M is preferably 20 mol% or less based on the compound having the spinel structure. Since the positive electrode active material particle powder according to the present invention has a spinel structure, even if it is charged at a high voltage of 5 V, the structure does not collapse and a charge / discharge cycle can be performed. Moreover, oxygen may be accompanied by oxygen deficiency within the range of common sense (the description in the chemical formula is omitted).

次に、本発明に係る正極活物質粒子粉末の製造方法について述べる。   Next, the manufacturing method of the positive electrode active material particle powder according to the present invention will be described.

即ち、本発明に係る正極活物質粒子粉末は、マンガンとニッケルが主成分である複合化合物とリチウム化合物とを所定のモル比で混合した後、酸化性雰囲気で680℃〜1050℃で焼成(1)を行い、引き続き、500〜700℃で焼成(2)を行うことで得ることができる。   That is, the positive electrode active material particle powder according to the present invention is prepared by mixing a composite compound containing manganese and nickel as main components and a lithium compound at a predetermined molar ratio, and then firing at 680 ° C. to 1050 ° C. in an oxidizing atmosphere (1 And then firing (2) at 500 to 700 ° C.

本発明に用いるMnとNiが主成分である複合化合物は、水酸化物、酸化物有機化合物等があるが、好ましくはMnとNiの複合酸化物であり、更に好ましくは立方晶スピネル構造であるMnとNiの複合酸化物である。   The composite compound mainly composed of Mn and Ni used in the present invention includes a hydroxide, an oxide organic compound, etc., preferably a composite oxide of Mn and Ni, more preferably a cubic spinel structure. It is a complex oxide of Mn and Ni.

前記複合酸化物は、Fd−3mの空間群に帰属するスピネル構造であり、主成分であるMnとNiが8aサイト及び/又は16dサイトに均一に分布している酸化物である。また、該複合酸化物について、MnとNi以外の元素を導入した複合酸化物であってもよい。また、実質的に単相であることが好ましい。   The complex oxide has a spinel structure belonging to the space group of Fd-3m, and is an oxide in which Mn and Ni as main components are uniformly distributed in the 8a site and / or the 16d site. Further, the composite oxide may be a composite oxide in which an element other than Mn and Ni is introduced. Moreover, it is preferable that it is substantially single phase.

また、本発明におけるマンガンニッケル複合酸化物は、平均一次粒子径が1.0〜4.0μmであることが好ましい。また、タップ密度が1.8g/ml以上が好ましく、X線回折による最強ピークの半値幅が0.15°〜0.25°の範囲が好ましい。   The manganese nickel composite oxide in the present invention preferably has an average primary particle size of 1.0 to 4.0 μm. Further, the tap density is preferably 1.8 g / ml or more, and the half-width of the strongest peak by X-ray diffraction is preferably in the range of 0.15 ° to 0.25 °.

また、マンガンニッケル複合酸化物の組成は、下記化学式(2)で表される。
化学式(2)
(Mn1−y−zNi
0.2≦y≦0.3、0≦z≦0.10
M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biから選ばれる1種又は2種以上
The composition of the manganese nickel composite oxide is represented by the following chemical formula (2).
Chemical formula (2)
(Mn 1-yz Ni y M z ) 3 O 4
0.2 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.10
M: One or more selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi

また、本発明に用いるマンガンニッケル複合酸化物は、ナトリウム含有量が100〜2000ppmが好ましく、硫黄含有量が10〜1000ppmが好ましく、不純物の総和が4000ppm以下であることが好ましい。   Further, the manganese nickel composite oxide used in the present invention preferably has a sodium content of 100 to 2000 ppm, a sulfur content of 10 to 1000 ppm, and a total of impurities of 4000 ppm or less.

前記複合酸化物粒子粉末の製造方法は、上記特性を満たすマンガンニッケル複合酸化物粒子粉末が作製できれば、各種原料を混合して焼成する固相反応又は水溶液中で各種原料を共沈させた後、焼成する湿式反応など、いずれの製造法を用いてもよく特に限定されるものではないが、例えば、以下の製造方法によって得ることができる。   If the manufacturing method of the said composite oxide particle powder can manufacture the manganese nickel composite oxide particle powder which satisfy | fills the said characteristic, after co-precipitating various raw materials in the solid-phase reaction or aqueous solution which mixes and bakes various raw materials, Any manufacturing method such as a wet reaction for firing may be used and is not particularly limited. For example, it can be obtained by the following manufacturing method.

即ち、本発明における複合酸化物粒子粉末は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対して、所定量のマンガン原料とニッケル原料と、必要によりM元素原料を溶解した水溶液を用いて酸化反応を行う二次反応によって、四酸化三マンガン粒子を母材としたマンガンニッケル複合化合物を得る湿式反応工程と、該湿式反応工程後のマンガンニッケル複合化合物を洗浄、乾燥し、次いで、酸化性雰囲気下で900〜1000℃の温度範囲で焼成して得ることができる。   That is, the composite oxide particle powder in the present invention is neutralized with an aqueous manganese salt solution using an alkaline aqueous solution in excess of the equivalent of manganese to form an aqueous suspension containing manganese hydroxide, , A primary reaction for obtaining trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range of 60 to 100 ° C., and a predetermined amount of a manganese raw material and a nickel raw material with respect to the reaction solution after the primary reaction, if necessary A wet reaction step of obtaining a manganese nickel composite compound using trimanganese tetroxide particles as a base material by a secondary reaction that performs an oxidation reaction using an aqueous solution in which an M element material is dissolved, and a manganese nickel composite compound after the wet reaction step Can be washed and dried, and then calcined at 900 to 1000 ° C. in an oxidizing atmosphere.

本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられるが、特に炭酸リチウムが好ましい。   The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride Examples thereof include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being particularly preferable.

用いるリチウム化合物は平均粒子径が50μm以下であることが好ましい。より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、マンガンとニッケルの複合化合物との混合が不均一となってしまい、特性が悪化してしまう。   The lithium compound to be used preferably has an average particle size of 50 μm or less. More preferably, it is 30 μm or less. When the average particle size of the lithium compound exceeds 50 μm, mixing of the composite compound of manganese and nickel becomes non-uniform and the characteristics are deteriorated.

また、本発明に係る正極活物質粒子粉末の合成時において、前記複合酸化物粒子粉末とリチウム化合物と共にMg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W及びBiから選ばれる少なくとも一種の元素の硝酸塩、酸化物、水酸化物又は炭酸塩等を混合して、該正極活物質粒子粉末に添加元素を導入させてもよい。   Further, at the time of synthesizing the positive electrode active material particle powder according to the present invention, it is selected from Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi together with the composite oxide particle powder and the lithium compound. An additive element may be introduced into the positive electrode active material particle powder by mixing at least one elemental nitrate, oxide, hydroxide, carbonate or the like.

マンガンとニッケルの複合化合物粒子粉末とリチウム化合物との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   The mixing treatment of the composite compound particle powder of manganese and nickel and the lithium compound may be either dry or wet as long as it can be uniformly mixed.

本発明における焼成工程において、酸化性雰囲気で焼成(1)として680℃〜1050℃の焼成を行うことが好ましい。焼成(1)によりマンガンニッケル複合化合物とLi化合物が反応して酸素欠損状態の正極活物質粒子粉末が得られる。680℃未満の場合には反応性が悪く、十分に複合化されない。また、粒子表面性状が最適化されない。1050℃を超える場合には焼結が進みすぎてしまうことや、Niが格子から出てNi酸化物として析出してしまう。より好ましい焼成温度は700〜1000℃であり、更により好ましくは740〜950℃である。また、焼成時間は2〜50時間が好ましい。   In the firing step of the present invention, firing at 680 ° C. to 1050 ° C. is preferably performed as firing (1) in an oxidizing atmosphere. By firing (1), the manganese nickel composite compound and the Li compound react to obtain positive electrode active material particle powder in an oxygen deficient state. When the temperature is lower than 680 ° C., the reactivity is poor and the composite is not sufficiently formed. Also, the particle surface properties are not optimized. When the temperature exceeds 1050 ° C., sintering proceeds too much, or Ni comes out of the lattice and precipitates as Ni oxide. More preferable baking temperature is 700-1000 degreeC, More preferably, it is 740-950 degreeC. The firing time is preferably 2 to 50 hours.

焼成(1)に引き続き、同様に、酸化性雰囲気下で500℃〜700℃で焼成(2)となる熱処理を行う。焼成(2)により酸素欠損を補い、結晶構造が安定した正極活物質粒子粉末を得ることができる。焼成(2)のより好ましい温度範囲は550〜650℃である。   Subsequent to the firing (1), similarly, a heat treatment for firing (2) is performed at 500 to 700 ° C. in an oxidizing atmosphere. By firing (2), it is possible to obtain positive electrode active material particle powder that compensates for oxygen deficiency and has a stable crystal structure. The more preferable temperature range of baking (2) is 550-650 degreeC.

次に、本発明に係る正極活物質粒子粉末を含有する正極について述べる。   Next, the positive electrode containing the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing the positive electrode containing the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder which concerns on this invention is comprised from the said positive electrode, a negative electrode, and electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で3.0V以上の放電容量が130mAh/g以上であり、より好ましく135mAh/g以上である。   The non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has a discharge capacity of 3.0 V or higher by an evaluation method described later of 130 mAh / g, more preferably 135 mAh / g or more.

また、本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、対極にリチウム金属を使用したときに初期の充電時における4.8V時の充電容量をaとし、5.0Vの充電容量をbとしたときに、(b−a)/bの割合が10%より小さくなる。   In addition, the non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has a charge capacity of 4.8 V at the time of initial charge when lithium metal is used for the counter electrode. When a is 5.0 and the charge capacity of 5.0V is b, the ratio of (ba) / b is smaller than 10%.

4.5V以上の充電を行うと一般的には電解液の分解が発生することにより、4.8V以上の充電にてこの分解反応による見掛けの充電容量が加算されてしまう。発明者は鋭意、研究を行った結果、正極活物質粒子の表面性状を最適化することで電解液の分解が少なくなり、そのために電解液の分解による見掛けの充電容量が小さくなることを見出した。本発明に係る正極活物質粒子粉末を用いることで、電解液の分解を抑制することができ、上述した(b−a)/bの割合が10%より小さくすることができたと考えている。   When charging at 4.5 V or higher, decomposition of the electrolytic solution generally occurs, so that apparent charging capacity due to this decomposition reaction is added at charging at 4.8 V or higher. As a result of intensive research, the inventor has found that by optimizing the surface properties of the positive electrode active material particles, the decomposition of the electrolytic solution is reduced, so that the apparent charge capacity due to the decomposition of the electrolytic solution is reduced. . By using the positive electrode active material particle powder according to the present invention, it is considered that the decomposition of the electrolytic solution can be suppressed, and the ratio of (b−a) / b described above can be made smaller than 10%.

本発明に係る正極活物質粒子粉末を用いて正極とし、対極をリチウム金属とした二次電池を組み立ててカットオフ電圧を3.0V−5.0Vで充放電試験を行ったとき、初期充放電効率は90%以上となる。上述したとおり、電解液の分解が少なくなることで余分に発生する見掛け充電容量が小さくなり、結果として充放電効率が向上することになると考えられる。   When a secondary battery in which the positive electrode active material particle powder according to the present invention is used as a positive electrode and the counter electrode is lithium metal is assembled and a charge / discharge test is performed at a cut-off voltage of 3.0V-5.0V, initial charge / discharge is performed. The efficiency is 90% or more. As described above, it is considered that the apparent charge capacity generated excessively is reduced by reducing the decomposition of the electrolytic solution, and as a result, the charge / discharge efficiency is improved.

本発明に係る正極活物質粒子粉末を使用した二次電池は、正極活物質による電解液の分解反応が抑制されていることから、例えば、電解液の劣化や電解液の分解によるガス発生、また、正極の劣化そのものも抑制することができると考えられる。その結果、本発明に係る正極活物質粒子粉末を使用した二次電池は長期安定性に優れると考えられる。   In the secondary battery using the positive electrode active material particle powder according to the present invention, since the decomposition reaction of the electrolyte solution by the positive electrode active material is suppressed, for example, gas generation due to deterioration of the electrolyte solution or decomposition of the electrolyte solution, It is considered that the deterioration of the positive electrode itself can be suppressed. As a result, the secondary battery using the positive electrode active material particle powder according to the present invention is considered to have excellent long-term stability.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

平均一次粒子径は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、そのSEM像から平均値を読み取った。   The average primary particle diameter was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation], and the average value was read from the SEM image.

平均二次粒子径(D50)はレーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。   The average secondary particle diameter (D50) is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring device Microtrac HRA [manufactured by Nikkiso Co., Ltd.].

BET比表面積比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いて測定した。   The BET specific surface area was measured by using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.

試料のX線回折は、株式会社リガク製 SmartLabを用いて測定した。測定条件は、2θ/θで10〜90度を0.02度ステップスキャン(0.6秒ホールド)で行った。   The X-ray diffraction of the sample was measured using SmartLab manufactured by Rigaku Corporation. Measurement conditions were 10 to 90 degrees at 2θ / θ by 0.02 degree step scan (0.6 second hold).

組成や不純物量は、0.2gの試料を20%塩酸溶液25mlの溶液で加熱溶解させ、冷却後100mlメスフラスコに純水を入れ調整液を作製し、測定にはICAP[SPS−4000 セイコー電子工業(株)製]を用いて各元素を定量して決定した。   The composition and the amount of impurities were as follows: 0.2 g sample was heated and dissolved in 25 ml of a 20% hydrochloric acid solution, and after cooling, pure water was added to a 100 ml volumetric flask to prepare an adjustment solution. For measurement, ICAP [SPS-4000 Seiko Electronics Each element was quantified and determined using Kogyo Co., Ltd.].

正極活物質粒子粉末の充填密度は、40g秤量し、50mlのメスシリンダーに投入し、タップデンサー((株)セイシン企業製)で500回タッピングした時の体積を読み取り充填密度(TD500回)を計算した。   The packing density of the positive electrode active material particle powder was weighed 40 g, put into a 50 ml measuring cylinder, and the volume when tapped 500 times with a tap denser (manufactured by Seishin Enterprise Co., Ltd.) was read and the packing density (TD 500 times) was calculated. did.

S含有量は、「HORIBA CARBON/SULFUR ANALYZER EMIA−320V(HORIBA Scientific)」を用いて測定した。   S content was measured using "HORIBA CARBON / SULFUR ANALYZER EMIA-320V (HORIBA Scientific)".

本発明に係る正極活物質粒子粉末については、CR2032型コインセルを用いて電池評価を行った。   About the positive electrode active material particle powder which concerns on this invention, battery evaluation was performed using CR2032-type coin cell.

電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を85重量%、導電材としてアセチレンブラックを5重量%、グラファイトを5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン5重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いて2032型コインセルを作製した。 For coin cells related to battery evaluation, 85% by weight of composite oxide as positive electrode active material particle powder, 5% by weight of acetylene black as a conductive material, 5% by weight of graphite, and polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder After mixing 5% by weight, it was applied to an Al metal foil and dried at 120 ° C. This sheet was punched out to 14 mmΦ, and then pressure-bonded at 1.5 t / cm 2 was used as the positive electrode. A 2032 type coin cell was manufactured using a solution in which EC and DMC mixed with 1 mol / L LiPF 6 dissolved in a volume ratio of 1: 2 were used as the negative electrode made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ.

充放電特性は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC−CV操作、終了条件1/100C)後、放電を3.0Vまで0.1Cの電流密度にて行った(CC操作)。初期の充電で、4.8Vのときの充電容量をa、5.0Vのときの充電容量をbとした。   Charging / discharging characteristics were as follows: charging was performed at a current density of 0.1 C up to 5.0 V in an environment set to 25 ° C. in a thermostatic chamber (CC-CV operation, termination condition 1/100 C), and then discharging was performed at 3.0 V. Up to 0.1 C current density (CC operation). In the initial charging, the charging capacity at 4.8V was a, and the charging capacity at 5.0V was b.

5.0Vまでの初期充電を終えて初期充電容量bを得た後に、3.0Vまで0.1Cの電流密度で放電を行った(CC操作)。このとき、3.0Vとなったときの放電容量cとした。また初期充放電効率はc/b×100の式で算出した。   After the initial charge up to 5.0V was obtained and the initial charge capacity b was obtained, the battery was discharged at a current density of 0.1C up to 3.0V (CC operation). At this time, it was set as the discharge capacity c when it was set to 3.0V. The initial charge / discharge efficiency was calculated by the equation c / b × 100.

実施例1
窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水懸濁液を得た。得られた水酸化マンガン粒子を含む水懸濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。一次反応終了後、窒素通気に切替え同反応槽にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lを加えることで、一次反応にて生成されたマンガン酸化物とマンガン化合物及びニッケル化合物(水酸化マンガン及び水酸化ニッケルなど)を含有する水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物を得た。該マンガンニッケル複合化合物を950℃で20hr大気中にて焼成して、マンガンニッケル複合酸化物粒子粉末を得た。
Example 1
A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L. An aqueous suspension containing manganese hydroxide particles was obtained by adding the oxide to the reaction vessel to make the total amount 600 L and neutralizing. The aqueous suspension containing the obtained manganese hydroxide particles was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 90 ° C. (primary reaction). After the completion of the primary reaction, switching to nitrogen aeration, 0.37.3 mol / L manganese sulfate solution 117.3 L and 1.5 mol / L nickel sulfate solution 39.4 L were added in the same reaction tank to produce the primary reaction. An aqueous suspension containing manganese oxide, a manganese compound, and a nickel compound (such as manganese hydroxide and nickel hydroxide) was obtained. The resulting solution was switched from nitrogen aeration to air aeration and an oxidation reaction was performed at 60 ° C. (secondary reaction). After completion of the secondary reaction, the resultant was washed with water and dried to obtain a manganese nickel composite compound using spinel-structured Mn 3 O 4 particles as a base material. The manganese nickel composite compound was fired at 950 ° C. in the atmosphere for 20 hours to obtain manganese nickel composite oxide particle powder.

得られたマンガンニッケル複合酸化物粒子粉末はX線回折よりFd―3mの空間群に帰属する立方晶スピネル構造であることが確認できた。その組成は、(Mn0.75Ni0.25であった。平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20°であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。 It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder had a cubic spinel structure belonging to the space group of Fd-3m. Its composition was (Mn 0.75 Ni 0.25 ) 3 O 4 . The average primary particle size is 2.6 μm, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 °, and the Na content is 252 ppm, The S content was 88 ppm and the total amount of impurities was 1589 ppm.

得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとを、Li:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、大気中にて750℃で15hr焼成し(焼成(1))、続けて600℃で10hr焼成することで(焼成(2))、正極活物質粒子粉末を得た。   The obtained manganese nickel composite oxide particle powder and lithium carbonate are weighed so that Li: (Mn + Ni) = 0.50: 1.00 and dry-mixed with a ball mill for 1 hour to obtain a uniform mixture. It was. Thereafter, using an electric furnace, firing was performed at 750 ° C. for 15 hours in the atmosphere (firing (1)), followed by firing at 600 ° C. for 10 hours (firing (2)) to obtain positive electrode active material particle powder. .

得られた正極活物質粒子粉末はX線回折(リガク製 SmartLab)により立方晶であるスピネル構造を有することを確認した。得られた正極活物質粒子粉末のX線回折パターンを図1に示す。組成は、Li1.0(Mn0.75Ni0.25であり、平均一次粒子径は3.5μm、平均二次粒子径(D50)は11.6μm、BET比表面積は0.74m/gであり、平均二次粒子径(D50)とBET比表面積の積は8.6×10−6/gであった。また、(400)の半値幅は0.171°であった。 The obtained positive electrode active material particle powder was confirmed to have a cubic spinel structure by X-ray diffraction (SmartLab manufactured by Rigaku). The X-ray diffraction pattern of the obtained positive electrode active material particle powder is shown in FIG. The composition is Li 1.0 (Mn 0.75 Ni 0.25 ) 2 O 4 , the average primary particle diameter is 3.5 μm, the average secondary particle diameter (D50) is 11.6 μm, and the BET specific surface area is 0. .74m a 2 / g, a product of BET specific surface area and average secondary particle size (D50) of was 8.6 × 10 -6 m 3 / g . Further, the half width of (400) was 0.171 °.

また、対極にリチウム金属を使用し、該正極活物質粒子粉末を用いて作製した2032コイン型電池は、初期充電において4.8Vまでの充電容量aが140.2mAh/gであり、5.0Vまでの充電容量bは155.2mAh/gであり、(b−a)/bの割合は、図2に示すとおり、9.6%であった。また、初期充放電効率は92.8%であった。   In addition, a 2032 coin-type battery manufactured using lithium metal as a counter electrode and using the positive electrode active material particle powder has a charge capacity a up to 4.8 V at initial charge of 140.2 mAh / g and 5.0 V The charge capacity b was 155.2 mAh / g, and the ratio of (ba) / b was 9.6% as shown in FIG. The initial charge / discharge efficiency was 92.8%.

実施例2〜実施例5
焼成(1)の焼成温度を種々変えた以外は、実施例1と同様の操作により正極活物質粒子粉末を得た。
Example 2 to Example 5
A positive electrode active material particle powder was obtained by the same operation as in Example 1 except that the firing temperature of firing (1) was variously changed.

正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1に示す。   Table 1 shows the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder.

比較例1
焼成(1)の焼成温度を650℃とした以外は実施例1と同様の操作により正極活物質粒子粉末を得た。
Comparative Example 1
A positive electrode active material particle powder was obtained in the same manner as in Example 1 except that the firing temperature of firing (1) was 650 ° C.

比較例2
密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらに、pH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた。
Comparative Example 2
14 L of water was put into the sealed reaction tank, and kept at 50 ° C. while circulating nitrogen gas. Furthermore, 1.5 mol / L Ni, Mn mixed sulfate aqueous solution, 0.8 mol / L sodium carbonate aqueous solution, and 2 mol / L continuously with vigorous stirring so that pH = 8.2 (± 0.2). L Ammonia aqueous solution was added. During the reaction, only the filtrate was discharged out of the system by a concentrating device, and the solid content was retained in the reaction tank. After reacting for 40 hours, a slurry of the coprecipitation product was collected. The collected slurry was filtered and washed with pure water. Thereafter, it was dried at 105 ° C. overnight to obtain precursor particle powder. As a result of the X-ray diffraction measurement, the obtained precursor particle powder was mainly composed of carbonate.

得られた前駆体粒子粉末と水酸化リチウムとをLi:(Mn+Ni)=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中850℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。   The obtained precursor particle powder and lithium hydroxide were weighed so that Li: (Mn + Ni) = 0.50: 1.00 and mixed sufficiently. The mixture was baked in an electric furnace at 850 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.

正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1に示す。   Table 1 shows the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder.

比較例3
比較例2で得られた前駆体粒子粉末と水酸化リチウムとをLi:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
Comparative Example 3
The precursor particle powder obtained in Comparative Example 2 and lithium hydroxide were weighed so as to be Li: Me = 0.50: 1.00 and mixed well. The mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.

正極活物質粒子粉末の製造条件及び得られた正極活物質粒子粉末の諸特性を表1に示す。   Table 1 shows the production conditions of the positive electrode active material particle powder and various characteristics of the obtained positive electrode active material particle powder.

実施例1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真を図3に、比較例1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真を図4に示す。図3及び図4から明らかなとおり、実施例1の正極活物質粒子は、二次粒子の粒子表面の凹凸が比較例1の正極活物質粒子に対して低減していることが確認できた。   A scanning electron micrograph of the positive electrode active material particle powder obtained in Example 1 is shown in FIG. 3, and a scanning electron micrograph of the positive electrode active material particle powder obtained in Comparative Example 1 is shown in FIG. As is clear from FIGS. 3 and 4, the positive electrode active material particles of Example 1 were confirmed to have reduced irregularities on the particle surface of the secondary particles compared to the positive electrode active material particles of Comparative Example 1.

以上の結果から本発明に係る正極活物質粒子粉末は電解液との副反応が小さく長期安定性に優れた非水電解質二次電池用正極活物質として有効であることが確認された。   From the above results, it was confirmed that the positive electrode active material particle powder according to the present invention is effective as a positive electrode active material for a non-aqueous electrolyte secondary battery having a small side reaction with the electrolytic solution and excellent long-term stability.

本発明に係る正極活物質粒子粉末は、電解液との副反応が小さいことから長期安定性に優れているので、非水電解質二次電池用の正極活物質粒子粉末として好適である。
The positive electrode active material particle powder according to the present invention is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery because it has excellent long-term stability because of a small side reaction with the electrolytic solution.

Claims (6)

スピネル構造を有し、少なくともLiとNiとMnを主成分とする複合酸化物粒子粉末であり、平均一次粒子径が1.0〜4.0μm、平均二次粒子径(D50)が4〜30μm、BET比表面積が0.3〜1.0m/gであり、且つ、該複合酸化物子粉末の平均二次粒子径(D50)とBET比表面積との積をyとしたときに、y≦10.0×10−6/gであることを特徴とする非水電解質二次電池用正極活物質粒子粉末。 A composite oxide particle powder having a spinel structure and containing at least Li, Ni, and Mn as main components, an average primary particle diameter of 1.0 to 4.0 μm, and an average secondary particle diameter (D50) of 4 to 30 μm. , Where the BET specific surface area is 0.3 to 1.0 m 2 / g and the product of the average secondary particle diameter (D50) and the BET specific surface area of the composite oxide powder is y <10.0 * 10 < -6 > m < 3 > / g The positive electrode active material particle powder for nonaqueous electrolyte secondary batteries characterized by the above-mentioned. 前記非水電解質二次電池用正極活物質粒子粉末のX線回折について(400)面のピークの半値幅をzとしたときに、z≦0.230degreeの範囲である請求項1記載の非水電解質二次電池用正極活物質粒子粉末。 2. The non-aqueous solution according to claim 1, wherein the x-ray diffraction of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery is in a range of z ≦ 0.230 degree, where z is the half width of the peak of the (400) plane. Positive electrode active material particle powder for electrolyte secondary battery. 前記非水電解質二次電池用正極活物質粒子粉末を用いるとともに、対極にリチウム金属を使用した二次電池としたとき、初期充電時において、4.8V充電時の電池容量をa、5.0V充電時の電池容量をbとしたときに、(b−a)/bで示される割合が10%より小さい請求項1又は2に記載の非水電解質二次電池用正極活物質粒子粉末。 When the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery is used and a secondary battery using a lithium metal as a counter electrode is used, the battery capacity at the time of 4.8 V charge is a, 5.0 V at the time of initial charge. The positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein a ratio represented by (ba) / b is smaller than 10%, where b is a battery capacity during charging. 前記非水電解質二次電池用正極活物質粒子粉末を用いるとともに、対極にリチウム金属を使用した二次電池としたとき、初期充放電効率が90%以上である請求項1〜3のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末。 The initial charge and discharge efficiency is 90% or more when a secondary battery using the positive electrode active material particle powder for a nonaqueous electrolyte secondary battery and using lithium metal as a counter electrode is used. The positive electrode active material particle powder for non-aqueous electrolyte secondary batteries as described. 前記非水電解質二次電池用正極活物質粒子粉末の製造方法において、MnとNiが主成分である複合化合物とLi化合物を混合し、酸化性雰囲気で680℃〜1050℃で焼成(1)を行い、引き続き500〜700℃で焼成(2)を行うことを特徴とする請求項1〜4のいずれかに記載の正極活物質粒子粉末の製造方法。 In the method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, a composite compound mainly composed of Mn and Ni and a Li compound are mixed and fired at 680 ° C. to 1050 ° C. in an oxidizing atmosphere (1). The method for producing positive electrode active material particle powder according to any one of claims 1 to 4, wherein the method is followed by firing (2) at 500 to 700 ° C. 請求項1〜4のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池。 The nonaqueous electrolyte secondary battery using the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries in any one of Claims 1-4.
JP2011151283A 2011-03-31 2011-07-07 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP5737513B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011151283A JP5737513B2 (en) 2011-07-07 2011-07-07 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CA2831756A CA2831756A1 (en) 2011-03-31 2011-12-26 Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process of production thereof
PCT/JP2011/080075 WO2012132155A1 (en) 2011-03-31 2011-12-26 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
CN201180069617.3A CN103460455B (en) 2011-03-31 2011-12-26 Mn-ni compound oxide particle powder and manufacture method, positive electrode active material for nonaqueous electrolyte secondary battery particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery
US14/007,732 US10161057B2 (en) 2011-03-31 2011-12-26 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
EP11862158.0A EP2693534B1 (en) 2011-03-31 2011-12-26 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
KR1020137024867A KR101948343B1 (en) 2011-03-31 2011-12-26 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
PL11862158.0T PL2693534T3 (en) 2011-03-31 2011-12-26 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
TW100148913A TWI568068B (en) 2011-03-31 2011-12-27 A nickel-nickel composite oxide particle powder and a method for producing the same, a positive electrode active material particle powder for a nonaqueous electrolyte battery, a method for producing the same, and a nonaqueous electrolyte battery
US16/057,982 US11072869B2 (en) 2011-03-31 2018-08-08 Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151283A JP5737513B2 (en) 2011-07-07 2011-07-07 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013020736A JP2013020736A (en) 2013-01-31
JP5737513B2 true JP5737513B2 (en) 2015-06-17

Family

ID=47692014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151283A Active JP5737513B2 (en) 2011-03-31 2011-07-07 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5737513B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022326B2 (en) * 2012-12-03 2016-11-09 日揮触媒化成株式会社 Lithium composite oxide and method for producing the same, and positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode
JP6176152B2 (en) * 2013-04-10 2017-08-09 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9911970B2 (en) * 2013-07-09 2018-03-06 Dow Global Technologies Llc Lithium ion batteries
JP2015018690A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Process of manufacturing positive electrode active material for lithium ion secondary battery
JP2015110509A (en) * 2013-11-08 2015-06-18 東ソー株式会社 Nickel-manganese composite oxide, method of producing the same, and application thereof
JP6435093B2 (en) * 2013-11-22 2018-12-05 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Positive electrode active material and lithium ion secondary battery
WO2016080181A1 (en) * 2014-11-18 2016-05-26 株式会社村田製作所 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
US10263256B2 (en) 2015-09-17 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
KR102628435B1 (en) * 2017-07-24 2024-01-23 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2019096424A (en) * 2017-11-21 2019-06-20 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3542018B2 (en) * 1999-10-13 2004-07-14 セイコーエプソン株式会社 Piezoelectric element, ink jet recording head, and method of manufacturing them
JP3900328B2 (en) * 1999-11-12 2007-04-04 日本化学工業株式会社 Method for producing lithium manganese composite oxide
JP3922040B2 (en) * 2001-02-16 2007-05-30 東ソー株式会社 Lithium manganese composite oxide, method for producing the same, and use thereof
JP4813450B2 (en) * 2001-11-22 2011-11-09 日立マクセルエナジー株式会社 Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP4070585B2 (en) * 2001-11-22 2008-04-02 日立マクセル株式会社 Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP4581333B2 (en) * 2003-04-01 2010-11-17 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2005108448A (en) * 2003-09-26 2005-04-21 Nichia Chem Ind Ltd Positive electrode sub-active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP4639634B2 (en) * 2004-05-07 2011-02-23 日本電気株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4836415B2 (en) * 2004-06-18 2011-12-14 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2006336004A (en) * 2004-12-22 2006-12-14 Fujifilm Holdings Corp Cellulose acylate film
JP5076307B2 (en) * 2005-11-25 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and method for producing lithium composite oxide
JP5169850B2 (en) * 2009-01-13 2013-03-27 日本電気株式会社 Non-aqueous electrolyte secondary battery
WO2011065464A1 (en) * 2009-11-27 2011-06-03 戸田工業株式会社 Particulate powder of positive active material for nonaqueous-electrolyte secondary battery, process for producing same, and nonaqueous-electrolyte secondary battery

Also Published As

Publication number Publication date
JP2013020736A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US11072869B2 (en) Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2004292264A (en) Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method
JP5720900B2 (en) Active material powder for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2017199591A (en) Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5737513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250