JP5109447B2 - Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5109447B2
JP5109447B2 JP2007096163A JP2007096163A JP5109447B2 JP 5109447 B2 JP5109447 B2 JP 5109447B2 JP 2007096163 A JP2007096163 A JP 2007096163A JP 2007096163 A JP2007096163 A JP 2007096163A JP 5109447 B2 JP5109447 B2 JP 5109447B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
nickel
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007096163A
Other languages
Japanese (ja)
Other versions
JP2008257902A (en
Inventor
竜一 葛尾
篤 福井
英雄 笹岡
周平 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007096163A priority Critical patent/JP5109447B2/en
Publication of JP2008257902A publication Critical patent/JP2008257902A/en
Application granted granted Critical
Publication of JP5109447B2 publication Critical patent/JP5109447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池に関し、さらに詳しくは、熱安定性に優れ、かつ高い充放電容量が得られるリチウムニッケル複合酸化物粉末からなる非水系電解質二次電池用の正極活物質とその工業的生産に適した製造方法、及びそれを用いた高容量で安全性の高い非水系電解質二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material. More specifically, the lithium is excellent in thermal stability and provides high charge / discharge capacity. The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery made of nickel composite oxide powder, a manufacturing method suitable for industrial production thereof, and a high-capacity, high-safety non-aqueous electrolyte secondary battery using the same.

近年、携帯電話及びノート型パソコンなどの携帯電子機器の普及にともない、高いエネルギー密度を有し、小型で軽量な非水系電解質二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池が挙げられ、現在、研究開発が盛んに行われているところである。
この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され実用化が進んでいる。このリチウムコバルト複合酸化物を用いたリチウムイオン二次電池については、優れた初期容量特性とサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。
In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook personal computers, development of non-aqueous electrolyte secondary batteries having high energy density, small size and light weight is strongly desired. As such a secondary battery, a lithium ion secondary battery can be cited, and research and development are currently being actively conducted.
Among these, a lithium ion secondary battery using a lithium metal composite oxide, in particular, a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. It is expected to be a battery having a high density and is being put to practical use. With respect to lithium ion secondary batteries using this lithium cobalt composite oxide, many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.

しかしながら、リチウムコバルト複合酸化物は、希少で高価なコバルトを原料に用いているため、電池のコストアップの原因となっていた。このため、正極活物質としてリチウムコバルト複合酸化物よりも安価なものが望まれている。さらに、最近、リチウムイオン二次電池の用途として、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用、電気自動車用などの大型二次電池として適用することへの期待も高まってきている。したがって、活物質のコストを下げて、より安価なリチウムイオン二次電池の製造を可能とすることは、これらの広範な分野への大きな波及効果が期待できる。さらに、ハイブリッド自動車用、電気自動車用の電源として用いられる場合には、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。   However, since the lithium cobalt composite oxide uses rare and expensive cobalt as a raw material, it has been a cause of cost increase of the battery. For this reason, what is cheaper than a lithium cobalt complex oxide as a positive electrode active material is desired. In addition, recently, as a use of lithium ion secondary batteries, not only small secondary batteries for portable electronic devices but also expectation to be applied as large secondary batteries for power storage, electric vehicles, etc. Yes. Therefore, reducing the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery can be expected to have a large ripple effect in these wide fields. Furthermore, when used as a power source for a hybrid vehicle or an electric vehicle, it is a big problem to solve the problem of the lithium nickel composite oxide that is inferior in safety.

このような状況下、リチウムイオン二次電池用正極活物質として、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)或いはニッケルを用いたリチウムニッケル複合酸化物(LiNiO)が新たな材料として提案されている。ここで、リチウムマンガン複合酸化物は、その原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえる。しかしながら、その理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を有している。また、45℃以上の温度では、自己放電が激しく、充放電寿命も低下するという欠点もある。 Under such circumstances, a lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, or a lithium nickel composite oxide (LiNiO 2 ) using nickel as a positive electrode active material for a lithium ion secondary battery. ) Has been proposed as a new material. Here, the lithium manganese composite oxide is an effective alternative to the lithium cobalt composite oxide because its raw material is inexpensive and has excellent thermal stability, in particular, safety with respect to ignition and the like. However, since its theoretical capacity is only about half that of the lithium cobalt composite oxide, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, at a temperature of 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.

一方、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示すため、電解液の酸化による分解が問題になりにくく、より高い容量が期待できることから、開発が盛んに行われている。しかしながら、ニッケルの一部を他の元素で置換せずに、ニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣るという問題がある。また、高温環境下で使用されたり、保存されたりした場合には、電池性能が比較的損なわれやすいという欠点も有している。   On the other hand, the lithium nickel composite oxide has almost the same theoretical capacity as the lithium cobalt composite oxide, and shows a slightly lower battery voltage than the lithium cobalt composite oxide. Therefore, decomposition due to oxidation of the electrolyte is less likely to be a problem. Since high capacity can be expected, development is actively conducted. However, when a lithium-ion secondary battery is produced using a lithium-nickel composite oxide composed only of nickel as a positive electrode active material without replacing a part of nickel with another element, compared to lithium cobalt composite oxide There is a problem that the cycle characteristics are inferior. In addition, when used or stored in a high-temperature environment, the battery performance is relatively easily lost.

この解決策として、例えば、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiNiCo(式中、w、x、y、zは、0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1である。)で表されるリチウムニッケル複合酸化物、すなわち、コバルトとホウ素が添加されたリチウムニッケル複合酸化物が提案されている(例えば、特許文献1参照。)。
また、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiNiCo(式中、Mは、Al、V、Mn、Fe、Cu又はZnから選ばれる少なくとも1種の元素であり、x、a、b、cは、0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2である。)で表されるリチウムニッケル系複合酸化物が提案されている(例えば、特許文献2参照。)。
しかしながら、これらのリチウムニッケル複合酸化物では、リチウムコバルト複合酸化物に比べて充電容量と放電容量ともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、リチウムコバルト複合酸化物に比べて低い温度から酸素放出を伴うという熱安定性の問題がある。
As this solution, for example, Li w Ni x Co y B Z O 2 (wherein w, x, y) can be used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. , Z is 0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, and x + y + z = 1.) That is, a lithium nickel composite oxide to which cobalt and boron are added has been proposed (for example, see Patent Document 1).
Further, for the purpose of improving the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li z Ni a Co b M c O z (wherein M is Al, V, Mn, Fe, Cu or Zn). X, a, b, c are 0.8 ≦ x ≦ 1.2, 0.01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, Lithium-nickel based composite oxide represented by 0.01 ≦ c ≦ 0.3 and 0.8 ≦ a + b + c ≦ 1.2 is proposed (for example, see Patent Document 2).
However, in these lithium nickel composite oxides, both the charge capacity and the discharge capacity are higher than those of the lithium cobalt composite oxide, and the cycle characteristics are improved, but when left in a fully charged state in a high temperature environment, There is a problem of thermal stability that involves oxygen release from a lower temperature than lithium cobalt composite oxide.

このような問題を解決するために、例えば、リチウムイオン二次電池正極材料の熱安定性を向上させることを目的として、LiNiCo(式中、Mは、Al、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn又はTiから選ばれる少なくとも一種の元素であり、a、b、c、d、eは、0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2、b+c+d=1である。)で表されるリチウムニッケル系複合酸化物等が提案されている(例えば、特許文献3参照。)。ここで、添加元素Mとして、例えば、アルミニウムを選択した場合、ニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上することが確かめられている。しかしながら、十分な安定性を確保するため有効なアルミニウム量でニッケルを置換すると、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少するため、電池性能として最も重要である初期容量が大きく低下してしまうという問題を有していた。これは、Alは3価で安定していることから、Niも電荷を合わせるため3価で安定化させると、酸化還元反応(Redox反応)に寄与しない部分が生ずるために容量低下が起こるものと考えられる。したがって、この提案においても、なお、充放電容量の確保と熱安定性の向上という課題が解決されているとは言い難い。 In order to solve such a problem, for example, for the purpose of improving the thermal stability of the lithium ion secondary battery positive electrode material, Li a Mb Ni c Co d O e (wherein M is Al, It is at least one element selected from Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn or Ti, and a, b, c, d and e are 0 <a <1.3, 0. 02 ≦ b ≦ 0.5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1)) (For example, see Patent Document 3). Here, for example, when aluminum is selected as the additive element M, it is confirmed that if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved. . However, if nickel is replaced with an effective amount of aluminum to ensure sufficient stability, the amount of nickel that contributes to the oxidation-reduction reaction accompanying the charge / discharge reaction decreases, so the initial capacity, which is the most important for battery performance, is large. It had the problem of being lowered. This is because Al is stable at trivalent, and Ni also stabilizes at trivalent in order to match the charge, so that a portion that does not contribute to the oxidation-reduction reaction (Redox reaction) occurs, resulting in a decrease in capacity. Conceivable. Therefore, even in this proposal, it cannot be said that the problems of securing charge / discharge capacity and improving thermal stability are solved.

また、一般式LiNi1−xCo(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、又はFeから選ばれる少なくとも一種からなり、x、y、zは、0.1≦x≦0.3、0.05≦y≦0.28、0.02≦z≦0.25、x=y+zである。)で表されるリチウムニッケル系複合酸化物が提案されている(例えば、特許文献4参照。)。 In general formula LiNi 1-x Co y M z O 2 ( where, M is made Mg, Al, Ca, Ti, V, Cr, Mn, or at least one selected from Fe, x, y, z Is 0.1 ≦ x ≦ 0.3, 0.05 ≦ y ≦ 0.28, 0.02 ≦ z ≦ 0.25, and x = y + z.) It has been proposed (see, for example, Patent Document 4).

ここで、このリチウムニッケル系複合酸化物の製造方法としては、次の方法が開示されている。反応槽内に、塩濃度が調整されたニッケル−コバルト−添加元素(M)系水溶液、その水溶液と錯塩を形成する錯化剤、及びアルカリ金属水酸化物をそれぞれ連続的に供給し、ニッケル、コバルト及び添加元素(M)を含む錯塩を生成させる。次いで、この錯塩をアルカリ金属水酸化物により分解してニッケル−コバルト−添加元素(M)系水酸化物を析出させ、上記錯塩の生成及び分解を槽内で循環させながら繰り返し行わせ、粒子形状が略球状であるニッケル、コバルト及び添加元素(M)を含む水酸化物をオ−バーフローさせて取り出す。得られたニッケル、コバルト及び添加元素(M)を含む水酸化物を原料として用いるか、或いはさらにこれを焙焼してニッケル、コバルト及び添加元素(M)を含む酸化物とした後に、これにリチウム塩を混合し、焼成してリチウムニッケルコバルト複合酸化物を得るものである。この方法は、水酸化ニッケルに二種以上の水酸化物を共沈させ、そのうちの一種をコバルトに限定することによって、リチウム含有複合酸化物活物質の分極特性を改善し、さらにニッケル及びコバルト以外の添加元素(M)を水酸化物中を共沈させることにより、格子の安定化を図ったものである。この添加元素(M)を共沈させた水酸化物を、リチウムイオン二次電池の正極活物質材料として用いた場合、2元素共沈水酸化物であるコバルト−ニッケル水酸化物を用いた場合に比べて、初期容量が上昇し、かつ充放電の繰り返しによるサイクル劣化が抑制されるとしている。   Here, the following method is disclosed as a manufacturing method of this lithium nickel type complex oxide. In the reaction vessel, a nickel-cobalt-added element (M) aqueous solution whose salt concentration is adjusted, a complexing agent that forms a complex salt with the aqueous solution, and an alkali metal hydroxide are continuously supplied to each of the nickel, A complex salt containing cobalt and the additive element (M) is produced. Next, the complex salt is decomposed with an alkali metal hydroxide to precipitate a nickel-cobalt-added element (M) hydroxide, and the formation and decomposition of the complex salt is repeated while circulating in the tank to form a particle shape. A hydroxide containing nickel, cobalt, and additive element (M) having a substantially spherical shape is taken out by overflowing. The obtained hydroxide containing nickel, cobalt and additive element (M) is used as a raw material, or it is further baked to obtain an oxide containing nickel, cobalt and additive element (M). A lithium salt is mixed and fired to obtain a lithium nickel cobalt composite oxide. This method improves the polarization characteristics of the lithium-containing composite oxide active material by coprecipitation of two or more hydroxides in nickel hydroxide and restricts one of them to cobalt. The additive element (M) was coprecipitated in the hydroxide to stabilize the lattice. When the hydroxide in which the additive element (M) is co-precipitated is used as a positive electrode active material of a lithium ion secondary battery, when a cobalt-nickel hydroxide that is a two-element co-precipitated hydroxide is used. In comparison, the initial capacity increases and cycle deterioration due to repeated charge and discharge is suppressed.

しかしながら、この提案においても、放電容量の増加と充放電の繰り返しによるサイクル劣化の抑制という効果について記載されているが、熱的安定性の向上に関する記載はなく、充放電容量の確保と熱的安定性の向上という重要な課題の解決策としては十分と言えない。しかも、添加元素(M)塩として、硫酸チタンを用いる場合、硫酸チタンは3価ではほとんど水に不溶であり、かつ4価では水溶性であるが、多量の硫酸中に溶解しているため、硫酸を中和するための中和剤が余分に必要なこと、及び加水分解を起こしやすいことから偏析しやすい上、ニッケルコバルト水酸化物の粒子成長を阻害する問題もあり、得られるリチウムニッケルコバルト複合酸化物中にチタン化合物が偏析するため、有効な効果が得られず、工業的な生産には不向きであるという問題があった。   However, this proposal also describes the effect of increasing the discharge capacity and suppressing cycle deterioration due to repeated charge and discharge, but there is no description regarding the improvement of thermal stability, ensuring the charge and discharge capacity and thermal stability. It is not enough as a solution to the important problem of improving the performance. Moreover, when titanium sulfate is used as the additive element (M) salt, titanium sulfate is almost insoluble in water at trivalent and water-soluble at tetravalent, but is dissolved in a large amount of sulfuric acid. Lithium nickel cobalt is obtained because of the necessity of an extra neutralizing agent to neutralize the sulfuric acid and the tendency to hydrolyze, which causes segregation and obstructs nickel cobalt hydroxide particle growth. Since the titanium compound segregates in the composite oxide, there is a problem that an effective effect cannot be obtained and it is not suitable for industrial production.

特開平8−45509号公報(第1頁、第2頁)JP-A-8-45509 (first page, second page) 特開平8−213015号公報(第1頁、第2頁)Japanese Patent Laid-Open No. 8-213015 (first page, second page) 特開平5−242891号公報(第1頁、第2頁)JP-A-5-242891 (first and second pages) 特開平10−27611号公報(第1頁、第2頁)JP 10-27611 A (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、熱安定性に優れ、かつ高い充放電容量が得られるリチウムニッケル複合酸化物粉末からなる非水系電解質二次電池用の正極活物質とその工業的生産に適した製造方法、及びそれを用いた高容量で安全性の高い非水系電解質二次電池を提供することにある。   An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-nickel composite oxide powder that is excellent in thermal stability and has a high charge / discharge capacity in view of the above-mentioned problems of the prior art. It is an object of the present invention to provide a manufacturing method suitable for industrial production, and a non-aqueous electrolyte secondary battery having high capacity and high safety using the manufacturing method.

本発明者らは、上記目的を達成するために、リチウムニッケル複合酸化物粉末からなる非水系電解質二次電池用正極活物質とそれを用いた非水系電解質二次電池について、鋭意研究を重ねた結果、特定原子比のリチウムとチタンを示す組成式で表される複合酸化物からなる正極活物質であって、電池の充電時には、特定の2相からなる結晶構造を形成するものとしたところ、高い充放電容量を確保しながら、充電状態で、加熱にともなう急激な酸素放出を抑制することにより熱安定性を向上させることが達成され、熱安定性が良好で、かつ高い充放電容量をもつ非水系電解質二次電池用正極活物質が得られること、及びそれを用いて高容量で安全性の高い非水系電解質二次電池が得られることを見出した。
また、ニッケル、コバルト及びチタンの原子比を制御したニッケルコバルトチタン複合水酸化物を得る工程、及びリチウムの原子比を制御したリチウムニッケルコバルトチタン複合酸化物を得る工程を含む製造方法において、特に、チタン塩として硫酸チタニルを用いて、チタンが均一に固溶した複合酸化物が得ることにより、上記正極活物質が工業上効率的に生産されることを見出した。これらにより、本発明を完成した。
In order to achieve the above object, the present inventors have conducted extensive research on a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide powder and a non-aqueous electrolyte secondary battery using the same. As a result, a positive electrode active material composed of a composite oxide represented by a composition formula showing lithium and titanium at a specific atomic ratio, and when a battery is charged, a crystal structure composed of a specific two phase is formed. While ensuring a high charge / discharge capacity, it is possible to improve thermal stability by suppressing rapid oxygen release during heating in a charged state, good thermal stability, and high charge / discharge capacity. It has been found that a positive electrode active material for a non-aqueous electrolyte secondary battery can be obtained, and that a high-capacity and high-safety non-aqueous electrolyte secondary battery can be obtained.
In addition, in the production method including a step of obtaining a nickel cobalt titanium composite hydroxide having a controlled atomic ratio of nickel, cobalt and titanium, and a step of obtaining a lithium nickel cobalt titanium composite oxide having a controlled atomic ratio of lithium, It has been found that by using titanyl sulfate as a titanium salt to obtain a composite oxide in which titanium is uniformly dissolved, the positive electrode active material is industrially efficiently produced. Thus, the present invention has been completed.

すなわち、本発明の第1の発明によれば、リチウム、ニッケル、コバルト及びチタンを含有する次の組成式(1)で表される複合酸化物からなる非水系電解質二次電池用正極活物質であって、
その結晶構造は、六方晶系の層状構造を有する複合酸化物単相であり、かつ電池の充電時には、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相との2相からなることを特徴とする非水系電解質二次電池用正極活物質が提供される。
組成式(1):Li1+zNi1−x−yCoTi……(1)
(式中、x、y、zは、下記の(a)〜(c)に示す要件を満たす。)
(a) 0.10≦x≦0.21
(b) 0.01≦y≦0.08
(c) 0.03≦z≦0.14
That is, according to the first invention of the present invention, a positive electrode active material for a nonaqueous electrolyte secondary battery comprising a composite oxide represented by the following composition formula (1) containing lithium, nickel, cobalt and titanium: There,
The crystal structure is a single phase of a complex oxide having a hexagonal layered structure, and a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° in the X-ray diffraction measurement by Cu—Kα ray when the battery is charged. And a composite oxide phase having a layered structure in which a diffraction peak appears at 2θ = 17 to 19 °, and a positive electrode active material for a non-aqueous electrolyte secondary battery. .
Composition formula (1): Li 1 + z Ni 1-xy Co x Ti y O 2 (1)
(In the formula, x, y and z satisfy the requirements shown in the following (a) to (c).)
(A) 0.10 ≦ x ≦ 0.21
(B) 0.01 ≦ y ≦ 0.08
(C) 0.03 ≦ z ≦ 0.14

また、本発明の第2の発明によれば、第1の発明において、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相は、加熱に際して、それぞれTG−DTA測定で温度領域(A):120〜180℃と温度領域(B):200〜270℃で重量減少を示すことを特徴とする非水系電解質二次電池用正極活物質が提供される。   According to the second invention of the present invention, in the first invention, a phase having a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° in an X-ray diffraction measurement by Cu—Kα ray, and 2θ = The composite oxide phase having a layered structure in which a diffraction peak appears at 17 to 19 ° has a temperature range (A) of 120 to 180 ° C. and a temperature range (B) of 200 to 270 ° C. by TG-DTA measurement upon heating, respectively. Provided is a positive electrode active material for a non-aqueous electrolyte secondary battery characterized by exhibiting weight reduction.

また、本発明の第3の発明によれば、第2の発明において、上記重量減少は、電池の充電後の正極のTG−DTA測定で、温度領域(A)で3.5質量%以下であり、かつ温度領域(B)で5.2質量%以下であることを特徴とする非水系電解質二次電池用正極活物質が提供される。   Moreover, according to the third invention of the present invention, in the second invention, the weight reduction is TG-DTA measurement of the positive electrode after charging the battery, and is 3.5 mass% or less in the temperature region (A). And a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by being 5.2 mass% or less in the temperature region (B).

また、本発明の第4の発明によれば、第1〜3いずれかの発明において、非水系電解質二次電池の正極に用いた場合の初期放電容量は、190mAh/g以上であることを特徴とする非水系電解質二次電池用正極活物質が提供される。   According to the fourth invention of the present invention, in any one of the first to third inventions, the initial discharge capacity when used for the positive electrode of the nonaqueous electrolyte secondary battery is 190 mAh / g or more. A positive electrode active material for a non-aqueous electrolyte secondary battery is provided.

また、本発明の第5の発明によれば、下記の工程(イ)、(ロ)を含むことを特徴とする第1〜4いずれかの発明の非水電解質二次電池用正極活物質の製造方法が提供される。
工程(イ):ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液、及びアルカリ水溶液を、反応槽に同時に滴下しながら、それらを撹拌し、60〜80℃の温度下、pHを10〜11に保持して、共沈殿させ、反応槽内で定常状態になった後に、オーバーフローした沈殿物を採取し、濾過、水洗、乾燥して、ニッケル、コバルト及びチタンの原子比を制御したニッケルコバルトチタン複合水酸化物を得る。
工程(ロ):前記ニッケルコバルトチタン複合水酸化物と水酸化リチウムまたはその水和物とを混合し、この混合物を、酸素気流中700〜800℃の温度で焼成して、リチウムの原子比を制御したリチウムニッケルコバルトチタン複合酸化物を得る。
According to a fifth aspect of the present invention, there is provided a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of the first to fourth aspects, comprising the following steps (a) and (b): A manufacturing method is provided.
Step (I): A mixed aqueous solution of nickel salt and cobalt salt, an aqueous solution of titanyl sulfate, and an aqueous alkali solution are simultaneously added dropwise to a reaction vessel, and they are stirred, and the pH is adjusted to 10 to 11 at a temperature of 60 to 80 ° C. Hold, co-precipitate, and after reaching a steady state in the reaction vessel , the overflowed precipitate is collected, filtered, washed with water, and dried to control the atomic ratio of nickel, cobalt, and titanium. Obtain a hydroxide.
Step (b): The nickel-cobalt-titanium composite hydroxide and lithium hydroxide or hydrate thereof are mixed, and the mixture is baked in an oxygen stream at a temperature of 700 to 800 ° C. to determine the atomic ratio of lithium. A controlled lithium nickel cobalt titanium composite oxide is obtained.

また、本発明の第の発明によれば、第1〜4いずれかの発明の非水系電解質二次電池用正極活物質を正極に用いてなる非水系電解質二次電池が提供される。 According to the sixth aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of the first to fourth aspects as a positive electrode.

本発明の非水系電解質二次電池用正極活物質は、熱安定性に優れ、かつ高い充放電容量が得られるリチウムニッケルコバルトチタン複合酸化物粉末からなる非水系電解質二次電池用の正極活物質であり、また、その製造方法は、該正極活物質の工業的生産に適した製造方法であり、さらに本発明の非水系電解質二次電池は、本発明のリチウムニッケルコバルトチタン複合酸化物粉末からなる非水系電解質二次電池用の正極活物質を用いてなる高容量で安全性の高い非水系電解質二次電池であるので、その工業的価値は極めて大きい。
これによって、携帯電子機器等の小型二次電池における高容量化の要求に応えることができるとともに、ハイブリッド自動車用、電気自動車用の電源である大型二次電池に求められる安全性も確保することができるので、より有利である。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel cobalt titanium composite oxide powder having excellent thermal stability and high charge / discharge capacity. The manufacturing method is a manufacturing method suitable for industrial production of the positive electrode active material, and the non-aqueous electrolyte secondary battery of the present invention is obtained from the lithium nickel cobalt titanium composite oxide powder of the present invention. Since the non-aqueous electrolyte secondary battery has a high capacity and high safety using the positive electrode active material for a non-aqueous electrolyte secondary battery, the industrial value is extremely large.
As a result, it is possible to meet the demand for higher capacity in small secondary batteries such as portable electronic devices, and to ensure the safety required for large secondary batteries that are power sources for hybrid vehicles and electric vehicles. It is more advantageous because it can.

以下、本発明の非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池を詳細に説明する。
1.非水系電解質二次電池用正極活物質
本発明の非水系電解質二次電池用正極活物質は、リチウム、ニッケル、コバルト及びチタンを含有する次の組成式(1)で表される複合酸化物からなる非水系電解質二次電池用正極活物質であって、その結晶構造は、六方晶系の層状構造を有する複合酸化物単相であり、かつ電池の充電時には、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相との2相からなることを特徴とする。
組成式(1):Li1+zNi1−x−yCoTi……(1)
(式中、x、y、zは、下記の(a)〜(c)に示す要件を満たす。)
(a) 0.10≦x≦0.21
(b) 0.01≦y≦0.08
(c) 0.03≦z≦0.14
Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, the production method thereof, and the non-aqueous electrolyte secondary battery using the same will be described in detail.
1. Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material for non-aqueous electrolyte secondary battery of the present invention comprises a composite oxide represented by the following composition formula (1) containing lithium, nickel, cobalt and titanium. A positive electrode active material for a non-aqueous electrolyte secondary battery, the crystal structure of which is a single phase of a complex oxide having a hexagonal layered structure, and X-ray diffraction by Cu-Kα rays during battery charging It is characterized by comprising two phases: a phase having a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° in measurement and a complex oxide phase having a layered structure in which a diffraction peak appears at 2θ = 17 to 19 °. To do.
Composition formula (1): Li 1 + z Ni 1-xy Co x Ti y O 2 (1)
(In the formula, x, y and z satisfy the requirements shown in the following (a) to (c).)
(A) 0.10 ≦ x ≦ 0.21
(B) 0.01 ≦ y ≦ 0.08
(C) 0.03 ≦ z ≦ 0.14

本発明において、正極活物質が、リチウム、ニッケル、コバルト及びチタンを含有する一般式:Li1+zNi1−x−yCoで表される複合酸化物からなり、かつ、式中のx、y、zは、上記の(a)〜(c)に示す要件を満たすこと、しかも、その結晶構造は、六方晶系の層状構造を有する複合酸化物単相であり、かつ電池の充電時には、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相との2相からなることが重要である。これによって、熱安定性を著しく向上させることができる。 In the present invention, the positive electrode active material, lithium, nickel, formula containing cobalt and titanium: it consists Li 1 + z Ni 1-x -y Co x M y O 2 composite oxide expressed, and wherein X, y, and z of the above satisfy the requirements shown in the above (a) to (c), and the crystal structure is a complex oxide single phase having a hexagonal layered structure, and During charging, a complex oxide having a phase having a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° and a layered structure in which a diffraction peak appears at 2θ = 17 to 19 ° in X-ray diffraction measurement by Cu-Kα ray It is important to consist of two phases with a phase. Thereby, the thermal stability can be remarkably improved.

これらの点に関して、非水系電解質二次電池の充放電反応に関連させて、以下に説明する。
一般に、非水系電解質二次電池の充放電反応としては、正極活物質内のリチウムイオンが可逆的に出入りすることで進行する。充電によってリチウムが引き抜かれた正極活物質は高温において不安定となるので、加熱すると活物質が分解して酸素を放出し、この酸素が電解液の燃焼を引き起こし発熱反応が起こると言われている。ここで、電池の外部への放熱速度が内部の発熱速度よりも大きければ、電池の温度が上昇することはないが、逆であれば電池の温度が上昇して熱暴走に至る。したがって、電池の安全性を改善するということは、正極側の立場に立てば、リチウムが引き抜かれた正極活物質の分解反応を抑える、若しくは反応速度を低減させるということである。
These points will be described below in relation to the charge / discharge reaction of the non-aqueous electrolyte secondary battery.
In general, the charge / discharge reaction of a non-aqueous electrolyte secondary battery proceeds by reversibly entering and exiting lithium ions in the positive electrode active material. It is said that the positive electrode active material from which lithium is extracted by charging becomes unstable at high temperatures, so that when heated, the active material decomposes and releases oxygen, which causes combustion of the electrolyte and an exothermic reaction. . Here, if the heat dissipation rate to the outside of the battery is larger than the internal heat generation rate, the temperature of the battery will not rise, but if the reverse, the temperature of the battery will rise and lead to thermal runaway. Therefore, improving the safety of the battery means that, from the standpoint of the positive electrode side, the decomposition reaction of the positive electrode active material from which lithium is extracted is suppressed or the reaction rate is reduced.

ところで、従来、LiNiO型正極活物質の分解反応を抑える方法としては、アルミニウムのような酸素との共有結合性の強い元素により、ニッケルの一部を置換することが開示され一般的に行なわれてきた。この方法にしたがって、ニッケルからアルミニウムへの置換量を多くすれば、確かに正極活物質の分解反応は抑えられ熱安定性を向上させることができるが、その反面、充放電反応にともなう酸化還元反応に寄与するニッケル量が減少することとなるので、充放電容量の低下を招くこととなる。したがって、この際のアルミニウムへの置換量はある程度に留めなければならなかった。その結果として、このようなアルミニウムによる置換では、十分な熱安定性を確保した場合には、十分な可逆容量を得ることができず、またある程度の容量を得るためには熱安定性を犠牲にしなければならないという技術的課題があった。 By the way, conventionally, as a method for suppressing the decomposition reaction of the LiNiO 2 type positive electrode active material, it has been disclosed and generally carried out that a part of nickel is replaced by an element having strong covalent bonding with oxygen such as aluminum. I came. According to this method, if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material can surely be suppressed and the thermal stability can be improved, but on the other hand, the redox reaction accompanying the charge / discharge reaction As a result, the amount of nickel that contributes to the decrease is reduced, leading to a decrease in charge / discharge capacity. Therefore, the amount of substitution with aluminum at this time had to be limited to some extent. As a result, such a replacement with aluminum cannot provide a sufficient reversible capacity if sufficient thermal stability is ensured, and at the expense of thermal stability to obtain a certain level of capacity. There was a technical problem that had to be done.

これに対して、本発明では、一般式(1):Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.01≦y≦0.08、0.03≦z≦0.14)で表されるリチウムニッケルコバルトチタン複合酸化物の粉末を正極活物質として用いる。
まず、添加元素として4価で安定するチタン(Ti)を用いるので、Tiで置換されるニッケル(Ni)の一部が3価から2価で安定して、充電時にリチウム(Li)が引き抜かれたときにおいてもNiを安定させることができる。
In contrast, in the present invention, the general formula (1): Li 1 + Z Ni 1-xy Co x Ti y O 2 (however, 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0. 08, 0.03 ≦ z ≦ 0.14) is used as the positive electrode active material.
First, tetravalent and stable titanium (Ti) is used as an additive element, so that part of nickel (Ni) substituted with Ti is stable from trivalent to divalent, and lithium (Li) is extracted during charging. In this case, Ni can be stabilized.

ここで、上記x、y、zは、下記の(a)〜(c)に示す要件を満たすことが必須である。
要件(a)は、Co置換量(x)としては、ニッケル、コバルト及びチタンの全量に対し原子比で0.10≦x≦0.21である。すなわち、元素置換を行なわない純粋なリチウムニッケル複合酸化物(LiNiO)は、サイクル特性に劣るという欠点を有するが、これを解決するためにはNiの一部をCoで置換することが有用であることが知られている。ここで、特に、xの値を0.10以上とすることで十分なサイクル特性を得ることができる。一方、Coの置換量を多くすると初期容量の低下が顕著になり、ニッケル系複合酸化物からなる正極活物質の最大のメリットである高容量を犠牲にしてしまうため、最大でもxの値を0.21とする。
Here, it is essential that the above x, y, and z satisfy the following requirements (a) to (c).
The requirement (a) is that the Co substitution amount (x) is 0.10 ≦ x ≦ 0.21 in atomic ratio with respect to the total amount of nickel, cobalt and titanium. That is, a pure lithium nickel composite oxide (LiNiO 2 ) that does not perform element substitution has a disadvantage that it is inferior in cycle characteristics, but in order to solve this, it is useful to substitute a part of Ni with Co. It is known that there is. Here, in particular, sufficient cycle characteristics can be obtained by setting the value of x to 0.10 or more. On the other hand, if the amount of substitution of Co is increased, the initial capacity is significantly lowered, and the high capacity, which is the greatest merit of the positive electrode active material made of nickel-based composite oxide, is sacrificed. .21.

要件(b)は、Ti置換量(y)は、ニッケル、コバルト及びチタンの全量に対し原子比で0.01≦y≦0.08である。すなわち、yの値が0.01未満では、3価から2価として安定させることができるNi量が減少し、かつ後述する結晶構造の2相化が十分でなく、十分な熱安定性効果が得られず、一方yの値が0.08を超えると、Tiによって置換されるNiが増加して充放電容量が低下してしまう。
要件(c)は、Liの変動量(z)は、ニッケル、コバルト及びチタンの全量に対し原子比で0.03≦z≦0.14である。すなわち、zの値が0.03未満では、後述する結晶構造の2相化が十分でなく、酸素放出を起こす分解反応温度を分散させる効果が十分ではなくなる。一方、0.14を超えると、余剰のLiが多くなり過ぎ、充放電容量が低下する。
The requirement (b) is that the Ti substitution amount (y) is 0.01 ≦ y ≦ 0.08 in atomic ratio with respect to the total amount of nickel, cobalt and titanium. That is, if the value of y is less than 0.01, the amount of Ni that can be stabilized from trivalent to divalent decreases, and the two-phase formation of the crystal structure described later is not sufficient, and a sufficient thermal stability effect is obtained. On the other hand, when the value of y exceeds 0.08, Ni substituted by Ti increases and the charge / discharge capacity decreases.
The requirement (c) is that the variation amount (z) of Li is 0.03 ≦ z ≦ 0.14 in atomic ratio with respect to the total amount of nickel, cobalt and titanium. That is, if the value of z is less than 0.03, the two-phase structure of the crystal structure described later is not sufficient, and the effect of dispersing the decomposition reaction temperature causing oxygen release is not sufficient. On the other hand, when it exceeds 0.14, excessive Li becomes too much, and the charge / discharge capacity decreases.

これらの要件を満たすとき、リチウムニッケルコバルトチタン複合酸化物の結晶構造は、六方晶系の層状構造を有する複合酸化物単相である。しかも、Ti置換量(y)を原子比で0.01以上とし、かつLiNiO型正極活物質としてLi余剰量にあたるLiの変動量(z)を原子比で0.03以上としたときに、このリチウムニッケルコバルトチタン複合酸化物を正極活物質として用いた二次電池の充電時、例えば4.5Vまで充電した後には、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相との2相が形成される。
このCu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相は、加熱に際して、TG−DTA測定で温度領域(A):120〜180℃で分解して酸素の放出にともなう重量減少を示す。一方、層状構造の複合酸化物相相は、温度領域(B):200〜270℃で分解して酸素の放出にともなう重量減少を示す。すなわち、このように酸素放出を起こす分解反応温度が2段階に分散されるので、急激な発熱反応による電解液の温度上昇を抑え、電池が熱暴走することを防ぐことができる。なお、従来の正極活物質は、同様の条件でTG−DTA測定すると、200℃〜270℃においてのみに重量減少が見られ、酸素放出を起こす分解反応温度が集中しているため、急激な電解液の発熱反応が起こりやすく、電池が熱暴走する危険性がある。
When these requirements are satisfied, the crystal structure of the lithium nickel cobalt titanium composite oxide is a composite oxide single phase having a hexagonal layered structure. Moreover, when the Ti substitution amount (y) is 0.01 or more in atomic ratio and the variation amount (z) of Li corresponding to the excess amount of Li as the LiNiO 2 type positive electrode active material is 0.03 or more in atomic ratio, When charging a secondary battery using this lithium nickel cobalt titanium composite oxide as a positive electrode active material, for example, after charging to 4.5 V, it is diffracted to 2θ = 12 to 14 ° in an X-ray diffraction measurement by Cu-Kα ray. Two phases are formed: a phase having a crystal structure in which a peak appears and a complex oxide phase having a layered structure in which a diffraction peak appears at 2θ = 17 to 19 °.
The phase having a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° in the X-ray diffraction measurement by Cu-Kα ray decomposes in the temperature region (A): 120 to 180 ° C. by TG-DTA measurement upon heating. Thus, the weight decrease with the release of oxygen is shown. On the other hand, the complex oxide phase having a layered structure decomposes in the temperature region (B): 200 to 270 ° C., and shows a weight reduction accompanying the release of oxygen. That is, since the decomposition reaction temperature causing oxygen release is dispersed in two stages as described above, it is possible to suppress the temperature rise of the electrolytic solution due to a rapid exothermic reaction and to prevent the battery from running out of heat. In addition, when the conventional positive electrode active material is subjected to TG-DTA measurement under the same conditions, weight loss is observed only at 200 ° C. to 270 ° C., and the decomposition reaction temperature causing oxygen release is concentrated. The exothermic reaction of the liquid tends to occur, and there is a risk that the battery will run out of heat.

上記重量減少は、特に限定されるものではないが、電池の充電後の正極のTG−DTA測定で、温度領域(A)で3.5質量%以下であり、かつ温度領域(B)で5.2質量%以下であることが好ましい。これにより、電池としての安全性が向上する。すなわち、各温度領域における重量減少が、それぞれ3.5質量%又は5.2質量%を超えると、分解反応温度が分散していても急激な電解液の発熱反応が起こる可能性がある。なお、正極のTG−DTA測定は、二次電池を4.5Vまで充電した後に取り出した正極を用いて行ったものである。この詳細な条件は、実施例において説明する。   Although the weight reduction is not particularly limited, it is 3.5% by mass or less in the temperature region (A) and 5% in the temperature region (B) by TG-DTA measurement of the positive electrode after charging the battery. .2% by mass or less is preferable. Thereby, the safety | security as a battery improves. That is, when the weight loss in each temperature region exceeds 3.5% by mass or 5.2% by mass, a rapid exothermic reaction of the electrolytic solution may occur even when the decomposition reaction temperature is dispersed. The TG-DTA measurement of the positive electrode was performed using the positive electrode taken out after charging the secondary battery to 4.5V. This detailed condition will be described in Examples.

上記正極活物質の粒度分布としては、特に限定されるものではないが、好ましくは、レーザー散乱式粒度測定による粒度分布のD50が2〜13μmであり、タップ密度は1.2〜3.0g/mLである。これにより、正極を作製するときに、優れた正極活物質の充填性が得られる。   The particle size distribution of the positive electrode active material is not particularly limited, but preferably, the particle size distribution D50 by laser scattering particle size measurement is 2 to 13 μm, and the tap density is 1.2 to 3.0 g / mL. Thereby, when producing a positive electrode, excellent filling properties of the positive electrode active material can be obtained.

上記正極活物質を正極に用いた場合の電池の初期放電容量としては、190mAh/g以上、好ましくは190〜200mAh/gが得られ、従来材料の代替材料となるに十分な容量である。   When the positive electrode active material is used for the positive electrode, the initial discharge capacity of the battery is 190 mAh / g or more, preferably 190 to 200 mAh / g, which is a capacity sufficient to be a substitute for the conventional material.

2.非水系電解質二次電池用正極活物質の製造方法
本発明の非水電解質二次電池用正極活物質の製造方法としては、特に限定されるものではなく、下記の工程(イ)、(ロ)を含むことを特徴とする。
工程(イ):ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液、及びアルカリ水溶液を、反応槽に同時に滴下しながら、それらを撹拌し、60〜80℃の温度下、pHを10〜11に保持して、共沈殿させ、反応槽内で定常状態になった後に沈殿物を採取し、濾過、水洗、乾燥して、ニッケル、コバルト及びチタンの原子比を制御したニッケルコバルトチタン複合水酸化物を得る。
工程(ロ): 前記ニッケルコバルトチタン複合水酸化物とリチウム化合物とを混合し、この混合物を、酸化性雰囲気下に、650〜850℃の温度で焼成して、リチウムの原子比を制御したリチウムニッケルコバルトチタン複合酸化物を得る。
2. Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and the following steps (A) and (B) It is characterized by including.
Step (I): A mixed aqueous solution of nickel salt and cobalt salt, an aqueous solution of titanyl sulfate, and an aqueous alkali solution are simultaneously added dropwise to a reaction vessel, and they are agitated. Nickel-cobalt-titanium composite hydroxide with controlled atomic ratio of nickel, cobalt and titanium by holding, co-precipitating, collecting the precipitate after reaching steady state in the reaction vessel, filtering, washing and drying Get.
Step (b): Lithium having a nickel atomic ratio controlled by mixing the nickel cobalt titanium composite hydroxide and a lithium compound, and firing the mixture at a temperature of 650 to 850 ° C. in an oxidizing atmosphere. A nickel cobalt titanium composite oxide is obtained.

あるいは、上記製造方法において、上記工程(イ)に代えて、下記の工程(イ´)を含むことができる。
工程(イ´):ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液、アルカリ水溶液及び錯化剤を、反応槽に同時に滴下しながら、それらを撹拌し、50〜80℃の温度下、pHを10〜12.5に保持して、共沈殿させ、反応槽内で定常状態になった後に沈殿物を採取し、濾過、水洗、乾燥して、ニッケル、コバルト及びチタンの原子比を制御したニッケルコバルトチタン複合水酸化物を得る。
Or in the said manufacturing method, it can replace with the said process (I) and can include the following process (I ').
Step (I ′): Mixing aqueous solution of nickel salt and cobalt salt, aqueous solution of titanyl sulfate, aqueous alkali solution and complexing agent are added dropwise to the reaction vessel at the same time while stirring them, and the pH is adjusted at a temperature of 50-80 ° C. Nickel with the atomic ratio of nickel, cobalt and titanium controlled by holding it at 10 to 12.5, co-precipitation, collecting the precipitate after reaching a steady state in the reaction vessel, filtering, washing with water and drying A cobalt titanium composite hydroxide is obtained.

本発明の製造方法において、ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液、アルカリ水溶液、必要により錯化剤を、反応槽に同時に滴下することにより、複合水酸化物を得ること、及び使用するチタン塩として、水への溶解度の高い硫酸チタニルを用いることが重要である。なお、これらの作用機構については、各工程の説明において詳述する。   In the production method of the present invention, a mixed hydroxide of nickel salt and cobalt salt, an aqueous solution of titanyl sulfate, an aqueous alkaline solution, and if necessary, a complexing agent is dropped simultaneously into a reaction tank to obtain and use a composite hydroxide. As the titanium salt, it is important to use titanyl sulfate having high solubility in water. In addition, about these action mechanisms, it explains in full detail in description of each process.

(1)工程(イ)、(イ´)
工程(イ)又は(イ´)は、ニッケル塩とコバルト塩の混合水溶液、及び硫酸チタニル水溶液を用いて、ニッケル、コバルト及びチタンの原子比を制御した組成式:Ni1−x−yCoTi(OH)で表されるニッケルコバルトチタン複合水酸化物を得る工程である。
工程(イ)と(イ´)の違いは、錯化剤の添加の有無と、pH領域及び温度領域の条件にある。ここで、錯化剤は、液中のニッケル及びコバルトの溶解度を上昇させる作用を有し、水酸化物の生成速度又は晶析物の形状制御に影響を与える。したがって、錯化剤の添加により、生成されるニッケルコバルト複合水酸化物粒子の組成及び形状を、所望の組成で略球状になるように制御することができるpH領域の上限と温度領域の下限を広げることができる
(1) Process (I), (I ')
Step (I) or (I ′) is a composition formula in which the atomic ratio of nickel, cobalt and titanium is controlled using a mixed aqueous solution of nickel salt and cobalt salt and an aqueous solution of titanyl sulfate: Ni 1-xy Co x This is a step of obtaining a nickel cobalt titanium composite hydroxide represented by Ti y (OH) 2 .
The differences between the steps (A) and (I ') are the presence or absence of the addition of the complexing agent and the conditions of the pH region and the temperature region. Here, the complexing agent has an action of increasing the solubility of nickel and cobalt in the liquid, and affects the formation rate of hydroxide or the shape control of the crystallized product. Therefore, by adding the complexing agent, the upper limit of the pH range and the lower limit of the temperature range can be controlled so that the composition and shape of the nickel-cobalt composite hydroxide particles to be produced are approximately spherical with a desired composition. Can be spread

すなわち、工程(イ)では、pHが10.0未満では、水酸化物の生成速度が著しく遅くなり、ろ液中にニッケルが残留し、ニッケルの沈殿量が目的組成からずれて、目的の比率の複合水酸化物が得られなくなってしまう。一方、pHが11を超えると、晶析物が細かい粒子となり、ろ過性も悪くなり、球状粒子が得られない。
また、水溶液の温度が60℃未満では、ニッケルの溶解度が小さいため、ニッケルの沈殿量が目的組成からずれ共沈にならない。一方、80℃を超えると、水の蒸発量が多いためにスラリー濃度が高くなり、ニッケルの溶解度が低下する上、ろ液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇するなど、正極材の充放電容量が低下する問題が出てくる。
That is, in the step (ii), when the pH is less than 10.0, the rate of hydroxide formation is remarkably slow, nickel remains in the filtrate, the amount of nickel precipitated deviates from the target composition, and the target ratio is reached. It becomes impossible to obtain the composite hydroxide. On the other hand, if the pH exceeds 11, the crystallized product becomes fine particles, the filterability also deteriorates, and spherical particles cannot be obtained.
In addition, when the temperature of the aqueous solution is less than 60 ° C., the solubility of nickel is small, so that the precipitation amount of nickel deviates from the target composition and does not coprecipitate. On the other hand, when the temperature exceeds 80 ° C., the slurry concentration becomes high due to a large amount of evaporation of water, so that the solubility of nickel decreases, crystals such as sodium sulfate are generated in the filtrate, and the impurity concentration increases. There arises a problem that the charge / discharge capacity of the positive electrode material is lowered.

これに対し、工程(イ´)では、錯化剤の添加が行われるので、好ましいpH領域と温度領域とが広くなる。しかしながら、pHが12.5を超えると、晶析物が細かい粒子となり、ろ過性も悪くなり、かつ球状粒子が得られない。また、水溶液の温度が50℃未満では、ニッケルの溶解度が小さいため、ニッケルの沈殿量が目的組成からずれて共沈にならない。   On the other hand, in the step (ii '), since a complexing agent is added, a preferable pH region and temperature region are widened. However, if the pH exceeds 12.5, the crystallized product becomes fine particles, the filterability deteriorates, and spherical particles cannot be obtained. Further, when the temperature of the aqueous solution is less than 50 ° C., the solubility of nickel is small, so that the precipitation amount of nickel does not shift from the target composition and does not coprecipitate.

ここで、ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液,アルカリ水溶液及び必要により錯化剤を、所定割合で、反応槽に同時に滴下しながら、それらを撹拌し、所定温度下、所定pHに保持して、共沈殿させ、反応槽内で定常状態になった後に沈殿物を採取することにより、ニッケル、コバルト及びチタンの3元素が均一に分散されたニッケルコバルトチタン複合水酸化物が得られるので、工程(ロ)において充放電容量の確保と熱的安定性の向上が同時に達成される。   Here, a mixed aqueous solution of nickel salt and cobalt salt, an aqueous solution of titanyl sulfate, an aqueous alkali solution and, if necessary, a complexing agent are simultaneously added dropwise to the reaction vessel at a predetermined ratio, while stirring them, and at a predetermined temperature and a predetermined pH. Holding, co-precipitate, and after collecting the precipitate after reaching a steady state in the reaction vessel, a nickel-cobalt-titanium composite hydroxide in which three elements of nickel, cobalt and titanium are uniformly dispersed is obtained. Therefore, in the step (b), securing of charge / discharge capacity and improvement of thermal stability are achieved at the same time.

上記工程に用いるニッケル塩とコバルト塩を含む水溶液としては、特に限定されるものではなく、硫酸塩、塩化物、硝酸塩等の水溶性塩を所望の配合で溶解したものが用いられるが、コスト及び不純物の観点から硫酸塩水溶液がより好ましい。また、前記水溶液の濃度としては、特に限定されるものではなく、液量を抑える目的からは飽和濃度が好ましいが、常温で放置しても結晶が析出しない程度の濃度が好ましい。例えば、ニッケルとコバルトの合計で1〜2モル/Lが好ましく、1.5〜2モル/Lがより好ましい。   The aqueous solution containing the nickel salt and cobalt salt used in the above process is not particularly limited, and a solution obtained by dissolving a water-soluble salt such as sulfate, chloride or nitrate in a desired composition is used. A sulfate aqueous solution is more preferable from the viewpoint of impurities. Further, the concentration of the aqueous solution is not particularly limited, and a saturated concentration is preferable for the purpose of reducing the amount of the solution, but a concentration at which crystals do not precipitate even when left at room temperature is preferable. For example, the total of nickel and cobalt is preferably 1 to 2 mol / L, and more preferably 1.5 to 2 mol / L.

上記ニッケル塩とコバルト塩の配合割合としては、得られるリチウムニッケルコバルトチタン複合酸化物粉末中のニッケル、コバルト及びチタンの全量に対し、コバルトを原子比で0.10〜0.21の範囲で含有するように調整する。これは、上記組成式(1)中のxが、0.10≦x≦0.21の範囲を満足するように行われることにあたる。   As a blending ratio of the nickel salt and the cobalt salt, cobalt is contained in an atomic ratio in the range of 0.10 to 0.21 with respect to the total amount of nickel, cobalt and titanium in the obtained lithium nickel cobalt titanium composite oxide powder. Adjust to This means that x in the composition formula (1) is performed so as to satisfy the range of 0.10 ≦ x ≦ 0.21.

上記工程に用いる硫酸チタニル水溶液としては、硫酸を10質量%以上含む硫酸チタニル水溶液が好ましい。すなわち、硫酸含有量が10質量%未満の硫酸チタニル水溶液では、保存中に加水分解を起こして水酸化チタンが析出し、ニッケルコバルトチタン複合水酸化物中に、チタンの偏析が起こる。なお、前述の通り、チタン塩を代表する塩化チタン、硫酸チタンを用いると、水溶液中で加水分解あるいは酸化が進み、水酸化チタン又は酸化チタンが発生してチタニウムの偏析が起きるので、硫酸チタニルの使用が好適である。   As a titanyl sulfate aqueous solution used for the said process, the titanyl sulfate aqueous solution which contains a sulfuric acid 10 mass% or more is preferable. That is, in an aqueous solution of titanyl sulfate having a sulfuric acid content of less than 10% by mass, hydrolysis occurs during storage to precipitate titanium hydroxide, and segregation of titanium occurs in the nickel cobalt titanium composite hydroxide. As described above, when titanium chloride or titanium sulfate, which represents a titanium salt, is used, hydrolysis or oxidation proceeds in an aqueous solution, and titanium hydroxide or titanium oxide is generated to cause segregation of titanium. Use is preferred.

上記硫酸チタニル水溶液の添加割合としては、得られるリチウムニッケルコバルトチタン複合酸化物粉末中のニッケル、コバルト及びチタンの全量に対し、チタンを原子比で0.01〜0.08の範囲で含有するように調整する。これは、上記組成式(1)中のyが、0.01≦y≦0.08の範囲を満足するように行われることにあたる。   The addition ratio of the aqueous titanyl sulfate solution is such that titanium is contained in an atomic ratio of 0.01 to 0.08 with respect to the total amount of nickel, cobalt and titanium in the obtained lithium nickel cobalt titanium composite oxide powder. Adjust to. This is performed so that y in the composition formula (1) satisfies a range of 0.01 ≦ y ≦ 0.08.

上記工程に用いるアルカリ水溶液としては、特に限定されるものではなく、水酸化ナトリウム等のアルカリ金属水酸化物を溶解したものが用いられる。前記アルカリ水溶液の濃度としては、特に限定されるものではなく液量を抑える目的から、12質量%以上で、飽和濃度以下で行うのが好ましい。   The aqueous alkali solution used in the above step is not particularly limited, and a solution in which an alkali metal hydroxide such as sodium hydroxide is dissolved is used. The concentration of the alkaline aqueous solution is not particularly limited, and is preferably 12% by mass or more and a saturated concentration or less for the purpose of suppressing the liquid amount.

上記工程(イ´)に用いる錯化剤としては、特に限定されるものではなく、ニッケル及びコバルトの溶解度を上げる作用のある薬剤が用いられるが、この中で、アンモニア、硫酸アンモニウムの他に塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等が挙げられるが、アンモニウムイオン供給体が好ましい。   The complexing agent used in the above step (ii ') is not particularly limited, and a drug having an action of increasing the solubility of nickel and cobalt is used. Among them, ammonium chloride in addition to ammonia and ammonium sulfate. , Ammonium carbonate, ammonium fluoride, and the like, and an ammonium ion supplier is preferred.

上記工程(イ)、(イ´)により得られるニッケルコバルトチタン複合水酸化物は、1μm以下の一次粒子が複数集合した略球状の二次粒子からなり、濾過性等、ハンドリング性も良好である。   The nickel-cobalt-titanium composite hydroxide obtained by the above steps (a) and (ii ′) is composed of substantially spherical secondary particles in which a plurality of primary particles of 1 μm or less are assembled, and has good handling properties such as filterability. .

(2)工程(ロ)
工程(ロ)は、上記ニッケルコバルトチタン複合水酸化物とリチウム化合物とを混合し、この混合物を、酸化性雰囲気下に、650〜850℃の温度で焼成して、リチウムの原子比を制御したリチウムニッケルコバルトチタン複合酸化物を得る工程である。
これによって、一般式(1):Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.01≦y≦0.08、0.03≦z≦0.14)で表されるリチウムニッケルコバルトチタン複合酸化物の粉末が得られる。
(2) Process (b)
In the step (b), the nickel cobalt titanium composite hydroxide and the lithium compound were mixed, and the mixture was baked at a temperature of 650 to 850 ° C. in an oxidizing atmosphere to control the atomic ratio of lithium. This is a step of obtaining a lithium nickel cobalt titanium composite oxide.
Accordingly, the general formula (1): Li 1 + Z Ni 1-xy Co x Ti y O 2 (however, 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.08, 0.03 ≦ A powder of lithium nickel cobalt titanium composite oxide represented by z ≦ 0.14) is obtained.

上記工程(ロ)で用いるリチウム化合物としては、特に限定されるものではなく、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種が用いられるが、この中で、炭酸リチウム、水酸化リチウム、またはこれらの水和物であることが好ましい。   The lithium compound used in the step (b) is not particularly limited, and is at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide. Of these, lithium carbonate, lithium hydroxide, or a hydrate thereof is preferable.

上記リチウム化合物の添加割合としては、得られるリチウムニッケルコバルトチタン複合酸化物粉末中のニッケル、コバルト及びチタンの全量に対し、リチウムを原子比で1.お3〜1.14含有するように調整する。これは、上記組成式(1)中のzが、0.03≦z≦0.14の範囲を満足するように行われることにあたる。   As the addition ratio of the lithium compound, lithium was added in an atomic ratio of 1. with respect to the total amount of nickel, cobalt, and titanium in the obtained lithium nickel cobalt titanium composite oxide powder. Adjust to contain 3 to 1.14. This is performed so that z in the composition formula (1) satisfies the range of 0.03 ≦ z ≦ 0.14.

上記工程(ロ)で用いる混合物の焼成温度としては、650〜850℃、好ましくは700〜800℃であり、焼成時間としては、特に限定されるものではないが、5〜20時間程度とすることが好ましい。また、焼成時の雰囲気としては、酸素気流等の酸化性雰囲気下で行われるが、酸素気流中で焼成することが不純物の混入がなく、より好ましい。
すなわち、焼成温度が650℃未満では、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。一方、850℃を超えると、Li層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトにおけるリチウム以外の金属イオンのサイト占有率が2%より大きくなってしまい、リチウムのサイトである3aサイトに金属イオンの混入率が高くなり、リチウムイオンの拡散パスが阻害され、その正極活物質を用いた電池は初期容量や出力が低下してしまう。
The firing temperature of the mixture used in the step (b) is 650 to 850 ° C., preferably 700 to 800 ° C. The firing time is not particularly limited, but should be about 5 to 20 hours. Is preferred. In addition, the firing atmosphere is performed in an oxidizing atmosphere such as an oxygen stream. However, firing in an oxygen stream is more preferable because impurities are not mixed.
That is, when the firing temperature is less than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. On the other hand, when the temperature exceeds 850 ° C., Ni is mixed into the Li layer, Li is mixed into the Ni layer, the layered structure is disturbed, and the site occupancy rate of metal ions other than lithium at the 3a site becomes larger than 2%. The mixing rate of metal ions at the 3a site, which is the site, is increased, the lithium ion diffusion path is hindered, and the battery using the positive electrode active material has reduced initial capacity and output.

3.非水電解質二次電池
本発明の非水電解質二次電池は、上記非水電解質二次電池用正極活物質を用いてなる高容量で安全性の高いものである。すなわち、電池の充電時、酸素放出を起こす分解反応温度が2段階に分散されるので、急激な発熱反応による電解液の温度上昇を抑え、電池が熱暴走することを防ぐことができる。
ここで、上記リチウムイオン二次電池の形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
3. Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention has a high capacity and high safety using the positive electrode active material for a non-aqueous electrolyte secondary battery. That is, when the battery is charged, the decomposition reaction temperature causing oxygen release is dispersed in two stages, so that the temperature rise of the electrolytic solution due to a rapid exothermic reaction can be suppressed, and the battery can be prevented from thermal runaway.
Here, the configuration of the lithium ion secondary battery will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The forms described below are merely examples, and the nonaqueous electrolyte secondary battery of the present invention should be implemented in various modified and improved forms based on the knowledge of those skilled in the art, including the following forms. Can do. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.

上記正極としては、正極活物質として、本発明の非水系電解質二次電池用正極活物質を用いること以外、特に限定されるものではなく、例えば、次のようにして作製する。
粉末状の正極活物質、導電材、バインダー、及び結着剤を混合し、さらに必要に応じて、活性炭及び粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。例えば、溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。
得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。また、必要に応じて、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。得られたシート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。
The positive electrode is not particularly limited except that the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used as the positive electrode active material. For example, the positive electrode is produced as follows.
Mix the powdered positive electrode active material, conductive material, binder, and binder, and add the desired solvent such as activated carbon and viscosity adjustment, if necessary, and knead them to prepare the positive electrode mixture paste. To do. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. For example, when the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass, as in the case of the positive electrode of a general lithium secondary battery. It is desirable that the content of the material is 1 to 20% by mass and the content of the binder is 1 to 20% by mass.
The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to scatter the solvent. Moreover, it may pressurize with a roll press etc. to raise an electrode density as needed. In this way, a sheet-like positive electrode can be produced. The obtained sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.

上記導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)、アセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、上記バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。 また、上記結着剤としては、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。
さらに、必要に応じて、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。この溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。
As the conductive agent, for example, carbon black materials such as graphite (natural graphite, artificial graphite, expanded graphite, etc.), acetylene black, ketjen black and the like can be used. Examples of the binder that can be used include polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluororubber, styrene butadiene, cellulose resin, and polyacrylic acid. Moreover, as the binder, it plays a role of keeping the active material particles together, and for example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene is used. be able to.
Furthermore, if necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as this solvent. Moreover, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

次いで、本発明の非水電解質二次電池に用いる正極以外の構成要素について説明するが、本発明の非水電解質二次電池は、上記正極活物質を用いる点に特徴を有するものであり、その他の構成要素は特に限定されるものではない。
上記負極としては、例えば、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
上記負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
Next, components other than the positive electrode used in the nonaqueous electrolyte secondary battery of the present invention will be described. The nonaqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode active material is used. The components of are not particularly limited.
Examples of the negative electrode include metallic lithium, lithium alloys, and the like, and a negative electrode mixture in which a binder is mixed with a negative electrode active material capable of inserting and extracting lithium ions, and an appropriate solvent is added to form a paste. It is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
As the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.

上記セパレータは、正極と負極との間に挟み込んで配置し、正極と負極とを分離し電解質を保持するものであり、上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。   The separator is disposed between the positive electrode and the negative electrode, and separates the positive electrode and the negative electrode to hold the electrolyte. Examples of the separator include a thin film such as polyethylene and polypropylene, Can be used.

上記非水系電解液としては、支持塩としてのリチウム塩を有機溶媒に溶解したものである。上記有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、又はリン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる少なくとも1種を用いることができる。上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。さらに、上記非水系電解液には、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 The non-aqueous electrolyte is a solution obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, and 2-methyl. At least one selected from ether compounds such as tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sultone, or phosphorus compounds such as triethyl phosphate and trioctyl phosphate can be used. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof. Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

上記正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。   The shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte can be various, such as a cylindrical type and a laminated type. In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and this electrode body is impregnated with the non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal communicating with the outside, and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like. The battery having the above structure can be sealed in a battery case to complete the battery.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた組成、結晶構造、粒度分布、粉体充填密度、充放電容量及び正極の安全性の評価方法は、以下の通りである。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the composition, crystal structure, particle size distribution, powder packing density, charge / discharge capacity and positive electrode safety evaluation method used in Examples and Comparative Examples are as follows.

(1)組成の分析:ICP発光分析装置(Seiko Instruments Inc製Plasma Spectrometer SPS3000)で行った。
(2)正極活物質の結晶構造の分析:X線回折装置(リガク電機社製:RINT−1400)で分析した。
(3)正極活物質の粒度分布の測定:レーザー散乱式粒度測定装置(日機装製 マイクロトラックHRA)で測定した粒度分布から、D50(累積分布率50質量%での粒度を求めた。
(4)正極活物質の粉体充填密度(タップ密度)の測定:粉末12gを20mlのガラス製メスシリンダーに入れ、振とう比重測定器(蔵持科学器械製作所製KRS−409)にて500回タップした後の粉体充填密度を求めた。
(1) Composition analysis: The analysis was performed using an ICP emission spectrometer (Plasma Spectrometer SPS3000 manufactured by Seiko Instruments Inc).
(2) Analysis of crystal structure of positive electrode active material: Analysis was performed with an X-ray diffractometer (manufactured by Rigaku Electric Co., Ltd .: RINT-1400).
(3) Measurement of the particle size distribution of the positive electrode active material: The particle size at a D50 (cumulative distribution rate of 50% by mass) was determined from the particle size distribution measured with a laser scattering particle size measuring device (Nikkiso Microtrac HRA).
(4) Measurement of powder packing density (tap density) of positive electrode active material: 12 g of powder was put into a 20 ml glass graduated cylinder and tapped 500 times with a shaking specific gravity measuring instrument (KRS-409 manufactured by Kuramochi Scientific Instruments). After that, the powder packing density was determined.

(5)正極活物質の充放電容量評価:活物質粉末70質量部にアセチレンブラック20質量部およびPTFE10質量部を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。図1に、2032型のコイン電池の概略構造を示す。ここで、コイン電池は、正極缶6中の正極(評価用電極)3、負極缶5中のリチウム金属負極1、電解液含浸のセパレータ2、ガスケット4及び集電体7から構成される。
作製した電池は24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。充放電容量の測定には,ADVANTEST社製マルチチャンネル電圧/電流発生器(R6741A)を用いた。
(5) Evaluation of charge / discharge capacity of positive electrode active material: 70 parts by mass of active material powder was mixed with 20 parts by mass of acetylene black and 10 parts by mass of PTFE. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C. FIG. 1 shows a schematic structure of a 2032 type coin battery. Here, the coin battery includes a positive electrode (evaluation electrode) 3 in a positive electrode can 6, a lithium metal negative electrode 1 in a negative electrode can 5, an electrolyte-impregnated separator 2, a gasket 4, and a current collector 7.
The prepared battery is left for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to obtain an initial charge capacity. The capacity when the battery was discharged to a cutoff voltage of 3.0 V after a one hour rest was defined as the initial discharge capacity. A multi-channel voltage / current generator (R6741A) manufactured by ADVANTEST was used for measuring the charge / discharge capacity.

(6)正極の安全性の評価:上記と同様な方法で作製した2032型のコイン電池をカットオフ電圧4.5VまでCCCV充電(定電流−定電圧充電。まず、充電が、定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電方法。)した後、短絡しないように注意しながら解体して正極を取り出した。
TG−DTA測定は、この正極をアセトンで洗浄して付着している電解液を落とし、15mg量り取り、アルミニウム製測定容器に充填して、TG−DTAを用いて昇温速度10℃/minで室温から350℃までの酸素放出による重量減少を測定し、温度領域(A):120℃〜180℃と温度領域(B):200℃〜270℃の正極の重量減少率を求めた。また、DSC測定は、この正極を3.0mg計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量計(PTC−10A、Rigaku社製)を用いて昇温速度10℃/minで室温から300℃まで発熱挙動を測定した。
(6) Evaluation of safety of positive electrode: CCCV charging (constant current-constant voltage charging. First, charging is operated at a constant current) for a 2032 type coin battery manufactured by the same method as above. Then, a charging method using a two-phase charging process of terminating charging at a constant voltage.), And then disassembling with care not to short-circuit, and taking out the positive electrode.
The TG-DTA measurement was performed by washing the positive electrode with acetone to remove the attached electrolyte, weighing 15 mg, filling the aluminum measurement container, and using TG-DTA at a heating rate of 10 ° C./min. The weight reduction due to oxygen release from room temperature to 350 ° C. was measured, and the weight reduction rate of the positive electrode in the temperature region (A): 120 ° C. to 180 ° C. and the temperature region (B): 200 ° C. to 270 ° C. was determined. In DSC measurement, 3.0 mg of this positive electrode was measured, 1.3 mg of electrolyte was added, sealed in an aluminum measurement container, and the temperature was raised using a differential scanning calorimeter (PTC-10A, manufactured by Rigaku). The exothermic behavior was measured from room temperature to 300 ° C. at a rate of 10 ° C./min.

(実施例1)
まず、硫酸ニッケル(和光純薬工業製、試薬特級)と硫酸コバルト(和光純薬工業製、試薬特級)を添加したニッケルとコバルトの合計濃度で2モル/Lの混合水溶液、及び硫酸含有量13質量%の硫酸チタニル水溶液を準備した。次に、反応槽内に、ニッケル、コバルト及びチタンの原子比がNi:Co:Ti=81:14:5となるように、前記混合水溶液と硫酸チタニル水溶液とともに、水酸化ナトリウム (和光純薬工業製、試薬特級)を用いて調製した濃度12.5質量%の水酸化ナトリウム水溶液を同時に滴下した。このとき、pHを10〜11の範囲、及び反応温度を60〜80℃の範囲に保持した。その後、反応槽内が定常状態になった後に、オーバーフローした沈殿物を採取し、ろ過、水洗後に乾燥させ、ニッケルコバルトチタン複合水酸化物の球状粒子を得た。
得られた複合水酸化物と市販の水酸化リチウム(FMC社製)とを、該複合水酸化物中のニッケル、コバルト及びチタンの全量とリチウムの原子比が1:1.09になるように秤量した後、シェーカーミキサー装置(WAB社製TURBULA TypeT2C)を用いて、球状の二次粒子の形骸が維持される程度の強さで十分に混合した。この混合物を酸素気流中で昇温速度5℃/minで730℃まで昇温した後、その温度で10時間焼成した後、室温まで炉内で冷却してリチウムニッケルコバルトチタン複合酸化物の焼成粉末からなる正極活物質を得た。
得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。また、TG−DTA測定例を図2に、DSC測定例を図3に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
Example 1
First, a mixed aqueous solution of 2 mol / L in total concentration of nickel and cobalt to which nickel sulfate (made by Wako Pure Chemical Industries, reagent special grade) and cobalt sulfate (made by Wako Pure Chemical Industries, reagent special grade) are added, and sulfuric acid content 13 A mass% titanyl sulfate aqueous solution was prepared. Next, in the reaction vessel, sodium hydroxide (Wako Pure Chemical Industries, Ltd.) together with the mixed aqueous solution and the titanyl sulfate aqueous solution so that the atomic ratio of nickel, cobalt and titanium is Ni: Co: Ti = 81: 14: 5. A sodium hydroxide aqueous solution having a concentration of 12.5% by mass prepared by using a special grade reagent (manufactured by Renesas) was simultaneously added dropwise. At this time, the pH was maintained in the range of 10-11, and the reaction temperature was maintained in the range of 60-80 ° C. Then, after the inside of the reaction vessel was in a steady state, the overflowed precipitate was collected, filtered, washed with water and dried to obtain spherical particles of nickel cobalt titanium composite hydroxide.
The obtained composite hydroxide and commercially available lithium hydroxide (manufactured by FMC) were so adjusted that the atomic ratio of lithium to nickel, cobalt and titanium in the composite hydroxide was 1: 1.09. After weighing, using a shaker mixer device (TURBULA Type T2C manufactured by WAB), the mixture was sufficiently mixed with such a strength that the shape of spherical secondary particles was maintained. The mixture was heated to 730 ° C. at a rate of temperature increase of 5 ° C./min in an oxygen stream, fired at that temperature for 10 hours, cooled to room temperature in the furnace, and calcined powder of lithium nickel cobalt titanium composite oxide A positive electrode active material was obtained.
The composition of the obtained positive electrode active material, crystal structure, D50 of particle size distribution, powder packing density (tap density), charge / discharge capacity, and safety of the positive electrode were evaluated by the above evaluation methods. The results are shown in Table 1. An example of TG-DTA measurement is shown in FIG. 2, and an example of DSC measurement is shown in FIG. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(実施例2)
ニッケルコバルトチタン複合水酸化物中のニッケル、コバルト及びチタンの全量とリチウムの原子比が1:1.03になるようにして焼成物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Example 2)
The positive electrode active material was obtained in the same manner as in Example 1 except that the fired product was obtained so that the atomic ratio of lithium to the total amount of nickel, cobalt and titanium in the nickel cobalt titanium composite hydroxide was 1: 1.03. The material was obtained, and the composition, crystal structure, particle size distribution D50, powder packing density (tap density), charge / discharge capacity, and positive electrode safety of the obtained positive electrode active material were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(実施例3)
ニッケルコバルトチタン複合水酸化物中のニッケル、コバルト及びチタンの全量とリチウムの原子比が1:1.14になるようにして焼成物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Example 3)
The positive electrode active material was obtained in the same manner as in Example 1 except that the calcined product was obtained so that the atomic ratio of lithium to the total amount of nickel, cobalt and titanium in the nickel cobalt titanium composite hydroxide was 1: 1.14. The material was obtained, and the composition, crystal structure, particle size distribution D50, powder packing density (tap density), charge / discharge capacity, and positive electrode safety of the obtained positive electrode active material were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(実施例4)
ニッケル、コバルト及びチタンの原子比がNi:Co:Ti=84:15:1となるようにしてニッケルコバルトチタン複合水酸化物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
Example 4
A positive electrode active material was prepared in the same manner as in Example 1 except that the nickel / cobalt / titanium atomic ratio was Ni: Co: Ti = 84: 15: 1 to obtain a nickel cobalt titanium composite hydroxide. The composition of the obtained positive electrode active material, crystal structure, D50 of particle size distribution, powder packing density (tap density), charge / discharge capacity, and safety of the positive electrode were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(実施例5)
ニッケル、コバルト及びチタンの原子比がNi:Co:Ti=80:12:8となるようにしてニッケルコバルトチタン複合水酸化物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Example 5)
A positive electrode active material was obtained in the same manner as in Example 1 except that the nickel cobalt titanium composite hydroxide was obtained so that the atomic ratio of nickel, cobalt and titanium was Ni: Co: Ti = 80: 12: 8. The composition of the obtained positive electrode active material, crystal structure, D50 of particle size distribution, powder packing density (tap density), charge / discharge capacity, and safety of the positive electrode were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(比較例1)
硫酸ニッケルと硫酸コバルトを添加した混合水溶液、及び硫酸チタニル水溶液を用いることに代えて、硫酸ニッケル、硫酸コバルト及び硫酸チタンの混合水溶液(但し、ニッケル、コバルト及びチタンの合計濃度は、2モル/Lである。)を用いて、ニッケルコバルトチタン複合水酸化物を得たこと、ニッケルコバルトチタン複合水酸化物中のニッケル、コバルト及びチタンの全量とリチウムの原子比が1:1.02になるようにして焼成物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。また、TG−DTA測定例を図2に、DSC測定例を図3に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Comparative Example 1)
Instead of using a mixed aqueous solution to which nickel sulfate and cobalt sulfate are added and a titanyl sulfate aqueous solution, a mixed aqueous solution of nickel sulfate, cobalt sulfate and titanium sulfate (however, the total concentration of nickel, cobalt and titanium is 2 mol / L To obtain the nickel cobalt titanium composite hydroxide, and the atomic ratio of lithium to the total amount of nickel, cobalt and titanium in the nickel cobalt titanium composite hydroxide is 1: 1.02. The positive electrode active material was obtained in the same manner as in Example 1 except that the fired product was obtained. The composition, crystal structure, particle size distribution D50, and powder packing density (tap density) of the obtained positive electrode active material The charge / discharge capacity and the safety of the positive electrode were evaluated by the above evaluation methods. The results are shown in Table 1. An example of TG-DTA measurement is shown in FIG. 2, and an example of DSC measurement is shown in FIG. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(比較例2)
ニッケルコバルトチタン複合水酸化物中のニッケル、コバルト及びチタンの全量とリチウムの原子比が1:1.15になるようにして焼成物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Comparative Example 2)
The positive electrode active material was obtained in the same manner as in Example 1 except that the calcined product was obtained so that the atomic ratio of lithium to the total amount of nickel, cobalt and titanium in the nickel cobalt titanium composite hydroxide was 1: 1.15. The material was obtained, and the composition, crystal structure, particle size distribution D50, powder packing density (tap density), charge / discharge capacity, and positive electrode safety of the obtained positive electrode active material were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(比較例3)
ニッケル、コバルト及びチタンの原子比がNi:Co:Ti=84.5:15:0.5となるようにしてニッケルコバルトチタン複合水酸化物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Comparative Example 3)
Except that the nickel cobalt titanium composite hydroxide was obtained so that the atomic ratio of nickel, cobalt and titanium was Ni: Co: Ti = 84.5: 15: 0.5 A positive electrode active material was obtained, and the composition, crystal structure, particle size distribution D50, powder packing density (tap density), charge / discharge capacity, and positive electrode safety of the obtained positive electrode active material were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

(比較例4)
ニッケル、コバルト及びチタンの原子比がNi:Co:Ti=79:12:9となるようにしてニッケルコバルトチタン複合水酸化物を得たこと以外は、実施例1と同様にして正極活物質を得て、得られた正極活物質の組成、結晶構造、粒度分布のD50、粉体充填密度(タップ密度)、充放電容量、及び正極の安全性を上記評価方法により評価した。結果を表1に示す。なお、結晶構造は、六方晶系の層状構造を有する複合酸化物単相であった。
(Comparative Example 4)
A positive electrode active material was obtained in the same manner as in Example 1 except that the nickel cobalt cobalt composite hydroxide was obtained so that the atomic ratio of nickel, cobalt and titanium was Ni: Co: Ti = 79: 12: 9. The composition of the obtained positive electrode active material, crystal structure, D50 of particle size distribution, powder packing density (tap density), charge / discharge capacity, and safety of the positive electrode were evaluated by the above evaluation methods. The results are shown in Table 1. The crystal structure was a complex oxide single phase having a hexagonal layered structure.

Figure 0005109447
Figure 0005109447

表1より、実施例1〜5では、添加元素としてコバルトとチタンが用いられ、正極活物質の組成、特にリチウムとチタンの原子比、及び結晶構造、さらに電池の充電時の結晶構造において、本発明に従って行われたので、熱安定性に優れ、かつ高い充放電容量が得られるリチウムニッケルコバルトチタン複合酸化物粉末からなる非水系電解質二次電池用の正極活物質とそれを用いた高容量で安全性の高い非水系電解質二次電池が得られることが分かる。すなわち、初期放電容量が190mAh/gを超えるとともに、電池の充電後の正極のTG−DTA測定による重量減少が二つの温度領域にあることから、酸素放出を起こす分解反応温度が、2段階に分散されて、急激な発熱反応による電解液の温度上昇を抑えて電池が熱暴走することを防ぐことができるものであるので、リチウムコバルト複合酸化物に代わる新たな電池材料として優れた材料である。また、その製造方法は、ニッケルコバルトチタン複合水酸化物を得る工程、及びリチウムニッケルコバルトチタン複合酸化物を得る工程において、本発明の製造方法に従って行われたので、上記正極活物質が得られることが分かる。   From Table 1, in Examples 1 to 5, cobalt and titanium are used as additive elements. In the composition of the positive electrode active material, particularly the atomic ratio of lithium and titanium, and the crystal structure, and the crystal structure at the time of charging the battery, Since it was carried out in accordance with the invention, the positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel cobalt titanium composite oxide powder having excellent thermal stability and high charge / discharge capacity and a high capacity using the same It can be seen that a highly safe non-aqueous electrolyte secondary battery can be obtained. That is, the initial discharge capacity exceeds 190 mAh / g, and the weight loss due to TG-DTA measurement of the positive electrode after charging the battery is in two temperature ranges, so the decomposition reaction temperature causing oxygen release is dispersed in two stages. Thus, since the battery can be prevented from thermal runaway by suppressing the temperature rise of the electrolytic solution due to a rapid exothermic reaction, it is an excellent material as a new battery material that replaces the lithium cobalt composite oxide. Moreover, since the manufacturing method was performed according to the manufacturing method of the present invention in the step of obtaining the nickel cobalt titanium composite hydroxide and the step of obtaining the lithium nickel cobalt titanium composite oxide, the positive electrode active material is obtained. I understand.

これに対して、比較例1〜4では、正極活物質の組成、特にリチウムとチタンの原子比が、また、比較例1では、ニッケルコバルトチタン複合水酸化物を得る工程の条件が、これらの条件に合わないので、熱安定性又は初期放電容量のいずれかにおいて満足すべき結果が得られないことが分かる。すなわち、比較例1、2では、リチウム又はチタンの原子比が低くこの条件に合わないので、重量減少が温度領域(B)のみであり、熱安定性が不十分であり、また比較例2、4では、重量減少は2領域に分散しているが、リチウム又はチタンの原子比が高くこの条件に合わないので、初期放電容量が190mAh/gを下回り、電池特性が悪化しまう。   On the other hand, in Comparative Examples 1 to 4, the composition of the positive electrode active material, particularly the atomic ratio of lithium and titanium, and in Comparative Example 1, the conditions for the process of obtaining the nickel cobalt titanium composite hydroxide are as follows. It can be seen that because the conditions are not met, satisfactory results are not obtained in either thermal stability or initial discharge capacity. That is, in Comparative Examples 1 and 2, since the atomic ratio of lithium or titanium is low and does not meet this condition, the weight reduction is only in the temperature region (B), and the thermal stability is insufficient. In No. 4, the weight loss is dispersed in two regions, but since the atomic ratio of lithium or titanium is high and does not meet this condition, the initial discharge capacity falls below 190 mAh / g, and the battery characteristics deteriorate.

以上より明らかなように、本発明の非水系電解質二次電池用正極活物質は、熱安定性に優れ、かつ高い充放電容量が得られる非水系電解質二次電池用の正極活物質であり、それを用いてなる非水系電解質二次電池は、高容量で安全性の高い非水系電解質二次電池であるので、安全性が著しく優れていながら高い充放電容量を有しているメリットを活かすためには、常に高容量を要求される小型携帯電子機器の電源としての用途に好適である。
また、電気自動車用の電源においては、電池の大型化による安全性の確保が課題となっていることに加え、より高度な安全性を確保するための高価な保護回路の装着が必要不可欠であるが、本発明の非水系電解質二次電池は優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにでき、電気自動車用電源として好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用する、いわゆるハイブリッド車用の電源も含むものである。
As is clear from the above, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery that has excellent thermal stability and a high charge / discharge capacity, The non-aqueous electrolyte secondary battery using this is a high-capacity, high-safety non-aqueous electrolyte secondary battery, so that it can take advantage of the high charge / discharge capacity while being extremely safe. Therefore, it is suitable for use as a power source for small portable electronic devices that always require a high capacity.
Moreover, in the power supply for electric vehicles, it is indispensable to install an expensive protection circuit for ensuring higher safety in addition to ensuring safety by increasing the size of the battery. However, since the non-aqueous electrolyte secondary battery of the present invention has excellent safety, not only is it easy to ensure safety, but also an expensive protection circuit can be simplified and the cost can be reduced. It is suitable as a power source for automobiles. The electric vehicle power source includes not only an electric vehicle driven purely by electric energy but also a so-called hybrid vehicle power source used in combination with a combustion engine such as a gasoline engine or a diesel engine.

電池評価に用いたコイン電池の断面の概略図である。It is the schematic of the cross section of the coin battery used for battery evaluation. 実施例1と比較例1の正極活物質のTG−DTA測定例を示す図である。4 is a diagram illustrating an example of TG-DTA measurement of positive electrode active materials of Example 1 and Comparative Example 1. FIG. 実施例1と比較例1の正極活物質のDSC測定例を示す図である。6 is a diagram illustrating an example of DSC measurement of the positive electrode active material of Example 1 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal negative electrode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (6)

リチウム、ニッケル、コバルト及びチタンを含有する次の組成式(1)で表される複合酸化物からなる非水系電解質二次電池用正極活物質であって、
その結晶構造は、六方晶系の層状構造を有する複合酸化物単相であり、かつ電池の充電時には、Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相との2相からなることを特徴とする非水系電解質二次電池用正極活物質。
組成式(1):Li1+zNi1−x−yCoTi……(1)
(式中、x、y、zは、下記の(a)〜(c)に示す要件を満たす。)
(a) 0.10≦x≦0.21
(b) 0.01≦y≦0.08
(c) 0.03≦z≦0.14
A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite oxide represented by the following composition formula (1) containing lithium, nickel, cobalt and titanium,
The crystal structure is a single phase of a complex oxide having a hexagonal layered structure, and a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° in the X-ray diffraction measurement by Cu—Kα ray when the battery is charged. And a composite oxide phase having a layered structure in which a diffraction peak appears at 2θ = 17 to 19 °, and a positive electrode active material for a nonaqueous electrolyte secondary battery.
Composition formula (1): Li 1 + z Ni 1-xy Co x Ti y O 2 (1)
(In the formula, x, y and z satisfy the requirements shown in the following (a) to (c).)
(A) 0.10 ≦ x ≦ 0.21
(B) 0.01 ≦ y ≦ 0.08
(C) 0.03 ≦ z ≦ 0.14
上記Cu−Kα線によるX線回折測定において2θ=12〜14°に回折ピークが現れる結晶構造を有した相と、2θ=17〜19°に回折ピークが現れる層状構造を有する複合酸化物相は、加熱に際して、それぞれTG−DTA測定で温度領域(A):120〜180℃と温度領域(B):200〜270℃で重量減少を示すことを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質。   The complex oxide phase having a crystal structure in which a diffraction peak appears at 2θ = 12 to 14 ° and a layered structure in which a diffraction peak appears at 2θ = 17 to 19 ° in the X-ray diffraction measurement by the Cu—Kα ray is as follows. 2. The non-aqueous electrolyte according to claim 1, wherein in the heating, TG-DTA measurement shows weight loss in the temperature range (A): 120 to 180 ° C. and the temperature range (B): 200 to 270 ° C., respectively. Positive electrode active material for secondary battery. 上記重量減少は、電池の充電後の正極のTG−DTA測定で、温度領域(A)で3.5質量%以下であり、かつ温度領域(B)で5.2質量%以下であることを特徴とする請求項2に記載の非水系電解質二次電池用正極活物質。   The weight reduction is 3.5 mass% or less in the temperature region (A) and 5.2 mass% or less in the temperature region (B) by TG-DTA measurement of the positive electrode after charging the battery. The positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 2, wherein the positive electrode active material is a nonaqueous electrolyte secondary battery. 非水系電解質二次電池の正極に用いた場合の初期放電容量は、190mAh/g以上であることを特徴とする請求項1〜3のいずれかに記載の非水系電解質二次電池用正極活物質。   4. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the initial discharge capacity when used for the positive electrode of the non-aqueous electrolyte secondary battery is 190 mAh / g or more. 5. . 下記の工程(イ)、(ロ)を含むことを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池用正極活物質の製造方法。
工程(イ):ニッケル塩とコバルト塩の混合水溶液、硫酸チタニル水溶液、及びアルカリ水溶液を、反応槽に同時に滴下しながら、それらを撹拌し、60〜80℃の温度下、pHを10〜11に保持して、共沈殿させ、反応槽内で定常状態になった後に、オーバーフローした沈殿物を採取し、濾過、水洗、乾燥して、ニッケル、コバルト及びチタンの原子比を制御したニッケルコバルトチタン複合水酸化物を得る。
工程(ロ):前記ニッケルコバルトチタン複合水酸化物と水酸化リチウムまたはその水和物とを混合し、この混合物を、酸素気流中700〜800℃の温度で焼成して、リチウムの原子比を制御したリチウムニッケルコバルトチタン複合酸化物を得る。
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, comprising the following steps (A) and (B).
Step (I): A mixed aqueous solution of nickel salt and cobalt salt, an aqueous solution of titanyl sulfate, and an aqueous alkali solution are simultaneously added dropwise to a reaction vessel, and they are agitated. Hold, co-precipitate, and after reaching a steady state in the reaction vessel , the overflowed precipitate is collected, filtered, washed with water, and dried to control the atomic ratio of nickel, cobalt, and titanium. Obtain a hydroxide.
Step (b): The nickel-cobalt-titanium composite hydroxide and lithium hydroxide or hydrate thereof are mixed, and the mixture is baked in an oxygen stream at a temperature of 700 to 800 ° C. to determine the atomic ratio of lithium. A controlled lithium nickel cobalt titanium composite oxide is obtained.
請求項1〜4のいずれかに記載の非水系電解質二次電池用正極活物質を正極に用いてなる非水系電解質二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 as a positive electrode.
JP2007096163A 2007-04-02 2007-04-02 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same Active JP5109447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096163A JP5109447B2 (en) 2007-04-02 2007-04-02 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096163A JP5109447B2 (en) 2007-04-02 2007-04-02 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008257902A JP2008257902A (en) 2008-10-23
JP5109447B2 true JP5109447B2 (en) 2012-12-26

Family

ID=39981276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096163A Active JP5109447B2 (en) 2007-04-02 2007-04-02 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5109447B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246973B1 (en) * 2015-11-13 2019-02-20 Hitachi Metals, Ltd. Positive-electrode material for lithium-ion secondary battery, method for producing the same, and lithium-ion secondary battery
KR102077180B1 (en) * 2017-12-22 2020-02-13 주식회사 포스코 Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
CN114080700A (en) 2019-07-08 2022-02-22 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
EP3998238A4 (en) 2019-07-08 2023-12-13 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
CN114097115A (en) 2019-07-08 2022-02-25 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2021006124A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
EP3998237A4 (en) 2019-07-08 2023-08-09 Sumitomo Metal Mining Co., Ltd. Manufacturing method for positive electrode active material for lithium-ion secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185635B2 (en) * 1995-10-31 2001-07-11 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP3290355B2 (en) * 1996-07-12 2002-06-10 株式会社田中化学研究所 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
JP4228163B2 (en) * 1999-05-14 2009-02-25 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2001023629A (en) * 1999-07-12 2001-01-26 Kawatetsu Mining Co Ltd Active material for positive electrode of lithium ion secondary battery and method for evaluating thermal stability of the same
JP4447831B2 (en) * 2002-10-18 2010-04-07 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4655599B2 (en) * 2004-11-24 2011-03-23 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4394068B2 (en) * 2005-12-26 2010-01-06 Agcセイミケミカル株式会社 Positive electrode material for lithium secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2008257902A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101713454B1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2014010448A1 (en) Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7060776B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2010064944A (en) Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JP2010064944A5 (en)
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5181482B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
WO2020027158A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP4915227B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2013012336A (en) Secondary battery and charging method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150