JP7133215B2 - Nickel-manganese composite oxide and method for producing the same - Google Patents

Nickel-manganese composite oxide and method for producing the same Download PDF

Info

Publication number
JP7133215B2
JP7133215B2 JP2018217435A JP2018217435A JP7133215B2 JP 7133215 B2 JP7133215 B2 JP 7133215B2 JP 2018217435 A JP2018217435 A JP 2018217435A JP 2018217435 A JP2018217435 A JP 2018217435A JP 7133215 B2 JP7133215 B2 JP 7133215B2
Authority
JP
Japan
Prior art keywords
nickel
lithium
composite oxide
manganese composite
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018217435A
Other languages
Japanese (ja)
Other versions
JP2020083677A (en
Inventor
光春 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018217435A priority Critical patent/JP7133215B2/en
Publication of JP2020083677A publication Critical patent/JP2020083677A/en
Application granted granted Critical
Publication of JP7133215B2 publication Critical patent/JP7133215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ニッケル含有リチウムマンガン複合酸化物及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a nickel-containing lithium-manganese composite oxide and a method for producing the same.

我が国において開発されたリチウムイオン二次電池は、ノートパソコンや携帯電話などの小型民生機器用電源のみならず、電気自動車や発電所併設の電力負荷平準化機器として実用化されつつあり、その大型化への対応が急務となってきている。リチウムイオン構成部材の中で正極活物質は最も高コストであり、容量も決定づける重要なものである。正極活物質として最初に実用化されたのはコバルト酸リチウムであったが、コバルト資源が希少かつ政情不安な国々に偏在しているために、大型電池向けには避けられる傾向がある。代替正極材料としてニッケル酸リチウム、マンガン酸リチウムが提案されているが、前者は充電時の化学的安定性が低く電池の安全性確保が困難なこと、後者はリチウム含有量が前者の半分で充放電容量が低いことが問題とされ、それらの問題を解決する代替材料開発が期待されている。 Lithium-ion secondary batteries developed in Japan are being put to practical use not only as power sources for small consumer devices such as laptop computers and mobile phones, but also as power load leveling devices for electric vehicles and power plants. There is an urgent need to respond to The positive electrode active material is the most costly among the lithium ion components, and is also important in determining the capacity. Lithium cobaltate was the first material to be put into practical use as a positive electrode active material, but because cobalt resources are scarce and are unevenly distributed in politically unstable countries, it tends to be avoided for large batteries. Lithium nickelate and lithium manganate have been proposed as alternative cathode materials. Low discharge capacity is a problem, and the development of alternative materials to solve these problems is expected.

このような代替材料候補としてLiNi1/2Mn1/2O2に代表される、4V級のニッケルマンガン複合酸化物が2001年に提案されている(例えば、非特許文献1参照)。この材料はNiO-Li2MnO3固溶体に属し、0.5NiO-0.5Li2MnO3組成に相当する。この材料は非特許文献1よりコバルト酸リチウムより安全性が高く、且つ4.6Vまでの高充電電位でも安定したサイクル特性を有すること、格子定数がa= 2.89Å、c= 14.30Åの六方晶層状岩塩型結晶相1相のみからなることが知られている。この正極活物質の問題点は、遷移金属イオンが多くリチウム層内に入ることであり、その低減のためにコバルト置換が検討されニッケルマンガンコバルト複合酸化物を用いたNMC正極と言われる今日の実用正極材料が開発された経緯がある。このNMC正極に関して非常に多くの特許出願がなされている(例えば、特許文献1参照)。NMC正極には結局コバルトが用いられていることから、充電時における化学安定性の低さに課題があり、かかる化学安定性の低さは、電池の安全性及び高上限電位設定時のサイクル特性に問題をきたすことがあり、コバルトを含まない正極材料の必要性は依然として薄れていない。 A 4V-class nickel-manganese composite oxide represented by LiNi 1/2 Mn 1/2 O 2 was proposed in 2001 as a candidate for such an alternative material (see, for example, Non-Patent Document 1). This material belongs to NiO - Li2MnO3 solid solution, corresponding to 0.5NiO - 0.5Li2MnO3 composition. According to Non-Patent Document 1, this material is safer than lithium cobalt oxide, has stable cycle characteristics even at high charging potentials up to 4.6 V, and has a hexagonal layer structure with lattice constants a = 2.89 Å and c = 14.30 Å. It is known to consist of only one rock-salt crystal phase. The problem with this positive electrode active material is that many transition metal ions enter the lithium layer. There is a background to the development of positive electrode materials. A large number of patent applications have been filed regarding this NMC positive electrode (see Patent Document 1, for example). Since cobalt is used for the NMC positive electrode after all, there is a problem of low chemical stability during charging, and such low chemical stability affects the safety of the battery and the cycle characteristics when the high upper limit potential is set. However, the need for cobalt-free cathode materials continues.

Electrochemical and Solid-State Letters, 4, A191-A194, (2001).Electrochemical and Solid-State Letters, 4, A191-A194, (2001).

特開2015-037067号公報JP 2015-037067 A

ところで、上記したニッケルマンガン複合酸化物において、リチウム過剰とした場合には均一且つ単独の層状岩塩型の結晶相が得られやすく、容量及びサイクル特性に優れるものの、高価なリチウム源を多量に使用する必要があるため、リチウム量を遷移金属と同等モル数とすることが求められる。しかしながら、この場合には、容量及びサイクル特性を向上させることは困難である。 By the way, in the nickel-manganese composite oxide described above, when lithium is excessive, a uniform and single layered rock salt type crystal phase is likely to be obtained, and although the capacity and cycle characteristics are excellent, a large amount of an expensive lithium source is used. Therefore, the amount of lithium is required to be the same number of moles as the transition metal. However, in this case, it is difficult to improve capacity and cycle characteristics.

上記のような事情に鑑み、本発明は、高価で且つ資源的に偏在しているコバルトを使用することなく、また、リチウム量を過剰とすることなく、容量、サイクル特性に優れた正極活物質として有用な複合酸化物を得ることを目的とする。 In view of the above circumstances, the present invention provides a positive electrode active material excellent in capacity and cycle characteristics without using cobalt, which is expensive and unevenly distributed as a resource, and without using an excessive amount of lithium. The object is to obtain a composite oxide useful as

本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、二種以上の層状岩塩型構造の結晶相を含有し、そのうち一相の層状岩塩型構造の結晶相は、遷移金属層内格子位置の遷移金属占有率(g3b)が77%以下であるニッケル含有リチウムマンガン複合酸化物が、上記課題を解決することができることを見出した。本発明者らは、このような知見に基づきさらに研究を重ね、本発明を完成するに至った。 The inventors of the present invention have made intensive studies to achieve the above object, and found that two or more types of crystal phases with a layered rocksalt structure are contained, and one of the crystal phases with a layered rocksalt structure is contained in the transition metal layer. It has been found that a nickel-containing lithium-manganese composite oxide having a transition metal occupancy (g 3b ) at lattice positions of 77% or less can solve the above problems. The inventors of the present invention conducted further studies based on such knowledge, and completed the present invention.

すなわち、本発明は、以下のニッケル含有リチウムマンガン複合酸化物及びその製造方法を包含する。
項1.一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ-0.1<x<0.1、0.4≦y≦0.6を示す。]
で表され、
二種以上の層状岩塩型構造の結晶相を含有し、
そのうち一相の層状岩塩型構造の結晶相(2)は、遷移金属層内格子位置の遷移金属占有率(g3b)が65.0~77.0%である、ニッケル含有リチウムマンガン複合酸化物。
項2.前記層状岩塩型構造の結晶相(2)は、組成式あたりの遷移金属占有率(gtotal)が67.0~90.0%である、項1に記載のニッケル含有リチウムマンガン複合酸化物。
項3.前記層状岩塩型構造の結晶相(2)は、格子定数a軸値が2.850~2.885Åである、項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。
項4. X線回折パターンにおける104面のピークの半価幅が0.21~2.00°である、項1~3のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物。
項5.前記ニッケル含有リチウムマンガン複合酸化物が有する結晶構造の総量を100モル%として、前記層状岩塩型構造の結晶相(2)の存在比率が10~40モル%である、項1~4のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物。
項6.項1~5のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物を含むリチウムイオン二次電池用正極活物質。
項7.項6に記載のリチウムイオン二次電池用正極活物質を備える、リチウムイオン二次電池。
項8.項1~5のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物の製造方法であって、
(1)マンガン化合物及びニッケル化合物を含む混合水溶液から、アルカリ性条件下にて沈殿物を形成する工程、
(2)前記沈殿物に湿式酸化処理を行う工程、及び
(3)リチウム塩共存下酸化性雰囲気下、500~980℃で熱処理する工程
を備える、製造方法。
That is, the present invention includes the following nickel-containing lithium-manganese composite oxide and its production method.
Section 1. General formula (1):
Li1 +x (NiyMn1 -y ) 1-xO2 ( 1)
[In the formula, x and y represent −0.1<x<0.1 and 0.4≦y≦0.6, respectively. ]
is represented by
Containing two or more kinds of crystal phases with a layered rock salt structure,
Among them, the crystal phase (2) having a layered rock salt structure is a nickel-containing lithium-manganese composite oxide in which the transition metal occupancy (g 3b ) of lattice positions in the transition metal layer is 65.0 to 77.0%.
Section 2. Item 2. The nickel-containing lithium-manganese composite oxide according to item 1, wherein the crystal phase (2) having a layered rock salt structure has a transition metal occupancy (g total ) per composition formula of 67.0 to 90.0%.
Item 3. Item 3. The nickel-containing lithium-manganese composite oxide according to Item 1 or 2, wherein the crystal phase (2) having a layered rock salt structure has a lattice constant a-axis value of 2.850 to 2.885 Å.
Section 4. 4. The nickel-containing lithium-manganese composite oxide according to any one of items 1 to 3, wherein the half width of the peak of the 104 plane in the X-ray diffraction pattern is 0.21 to 2.00°.
Item 5. Any one of items 1 to 4, wherein the existence ratio of the crystal phase (2) of the layered rock salt type structure is 10 to 40 mol% when the total amount of the crystal structure of the nickel-containing lithium manganese composite oxide is 100 mol%. 2. The nickel-containing lithium-manganese composite oxide according to item 1.
Item 6. A positive electrode active material for a lithium ion secondary battery, comprising the nickel-containing lithium manganese composite oxide according to any one of items 1 to 5.
Item 7. Item 7. A lithium ion secondary battery comprising the positive electrode active material for lithium ion secondary batteries according to Item 6.
Item 8. A method for producing a nickel-containing lithium-manganese composite oxide according to any one of Items 1 to 5,
(1) forming a precipitate under alkaline conditions from a mixed aqueous solution containing a manganese compound and a nickel compound;
(2) a step of subjecting the precipitate to a wet oxidation treatment; and (3) a step of heat-treating at 500 to 980°C in an oxidizing atmosphere in the presence of a lithium salt.

本発明によれば、高価で且つ資源的に偏在しているコバルトを使用することなく、また、リチウム量を過剰とすることなく、容量、サイクル特性に優れた正極活物質として有用な複合酸化物を得ることができる。 According to the present invention, a composite oxide that is useful as a positive electrode active material with excellent capacity and cycle characteristics without using cobalt, which is expensive and unevenly distributed as a resource, and without using an excessive amount of lithium. can be obtained.

六方晶層状岩塩型構造の結晶相を模式的に示す図面である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows typically the crystal phase of a hexagonal layered rock-salt type structure. 実施例1で得られた評価用粉末のXRDパターンのフィット結果を示す。XRDパターンにおいて実線は計算曲線、+は実測点を示す。XRDパターンの下の棒は各結晶相の計算位置を、その下の線が実測値と計算値の差を示す。1 shows the XRD pattern fit results of the powder for evaluation obtained in Example 1. FIG. In the XRD pattern, the solid line indicates the calculated curve and + indicates the measured points. The bar under the XRD pattern indicates the calculated position of each crystal phase, and the line below it indicates the difference between the measured and calculated values. 実施例1で得られた評価用粉末を正極活物質として使用したリチウム二次電池の電気化学的活性化後の充放電特性を示す。cは充電を、dは放電を示し、数字はサイクル数を示す。1 shows charge-discharge characteristics after electrochemical activation of a lithium secondary battery using the powder for evaluation obtained in Example 1 as a positive electrode active material. c indicates charge, d indicates discharge, and the number indicates the number of cycles. 実施例2で得られた評価用粉末のXRDパターンのフィット結果を示す。XRDパターンにおいて実線は計算曲線、+は実測点を示す。XRDパターンの下の棒は各結晶相の計算位置を、その下の線が実測値と計算値の差を示す。FIG. 2 shows XRD pattern fitting results of the powder for evaluation obtained in Example 2. FIG. In the XRD pattern, the solid line indicates the calculated curve and + indicates the measured points. The bar under the XRD pattern indicates the calculated position of each crystal phase, and the line below it indicates the difference between the measured and calculated values. 実施例2で得られた評価用粉末を正極活物質として使用したリチウム二次電池の電気化学的活性化後の充放電特性を示す。cは充電を、dは放電を示し、数字はサイクル数を示す。1 shows charge-discharge characteristics after electrochemical activation of a lithium secondary battery using the powder for evaluation obtained in Example 2 as a positive electrode active material. c indicates charge, d indicates discharge, and the number indicates the number of cycles. 比較例1で得られた評価用粉末のXRDパターンのフィット結果を示す。XRDパターンにおいて実線は計算曲線、+は実測点を示す。XRDパターンの下の棒は各結晶相の計算位置を、その下の線が実測値と計算値の差を示す。2 shows the result of fitting the XRD pattern of the powder for evaluation obtained in Comparative Example 1. FIG. In the XRD pattern, the solid line indicates the calculated curve and + indicates the measured points. The bar under the XRD pattern indicates the calculated position of each crystal phase, and the line below it indicates the difference between the measured and calculated values. 比較例1で得られた評価用粉末を正極活物質として使用したリチウム二次電池の電気化学的活性化後の充放電特性を示す。cは充電を、dは放電を示し、数字はサイクル数を示す。1 shows charge-discharge characteristics after electrochemical activation of a lithium secondary battery using the powder for evaluation obtained in Comparative Example 1 as a positive electrode active material. c indicates charge, d indicates discharge, and the number indicates the number of cycles.

本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲をA~Bで表記する場合、A以上B以下を示す。 As used herein, "contain" is a concept that includes both "comprise," "consist essentially of," and "consist of." Further, in this specification, when a numerical range is represented by A to B, it means A or more and B or less.

1.ニッケル含有リチウムマンガン複合酸化物
本発明のニッケル含有リチウムマンガン複合酸化物は、一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ-0.1<x<0.1、0.4≦y≦0.6を示す。]
で表され、
二種以上の層状岩塩型構造の結晶相を含有し、
そのうち一相の層状岩塩型構造の結晶相は、遷移金属層内格子位置の遷移金属占有率(g3b)が77%以下である。
1. Nickel-Containing Lithium-Manganese Composite Oxide The nickel-containing lithium-manganese composite oxide of the present invention has the general formula (1):
Li1 +x (NiyMn1 -y ) 1-xO2 ( 1)
[In the formula, x and y represent −0.1<x<0.1 and 0.4≦y≦0.6, respectively. ]
is represented by
Containing two or more kinds of crystal phases with a layered rock salt structure,
Among them, one crystal phase having a layered rock salt structure has a transition metal occupancy (g 3b ) at lattice positions in the transition metal layer of 77% or less.

上記一般式(1)において、xは-0.1<x<0.1であり、-0.08<x<0.08がより好ましい。Xが-0.1以下であれば充放電容量の低下をもたらし、0.1以上であれば炭酸リチウム等の不純物相が増え結果として充放電容量低下につながる。 In the above general formula (1), x is -0.1<x<0.1, more preferably -0.08<x<0.08. If X is -0.1 or less, the charge/discharge capacity is lowered, and if it is 0.1 or more, the impurity phase such as lithium carbonate increases, resulting in a decrease in the charge/discharge capacity.

上記一般式(1)において、yは0.4≦y≦0.6であり、0.45≦y≦0.55が好ましい。yが0.4未満であると、定比保持のために多量のリチウムが必要になり、コストが増大するうえに、電圧の低下も招く。一方、yが0.6を超えると、充電時の構造安定性が低下するとともに容量が低下する。 In the above general formula (1), y is 0.4≤y≤0.6, preferably 0.45≤y≤0.55. If y is less than 0.4, a large amount of lithium is required to maintain the stoichiometric ratio, increasing costs and lowering voltage. On the other hand, when y exceeds 0.6, the structural stability during charging is lowered and the capacity is lowered.

また、本発明のニッケル含有リチウムマンガン複合酸化物は、二種以上の層状岩塩型結晶相を含んでいる。層状岩塩型結晶相を構成する層状岩塩型結晶構造とは、コバルト酸リチウムやニッケル酸リチウムが有するABO2型(Aはアルカリ金属、Bは遷移金属を示す。)の無機化合物に多く出現する結晶構造である。酸化物イオンを介して遷移金属層とリチウム層とが交互に積層した結晶構造であり、充放電に伴って、リチウムイオンの脱離・挿入反応が容易であるといわれている。 In addition, the nickel-containing lithium-manganese composite oxide of the present invention contains two or more layered rock salt crystal phases. The layered rocksalt crystal structure that constitutes the layered rocksalt crystal phase is a crystal that often appears in inorganic compounds of the ABO 2 type (A indicates an alkali metal and B indicates a transition metal) possessed by lithium cobaltate and lithium nickelate. Structure. It has a crystal structure in which a transition metal layer and a lithium layer are alternately laminated via oxide ions, and it is said that lithium ion desorption/insertion reactions are easy during charging and discharging.

このような層状岩塩型結晶相としては、空間群: Space group:

Figure 0007133215000001
Figure 0007133215000001

に帰属する六方晶層状岩塩型構造の結晶相を少なくとも二種以上含むことが好ましい。本発明のニッケル含有リチウムマンガン複合酸化物は、上記の六方晶層状岩塩型構造の結晶相を二種以上含むことが好ましく、他の岩塩型構造の結晶相(例えば、立方晶岩塩型構造等)を含む混合相であってもよい。混合相である場合、六方晶層状岩塩型構造の結晶相の合計割合は、当該混合相全体を基準として、50~90質量%が好ましい。また、本発明のニッケル含有リチウムマンガン複合酸化物は、二種以上の六方晶層状岩塩型構造の結晶相のみからなる構成も採用し得る。 It preferably contains at least two kinds of crystal phases having a hexagonal layered rock salt structure attributed to . The nickel-containing lithium-manganese composite oxide of the present invention preferably contains two or more of the above crystal phases of the hexagonal layered rocksalt structure, and other crystal phases of the rocksalt structure (for example, a cubic rocksalt structure, etc.). It may be a mixed phase containing. In the case of a mixed phase, the total proportion of the crystalline phase of the hexagonal layered rock salt structure is preferably 50 to 90% by mass based on the entire mixed phase. In addition, the nickel-containing lithium-manganese composite oxide of the present invention may employ a configuration consisting only of two or more kinds of crystalline phases of a hexagonal layered rocksalt structure.

図1は六方晶層状岩塩型構造の結晶相を模式的に示す図面である。この構造においては6c位置に存在する酸化物イオン相を介して3a位置に存在するリチウム層と3b位置に存在する遷移金属層とが交互に積層している。コバルト酸リチウムでは比較的このような理想構造に近いものが得られるが、本発明のニッケル含有リチウムマンガン複合酸化物においては、遷移金属層内遷移金属占有率等の異なる二種以上の結晶相が共存している。 FIG. 1 is a diagram schematically showing a crystal phase of a hexagonal layered rock salt structure. In this structure, a lithium layer present at the 3a position and a transition metal layer present at the 3b position are alternately laminated via an oxide ion phase present at the 6c position. Lithium cobalt oxide provides a structure relatively close to such an ideal structure, but in the nickel-containing lithium-manganese composite oxide of the present invention, two or more crystal phases having different transition metal occupation ratios in the transition metal layer are present. coexist.

このような遷移金属層内遷移金属占有率等の異なる結晶相としては、(1)主相として、遷移金属層内の3b位置遷移金属占有率が90.0%以上の結晶相、(2)副相として、遷移金属層内格子位置(3b位置)の遷移金属占有率(遷移金属層内の3b位置遷移金属占有率;g3b)が77.0%以下の結晶相が挙げられる。 Crystal phases with different transition metal occupancy rates in the transition metal layer include (1) a crystal phase in which the 3b-position transition metal occupancy rate in the transition metal layer is 90.0% or more as the main phase, and (2) a subphase Examples thereof include a crystal phase in which the transition metal occupancy at the lattice position (3b position) in the transition metal layer (3b position transition metal occupancy in the transition metal layer; g 3b ) is 77.0% or less.

このうち、副相として存在している層状岩塩型構造の結晶相(以下、「層状岩塩型構造の結晶相(2)」と称することもある)については、遷移金属層内の3b位置遷移金属占有率(g3b)が65.0~77.0%であることが必須である。この層状岩塩型構造の結晶相(2)は、通常得られる層状岩塩型結晶構造の結晶相と比較すると、遷移金属層内の3b位置遷移金属占有率が低い結晶相であり、理由は明らかではないが、この副相の存在により、高容量且つサイクル特性に優れた特性を得ることができる。 Of these, the crystal phase of the layered rocksalt structure existing as a subphase (hereinafter sometimes referred to as the “crystal phase of the layered rocksalt structure (2)”) is the 3b-position transition metal in the transition metal layer. It is essential that the occupancy (g 3b ) is between 65.0 and 77.0%. The crystal phase (2) of this layered rocksalt structure is a crystal phase with a lower occupancy of the 3b-position transition metal in the transition metal layer than the crystal phase of the usually obtained layered rocksalt crystal structure. However, due to the presence of this subphase, high capacity and excellent cycle characteristics can be obtained.

この層状岩塩型構造の結晶相(2)における、遷移金属層内の3b位置遷移金属占有率は65.0~77.0%、好ましくは70.0~76.0%である。層状岩塩型構造の結晶相(2)において、遷移金属層内の3b位置遷移金属占有率が65.0%未満では、結晶相(2)に含まれる充放電特性の悪いLi2MnO3成分が多くなりすぎるため、充放電特性が悪化する。層状岩塩型構造の結晶相(2)において、遷移金属層内の3b位置遷移金属占有率が77.0%をこえると、容量及びサイクル特性が低下する。 In the crystal phase (2) of this layered rock salt structure, the occupancy of the 3b-position transition metal in the transition metal layer is 65.0 to 77.0%, preferably 70.0 to 76.0%. In the crystal phase (2) with a layered rock salt structure, when the occupancy of the 3b-position transition metal in the transition metal layer is less than 65.0%, the Li 2 MnO 3 component with poor charge-discharge characteristics contained in the crystal phase (2) increases. too much, the charge/discharge characteristics deteriorate. In the crystal phase (2) of the layered rocksalt structure, when the occupancy of the 3b-position transition metal in the transition metal layer exceeds 77.0%, the capacity and cycle characteristics are degraded.

また、層状岩塩型構造の結晶相(2)は、遷移金属層内の3b位置遷移金属占有率が小さいため、3a位置遷移金属占有率と3b位置のそれとの和に相当する、組成式あたりの遷移金属占有率(gtotal)も結果的に小さくなる。このことから、層状岩塩型構造の結晶相(2)は、容量、サイクル特性等の観点から、組成式あたりの遷移金属占有率(gtotal)は67.0~90.0%が好ましく、75.0~88.0%がより好ましい。 In addition, since the crystal phase (2) with the layered rock salt structure has a small occupancy of the 3b-position transition metal in the transition metal layer, The transition metal occupancy (g total ) is also reduced as a result. Therefore, from the viewpoint of capacity and cycle characteristics, the crystalline phase (2) with a layered rock salt structure preferably has a transition metal occupancy (g total ) per composition formula of 67.0 to 90.0%, and 75.0 to 88.0%. more preferred.

また、層状岩塩型構造の結晶相(2)は、遷移金属層内の3b位置遷移金属占有率が小さいため、遷移金属層に空孔が多く格子定数は小さくなりやすい。このことから、層状岩塩型構造の結晶相(2)は、容量、サイクル特性等の観点から、格子定数a軸値は2.850~2.885Åが好ましく、2.870~2.883Åがより好ましい。同様に、格子体積Vは101.00~103.00Å3が好ましく、101.50~102.95Å3がより好ましい。本明細書における格子定数a及び格子体積Vは、六方晶層状岩塩型格子として仮定して算出された値を意味する。 In addition, since the crystal phase (2) having a layered rock salt structure has a small occupancy of the 3b-position transition metal in the transition metal layer, the transition metal layer has many vacancies and tends to have a small lattice constant. Therefore, the crystal phase (2) having a layered rock salt structure preferably has a lattice constant a-axis value of 2.850 to 2.885 Å, more preferably 2.870 to 2.883 Å, from the viewpoint of capacity, cycle characteristics, and the like. Similarly, the lattice volume V is preferably 101.00-103.00 Å 3 , more preferably 101.50-102.95 Å 3 . The lattice constant a and the lattice volume V in the present specification mean values calculated assuming a hexagonal layered rock salt lattice.

次に、主相として存在している層状岩塩型構造の結晶相(以下、「層状岩塩型構造の結晶相(1)」と称することもある)については、遷移金属層内の3b位置遷移金属占有率が90.0%以上であることが好ましい。この層状岩塩型構造の結晶相(1)は、通常得られる層状岩塩型結晶構造の結晶相と同一又は類似の結晶相である。この層状岩塩型構造の結晶相(1)における、遷移金属層内の3b位置遷移金属占有率は90.0~100%が好ましく、90.2~95.0%がより好ましい。 Next, with regard to the crystal phase of the layered rocksalt structure existing as the main phase (hereinafter sometimes referred to as “the crystal phase of the layered rocksalt structure (1)”), the 3b-position transition metal in the transition metal layer It is preferable that the occupation rate is 90.0% or more. The crystal phase (1) of this layered rock salt type structure is the same as or similar to the crystal phase of the usually obtained layered rock salt type crystal structure. The occupancy of the 3b-position transition metal in the transition metal layer in the crystal phase (1) of this layered rock salt structure is preferably 90.0 to 100%, more preferably 90.2 to 95.0%.

また、層状岩塩型構造の結晶相(1)は、遷移金属層内の3b位置遷移金属占有率は層状岩塩型構造の結晶相(2)と比較すると大きいため、3a位置遷移金属占有率と3b位置のそれとの和に相当する、組成式あたりの遷移金属占有率(gtotal)も結果的に大きくなる。このことから、層状岩塩型構造の結晶相(1)は、組成式あたりの遷移金属占有率(gtotal)は99.5~110.0%が好ましく、100.0~105.0%がより好ましい。 In the layered rocksalt structure crystal phase (1), the 3b position transition metal occupancy in the transition metal layer is larger than that of the layered rocksalt structure crystal phase (2). The transition metal occupancy per formula (g total ), which corresponds to the sum of the positions, also increases as a result. For this reason, the crystal phase (1) having a layered rock salt structure preferably has a transition metal occupancy (g total ) per composition formula of 99.5 to 110.0%, more preferably 100.0 to 105.0%.

また、層状岩塩型構造の結晶相(1)は、遷移金属層内の3b位置遷移金属占有率は層状岩塩型構造の結晶相(2)と比較すると大きいため、遷移金属層に空孔が少なく格子定数は大きくなりやすい。このことから、層状岩塩型構造の結晶相(1)は、格子定数a軸値は2.886~2.900Åが好ましく、2.888~2.895Åがより好ましい。同様に、格子体積Vは103.10~105.00Å3が好ましく、103.20~104.00Å3がより好ましい。本明細書における格子定数a及び格子体積Vは、六方晶層状岩塩型格子として仮定して算出された値を意味する。 In addition, since the crystalline phase (1) with a layered rocksalt structure has a larger occupancy of the 3b position transition metal in the transition metal layer than the crystal phase (2) with a layered rocksalt structure, there are fewer vacancies in the transition metal layer. Lattice constant tends to be large. Accordingly, the crystal phase (1) having a layered rock salt structure preferably has a lattice constant a-axis value of 2.886 to 2.900 Å, more preferably 2.888 to 2.895 Å. Similarly, the lattice volume V is preferably 103.10-105.00 Å 3 , more preferably 103.20-104.00 Å 3 . The lattice constant a and the lattice volume V in the present specification mean values calculated assuming a hexagonal layered rock salt lattice.

上記した層状岩塩型構造の結晶相(1)及び層状岩塩型構造の結晶相(2)の存在量については、層状岩塩型構造の結晶相(1)が主相で層状岩塩型構造の結晶相(2)が副相であるところ、容量、サイクル特性等の観点から、本発明のニッケル含有リチウムマンガン複合酸化物が有する結晶構造の総量を100モル%として、層状岩塩型構造の結晶相(2)の存在比率は10~40モル%が好ましく、15~35モル%がより好ましい。また、同様に、層状岩塩型構造の結晶相(1)の存在比率は60~90モル%が好ましく、65~85モル%がより好ましい。 Regarding the abundance of the layered rock salt crystal phase (1) and the layered rock salt crystal phase (2), the layered rock salt crystal phase (1) is the main phase and the layered rock salt crystal phase is Where (2) is a secondary phase, from the viewpoint of capacity, cycle characteristics, etc., the total amount of crystal structures possessed by the nickel-containing lithium manganese composite oxide of the present invention is 100 mol%, and the crystal phase (2) of the layered rock salt type structure ) is preferably 10 to 40 mol %, more preferably 15 to 35 mol %. Similarly, the existence ratio of the crystal phase (1) having a layered rock salt structure is preferably 60 to 90 mol %, more preferably 65 to 85 mol %.

なお、本発明のニッケル含有リチウムマンガン複合酸化物は、本発明の効果に重大な影響を及ぼさない範囲の立方晶岩塩型酸化物(NiO等)、炭酸リチウムや水酸化リチウム等のリチウム塩、他のニッケルあるいはマンガン化合物(それらの水和物及び複合化合物も含む)等の不純物相を含んでいてよく、その量については本発明のニッケルマンガン複合酸化物の総量を100モル%として、10モル%以下、特に5モル%以下が好ましい。 The nickel-containing lithium-manganese composite oxide of the present invention includes cubic rocksalt-type oxides (such as NiO), lithium salts such as lithium carbonate and lithium hydroxide, and other may contain an impurity phase such as nickel or manganese compounds (including their hydrates and composite compounds), and the amount thereof is 10 mol %, where the total amount of the nickel-manganese composite oxide of the present invention is 100 mol % 5 mol % or less is particularly preferable.

また、本発明のニッケル含有リチウムマンガン複合酸化物は、X線回折パターンにおいて2θ=45°付近にある104面のピークは、容量、サイクル特性等の観点から、結晶性をやや低めとすることが好ましく、その半価幅は0.21~2.00°が好ましく、0.22~1.00°がより好ましい。 In addition, in the nickel-containing lithium manganese composite oxide of the present invention, the peak of the 104 plane near 2θ = 45 ° in the X-ray diffraction pattern can be slightly lower in crystallinity from the viewpoint of capacity, cycle characteristics, etc. The half width is preferably 0.21 to 2.00°, more preferably 0.22 to 1.00°.

以上の特徴から、本発明のニッケル含有リチウムマンガン複合酸化物は、主相である層状岩塩型構造の結晶相(1)のみからなる従来物質よりも優れた容量及びサイクル特性を示す。 From the above characteristics, the nickel-containing lithium-manganese composite oxide of the present invention exhibits capacity and cycle characteristics superior to those of the conventional material composed only of the main phase, the crystalline phase (1) of layered rocksalt structure.

2.リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
上記した本発明のニッケル含有リチウムマンガン複合酸化物は、リチウムイオン二次電池用正極活物質として用いることができる。このような本発明の正極活物質に、公知の導電剤及びバインダーと混合することで作製した正極合剤をアルミニウム、ニッケル、ステンレス、カーボンクロス等の正極集電体に担持させることで、正極を製造することができる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。負極活物質としても特に限定的ではなく、例えば、金属リチウム、黒鉛、Si-SiO系負極、LTO(Li4Ti5O12)系負極等が挙げられる。これらの負極活物質についても、必要に応じて、導電剤、バインダー等を用いて、アルミニウム、銅、ニッケル、ステンレス、カーボン等からなる負極集電体に担持させて、負極を製造することができる。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)等の各種溶媒に溶解させた有機電解液、Li2S-P2S5、Li2S-GeS2-P2S5、Li2S-SiS2-Li2PO4等の無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマー等が挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレン等が挙げられる。
2. Positive Electrode Active Material for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery The nickel-containing lithium-manganese composite oxide of the present invention described above can be used as a positive electrode active material for a lithium ion secondary battery. A positive electrode mixture prepared by mixing such a positive electrode active material of the present invention with a known conductive agent and a binder is supported on a positive electrode current collector such as aluminum, nickel, stainless steel, carbon cloth, etc. to form a positive electrode. can be manufactured. Examples of conductive agents that can be used include carbon materials such as graphite, cokes, carbon black, and acicular carbon. The negative electrode active material is also not particularly limited, and examples thereof include metallic lithium, graphite, Si—SiO negative electrodes, LTO (Li 4 Ti 5 O 12 ) negative electrodes, and the like. These negative electrode active materials can also be supported on a negative electrode current collector made of aluminum, copper, nickel, stainless steel, carbon, or the like using a conductive agent, a binder, or the like, as necessary, to produce a negative electrode. . The electrolyte is not particularly limited, and organic electrolytes such as LiPF 6 as an electrolyte salt dissolved in various solvents such as ethyl carbonate (EC) and dimethyl carbonate (DMC), Li 2 SP 2 S 5 , Li 2 S -GeS 2 -P 2 S 5 , Li 2 S-SiS 2 -Li 2 PO 4 and other inorganic sulfide-based solid electrolytes, and high polymers having lithium ion conductivity. The separator is not particularly limited, and examples thereof include polyethylene and polypropylene.

3.ニッケル含有リチウムマンガン複合酸化物の製造方法
また本発明は、さらに上述した本発明のニッケル含有リチウムマンガン複合酸化物の製造方法を包含する。本発明のニッケル含有リチウムマンガン複合酸化物の製造方法は、
(1)マンガン化合物及びニッケル化合物を含む混合水溶液から、アルカリ性条件下にて沈殿物を形成する工程、
(2)前記沈殿物に湿式酸化処理を行う工程、及び
(3)リチウム塩共存下酸化性雰囲気下、500~980℃で熱処理する工程
を備える。
3. Method for Producing Nickel-Containing Lithium-Manganese Composite Oxide The present invention further includes the aforementioned method for producing the nickel-containing lithium-manganese composite oxide of the present invention. The method for producing a nickel-containing lithium-manganese composite oxide of the present invention comprises:
(1) forming a precipitate under alkaline conditions from a mixed aqueous solution containing a manganese compound and a nickel compound;
(2) a step of subjecting the precipitate to a wet oxidation treatment; and (3) a step of heat-treating at 500 to 980° C. in an oxidizing atmosphere in the presence of a lithium salt.

(3-1)工程(1)
使用するマンガン化合物としては、特に限定はなく、塩化マンガン(II)、硫酸マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、硝酸マンガン(II)、アセチル酢酸マンガン(II)、アセチル酢酸マンガン(III)、過マンガン酸カリウム(VII)等水和物も含め、公知のものを広く使用することが可能である。また酸化マンガンや金属マンガンも適切な酸で溶解させることにより水溶性塩として用いることができる。
(3-1) Process (1)
The manganese compound to be used is not particularly limited, and manganese (II) chloride, manganese sulfate (II), manganese acetate (II), manganese acetate (III), manganese nitrate (II), manganese acetylacetate (II), acetyl A wide range of known agents can be used, including hydrates such as manganese acetate (III) and potassium permanganate (VII). Manganese oxide and metallic manganese can also be used as water-soluble salts by dissolving them in an appropriate acid.

使用するニッケル化合物としても特に限定はなく、硝酸ニッケル(II)、酢酸ニッケル(II)、塩化ニッケル(II)、硫酸ニッケル(II)等水和物も含め、公知のものを広く使用することができる。また酸化ニッケルや金属ニッケルも適切な酸で溶解させることにより水溶性塩として用いることができる。 The nickel compound to be used is not particularly limited, and a wide range of known compounds including hydrates such as nickel (II) nitrate, nickel (II) acetate, nickel (II) chloride, and nickel (II) sulfate can be used. can. Nickel oxide and metallic nickel can also be used as water-soluble salts by dissolving them in an appropriate acid.

用いるニッケル化合物及びマンガン化合物の配合比は目的とする本発明のニッケル含有リチウムマンガン複合酸化物の配合比と同一とすることができる。 The blending ratio of the nickel compound and the manganese compound to be used can be the same as the blending ratio of the intended nickel-containing lithium-manganese composite oxide of the present invention.

マンガン化合物及びニッケル化合物を含む混合水溶液における金属塩濃度については特に限定されず、均一な混合水溶液を形成でき、且つ円滑に共沈物を形成できるように適宜決めることができる。通常ニッケル化合物及びマンガン化合物の合計濃度は0.01~5mol/lが好ましく、0.1~2mol/lがより好ましい。 The metal salt concentration in the mixed aqueous solution containing the manganese compound and the nickel compound is not particularly limited, and can be appropriately determined so that a uniform mixed aqueous solution can be formed and a coprecipitate can be smoothly formed. Generally, the total concentration of the nickel compound and manganese compound is preferably 0.01-5 mol/l, more preferably 0.1-2 mol/l.

マンガン化合物及びニッケル化合物を含む混合水溶液の溶媒としては水単独の他、メタノール、エタノール等の水溶性アルコールを含む水-アルコール混合溶媒を用いることもできる。水溶性アルコールはマンガン源として過マンガン酸カリウムを用いる際の沈殿材としても用いることができる。また、水溶性アルコールは0℃以下の低温滴下時の不凍液として用いることもでき、0℃を下回る温度での沈殿形成が可能となる。水溶性アルコールを使用する場合の使用量は目的とする沈殿形成温度等によって適宜設定することができるが、通常水100質量部に対して水溶性アルコールは50重量部以下(特に5~45質量部)とすることができる。 As a solvent for the mixed aqueous solution containing a manganese compound and a nickel compound, water alone or a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol or ethanol can be used. A water-soluble alcohol can also be used as a precipitating agent when using potassium permanganate as a manganese source. In addition, water-soluble alcohol can be used as an antifreeze solution when dripping at a low temperature of 0°C or less, making it possible to form a precipitate at a temperature below 0°C. When using a water-soluble alcohol, the amount used can be appropriately set depending on the desired precipitation temperature, etc., but usually the water-soluble alcohol is 50 parts by weight or less (especially 5 to 45 parts by weight) per 100 parts by weight of water. ).

マンガン化合物及びニッケル化合物を含む混合水溶液から沈殿物(共沈物)を形成させる方法としては、該混合水溶液をアルカリ性にすることが挙げられる。良質な沈殿物を形成する条件は、混合水溶液に含まれる各化合物種や濃度により異なるため一概には言えないが、通常pH8以上が好ましく、pH11~14がより好ましい。 A method for forming a precipitate (coprecipitate) from a mixed aqueous solution containing a manganese compound and a nickel compound includes making the mixed aqueous solution alkaline. Conditions for forming a good-quality precipitate cannot be generalized because they differ depending on the kind and concentration of each compound contained in the mixed aqueous solution, but usually pH 8 or higher is preferable, and pH 11 to 14 is more preferable.

マンガン化合物及びニッケル化合物を含む混合水溶液をアルカリ性にする方法には、特に限定はなく、マンガン化合物及びニッケル化合物を含む混合水溶液とアルカリ溶液とを混合することができる。この際の混合方法としては、公知の混合方法を広く採用することが可能であり、特に限定はない。例えば、アルカリ溶液に対して該混合水溶液を徐々に添加することができる。アルカリ溶液を形成するアルカリ源としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化リチウム(それらの水和物を含む)等を用いることができる。アルカリ濃度に関しては、例えば0.1~20mol/lが好ましく、0.3~10mol/lがより好ましい。またアルカリ溶液に上述した水溶性アルコールを添加して、水-アルコール混合溶媒とすることもできる。 The method for making the mixed aqueous solution containing the manganese compound and the nickel compound alkaline is not particularly limited, and the mixed aqueous solution containing the manganese compound and the nickel compound can be mixed with the alkaline solution. As a mixing method at this time, it is possible to employ a wide range of known mixing methods, and there is no particular limitation. For example, the mixed aqueous solution can be gradually added to the alkaline solution. Examples of the alkali source that forms the alkali solution include sodium hydroxide, potassium hydroxide, ammonia, lithium hydroxide (including hydrates thereof), and the like. Regarding the alkali concentration, for example, 0.1 to 20 mol/l is preferable, and 0.3 to 10 mol/l is more preferable. A water-alcohol mixed solvent can also be obtained by adding the above-mentioned water-soluble alcohol to the alkaline solution.

沈殿形成の際には、例えば、恒温槽等の温度を調整及び保持することが可能な公知の容器を用いて、中和熱による材料の変質緩和のために温度管理を行うことが好ましい。経験的には、低温で沈殿形成させるほど遷移金属分布の均一な沈殿物が形成されやすい傾向がある。このため、アルカリ溶液の温度は-50℃~+30℃が好ましく、-20℃~+20℃がより好ましい。ここで、設定温度を0℃以下とする場合には、アルカリ溶液に不凍液として上記した水溶性アルコールを入れておくことが好ましい。 When forming the precipitate, it is preferable to use a known vessel such as a constant temperature bath capable of adjusting and maintaining the temperature to control the temperature in order to mitigate deterioration of the material due to the heat of neutralization. Empirically, there is a tendency that the lower the temperature at which the precipitate is formed, the easier it is to form a precipitate with a uniform transition metal distribution. Therefore, the temperature of the alkaline solution is preferably -50°C to +30°C, more preferably -20°C to +20°C. Here, when the set temperature is set to 0° C. or lower, it is preferable to add the above water-soluble alcohol as an antifreeze to the alkaline solution.

上記沈殿形成反応時には、アルカリ溶液に対してマンガン化合物及びニッケル化合物を含む混合水溶液を徐々に滴下しつつ添加していくことも、中和熱発生に伴う副反応抑制の観点からは好ましい。滴下時間は特に限定されるものでないが、通常1~10時間が好ましく、2~5時間がより好ましい。 During the precipitation reaction, it is preferable to add the mixed aqueous solution containing the manganese compound and the nickel compound to the alkaline solution while gradually dropping them, from the viewpoint of suppressing the side reaction associated with the generation of heat of neutralization. The dropping time is not particularly limited, but is usually preferably 1 to 10 hours, more preferably 2 to 5 hours.

(3-2)工程(2)
工程(2)において、上記工程(1)において得られた沈殿物に、湿式酸化処理を施す。工程(2)は沈殿物を含むアルカリ溶液に空気や酸素等の酸化性気体を吹き込む(バブリングする)ことにより沈殿を酸化熟成してリチウムとの反応性の高い前駆体を作ることができる。吹き込む気体は、酸素が含まれていれば制限はなく、空気でもよいが、酸化時間の短縮の観点から、酸素が好ましい。酸素の場合、通常用いるボンベのみならず、工業用の酸素発生機を用いることもできる。湿式酸化の温度も特に限定はなく、例えば、0~150℃、特に10~100℃とすることができる。湿式酸化時間は、反応を充分に進行させるという観点から、長いほどよいが1時間以上が好ましく、24時間以上がより好ましく、48時間以上がさらに好ましい。
(3-2) Process (2)
In step (2), the precipitate obtained in step (1) is subjected to wet oxidation treatment. In the step (2), an oxidizing gas such as air or oxygen is blown (bubbled) into an alkaline solution containing the precipitate to oxidatively ripen the precipitate to produce a precursor highly reactive with lithium. The blown gas is not limited as long as it contains oxygen. Air may be used, but oxygen is preferred from the viewpoint of shortening the oxidation time. In the case of oxygen, an industrial oxygen generator can be used as well as a commonly used cylinder. The temperature of the wet oxidation is not particularly limited, and can be, for example, 0 to 150°C, particularly 10 to 100°C. From the viewpoint of allowing the reaction to proceed sufficiently, the wet oxidation time is preferably longer, but is preferably 1 hour or longer, more preferably 24 hours or longer, and even more preferably 48 hours or longer.

(3-3)工程(3)
工程(3)において、上記工程(2)において得られた熟成物に、リチウム塩共存下で熱処理を行う。ここで、上記水溶性塩類由来の不純物低減という観点からは、リチウム塩共存下での熱処理を行う前に、上記工程(2)において得られた熟成物を蒸留水等で洗浄し、塩類を除去したうえで濾過することが好ましい。また、リチウム塩共存下で熱処理を行う際には、上記のようにして塩類を除去した熟成物にリチウム塩を添加し、熱処理用原料としてリチウム塩共存下酸化性雰囲気下で、500~980℃で熱処理することが好ましい。もちろん上記工程(2)で得られた反応物(熟成物)にそのままリチウム塩を添加し、熱処理用原料としてリチウム塩共存下酸化性雰囲気下で、500~980℃で熱処理することもできる。
(3-3) Process (3)
In step (3), the aged product obtained in step (2) is heat-treated in the presence of a lithium salt. Here, from the viewpoint of reducing impurities derived from the above water-soluble salts, the aged product obtained in the above step (2) is washed with distilled water or the like to remove salts before the heat treatment in the presence of lithium salt. After that, it is preferable to filter. In addition, when heat treatment is performed in the presence of lithium salt, lithium salt is added to the aged product from which salts have been removed as described above, and the raw material for heat treatment is heated at 500 to 980 ° C in an oxidizing atmosphere in the presence of lithium salt. It is preferable to heat-treat at Of course, it is also possible to add a lithium salt to the reactant (aged product) obtained in the above step (2) as it is and heat-treat it at 500 to 980°C in an oxidizing atmosphere in the presence of a lithium salt as a raw material for heat treatment.

熱処理の際に熟成物とリチウム塩とを共存させるための具体的な方法としては、公知の手法を用いることができ、特に限定はないが、例えば、必要に応じて塩類を除去した熟成物とリチウム塩とを混合する方法を挙げることができる。 As a specific method for coexisting the aged product and the lithium salt during the heat treatment, a known method can be used, and there is no particular limitation. A method of mixing with a lithium salt can be mentioned.

また、熱処理用原料としては、乾燥させた熟成物を用いてもよい。乾燥させた熟成物を使用する場合には、乾燥時に残留アルカリにより固結し、リチウム塩との均一混合が困難になることを回避しやすいという観点から、乾燥前に熟成物とリチウム塩とを混合することが好ましい。 Moreover, as a raw material for heat treatment, a dried aged product may be used. When using a dried aged product, the aged product and the lithium salt are separated before drying from the viewpoint that it is easy to avoid solidification due to residual alkali during drying and difficulty in uniform mixing with the lithium salt. Mixing is preferred.

リチウム塩としては、公知のリチウム塩を広く使用することが可能であり、特に限定はない。具体的には、安価な炭酸リチウム、熟成物との反応性の高い水酸化リチウム以外に、酢酸リチウム、硝酸リチウム、塩化リチウムや、これらの水和物等を用いることができる。また上記リチウム塩に加えて酸化剤として過塩素酸リチウム及びその水和物を用いることもできる。これらのリチウム塩は、単独で用いることもでき、2種以上を組合せて用いることもできる。 As the lithium salt, a wide range of known lithium salts can be used, and there is no particular limitation. Specifically, lithium acetate, lithium nitrate, lithium chloride, hydrates thereof, and the like can be used in addition to inexpensive lithium carbonate and lithium hydroxide which is highly reactive with the aged product. Lithium perchlorate and its hydrate can also be used as an oxidizing agent in addition to the above lithium salt. These lithium salts can be used alone or in combination of two or more.

熟成物に対するリチウム塩の添加量としては、熟成物内のニッケル及びマンガン量のモル数に対するリチウムモル量(Li/(Ni+Mn)比)を、目的物の組成にあわせて調節することが好ましい。つまり、一般式(1)中のx値が-0.1<x<0.1であるため、熟成物内のニッケル及びマンガン量のモル数に対するリチウムモル量(Li/(Ni+Mn)比)は0.82~1.22が好ましく、0.86~1.17がより好ましい。なお、Li量を過剰量とすると、ニッケル含有リチウムマンガン複合酸化物には均一且つ単独の結晶が得られやすく、二種以上の層状岩塩型構造の結晶相を含有する本発明のニッケル含有リチウムマンガン複合酸化物は得られにくい。 As the amount of the lithium salt added to the aged product, it is preferable to adjust the molar amount of lithium to the number of moles of nickel and manganese in the aged product (Li/(Ni+Mn) ratio) according to the composition of the target product. . In other words, since the x value in the general formula (1) is -0.1<x<0.1, the molar amount of lithium (Li/(Ni+Mn) ratio) with respect to the molar amount of nickel and manganese in the aged product is 0.82 ~ 1.22 is preferred, and 0.86-1.17 is more preferred. When the amount of Li is excessive, the nickel-containing lithium-manganese composite oxide is likely to have uniform and single crystals, and the nickel-containing lithium-manganese of the present invention contains two or more kinds of layered rocksalt-type crystal phases. Composite oxides are difficult to obtain.

ここで、リチウム塩が水に不溶の場合、乾式混合後、振動ミル等でよく粉砕すること、水溶性の場合はリチウム塩を含む水溶液中に沈殿を十分に分散後、ミキサーにかけて均一なスラリーを作製することが好ましい。スラリー等は、乾燥機により乾燥させ、必要に応じて再度粉砕処理を行うことができる。これにより、熟成物とリチウム塩との混合物を均一な色調にしたり、粗大粒子を含ませないことでより反応性を向上させたりすることも可能である。また粉砕前の混合の方法も乾式でそのまま混合することもできるが、リチウム塩をいったん水溶液としてそこに熟成物を加えて乾燥して混合物を得ることもでき、この際の水溶液の濃度は、通常、0.1~10mol/lとすることができる。乾燥温度は、スラリー粘度をより上昇させ、熟成物とリチウム塩とをより均一に混合させる観点から100℃以下が好ましく、60℃以下がより好ましい。また、乾燥の際には、真空や凍結乾燥等を用いることもできる。 Here, if the lithium salt is insoluble in water, after dry mixing, it should be pulverized well with a vibration mill or the like. If it is water-soluble, after sufficiently dispersing the precipitate in an aqueous solution containing the lithium salt, put it in a mixer to make a uniform slurry. Fabrication is preferred. The slurry or the like can be dried with a dryer and re-pulverized if necessary. As a result, it is possible to make the mixture of the aged product and the lithium salt uniform in color tone, and to improve the reactivity by not including coarse particles. In addition, the method of mixing before pulverization can be dry and mixed as it is, but it is also possible to obtain a mixture by adding an aged product to an aqueous solution of lithium salt once and drying it. , from 0.1 to 10 mol/l. The drying temperature is preferably 100° C. or lower, more preferably 60° C. or lower, from the viewpoint of increasing the viscosity of the slurry and mixing the aged product and the lithium salt more uniformly. Vacuum, freeze-drying, or the like can also be used for drying.

熱処理方法は、熱を加える処理であれば特に限定はなく、公知の方法を広く採用することが可能である。なかでも、簡便に熱処理を行うことが可能であるという観点から、焼成処理を行うのが好適である。熱処理は、酸化性雰囲気下にて行う。本明細書において酸化性雰囲気にて熱処理を行うとは、大気中、酸素気流中等の酸素を含む雰囲気にて熱処理を行うことを意味する。熱処理を酸化性雰囲気下で行うことにより、本発明のニッケル含有リチウムマンガン複合酸化物における格子パラメータ(格子定数、格子体積等)や、遷移金属層内格子位置の遷移金属占有率(g3b)、組成式あたりの遷移金属占有率(gtotal)等を、上述した数値範囲とすることができ、ひいては、本発明のニッケル含有リチウムマンガン複合酸化物を得ることが可能となる。 The heat treatment method is not particularly limited as long as it is a treatment that applies heat, and a wide range of known methods can be employed. Among them, it is preferable to perform the calcination treatment from the viewpoint that the heat treatment can be easily performed. The heat treatment is performed in an oxidizing atmosphere. In this specification, heat treatment in an oxidizing atmosphere means heat treatment in an oxygen-containing atmosphere such as air or an oxygen stream. By performing the heat treatment in an oxidizing atmosphere, the lattice parameters (lattice constant, lattice volume, etc.) in the nickel-containing lithium manganese composite oxide of the present invention, the transition metal occupancy (g 3b ) at the lattice position in the transition metal layer, The transition metal occupancy rate (g total ) and the like per composition formula can be set within the numerical range described above, and thus the nickel-containing lithium-manganese composite oxide of the present invention can be obtained.

熱処理温度は、500~980℃、好ましくは600~950℃、より好ましくは750~900℃である。熱処理温度が500℃未満では、得られるニッケル含有リチウムマンガン複合酸化物の電解液との反応性が過多になり、サイクル特性が低下する。熱処理温度が980℃をこえると、ニッケル含有リチウムマンガン複合酸化物には均一且つ単独の結晶が得られ、二種以上の層状岩塩型構造の結晶相を含有する本発明のニッケル含有リチウムマンガン複合酸化物は得られず、容量及びサイクル特性が悪化する。なお、本明細書において、熱処理温度とは、熱処理中の最高到達温度を意味する。 The heat treatment temperature is 500-980°C, preferably 600-950°C, more preferably 750-900°C. If the heat treatment temperature is less than 500° C., the resulting nickel-containing lithium-manganese composite oxide becomes excessively reactive with the electrolytic solution, resulting in poor cycle characteristics. When the heat treatment temperature exceeds 980°C, uniform and single crystals are obtained in the nickel-containing lithium-manganese composite oxide. No product is obtained, and the capacity and cycle characteristics deteriorate. In this specification, the heat treatment temperature means the maximum temperature reached during the heat treatment.

熱処理時間については、充分な反応を行うという観点から、上記熱処理温度範囲内の温度に保持した状態で、30分以上が好ましく、1時間以上がより好ましい。熱処理時間の上限については特に限定はないが、製造コストの上昇を抑えるという観点から、100時間以下が好ましく、50時間以下がより好ましい。 The heat treatment time is preferably 30 minutes or longer, more preferably 1 hour or longer, while maintaining the temperature within the above heat treatment temperature range from the viewpoint of sufficient reaction. Although the upper limit of the heat treatment time is not particularly limited, it is preferably 100 hours or less, more preferably 50 hours or less, from the viewpoint of suppressing an increase in production cost.

熱処理後、必要に応じて、より充放電性に優れたニッケル含有リチウムマンガン複合酸化物を得るために、工程(3)を複数回、例えば2~3回繰り返すこともできる。また、必要に応じて、得られた熱処理物を粉砕することもできる。 After the heat treatment, step (3) can be repeated multiple times, for example, two or three times, as necessary, in order to obtain a nickel-containing lithium-manganese composite oxide with better charge/discharge properties. Moreover, the obtained heat-treated product can be pulverized as necessary.

以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is by no means limited to such examples, and can of course be embodied in various forms without departing from the gist of the present invention.

以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。 EXAMPLES Hereinafter, embodiments of the present invention will be described more specifically based on Examples, but the present invention is not limited to these.

実施例1
硝酸ニッケル(II)6水和物36.35g、及び塩化マンガン(II)4水和物24.74g(全量0.25モル/バッチ、Ni: Mnモル比1: 1)を500mlの蒸留水に加え完全に溶解させ、金属塩溶液を調製した。別のビーカー(チタン製)に水酸化ナトリウム50gを蒸留水500mlに溶解させた水酸化ナトリウム水溶液を調製し、恒温槽内に設置後、撹拌しながら20℃を保った。この温度管理された水酸化ナトリウム溶液に対して、上記金属塩溶液を3時間程度かけて徐々に滴下することによってNi-Mn沈殿物を形成させた。反応液が完全にアルカリ性(pH11以上)になっていることを確認し沈殿物形成反応を完了させた。作製した沈殿を含むアルカリ溶液を恒温槽から取り出し、混合物を撹拌しつつ酸素を室温で2日間吹き込んで沈殿物を熟成させた。
Example 1
36.35 g of nickel (II) nitrate hexahydrate and 24.74 g of manganese (II) chloride tetrahydrate (total amount 0.25 mol/batch, Ni:Mn molar ratio 1:1) were added to 500 ml of distilled water and completely dissolved. to prepare a metal salt solution. A sodium hydroxide aqueous solution was prepared by dissolving 50 g of sodium hydroxide in 500 ml of distilled water in another beaker (made of titanium). A Ni—Mn precipitate was formed by gradually dropping the metal salt solution into the temperature-controlled sodium hydroxide solution over a period of about 3 hours. After confirming that the reaction solution was completely alkaline (pH 11 or higher), the precipitate formation reaction was completed. The alkaline solution containing the prepared precipitate was taken out from the constant temperature bath, and oxygen was blown into the mixture at room temperature for 2 days while stirring to ripen the precipitate.

熟成させた沈殿をビーカーから取り出し、蒸留水で洗浄して過剰のアルカリ成分、塩類等を除去後濾別した。その後Li/(Ni+Mn)比1.00に相当する炭酸リチウム0.125mol(18.47g)を蒸留水200mlに分散させた後、濾別した沈殿とミキサー混合してスラリー状の混合物を作製した。混合物を粉砕して焼成用原料とした。焼成用原料をるつぼに入れ、電気炉内で大気中1時間かけて850℃まで昇温し、その温度で5時間焼成後、炉中で室温付近まで冷却後、炉から取り出し、粉砕して評価用粉末とした。 The aged precipitate was taken out from the beaker, washed with distilled water to remove excess alkali components, salts, etc., and filtered. After that, 0.125 mol (18.47 g) of lithium carbonate corresponding to a Li/(Ni+Mn) ratio of 1.00 was dispersed in 200 ml of distilled water, and then mixed with the filtered sediment in a mixer to prepare a slurry mixture. The mixture was pulverized and used as a raw material for firing. Put the firing raw material in a crucible, heat it up to 850°C in the atmosphere in an electric furnace for 1 hour, fire at that temperature for 5 hours, cool it down to around room temperature in the furnace, remove it from the furnace, crush it and evaluate it. powder for use.

X線回折による評価(実施例1)
図2に実施例1で得られた評価用粉末のXRDパターンのフィット状況を、表1にフィットにより得られた結晶学パラメータを示す。図2から実施例1で得られた評価用粉末のXRDパターンは二種の格子定数の異なる六方晶層状岩塩型結晶相にてフィット可能なことが明らかである。表1に記載の結晶学パラメータより、実施例1で得られた評価用粉末は約66モル%の主相と34モル%の副相からなり、さらにこの副相が主相より低いa軸値(2.885Å以下)、低い3b位置遷移金属占有率(g3b値、77.0%以下)、低い組成式あたりの全遷移金属量(gtotal= g3a+g3b値、90.0%以下)を有していることがわかり、本発明のニッケル含有リチウムマンガン複合酸化物が得られたことが明らかである。さらに、実施例1で得られた評価用粉末は2θ= 45°付近の104ピークの半価幅が0.46°と大きく、本発明のニッケル含有リチウムマンガン複合酸化物が得られたことが明らかである。
Evaluation by X-ray diffraction (Example 1)
FIG. 2 shows the fitted state of the XRD pattern of the powder for evaluation obtained in Example 1, and Table 1 shows the crystallographic parameters obtained by fitting. From FIG. 2, it is clear that the XRD pattern of the powder for evaluation obtained in Example 1 can fit two hexagonal layered rock salt crystal phases having different lattice constants. From the crystallographic parameters listed in Table 1, the powder for evaluation obtained in Example 1 consisted of about 66 mol% of the main phase and 34 mol% of the subphase, and the subphase had a lower a-axis value than the main phase. (2.885 Å or less), low 3b position transition metal occupancy (g 3b value, 77.0% or less), low total transition metal content per composition formula (g total = g 3a + g 3b value, 90.0% or less) It is clear that the nickel-containing lithium-manganese composite oxide of the present invention was obtained. Furthermore, the powder for evaluation obtained in Example 1 had a large half width of 0.46° for the 104 peak near 2θ = 45°, clearly indicating that the nickel-containing lithium-manganese composite oxide of the present invention was obtained. .

化学分析による評価(実施例1)
実施例1で得られた評価用粉末中のLi量をICP発光分析で、Ni及びMn量を蛍光X線分析により求めた。結果を表1に示す。Li/(Ni+Mn)モル比の値とNi/(Ni+Mn)モル比の値より本発明のニッケル含有リチウムマンガン複合酸化物が得られていることが明らかである。
Evaluation by chemical analysis (Example 1)
The amount of Li in the powder for evaluation obtained in Example 1 was determined by ICP emission analysis, and the amount of Ni and Mn was determined by fluorescent X-ray analysis. Table 1 shows the results. It is clear from the Li/(Ni+Mn) molar ratio value and the Ni/(Ni+Mn) molar ratio value that the nickel-containing lithium-manganese composite oxide of the present invention was obtained.

充放電特性評価(実施例1)
実施例1で得られた評価用粉末20mgを5mgのアセチレンブラック及び0.5mgのポリテトラフルオロエチレン粉末0.5mgと混合して正極合材を作製した。この合材をアルミメッシュに押しつけて正極を作製した。この正極をグローブボックス内にて、有機電解液としてLiPF6を炭酸エチレン及び炭酸ジメチル混合溶媒に溶解させ1Mとしたものを用い、負極として金属リチウム箔を用いてコイン型リチウム二次電池を作製した。本発明のニッケル含有リチウムマンガン複合酸化物の充放電特性を最適化するために段階充電法による電気化学的活性化法を実施した。具体的な活性化法は、以下の通りとした。まず正極を80mAh/gまで電流密度40mA/gで充電させ、その後同じ電流密度で2.0Vまで放電させた。その後40mAh/gずつ充電容量を上げて充放電させ、同様に放電させた。4サイクル目(200mAh/g)まで充電後、2.0Vまで放電し、最後の5サイクル目に4.8Vに達するまで充電させ、その電圧で10mA/gまで保持後、放電させて活性化を完了させた。6サイクル目以降は同じ電流密度で、2.0-4.6Vの電位範囲で29サイクル充放電させてサイクル特性の把握を行った。
Charge-discharge characteristic evaluation (Example 1)
20 mg of the powder for evaluation obtained in Example 1 was mixed with 5 mg of acetylene black and 0.5 mg of polytetrafluoroethylene powder to prepare a positive electrode mixture. This composite material was pressed against an aluminum mesh to prepare a positive electrode. A coin-type lithium secondary battery was fabricated using this positive electrode in a glove box, using an organic electrolyte of 1M by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate, and using metallic lithium foil as the negative electrode. . In order to optimize the charge/discharge characteristics of the nickel-containing lithium-manganese composite oxide of the present invention, an electrochemical activation method by a stepwise charge method was carried out. A specific activation method was as follows. The positive electrode was first charged to 80 mAh/g at a current density of 40 mA/g and then discharged to 2.0 V at the same current density. After that, charging/discharging was performed by increasing the charging capacity by 40 mAh/g, and discharging was performed in the same manner. After charging to the 4th cycle (200mAh/g), discharging to 2.0V, charging to 4.8V in the last 5th cycle, holding at that voltage to 10mA/g, and discharging to complete the activation. rice field. After the 6th cycle, the current density was the same, and 29 cycles of charging and discharging were performed in the potential range of 2.0-4.6 V to understand the cycle characteristics.

表1及び図3に、実施例1で得られた評価用粉末を用いた充放電特性評価結果を示す。実施例1で得られた評価用粉末は後述する副相を含まない比較例1で得られた評価用粉末に比べて高い初期充放電容量(Q5c及びQ5d)、高い放電電力量(E5d)、高いサイクル後の放電容量(Q34d)、高サイクル特性(100Q34d/Q5d)を示し、本発明のニッケル含有リチウムマンガン複合酸化物の充放電特性上の優位性が明らかである。なお、表1において、Q5cは5サイクル目の充電容量であり初期充電容量に対応する。Q5dは5サイクル目の放電容量であり初期放電容量に対応する。V5dは5サイクル目の放電電圧であり初期放電電圧に対応する。E5dは5サイクル目の放電電力を示す。Q34dは34サイクル目の放電容量であり、100Q34d/Q5dは29サイクルの充放電による容量維持率(サイクル特性)を示す。 Table 1 and FIG. 3 show the evaluation results of charge-discharge characteristics using the evaluation powder obtained in Example 1. The powder for evaluation obtained in Example 1 has a higher initial charge/discharge capacity (Q 5c and Q 5d ) and a higher discharge power (E 5d ), high post-cycle discharge capacity (Q 34d ), and high cycle characteristics (100Q 34d /Q 5d ), demonstrating the superiority of the nickel-containing lithium-manganese composite oxide of the present invention in charge-discharge characteristics. In addition, in Table 1, Q 5c is the charge capacity at the 5th cycle and corresponds to the initial charge capacity. Q 5d is the discharge capacity at the 5th cycle and corresponds to the initial discharge capacity. V 5d is the fifth cycle discharge voltage and corresponds to the initial discharge voltage. E 5d indicates the discharge power of the 5th cycle. Q 34d is the discharge capacity at the 34th cycle, and 100Q 34d /Q 5d indicates the capacity retention rate (cycle characteristics) after 29 cycles of charging and discharging.

実施例2
最終の焼成温度を950℃5時間大気中焼成にした以外は実施例1と同様に試料作製を行った。
Example 2
A sample was prepared in the same manner as in Example 1, except that the final firing temperature was 950°C for 5 hours in the atmosphere.

X線回折による評価(実施例2)
図4に実施例2で得られた評価用粉末のXRDパターンのフィット状況を、表1にフィットにより得られた結晶学パラメータを示す。図4から実施例2で得られた評価用粉末のXRDパターンは二種の格子定数の異なる六方晶層状岩塩型結晶相にてフィット可能なことが明らかである。表1に記載の結晶学パラメータより、実施例2で得られた評価用粉末は78モル%の主相と22モル%の副相からなり、さらにこの副相が主相より低いa軸値(2.885Å以下)、低い3b位置遷移金属占有率(g3b値、77.0%以下)、低い組成式あたりの全遷移金属量(gtotal= g3a+g3b値、90.0%以下)を有していることがわかり、本発明のニッケル含有リチウムマンガン複合酸化物が得られたことが明らかである。さらに実施例2で得られた評価用粉末は2θ=45°付近の104ピークの半価幅が0.24°と大きく、本発明のニッケル含有リチウムマンガン複合酸化物が得られたことが明らかである。
Evaluation by X-ray diffraction (Example 2)
FIG. 4 shows the XRD pattern fit of the powder for evaluation obtained in Example 2, and Table 1 shows the crystallographic parameters obtained by fitting. From FIG. 4, it is clear that the XRD pattern of the powder for evaluation obtained in Example 2 can fit two hexagonal layered rock salt type crystal phases having different lattice constants. From the crystallographic parameters listed in Table 1, the powder for evaluation obtained in Example 2 consisted of 78 mol% of the main phase and 22 mol% of the subphase, and the subphase had a lower a-axis value than the main phase ( 2.885 Å or less), low occupancy of 3b position transition metals (g 3b value, 77.0% or less), low total transition metal content per composition formula (g total = g 3a + g 3b value, 90.0% or less) It is clear that the nickel-containing lithium-manganese composite oxide of the present invention was obtained. Furthermore, the powder for evaluation obtained in Example 2 has a large half-value width of 0.24° for the 104 peak near 2θ=45°, clearly indicating that the nickel-containing lithium-manganese composite oxide of the present invention was obtained.

化学分析による評価(実施例2)
実施例2で得られた評価用粉末中のLi量をICP発光分析で、Ni及びMn量を蛍光X線分析により求めた。結果を表1に示す。Li/(Ni+Mn)モル比の値とNi/(Ni+Mn)モル比の値より本発明のニッケル含有リチウムマンガン複合酸化物が得られていることが明らかである。
Evaluation by chemical analysis (Example 2)
The amount of Li in the powder for evaluation obtained in Example 2 was determined by ICP emission spectrometry, and the amounts of Ni and Mn were determined by fluorescent X-ray analysis. Table 1 shows the results. It is clear from the Li/(Ni+Mn) molar ratio value and the Ni/(Ni+Mn) molar ratio value that the nickel-containing lithium-manganese composite oxide of the present invention was obtained.

充放電特性評価(実施例2)
実施例2で得られた評価用粉末も実施例1と同様に電極合材作製、電気化学的活性化及びサイクル特性評価を行った。表1及び図5に実施例2で得られた評価用粉末の充放電特性評価結果を示す。実施例2で得られた評価用粉末は後述する副相を含まない比較例1で得られた評価用粉末に比べて高い初期充放電容量(Q5c及びQ5d)、高い放電電力量(E5d)、高いサイクル後の放電容量(Q34d)、高サイクル特性(100Q34d/Q5d)を示し、本発明のニッケル含有リチウムマンガン複合酸化物の充放電特性上の優位性が明らかである。
Charge-discharge characteristic evaluation (Example 2)
The powder for evaluation obtained in Example 2 was subjected to electrode mixture preparation, electrochemical activation, and cycle characteristic evaluation in the same manner as in Example 1. Table 1 and FIG. 5 show the evaluation results of charge-discharge characteristics of the powder for evaluation obtained in Example 2. The powder for evaluation obtained in Example 2 has a higher initial charge/discharge capacity (Q 5c and Q 5d ) and a higher discharge power (E 5d ), high post-cycle discharge capacity (Q 34d ), and high cycle characteristics (100Q 34d /Q 5d ), demonstrating the superiority of the nickel-containing lithium-manganese composite oxide of the present invention in charge-discharge characteristics.

比較例1
最終の焼成温度を1000℃5時間大気中焼成にした以外は実施例1と同様に試料作製を行った。
Comparative example 1
A sample was prepared in the same manner as in Example 1, except that the final sintering temperature was 1000° C. for 5 hours in air.

X線回折による評価(比較例1)
図6に比較例1で得られた評価用粉末のXRDパターンのフィット状況を、表1にフィットにより得られた結晶学パラメータを示す。図6から比較例1で得られた評価用粉末のXRDパターンは1種の六方晶層状岩塩型結晶相のみにてフィット可能なことが明らかである。表1に記載の結晶学パラメータより、比較例1で得られた評価用粉末は100モル%の主相のみであり、a軸値(2.885Å以下)、3b位置遷移金属占有率(g3b値、77.0%以下)、組成式あたりの全遷移金属量(gtotal= g3a+g3b値、90.0%以下)いずれも本発明nの範囲から外れ、本発明のニッケル含有リチウムマンガン複合酸化物が得られていないことが明らかである。さらに比較例1で得られた評価用粉末は2θ=45°付近の104ピークの半価幅が0.20°と小さく、本発明のニッケル含有リチウムマンガン複合酸化物が得られていないことが明らかである。
Evaluation by X-ray diffraction (Comparative Example 1)
FIG. 6 shows the fitted state of the XRD pattern of the powder for evaluation obtained in Comparative Example 1, and Table 1 shows the crystallographic parameters obtained by fitting. From FIG. 6, it is clear that the XRD pattern of the powder for evaluation obtained in Comparative Example 1 can be fitted to only one type of hexagonal layered rock salt crystal phase. From the crystallographic parameters listed in Table 1, the evaluation powder obtained in Comparative Example 1 has only 100 mol% of the main phase, the a-axis value (2.885 Å or less), the 3b-position transition metal occupancy (g 3b value , 77.0% or less), the total amount of transition metals per composition formula (g total = g 3a + g 3b value, 90.0% or less) are both outside the scope of the present invention n, and the nickel-containing lithium manganese composite oxide of the present invention is Clearly not. Furthermore, the powder for evaluation obtained in Comparative Example 1 has a small half width of 0.20° for the 104 peak near 2θ = 45°, and it is clear that the nickel-containing lithium manganese composite oxide of the present invention was not obtained. .

化学分析による評価(比較例1)
比較例1で得られた評価用粉末中のLi量をICP発光分析で、Ni及びMn量を蛍光X線分析により求めた。結果を表1に示す。Li/(Ni+Mn)モル比の値とNi/(Ni+Mn)モル比の値より本発明のニッケル含有リチウムマンガン複合酸化物との差は若干であることが明らかとなった。
Evaluation by chemical analysis (Comparative Example 1)
The amount of Li in the powder for evaluation obtained in Comparative Example 1 was determined by ICP emission analysis, and the amount of Ni and Mn was determined by fluorescent X-ray analysis. Table 1 shows the results. From the values of Li/(Ni+Mn) molar ratio and Ni/(Ni+Mn) molar ratio, it was clarified that the difference from the nickel-containing lithium-manganese composite oxide of the present invention is slight.

充放電特性評価(比較例1)
比較例1で得られた評価用粉末も実施例1と同様に電極合材作製、電気化学的活性化及びサイクル特性評価を行った。表1及び図7に比較例1で得られた評価用粉末の充放電特性評価結果を示す。比較例1で得られた評価用粉末は前述した副相を含む実施例1及び2で得られた評価用粉末に比べて低い初期充放電容量(Q5c及びQ5d)、低い放電電力量(E5d)、低いサイクル後の放電容量(Q34d)、低サイクル特性(100Q34d/Q5d)を示し、本発明のニッケル含有リチウムマンガン複合酸化物と異なるために充放電特性上不利となることが明らかである。
Charge/discharge characteristics evaluation (Comparative example 1)
The powder for evaluation obtained in Comparative Example 1 was also subjected to electrode mixture preparation, electrochemical activation, and cycle characteristic evaluation in the same manner as in Example 1. Table 1 and FIG. 7 show the evaluation results of charge-discharge characteristics of the powder for evaluation obtained in Comparative Example 1. The powder for evaluation obtained in Comparative Example 1 has a lower initial charge-discharge capacity (Q 5c and Q 5d ) and a lower discharge power ( E 5d ), low cycle discharge capacity (Q 34d ), and low cycle characteristics (100Q 34d /Q 5d ), which is disadvantageous in charge and discharge characteristics because it is different from the nickel-containing lithium manganese composite oxide of the present invention. is clear.

Figure 0007133215000002
Figure 0007133215000002

以上の実施例及び比較例の結果から、特異な六方晶層状岩塩型結晶相を副相として含むという特徴を有する本発明のニッケル含有リチウムマンガン複合酸化物は、優れた充放電特性を有する正極活物質であることが明らかである。 From the results of the above examples and comparative examples, the nickel-containing lithium manganese composite oxide of the present invention, which is characterized by containing a unique hexagonal layered rock salt crystal phase as a subphase, has excellent charge and discharge characteristics. It is clear that it is a substance.

Claims (8)

一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ-0.1<x<0.1、0.4≦y≦0.6を示す。]
で表され、
二種以上の層状岩塩型構造の結晶相を含有し、
そのうち一相の層状岩塩型構造の結晶相(2)は、遷移金属層内格子位置の遷移金属占有率(g3b)が65.0~77.0%である、ニッケル含有リチウムマンガン複合酸化物。
General formula (1):
Li1 +x (NiyMn1 -y ) 1-xO2 ( 1)
[In the formula, x and y represent −0.1<x<0.1 and 0.4≦y≦0.6, respectively. ]
is represented by
Containing two or more kinds of crystal phases with a layered rock salt structure,
Among them, the crystal phase (2) having a layered rock salt structure is a nickel-containing lithium-manganese composite oxide in which the transition metal occupancy (g 3b ) of lattice positions in the transition metal layer is 65.0 to 77.0%.
前記層状岩塩型構造の結晶相(2)は、組成式あたりの遷移金属占有率(gtotal)が67.0~90.0%である、請求項1に記載のニッケル含有リチウムマンガン複合酸化物。 2. The nickel-containing lithium-manganese composite oxide according to claim 1, wherein the crystal phase (2) having a layered rock salt structure has a transition metal occupation ratio (g total ) per composition formula of 67.0 to 90.0%. 前記層状岩塩型構造の結晶相(2)は、格子定数a軸値が2.850~2.885Åである、請求項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。 3. The nickel-containing lithium-manganese composite oxide according to claim 1, wherein the crystal phase (2) having a layered rock salt structure has a lattice constant a-axis value of 2.850 to 2.885 Å. X線回折パターンにおける104面のピークの半価幅が0.21~2.00°以上である、請求項1~3のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物。 The nickel-containing lithium-manganese composite oxide according to any one of claims 1 to 3, wherein the half width of the peak of the 104 plane in the X-ray diffraction pattern is 0.21 to 2.00° or more. 前記ニッケル含有リチウムマンガン複合酸化物が有する結晶構造の総量を100モル%として、前記層状岩塩型構造の結晶相(2)の存在比率が10~40モル%である、請求項1~4のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物。 5. Any one of claims 1 to 4, wherein the existence ratio of the crystal phase (2) of the layered rock salt type structure is 10 to 40 mol% when the total amount of the crystal structure possessed by the nickel-containing lithium manganese composite oxide is 100 mol%. 2. The nickel-containing lithium-manganese composite oxide according to claim 1. 請求項1~5のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物を含むリチウムイオン二次電池用正極活物質。 A positive electrode active material for a lithium ion secondary battery, comprising the nickel-containing lithium manganese composite oxide according to any one of claims 1 to 5. 請求項6に記載のリチウムイオン二次電池用正極活物質を備える、リチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode active material for lithium ion secondary batteries according to claim 6 . 請求項1~5のいずれか1項に記載のニッケル含有リチウムマンガン複合酸化物の製造方法であって、
(1)マンガン化合物及びニッケル化合物を含む混合水溶液から、アルカリ性条件下にて沈殿物を形成する工程、
(2)前記沈殿物に湿式酸化処理を行う工程、及び
(3)リチウム塩共存下酸化性雰囲気下、500~980℃で熱処理する工程
を備える、製造方法。
A method for producing a nickel-containing lithium-manganese composite oxide according to any one of claims 1 to 5,
(1) forming a precipitate under alkaline conditions from a mixed aqueous solution containing a manganese compound and a nickel compound;
(2) a step of subjecting the precipitate to a wet oxidation treatment; and (3) a step of heat-treating at 500 to 980°C in an oxidizing atmosphere in the presence of a lithium salt.
JP2018217435A 2018-11-20 2018-11-20 Nickel-manganese composite oxide and method for producing the same Active JP7133215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217435A JP7133215B2 (en) 2018-11-20 2018-11-20 Nickel-manganese composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217435A JP7133215B2 (en) 2018-11-20 2018-11-20 Nickel-manganese composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020083677A JP2020083677A (en) 2020-06-04
JP7133215B2 true JP7133215B2 (en) 2022-09-08

Family

ID=70909590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217435A Active JP7133215B2 (en) 2018-11-20 2018-11-20 Nickel-manganese composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP7133215B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257890A (en) 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
JP2017527963A (en) 2014-08-05 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for lithium ion battery
WO2018096999A1 (en) 2016-11-28 2018-05-31 国立研究開発法人産業技術総合研究所 Lithium-manganese complex oxide and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257890A (en) 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
JP2017527963A (en) 2014-08-05 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for lithium ion battery
WO2018096999A1 (en) 2016-11-28 2018-05-31 国立研究開発法人産業技術総合研究所 Lithium-manganese complex oxide and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Julien Breger et al.,Chem. Mater.,2006年,18,pp.4768-4781,doi: 10.1021/cm060886r

Also Published As

Publication number Publication date
JP2020083677A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6433438B2 (en) Doped sodium manganese oxide cathode material for sodium ion batteries
US8021783B2 (en) Lithium manganese-based composite oxide and method for preparing the same
JP6462250B2 (en) Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery including the same
JP5263761B2 (en) Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same
JP2020068210A (en) Composite positive electrode active material, positive electrode containing the same, lithium battery and manufacturing method thereof
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
WO2012132155A1 (en) Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP6015886B2 (en) Lithium manganese composite oxide and method for producing the same
JP5958926B2 (en) Lithium manganese composite oxide and method for producing the same
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP6717311B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2018043436A1 (en) Dissimilar metal-containing lithium-nickel composite oxide and production method therefor
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same
JP2008133149A (en) Method for production of lithium-iron-manganese composite oxide
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP7194493B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7133215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150