JP2010064944A - Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material - Google Patents

Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material Download PDF

Info

Publication number
JP2010064944A
JP2010064944A JP2008235724A JP2008235724A JP2010064944A JP 2010064944 A JP2010064944 A JP 2010064944A JP 2008235724 A JP2008235724 A JP 2008235724A JP 2008235724 A JP2008235724 A JP 2008235724A JP 2010064944 A JP2010064944 A JP 2010064944A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
positive electrode
nickel composite
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235724A
Other languages
Japanese (ja)
Other versions
JP2010064944A5 (en
JP5618116B2 (en
Inventor
Ryuichi Kuzuo
竜一 葛尾
Atsushi Fukui
篤 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008235724A priority Critical patent/JP5618116B2/en
Publication of JP2010064944A publication Critical patent/JP2010064944A/en
Publication of JP2010064944A5 publication Critical patent/JP2010064944A5/ja
Application granted granted Critical
Publication of JP5618116B2 publication Critical patent/JP5618116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material to form into a positive electrode active material having high initial discharge capacity and initial charge capacity, and to provide a nonaqueous electrolyte secondary battery of high performance using the positive electrode active material. <P>SOLUTION: The lithium-nickel composite oxide is composed of a hexagonal lithium-nickel composite oxide with a layered structure and is expressed by the compositional formula of Li<SB>x</SB>Ni<SB>(1-y-z)</SB>Co<SB>y</SB>M<SB>z</SB>O<SB>2</SB>; wherein: x is 0.95 to 1.10; y is >0 to 0.20; z is >0 to 0.15; and the M element is at least one of element selected from the elemental group consisting of Al, Ti, Mn, Ga, Mg and Nb, and has a specific surface area of 0.5 to 2.0 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水系電解質二次電池用正極活物質に適したリチウムニッケル複合酸化物及びそれを用いた非水系電解質二次電池に関するものである。   The present invention relates to a lithium nickel composite oxide suitable for a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有し、且つ小型で軽量な二次電池の開発が強く望まれ、このような二次電池には、非水系電解質二次電池のリチウムイオン二次電池の利用が嘱望されている。
このリチウムイオン二次電池は、その負極材料にリチウム金属やリチウム合金、金属酸化物、或いはカーボン等が用いられている。これらの負極材料は、Liを脱離・挿入することが可能な材料である。又、このようなリチウムイオン二次電池の正極材料についても、現在、研究開発が盛んに行われているところである。
In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of secondary batteries having high energy density, small size and light weight is strongly desired. The use of lithium ion secondary batteries as water-based electrolyte secondary batteries is highly desired.
In this lithium ion secondary battery, lithium metal, lithium alloy, metal oxide, carbon, or the like is used as the negative electrode material. These negative electrode materials are materials capable of removing and inserting Li. In addition, research and development are actively being conducted on the positive electrode material of such a lithium ion secondary battery.

なかでもリチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られることから、高エネルギー密度の電池として実用化が進んでいる。
このリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。
In particular, a lithium ion secondary battery using a lithium metal composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. Practical use is progressing as a battery of high density.
In the lithium ion secondary battery using this lithium cobalt composite oxide, many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.

しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となる。具体的には、リチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、二次電池として既に利用されているニッケル水素電池の約4倍と高いため、適用される用途がかなり限定されているのが実態である。このため、正極活物質としてリチウムコバルト複合酸化物と同等以上の性能を有し、より安価な正極活物質の提供が期待されている。   However, since the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in the cost of the battery. Specifically, the unit price per capacity of a battery using a lithium cobalt composite oxide is about four times as high as that of a nickel-metal hydride battery already used as a secondary battery, so that the application to be applied is considerably limited. Is the actual situation. For this reason, it is expected that a positive electrode active material having a performance equal to or higher than that of the lithium cobalt composite oxide as the positive electrode active material and cheaper will be provided.

又、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池へのリチウムイオン二次電池の適用の期待も高まってきている。このため、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果が期待される。   Recently, not only small secondary batteries for portable electronic devices but also expectations for the application of lithium ion secondary batteries to large secondary batteries for power storage and electric vehicles are increasing. For this reason, reducing the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery is expected to have a large ripple effect in a wide range of fields.

このような状況の中、リチウムイオン二次電池用正極活物質として新たに提案される材料には、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 Under such circumstances, materials newly proposed as positive electrode active materials for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and nickel. It may be mentioned the lithium nickel composite oxide with (LiNiO 2).

ここで、リチウムマンガン複合酸化物は原料が安価であり、更に熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であると言えるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上の温度域では、自己放電が激しく、充放電寿命も低下するという欠点も有している。   Here, lithium manganese composite oxide is an inexpensive alternative material, and has excellent thermal stability, especially safety with respect to ignition. However, since it is only about half of the lithium cobalt composite oxide, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, in the temperature range of 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.

一方、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用い、リチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣るという問題点、及び高温環境下での使用や保存において、比較的容易に電池性能を損ないやすいという欠点も有していた。   On the other hand, the lithium nickel composite oxide has almost the same theoretical capacity as the lithium cobalt composite oxide, and shows a slightly lower battery voltage than the lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and development is performed actively from expecting higher capacity | capacitance. However, when a lithium-ion secondary battery is made using a lithium-nickel composite oxide that is purely composed of nickel without replacing nickel with other elements as the positive electrode active material, the cycle is higher than that of the lithium-cobalt composite oxide. There were also problems that the characteristics were inferior, and that battery performance was relatively easily lost during use and storage in a high temperature environment.

このため、これら欠点を解決することを目的として、上記リチウムニッケル複合酸化物の高性能化に関して種々の提案がなされてきている。
例えば、特許文献1には、LiNiCoMcO(ただし、0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、CuおよびZnから選ばれる少なくとも
1種の元素)で表されるリチウム含有複合酸化物が提案されている。
For this reason, various proposals have been made for improving the performance of the lithium nickel composite oxide for the purpose of solving these drawbacks.
For example, Patent Document 1 discloses Li x Ni a Co b McO 2 (where 0.8 ≦ x ≦ 1.2, 0.01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0 .01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is at least selected from Al, V, Mn, Fe, Cu and Zn
A lithium-containing composite oxide represented by one kind of element) has been proposed.

又、特許文献2には、LiNiCoB(ただし、0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.2、x+y+z=1)で表されるリチウム含有複合酸化物が提案されている。 Patent Document 2 discloses Li w Ni x CoB z O 2 (where 0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.2, x + y + z). = 1) Lithium-containing composite oxides have been proposed.

特許文献3では、LiNiCo(MはAl、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、且つ0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、更にb+c+d=1である)で表されるリチウム複合酸化物が提案されている。 In Patent Document 3, at least one metal is Li a M b Ni c Co d O e (M to Al, Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, is selected from the group consisting of Mo And 0 <a <1.3, 0.02 ≦ b ≦ 0.5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, b + c + d = 1) has been proposed.

これらの特許文献1〜3に開示されるリチウム複合酸化物は、高温環境下での保存や使用に際して良好な電池性能を維持するために提案されたものであり、リチウムニッケル複合酸化物のニッケルの一部をホウ素やコバルト、アルミニウムなどの元素に置換したリチウム含有複合酸化物である。例えばアルミニウムを置換元素として選択した場合、ニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上するなど、一定の効果のあることが確かめられている。またニッケルの一部をコバルトに置換することでサイクル特性が向上することも確かめられている。   These lithium composite oxides disclosed in Patent Documents 1 to 3 have been proposed in order to maintain good battery performance during storage and use in a high-temperature environment. It is a lithium-containing composite oxide that is partially substituted with elements such as boron, cobalt, and aluminum. For example, when aluminum is selected as the substitution element, it is confirmed that if the substitution amount from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved. Yes. It has also been confirmed that the cycle characteristics are improved by replacing a part of nickel with cobalt.

更に、特許文献4には、高容量で充放電サイクルに優れた正極活物質及びそれを用いた高性能の二次電池の提供を目的として、Li(1−x−a)Ni(1−y−b)(但し、AはSrストロンチウム又はBaバリウム、若しくはMgマグネシウム、Caカルシウム、Srストロンチウム及びBaおよびバリウムの中から選ばれた少なくとも2種のアルカリ土類金元素のいずれかであり、BはNiを除く少なくとも1種の遷移金属元素からなり、式中x、yは、0<x≦0.10、0<y≦0.30、a、bは、−0.10≦a≦0.10、−0.15≦b≦0.15;但し、xはaの総モル数を表し、aが2種以上のアルカリ土類金属元素からなる場合は、xは全アルカリ土類金属元素の総モル数であり、yはbの総モル数を表し、bが2種以上の遷移金属元素からなる場合は、yはNiを除く全遷移金属元素の総モル数である)で表される化合物であることを特徴とする正極活物質が提案されている。 Further, Patent Document 4 discloses Li (1-xa) A x Ni (1 ) for the purpose of providing a positive electrode active material having a high capacity and excellent charge / discharge cycle and a high-performance secondary battery using the positive electrode active material. -y-b) B y O 2 ( where, a is either Sr strontium or Ba barium, or of Mg magnesium, Ca calcium, Sr strontium and Ba and at least two alkaline earth metal element selected from among barium B is composed of at least one transition metal element excluding Ni, wherein x and y are 0 <x ≦ 0.10, 0 <y ≦ 0.30, and a and b are −0. 10 ≦ a ≦ 0.10, −0.15 ≦ b ≦ 0.15; provided that x represents the total number of moles of a, and when a is composed of two or more alkaline earth metal elements, x is all The total number of moles of alkaline earth metal elements, y is the total number of b A positive electrode active material, wherein y is the total number of moles of all transition metal elements except Ni when b is composed of two or more transition metal elements Has been proposed.

特許文献5には、初期放電容量の高くなるリチウム二次電池用正極活物質として一般式Li(Ni(1−y)Co(1−z)(0.98≦x≦1.10、0.05≦y≦0.2、0.01≦z≦0.2、M=Al、Zn、Ti、およびMgの1種以上)で表され、リートベルト解析による結晶中のLiサイトのLi席占有率が98%以上で、平均粒子径5〜15μmの球状2次粒子である正極活物質の比表面積が、水処理前後での変化が1.0m/g以下であるリチウムニッケル複合酸化物が提案されている。 Patent Document 5 discloses a general formula Li x (Ni (1-y) Co y ) (1-z) M z O 2 (0.98 ≦ x ) as a positive electrode active material for a lithium secondary battery having a high initial discharge capacity. ≦ 1.10, 0.05 ≦ y ≦ 0.2, 0.01 ≦ z ≦ 0.2, M = one or more of Al, Zn, Ti, and Mg) in the crystal by Rietveld analysis The specific surface area of the positive electrode active material, which is a spherical secondary particle having an average particle diameter of 5 to 15 μm, is less than 1.0 m 2 / g before and after water treatment, with the Li site occupation ratio of the Li site being 98% or more. A lithium nickel composite oxide has been proposed.

これらの置換元素は、リチウムニッケル複合酸化物が有する幾つかの問題点の解決に役立つことは間違いないが、リチウムニッケル複合酸化物の本来の性能を引き出すためには、その結晶構造を精密に制御することが最も重要である。例えば特許文献6では、結晶構造の中でも3aサイトのNi席占有率が1.5%〜2.9%とすることが必要であるとされており、実際、3aサイトのNi席占有率が低ければ低いほど初期充放電容量は向上し、不可逆容量を低減できることが確かめられている。   These substitution elements will definitely help solve some of the problems of lithium-nickel composite oxides, but in order to bring out the original performance of lithium-nickel composite oxides, the crystal structure is precisely controlled. It is most important to do. For example, in Patent Document 6, it is said that the Ni seat occupancy of the 3a site needs to be 1.5% to 2.9% in the crystal structure, and the Ni seat occupancy of the 3a site is actually low. It is confirmed that the lower the capacity, the higher the initial charge / discharge capacity and the lower the irreversible capacity.

このような3aサイトのNi席占有率の低い、即ちLi席占有率の高い、完全な結晶構造を持つ正極活物質を合成するためには、一般にはLiを化学量論比よりも高めに仕込む必要がある。しかし、Liを化学量論比よりも高めに仕込むと、焼成後に過剰なLiが未反応で残留し、これが大気中で二酸化炭素と反応して炭酸リチウムに変化し、電極として二次電池に組み込んだ場合にガス発生などを引き起こし、電池の膨れの原因となる場合がある。又、残留した未反応リチウムが、後の電極作成工程で正極活物質をペースト状にしたときに、そのペーストがゲル化して塗布できなくなるという問題を引き起こす場合もある。一方、Liを化学量論比よりも高くせずに仕込んで合成するとLi席占有率が不十分となり、充放電特性が悪化する。   In order to synthesize a positive electrode active material having a complete crystal structure with a low Ni site occupancy rate at the 3a site, that is, a high Li site occupancy rate, generally, Li is charged to a higher stoichiometric ratio. There is a need. However, if Li is charged higher than the stoichiometric ratio, excess Li will remain unreacted after firing, and this will react with carbon dioxide in the atmosphere and change to lithium carbonate, which is then incorporated into the secondary battery as an electrode. In such a case, gas may be generated and the battery may swell. Further, the remaining unreacted lithium may cause a problem that when the positive electrode active material is made into a paste in a later electrode forming process, the paste is gelled and cannot be applied. On the other hand, when Li is charged and synthesized without making it higher than the stoichiometric ratio, the Li seat occupancy becomes insufficient and the charge / discharge characteristics deteriorate.

特許文献7に提案される非水系電解質二次電池用正極活物質はこうした点を考慮して開発されたものであり、LixNi(1−y)MyO(但し、0.96≦x≦1.09、0<y≦0.25、MはCo、Al、Mg、Mn、Ti、Fe、Cr、Zn、Gaからなる群より選ばれた少なくとも1種類以上の金属元素)で表されるリチウム金属複合酸化物粉末からなる非水系電解質二次電池用正極活物質であって、Liサイトである3aサイトに含まれる遷移金属イオンが3bサイトに移動し、3aサイトにおけるLiイオンの席占有率が、水攪拌処理前に比べ0.1%〜0.6%上昇している非水系電解質二次電池用正極活物質であり、サイクル特性の良い高寿命を達成している。
特開平8−213015号公報 特開平8−45509号公報 特開平5−242891号公報 特許3460413号公報 特開2004−171961号公報 特開平9−298062号公報 特開2007−242288号公報
The positive electrode active material for a non-aqueous electrolyte secondary battery proposed in Patent Document 7 has been developed in consideration of such points, and LixNi (1-y) MyO 2 (provided that 0.96 ≦ x ≦ 1. 09, 0 <y ≦ 0.25, and M is a lithium metal represented by Co, Al, Mg, Mn, Ti, Fe, Cr, Zn, Ga). It is a positive electrode active material for a non-aqueous electrolyte secondary battery made of a composite oxide powder, the transition metal ions contained in the 3a site that is the Li site move to the 3b site, and the seat occupancy rate of the Li ions in the 3a site is It is a positive electrode active material for a non-aqueous electrolyte secondary battery that is increased by 0.1% to 0.6% compared to that before the water stirring treatment, and achieves a long life with good cycle characteristics.
Japanese Patent Laid-Open No. 8-213015 JP-A-8-45509 Japanese Patent Laid-Open No. 5-242891 Japanese Patent No. 3460413 JP 2004-171961 A JP-A-9-298062 JP 2007-242288 A

特許文献7に開示される非水系電解質二次電池用正極活物質は、確かに、1次粒子の乱れが小さくなり、結晶内部の抵抗は低減され、サイクル特性の良い高寿命な非水系電解質二次電池用正極活物質を安定して得ることが出来る。しかしながら、特許文献7明細書第14頁の表1からわかるように、この正極活物質の初期放電容量は190mAh/g台であり、更に高初期放電容量が求められる昨今の状況には対応できるものではない。
そこで、本発明は、係る問題点に鑑みてなされたものであって従来よりも高い初期放電容量と初期充電容量をもつ正極活物質に利用される材料を提供し、それを用いた高性能な非水系電解質二次電池の提供を目的とする。
The positive electrode active material for a non-aqueous electrolyte secondary battery disclosed in Patent Document 7 certainly reduces the disturbance of primary particles, reduces the internal resistance of the crystal, and has a long-life non-aqueous electrolyte with good cycle characteristics. A positive electrode active material for a secondary battery can be obtained stably. However, as can be seen from Table 1 on page 14 of the specification of Patent Document 7, the initial discharge capacity of this positive electrode active material is on the order of 190 mAh / g, which can cope with the current situation where a higher initial discharge capacity is required. is not.
Therefore, the present invention has been made in view of such problems, and provides a material used for a positive electrode active material having an initial discharge capacity and an initial charge capacity higher than those of the prior art, and a high performance using the same. An object is to provide a non-aqueous electrolyte secondary battery.

本発明者らは、組成式LiNi(1−y−z)Co(0.95≦x≦1.10、0<y≦0.20、0<z≦0.15、MはAl、Ti、Mn、Ga、Mg、Nbの中から選択される少なくとも1種の元素)で表され、且つ層状構造を有する六方晶系リチウムニッケル複合酸化物について鋭意検討したところ、特定の条件を満たすリチウムニッケル複合酸化物は、前記課題を満足することを見出して本発明に至ったものである。 The inventors have a composition formula Li x Ni (1-yz) Co y M z O 2 (0.95 ≦ x ≦ 1.10, 0 <y ≦ 0.20, 0 <z ≦ 0.15). , M is at least one element selected from Al, Ti, Mn, Ga, Mg, and Nb), and a hexagonal lithium-nickel composite oxide having a layered structure has been investigated. The lithium-nickel composite oxide that satisfies the above condition has been found to satisfy the above-mentioned problems, and the present invention has been achieved.

即ち、前記課題を解決する本第一の発明は、層状構造の六方晶系リチウムニッケル複合酸化物であって、xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなるLiNi(1−y−z)Coの組成式で表される、比表面積が0.5〜2.0m/gである層状構造の六方晶系リチウムニッケル複合酸化物である。 That is, the first invention for solving the above problems is a hexagonal lithium nickel composite oxide having a layered structure, wherein x is 0.95 or more and 1.10 or less, y is greater than 0, 0.20 Hereinafter, Li x Ni (1-y−), which is composed of at least one element selected from the group consisting of Al, Ti, Mn, Ga, Mg, and Nb, with z greater than 0 and 0.15 or less. z) A hexagonal lithium nickel composite oxide having a layered structure and a specific surface area of 0.5 to 2.0 m 2 / g, represented by a composition formula of Co y M z O 2 .

更に、その中間生成体は、xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなるLiNi(1−y−z)Coの組成式で表される、Li主体層のLi席占有率が95%以上、結晶子径が73から200nm、且つ比表面積が0.2から1.0m/gであることを特徴とする。 Further, the intermediate product has x of 0.95 or more and 1.10 or less, y is greater than 0, 0.20 or less, z is greater than 0 and 0.15 or less, and the M element is Al, Ti, Li of the Li main layer represented by the composition formula of Li x Ni (1-yz) Co y M z O 2 composed of at least one element selected from the element group of Mn, Ga, Mg, and Nb The seat occupancy is 95% or more, the crystallite diameter is 73 to 200 nm, and the specific surface area is 0.2 to 1.0 m 2 / g.

又、素原料のリチウム化合物とNi(1−y−z)CoOの組成式で表されるCo元素及びM元素を含むニッケル複合酸化物を、前記リチウム化合物のLi元素と前記ニッケル複合酸化物のNi元素、Co元素及びM元素のモル和におけるモル比:[Li/Ni+Co+M]が1.0以上の混合物を焼成した、Li主体層のLi席占有率が95%以上、結晶子径が73から200nm、且つ比表面積が0.2から1.0m/gである中間生成体に、Li除去処理を施して生成される、xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなるLiNi(1−y−z)Coの組成式で表される、比表面積が0.5〜2.0m/gである層状構造の六方晶系リチウムニッケル複合酸化物である。 Further, a nickel composite oxide containing a Co element and an M element represented by a composition formula of a raw material lithium compound and Ni (1-yz) Co y M z O is used as the Li element of the lithium compound and the nickel. The molar ratio in the molar sum of Ni element, Co element, and M element of the composite oxide: a mixture of [Li / Ni + Co + M] of 1.0 or more is fired. An intermediate product having a diameter of 73 to 200 nm and a specific surface area of 0.2 to 1.0 m 2 / g is generated by subjecting the intermediate product to Li removal treatment. X is 0.95 or more and 1.10 or less, y Is greater than 0 and not greater than 0.20, z is greater than 0 and not greater than 0.15, and the M element is composed of at least one element selected from the group consisting of Al, Ti, Mn, Ga, Mg, and Nb. li x Ni (1-y- z) C represented by a composition formula of y M z O 2, specific surface area of hexagonal system lithium nickel composite oxide having a layered structure is 0.5~2.0m 2 / g.

これらのリチウムニッケル複合酸化物は、平均粒径が0.1〜1.0μmの一次粒子を複数集合した球状又は楕円球状の二次粒子から構成されていることを特徴としている。   These lithium nickel composite oxides are characterized by being composed of spherical or oval spherical secondary particles in which a plurality of primary particles having an average particle size of 0.1 to 1.0 μm are assembled.

本発明の第二の発明は、請求項1乃至4のいずれか1項に記載のリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池である。   A second invention of the present invention is a non-aqueous electrolyte secondary battery using the lithium nickel composite oxide according to any one of claims 1 to 4 as a positive electrode active material.

本発明に係る非水系電解質二次電池用正極活物質は、組成式:LiNi(1−y−z)Coで表される、0.95≦x≦1.10、0<y≦0.20、0<z≦0.15で、M元素はAl、Ti、Mn、Ga、Mg、Nbの群から選択される少なくとも1種の元素で構成される層状構造の六方晶系リチウムニッケル複合酸化物であって、リチウム化合物と組成式:Ni(1−y−z)CoOで表されるCo元素とM元素を含むニッケル複合酸化物とを、LiとNi元素、Co元素及びM元素の和におけるモル比:[Li/Ni+Co+M]が1.0以上になるように混合した後、焼成、水洗して未反応リチウムを除去して得られるもので、焼成して得られた中間生成物の未反応リチウムを除去することで比表面積が0.5〜2.0m/gとなり、正極と電解液との反応面積の確保を容易にし、良好な充放電容量を得ることができるものである。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is represented by a composition formula: Li x Ni (1-yz) Co y M z O 2 , 0.95 ≦ x ≦ 1.10. Hexagonal layered structure composed of at least one element selected from the group consisting of Al, Ti, Mn, Ga, Mg, and Nb, with 0 <y ≦ 0.20 and 0 <z ≦ 0.15 A lithium compound and a compositional formula: Ni (1-yz) Co y M z O represented by a lithium compound and a nickel composite oxide containing M element and Li, Molar ratio in the sum of Ni element, Co element and M element: After mixing so that [Li / Ni + Co + M] becomes 1.0 or more, it is obtained by removing unreacted lithium by baking and washing with water. Specific surface area by removing unreacted lithium in the intermediate product Is 0.5 to 2.0 m 2 / g, and it is easy to secure a reaction area between the positive electrode and the electrolytic solution, and a good charge / discharge capacity can be obtained.

更に、平均粒径が0.1〜1.0μmの一次粒子を複数集合して二次粒子とすることで、正極と電解液との反応面積の確保を容易にし、且つ高い充填密度を確保することができる。又、73〜200nmの結晶子径とすることで微粉を減らして充填性の高い球状又は楕円球状の二次粒子を得ることができる。   Further, by collecting a plurality of primary particles having an average particle size of 0.1 to 1.0 μm to form secondary particles, it is easy to secure a reaction area between the positive electrode and the electrolyte and secure a high packing density. be able to. Moreover, by setting the crystallite diameter to 73 to 200 nm, fine powder can be reduced and spherical or elliptical secondary particles having high filling properties can be obtained.

以上のことより、本発明のリチウムニッケル複合酸化物は、高い初期放電容量及び初期充電容量をもつ正極活物質として好適であり、従って非水系電解質二次電池の正極活物質として用いることで、二次電池のクーロン効率が高く、不可逆容量の小さな二次電池を提供することができ、同時に電池の膨れの原因となる高温保存環境下でのガス発生を抑えることができるものである。
本発明の非水系電解質二次電池は、最近の携帯電子機器等の小型二次電池に対する高容量化の要求を満足するとともに、ハイブリッド自動車用、電気自動車用大型二次電池に用いられる電源として求められる安全性も有し、工業上顕著な効果を奏するものである。
From the above, the lithium nickel composite oxide of the present invention is suitable as a positive electrode active material having a high initial discharge capacity and an initial charge capacity. Therefore, when used as a positive electrode active material of a non-aqueous electrolyte secondary battery, A secondary battery having a high coulomb efficiency of the secondary battery and a small irreversible capacity can be provided, and at the same time, gas generation in a high-temperature storage environment that causes the battery to swell can be suppressed.
The non-aqueous electrolyte secondary battery of the present invention satisfies the recent demand for higher capacity for small secondary batteries such as portable electronic devices, and is also demanded as a power source used for large secondary batteries for hybrid vehicles and electric vehicles. Safety, and has a significant industrial effect.

上記問題を解決するため、本発明者らは種々研究を進めた結果、以下の知見を得るに至った。
化合物の化学量論性は、X線回折のリートベルト解析(例えば、R.A.Young,ed.,“The Rietveld Method”,Oxford University Press(1992))における化合物の各イオンの席占有率を指標として用いることで評価可能であり、六方晶系の化合物の場合には、3a、3b、6cサイトにおいて、LiNiOが完全な化学量論組成の場合には3aサイトはLi、3bサイトはNi、6cサイトはOが、それぞれ100%の席占有率を示す。
In order to solve the above problems, the present inventors have advanced various studies, and as a result, have obtained the following knowledge.
The stoichiometry of a compound is determined by the seat occupancy of each ion of the compound in a Rietveld analysis of X-ray diffraction (for example, RA Young, ed., “The Rietveld Method”, Oxford University Press (1992)). It can be evaluated by using as an index. In the case of a hexagonal compound, at the 3a, 3b, and 6c sites, when LiNiO 2 has a complete stoichiometric composition, the 3a site is Li and the 3b site is Ni. In the 6c site, O shows 100% seat occupancy.

即ち、3aサイトのLiイオンの席占有率が97%以上であるようなリチウムニッケル複合酸化物は化学量論性に優れ、二次電池用活物質に対する指標として、このLi席占有率を考慮した場合、Liは脱離、挿入が可能なためLi欠損が生じても結晶の完全性が維持でき、従って、現実的には3aサイトの非リチウムイオンの混入率をもって化学量論性或いは結晶の完全性を示すと考えられる。   That is, the lithium nickel composite oxide in which the Li ion seat occupancy at the 3a site is 97% or more is excellent in stoichiometry, and this Li seat occupancy is considered as an index for the active material for secondary batteries. In this case, since Li can be desorbed and inserted, the integrity of the crystal can be maintained even if Li deficiency occurs. It is thought to show gender.

本発明は、Niの一部をサイクル特性向上のためにCoで置換し、熱安定性や保存特性改善のために金属元素のM元素(M元素はAl、Ti、Mn、Ga、Mg、Nbの中から選択される少なくとも1種の元素である)で置換した二次電池の正極活物質に利用可能なリチウムニッケル複合酸化物に関するものであり、二次電池の充放電反応が、3aサイトにLiイオンが可逆的に出入りすることで進行する場合、固相内でのLiの拡散パスとなる3aサイトに他の金属イオンが混入すると拡散パスが阻害され、これが電池の充放電特性を悪化させる原因となりうることから、種々の合成方法で作製した正極活物質に対して検討を重ねた結果、本発明者らは、粉末X線回折パターンのリートベルト解析より求めた3aサイトの非リチウムイオンの混入率と不可逆容量との間に深い関係を見出し、3aサイトの非リチウムイオンの席占有率が3%以下である正極活物質を用いることで、固相内でのLiの拡散パスが確保され、且つ不可逆容量を向上させることができることを見出したものである。   In the present invention, a part of Ni is replaced with Co for improving cycle characteristics, and M element of a metal element (M element is Al, Ti, Mn, Ga, Mg, Nb for improving thermal stability and storage characteristics). Is a lithium nickel composite oxide that can be used as a positive electrode active material of a secondary battery substituted with at least one element selected from In the case where Li ions proceed in a reversible manner, if other metal ions enter the 3a site, which is the Li diffusion path in the solid phase, the diffusion path is inhibited, which deteriorates the charge / discharge characteristics of the battery. As a result of repeated investigations on positive electrode active materials prepared by various synthesis methods, the present inventors have found that non-lithium ions at the 3a site obtained by Rietveld analysis of powder X-ray diffraction patterns. By finding a deep relationship between the mixing rate and the irreversible capacity, and using a positive electrode active material having a non-lithium ion occupancy rate of 3% or less at the 3a site, a diffusion path for Li in the solid phase is secured. In addition, the present inventors have found that the irreversible capacity can be improved.

このような3aサイトのLi席占有率が高い正極活物質は、素原料にリチウム化合物とCoと金属元素Mとを含むニッケル複合酸化物を用い、そのLiと金属元素(Ni+Co+M)のモル比:[Li/Ni+Co+M]が1.0以上の混合物を焼成することによって得ることができる。   Such a positive electrode active material having a high Li site occupancy at the 3a site uses a nickel composite oxide containing a lithium compound, Co, and a metal element M as a raw material, and a molar ratio between the Li and the metal element (Ni + Co + M): It can be obtained by firing a mixture having [Li / Ni + Co + M] of 1.0 or more.

しかし、モル比:[Li/Ni+Co+M]を必要以上に高くすると、焼成後に過剰なLiが未反応で正極活物質中に残留し、これが大気中で二酸化炭素と反応して炭酸リチウムに変化し、電極として電池に組み込んだときにガス発生などを引き起こし、電池の膨れの原因となる場合がある。又、残留した未反応Liが、後の電極作成工程で正極活物質をペースト状にしたときに、そのペーストがゲル化して塗布できなくなるという問題を引き起こす場合もある。
一方、Liを化学量論比よりも低くすると、Li席占有率が不十分となり、充放電特性、特に不可逆容量と初期容量が悪化する。
However, when the molar ratio: [Li / Ni + Co + M] is increased more than necessary, excess Li remains unreacted in the positive electrode active material after firing, and this reacts with carbon dioxide in the atmosphere to change to lithium carbonate. When it is incorporated in a battery as an electrode, it may cause gas generation, which may cause the battery to swell. Further, the remaining unreacted Li may cause a problem that when the positive electrode active material is made into a paste in a later electrode forming process, the paste is gelled and cannot be applied.
On the other hand, when Li is made lower than the stoichiometric ratio, the Li seat occupancy becomes insufficient, and the charge / discharge characteristics, particularly the irreversible capacity and the initial capacity are deteriorated.

そこで、焼成後に過剰のLiを除去する処理を施すことでガス発生の原因となる残留リチウム化合物を低減させる。
この過剰なLiの除去方法としては、焼成後のリチウムニッケル複合酸化物を水、又はリチウムが溶解した水溶液で洗浄し、濾過した後、真空中で加熱乾燥する方法が採られる。この乾燥を大気中で行なうと、わずかに残留した水分に含まれるリチウムが再び炭酸化して、ガス発生の原因物質となってしまうことから、真空中で行なうことが好ましい。
Then, the residual lithium compound which causes gas generation is reduced by performing the process which removes excess Li after baking.
As a method for removing this excess Li, a method is adopted in which the fired lithium nickel composite oxide is washed with water or an aqueous solution in which lithium is dissolved, filtered, and then heated and dried in a vacuum. When this drying is performed in the air, lithium contained in the slightly remaining water is carbonated again and becomes a causative substance for gas generation. Therefore, the drying is preferably performed in a vacuum.

更に、Liの除去処理によっては一部の金属元素が3aサイトに移動し、Li席占有率を低下させるものの、95%以上のLi席占有率においては、表面残留リチウム化合物が除去されたことで、表面のリチウム拡散を阻害しなくなり、従来より低いLi席占有率を持つリチウムニッケル複合酸化物であっても、良好な充放電容量をもつ正極活物質となるものである。   Furthermore, although some metal elements move to the 3a site depending on the Li removal treatment, and the Li seat occupancy is reduced, the surface residual lithium compound is removed at the Li seat occupancy of 95% or more. Even if it is a lithium nickel composite oxide that does not inhibit the diffusion of lithium on the surface and has a lower Li seat occupancy than before, it becomes a positive electrode active material having a good charge / discharge capacity.

焼成後に生成される中間生成体を、水、又はLiが溶解している水溶液で洗浄する際、そのリチウムニッケル複合酸化物のもつ比表面積が極端に大きいと残留リチウム化合物の除去効果が十分に得られないため、除去処理前のリチウムニッケル複合酸化物の比表面積は0.2〜1.0m/gであることが望ましい。一方、除去処理を施した後の比表面積が小さすぎる場合には、電解液との接触面積が小さくなり、リチウムイオンの出入りに伴う抵抗が大きくなって充放電特性が低下するため、未反応リチウムの除去処理を施して生成したリチウムニッケル複合酸化物の比表面積は0.5〜2.0m/gであることが望ましい。 When the intermediate product produced after firing is washed with water or an aqueous solution in which Li is dissolved, if the specific surface area of the lithium nickel composite oxide is extremely large, the effect of removing residual lithium compounds is sufficiently obtained. Therefore, the specific surface area of the lithium nickel composite oxide before the removal treatment is desirably 0.2 to 1.0 m 2 / g. On the other hand, if the specific surface area after the removal treatment is too small, the contact area with the electrolytic solution becomes small, the resistance accompanying the entry / exit of lithium ions increases, and the charge / discharge characteristics deteriorate. It is desirable that the specific surface area of the lithium nickel composite oxide produced by the removal treatment is 0.5 to 2.0 m 2 / g.

正極活物質は、その構成する一次粒子が小さい方ほど、電解液との接触面積の観点からは好ましいが、あまり細かすぎると微粉となって、電極の成型密度を低下させてしまい、結果として高い充放電特性を得ることができなくなってしまう。そのため、一次粒子の粒径の平均値は0.1〜1.0μmであることが好ましい。
但し、一次粒子のままでは充填性が悪いため、これら一次粒子は複数集合して二次粒子を形成している方が電極の成型上好ましく、特に高い充填性を確保するためには、二次粒子の形状は、球状又は楕円球状であることが好ましい。
The positive electrode active material is preferable from the viewpoint of the contact area with the electrolytic solution, the smaller the primary particles constituting the positive electrode active material, but if it is too fine, it becomes a fine powder and reduces the molding density of the electrode, resulting in high Charge / discharge characteristics cannot be obtained. Therefore, it is preferable that the average value of the particle diameter of a primary particle is 0.1-1.0 micrometer.
However, since the filling properties are poor if the primary particles remain, it is preferable to form a secondary particle by aggregating a plurality of these primary particles, and in order to ensure particularly high filling properties, it is preferable to form secondary particles. The shape of the particles is preferably spherical or elliptical.

更に、正極活物質の粉末が、小さな一次粒子が集合して二次粒子を形成している場合、個々の一次粒子をある程度成長させることによって二次粒子内部の一次粒子どうしの間に細かな隙間を形成することができ、それによって、その隙間に電解液がしみ込んで二次粒子内部まで電解液を介してLiイオンを供給することが可能となる。その結果、二次粒子全体にLiイオンが拡散する速度が速くなり、不可逆容量が低減するものである。
その場合の一次粒子の成長具合は、X線回折図形の003ピークから計算される結晶子径で判断することが可能で、結晶子径が73〜200nmの範囲にあれば、充填性及び充放電特性を両立させる正極活物質が得られる。
Furthermore, when the powder of the positive electrode active material is formed by agglomeration of small primary particles to form secondary particles, fine gaps are formed between the primary particles inside the secondary particles by growing each primary particle to some extent. Thus, it is possible to supply the Li ions to the inside of the secondary particles through the electrolytic solution through the penetration of the electrolytic solution into the gap. As a result, the speed at which Li ions diffuse throughout the secondary particles is increased, and the irreversible capacity is reduced.
In this case, the degree of primary particle growth can be determined by the crystallite diameter calculated from the 003 peak of the X-ray diffraction pattern. If the crystallite diameter is in the range of 73 to 200 nm, the filling property and charge / discharge are determined. A positive electrode active material having both properties can be obtained.

このようなリチウムニッケル複合酸化物の正極活物質を用いて非水系電解質二次電池を構成すると、従来より低いLi席占有率を持つリチウムニッケル複合酸化物であっても良好な充放電容量を持つ二次電池が形成される。   When a non-aqueous electrolyte secondary battery is configured using such a positive electrode active material of lithium nickel composite oxide, even a lithium nickel composite oxide having a lower Li seat occupancy than the conventional one has good charge / discharge capacity. A secondary battery is formed.

次に、非水系電解質二次電池、即ちリチウムイオン二次電池の実施形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係る非水系電解質二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成されているものである。尚、以下で説明する実施形態は例示に過ぎず、以下に示す実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施され、又本発明の非水系電解質二次電池の用途は特に限定されるものではない。   Next, an embodiment of a non-aqueous electrolyte secondary battery, that is, a lithium ion secondary battery will be described in detail for each component. The non-aqueous electrolyte secondary battery according to the present invention is composed of the same constituent elements as a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The embodiments described below are only examples, and the non-aqueous electrolyte of the present invention is implemented in various modified and improved forms based on the knowledge of those skilled in the art including the following embodiments. The use of the secondary battery is not particularly limited.

以下、本発明のリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池について説明する。
(1)正極活物質、正極
本発明に係る非水系電解質二次電池に用いられる正極活物質は、ニッケル塩とコバルト塩の混合水溶液およびM元素の水溶液にアルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にCoとNiとMとの原子比が、組成式:LiNi(1−y−z)Co(0.95≦x≦1.10、0<y≦0.20、0<z≦0.15、M元素はAl、Ti、Mn、Ga、Mg、Nbの群から選択される少なくとも1種の元素)に示す原子比となるように共沈殿させる。そして定常状態になった後に沈殿物を採取し、濾過、水洗してNiとCoとMの複合水酸化物を得る。
Hereinafter, a non-aqueous electrolyte secondary battery using the lithium nickel composite oxide of the present invention as a positive electrode active material will be described.
(1) Positive electrode active material, positive electrode The positive electrode active material used for the non-aqueous electrolyte secondary battery according to the present invention is an alkaline solution added to a mixed aqueous solution of nickel salt and cobalt salt and an aqueous solution of M element, and these are added at a constant rate. The atomic ratio of Co, Ni, and M in the reaction vessel is determined by the composition formula: Li x Ni (1-yz) Co y M z O 2 (0.95 ≦ x ≦ 1.10. , 0 <y ≦ 0.20, 0 <z ≦ 0.15, and the M element has an atomic ratio of at least one element selected from the group consisting of Al, Ti, Mn, Ga, Mg, and Nb) Co-precipitate. Then, after reaching a steady state, a precipitate is collected, filtered and washed with water to obtain a composite hydroxide of Ni, Co and M.

その後、得られた複合水酸化物を300℃以上800℃未満の温度で熱処理する。熱処理温度は、650℃〜800℃がより好ましい。熱処理温度が800℃以上であると、複合水酸化物が酸化物に変化した後の粒成長が著しく、リチウム化合物との反応性が悪化し、目的とするリチウム複合酸化物を得ることができない。又、300℃よりも低いと水酸化物が酸化物へ変化する温度に至らないためM元素の拡散が十分でなく、同時に一次粒子の粒成長が進まないため、満足すべき複合酸化物が得られない。
この熱処理は、二次粒子を形成している一次粒子の粒成長を促進して比表面積を低減させるとともに、一次粒子同士の隙間を低減してタップ密度を向上させる効果を最大限発揮するために行われる。
Thereafter, the obtained composite hydroxide is heat-treated at a temperature of 300 ° C. or higher and lower than 800 ° C. The heat treatment temperature is more preferably 650 ° C to 800 ° C. When the heat treatment temperature is 800 ° C. or higher, the grain growth after the composite hydroxide is changed to an oxide is remarkable, the reactivity with the lithium compound is deteriorated, and the target lithium composite oxide cannot be obtained. Further, if the temperature is lower than 300 ° C., the temperature at which the hydroxide changes to an oxide is not reached, so that the diffusion of the M element is not sufficient, and at the same time, the primary particle growth does not proceed. I can't.
In order to maximize the effect of increasing the tap density by promoting the grain growth of the primary particles forming the secondary particles to reduce the specific surface area and reducing the gap between the primary particles. Done.

本発明の正極活物質であるリチウムニッケル複合化合物は、リチウム化合物と前記方法で得られたニッケルとコバルトとM元素の複合酸化物を、それぞれ所定量混合し、酸素気流中で650℃〜800℃程度の温度で、5〜50時間程度焼成することによって合成することができる。650℃より低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。又800℃を越えると、Li層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトにおけるリチウム以外の金属イオンの席占有率が3%より大きくなってしまい、リチウムのサイトである3aサイトに金属イオンの混入率が高くなり、リチウムイオンの拡散パスが阻害され、その正極を用いた電池は初期容量や出力が低下してしまうことから好ましくない。   The lithium nickel composite compound which is the positive electrode active material of the present invention is a mixture of lithium compound, nickel, cobalt and M element composite oxide obtained by the above method, respectively, and 650 ° C. to 800 ° C. in an oxygen stream. It can be synthesized by baking at a temperature of about 5 to 50 hours. When the temperature is lower than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. When the temperature exceeds 800 ° C., Ni is mixed into the Li layer and Li is mixed into the Ni layer, and the layer structure is disturbed. The site occupancy rate of metal ions other than lithium at the 3a site becomes larger than 3%, and the lithium site. In this case, the mixing rate of metal ions at the 3a site is increased, the lithium ion diffusion path is obstructed, and a battery using the positive electrode is not preferable because the initial capacity and output are reduced.

得られた正極活物質の粒度分布のD50は4.5〜10.0μmであり、タップ密度は1.5g/ml以上であることが好ましく、この範囲を外れると、正極を作製するときに十分正極活物質を充填できなくなるなど正極材として相応しくなくなってしまうからである。   The particle size distribution D50 of the obtained positive electrode active material is 4.5 to 10.0 μm, and the tap density is preferably 1.5 g / ml or more. This is because the cathode active material becomes unsuitable as a cathode material, such as being unable to be filled.

次に、正極を形成する正極合材及び正極合材を構成する各材料について説明する。
粉末状の正極活物質、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素である。そのため、溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。
Next, the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
A powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste.
The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. Therefore, when the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass, respectively, in the same manner as the positive electrode of a general lithium secondary battery. It is desirable that the content of the material is 1 to 20% by mass and the content of the binder is 1 to 20% by mass.

得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法に依ってもよい。   The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to scatter the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production. However, the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.

このような正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。   In producing such a positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black-based material such as acetylene black, ketjen black, or the like can be used.

又、バインダーには、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。   As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluorine rubber, styrene butadiene, cellulose resin, polyacrylic acid, or the like can be used.

結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。   The binder plays the role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Moreover, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(2)負極活物質、負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(2) Negative electrode active material, negative electrode For the negative electrode, metallic lithium, lithium alloy, etc., and a negative electrode active material capable of occluding and desorbing lithium ions are mixed with a binder, and an appropriate solvent is added to form a paste. The negative electrode mixture is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.

又、負極活物質には、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。   In addition, as the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery material of a carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.

(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many fine holes can be used.

(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、或いは2種以上を混合して用いることができる。
(4) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.

支持塩には、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができ、更に、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいても良い。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and their complex salts can be used, and the non-aqueous electrolyte includes a radical scavenger, A surfactant, a flame retardant, and the like may be included.

(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係る非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができるが、いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、この電極体に非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
(5) Shape and configuration of battery The shape of the non-aqueous electrolyte secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above can be various, such as a cylindrical type and a laminated type. However, in any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with a non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal that communicates with the outside, and the negative electrode current collector and the negative electrode terminal that communicates with the outside are connected using a current collecting lead or the like. The battery having the above structure can be sealed in a battery case to complete the battery.

以下に、本発明の実施例及び比較例を用いて本発明を更に詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
各実施例及び比較例の正極活物質LiNi(1−y−z)CoMzOの組成、未反応リチウム除去処理前の比表面積及びX線回折パターンのリートベルト解析から得られたLi主体層のLi席占有率、更に未反応リチウム除去処理を施した後の比表面積並びにX線回折パターンのリートベルト解析から得られたLi主体層のLi席占有率を表1に示す。
Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.
Lithium obtained from Rietveld analysis of the composition of the positive electrode active material Li x Ni (1-yz) Co y MzO 2 of each example and comparative example, specific surface area before unreacted lithium removal treatment, and X-ray diffraction pattern Table 1 shows the Li seat occupancy of the main layer, the specific surface area after the unreacted lithium removal treatment, and the Li seat occupancy of the Li main layer obtained from the Rietveld analysis of the X-ray diffraction pattern.

各実施例及び比較例の正極活物質を用いて図1に示すような2032型のコイン電池10を作製し、電池評価を行った。
正極活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極3とした。負極1にはリチウム金属を用い、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を、セパレータ2に含浸して用い、露点が−80℃に管理されたAr雰囲気のグローブボックス中で作製した。図1において、4はガスケット、5は負極缶、6は正極缶、7は集電体である。
A 2032 type coin battery 10 as shown in FIG. 1 was prepared using the positive electrode active materials of the examples and comparative examples, and the battery was evaluated.
70% by mass of the positive electrode active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE. Lithium metal is used for the negative electrode 1, and the separator 2 is impregnated with an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt. It was used in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C. In FIG. 1, 4 is a gasket, 5 is a negative electrode can, 6 is a positive electrode can, and 7 is a current collector.

この作製したコイン電池を24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この方法で得られた初期充放電容量、不可逆容量を表2に示す。 The produced coin battery is left to stand for about 24 hours, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to be initially charged. The capacity when discharging to a cut-off voltage of 3.0 V after a 1 hour rest was defined as the initial discharge capacity. Table 2 shows the initial charge / discharge capacity and irreversible capacity obtained by this method.

(実施例1)
x=1、y=0.15、z=0.03となるように、Niの15at%をCoに、3at%をAlに置換したLiNi0.82Co0.15Al0.03を合成するために、硫酸ニッケル、硫酸コバルト、硫酸アルミニウムの混合物を、Ni、Co、Alのモル比が82:15:3になるよう適宜溶解させ、原料水溶液を作製した。
次に、この原料水溶液にアルカリ水溶液を注いで、共沈法でNi0.82Co0.15Al0.03(OH)で固溶してなる金属複合水酸化物を得た。この得られた複合水酸化物の沈殿をろ過後、さらに水洗・ろ過し、大気雰囲気中で乾燥させ、更に電気炉を用いて700℃で10時間熱処理し、Ni、Co、Alのモル比が82:15:3で固溶してなる金属複合酸化物を得た。
Example 1
LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of Ni is replaced with Co and 3 at% is replaced with Al so that x = 1, y = 0.15, and z = 0.03. In order to synthesize, a mixture of nickel sulfate, cobalt sulfate, and aluminum sulfate was appropriately dissolved so that the molar ratio of Ni, Co, and Al was 82: 15: 3 to prepare a raw material aqueous solution.
Next, an alkaline aqueous solution was poured into this raw material aqueous solution, and a metal composite hydroxide formed by solid solution with Ni 0.82 Co 0.15 Al 0.03 (OH) 2 by a coprecipitation method was obtained. After filtering the resulting composite hydroxide precipitate, it is further washed with water and filtered, dried in the air atmosphere, and further heat treated at 700 ° C. for 10 hours using an electric furnace, and the molar ratio of Ni, Co, and Al is A metal composite oxide formed by solid solution at 82: 15: 3 was obtained.

この金属複合酸化物と、市販の水酸化リチウム一水和物(FMC社製)とを、Liと金属元素(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.00となるように混合した後、混合機(不二パウダル社製スパルタンリューザー)を用いて十分混合し、ステンレス製の匣鉢を用い、昇温速度2°C/min、酸素雰囲気中で450℃、5時間保持した後、続けて750℃で20時間焼成し、室温まで炉冷して、焼成物である中間生成体を得て、これを解砕、分級した後、BET法を用いて粉末の比表面積を測定した。
次に、未反応リチウムの除去処理として、中間生成体と同じ重量の純水を加えて室温で30分撹拌し、未反応リチウムの除去を行い、これをろ過、真空乾燥してリチウムニッケル複合酸化物を得た。得られたリチウムニッケル複合酸化物を、BET法を用いて比表面積を測定した。
After mixing this metal composite oxide and commercially available lithium hydroxide monohydrate (manufactured by FMC) so that the molar ratio [Li / Ni + Co + M] of Li and the metal element (Ni + Co + Al) is 1.00 The mixture was sufficiently mixed using a mixer (Spartan Luther manufactured by Fuji Powder Co., Ltd.), and the temperature was increased at 2 ° C / min in a stainless steel mortar and held at 450 ° C for 5 hours in an oxygen atmosphere. Subsequently, it was baked at 750 ° C. for 20 hours, and cooled to room temperature to obtain an intermediate product as a baked product. After pulverization and classification, the specific surface area of the powder was measured using the BET method.
Next, as a treatment for removing unreacted lithium, pure water having the same weight as that of the intermediate product is added and stirred at room temperature for 30 minutes to remove unreacted lithium. I got a thing. The specific surface area of the obtained lithium nickel composite oxide was measured using the BET method.

この中間生成体をSEM観察したところ、一次粒子の平均粒径が0.2μmであり、これら一次粒子が複数集合して球状の二次粒子となっていることが確認された。又CuのKα線を用いたX線回折で分析したところ、六方晶型層状構造を有した所望の正極活物質であることが確認できた。この粉末X線回折パターンのリートベルト解析から、3aサイトのLiの席占有率を求めた。   When this intermediate product was observed by SEM, it was confirmed that the average particle diameter of the primary particles was 0.2 μm, and a plurality of these primary particles were aggregated to form spherical secondary particles. Further, analysis by X-ray diffraction using Cu Kα rays confirmed that the desired positive electrode active material had a hexagonal layered structure. From the Rietveld analysis of this powder X-ray diffraction pattern, the Li seat occupancy of the 3a site was determined.

この正極活物質を用いた電池評価は以下のようにして行った。正極活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極にはリチウム金属を用い、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用い、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン電池を作製した。 The battery evaluation using this positive electrode active material was performed as follows. 70% by mass of the positive electrode active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE, and 150 mg was taken out from this to produce a pellet to obtain a positive electrode. Lithium metal is used for the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt is used as the electrolyte, with a dew point of −80. A 2032 type coin battery as shown in FIG. 1 was produced in a glove box in an Ar atmosphere controlled at 0 ° C.

この作製したコイン電池を24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この方法で得られた初期充放電容量、不可逆容量を表2に示す。 The produced coin battery is left to stand for about 24 hours, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to be initially charged. The capacity when discharging to a cut-off voltage of 3.0 V after a 1 hour rest was defined as the initial discharge capacity. Table 2 shows the initial charge / discharge capacity and irreversible capacity obtained by this method.

(実施例2)
ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと金属(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.02となるように秤量した以外は実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。又、実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 2)
A metal composite oxide formed by solid solution with a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to metal (Ni + Co + Al) [Li / A positive electrode active material was produced in the same manner as in Example 1 except that Ni + Co + M] was weighed to 1.02. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例3)
ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと金属(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.05となるように秤量した以外は実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 3)
A metal composite oxide formed by solid solution with a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to metal (Ni + Co + Al) [Li / A positive electrode active material was produced in the same manner as in Example 1 except that Ni + Co + M] was weighed to 1.05. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例4)
ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと金属(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.08となるように秤量した以外は実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
Example 4
A metal composite oxide formed by solid solution with a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to metal (Ni + Co + Al) [Li / A positive electrode active material was produced in the same manner as in Example 1 except that Ni + Co + M] was 1.08. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例5)
ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと金属(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.10となるように秤量した以外は実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 5)
A metal composite oxide formed by solid solution with a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to metal (Ni + Co + Al) [Li / A positive electrode active material was produced in the same manner as in Example 1 except that Ni + Co + M] was 1.10. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例6)
ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと金属(Ni+Co+Al)のモル比[Li/Ni+Co+M]が1.12となるように秤量した以外は実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 6)
A metal composite oxide formed by solid solution with a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to metal (Ni + Co + Al) [Li / A positive electrode active material was produced in the same manner as in Example 1 except that Ni + Co + M] was 1.12. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例7)
硫酸アルミニウムの代わりに硫酸チタニルを用いた以外は実施例3と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 7)
A positive electrode active material was prepared in the same manner as in Example 3 except that titanyl sulfate was used instead of aluminum sulfate. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(実施例8)
硫酸アルミニウムの代わりに硫酸マンガンを用いた以外は実施例3と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Example 8)
A positive electrode active material was produced in the same manner as in Example 3 except that manganese sulfate was used instead of aluminum sulfate. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(比較例1)
Ni、Co、Alのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと(Ni+Co+Al)のモル比[Li/Ni+Co+M]が0.98となるように混合した以外は、実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。又、実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Comparative Example 1)
A metal composite oxide formed by solid solution with a molar ratio of Ni, Co, and Al of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to (Ni + Co + Al) [Li / Ni + Co + M. ] Was prepared in the same manner as in Example 1 except that the mixture was mixed so as to be 0.98. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(比較例2)
Ni、Co、Alのモル比が82:15:3で固溶してなる金属複合酸化物と、市販の水酸化リチウム一水和物とを、Liと(Ni+Co+Al)のモル比[Li/Ni+Co+M]が0.95となるように混合した以外は、実施例1と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。又、実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Comparative Example 2)
A metal composite oxide formed by solid solution with a molar ratio of Ni, Co, and Al of 82: 15: 3 and a commercially available lithium hydroxide monohydrate are converted into a molar ratio of Li to (Ni + Co + Al) [Li / Ni + Co + M. ] Was produced in the same manner as in Example 1 except that the mixture was mixed so that the ratio was 0.95. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(比較例3)
リチウムの除去処理を行わなかったこと以外は、実施例2と同様な方法で正極活物質を作製した。得られた焼成物のリチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。又、実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Comparative Example 3)
A positive electrode active material was produced in the same manner as in Example 2 except that lithium removal treatment was not performed. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment of the obtained fired product and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

(比較例4)
リチウムの除去処理を行わなかったこと以外は実施例6と同様な方法で正極活物質を作製した。得られた焼成物の、リチウム除去処理前後のBET法による比表面積測定結果とX線回折パターンのリートベルト解析から得られた3aサイトのLi席占有率を表1に示す。また実施例1と同様な方法で測定した正極活物質の初期充放電容量と不可逆容量を表2に示す。
(Comparative Example 4)
A positive electrode active material was produced in the same manner as in Example 6 except that lithium removal treatment was not performed. Table 1 shows the specific surface area measurement results by the BET method before and after the lithium removal treatment and the Li site occupancy of the 3a site obtained from the Rietveld analysis of the X-ray diffraction pattern. Table 2 shows the initial charge / discharge capacity and irreversible capacity of the positive electrode active material measured by the same method as in Example 1.

Figure 2010064944
Figure 2010064944

Figure 2010064944
Figure 2010064944

[評価]
表1に示すように、実施例1〜8で得られたリチウムニッケル複合酸化物は、180mAh/g以上の高い放電容量を示し、リチウムコバルト複合酸化物(LiCoO)に代わる新たな高容量正極材料として使用可能な材料であることがわかる。
特に、比較例1、2と比べて高いLi席占有率を有していることがその一因と考えられるが、実施例1に示すように、従来97%以上の高いLi席占有率を有していなければ得られなかった180mAh/g以上の高容量が、未反応リチウムの除去処理を施したことによって、97%未満のLi席占有率でも得られていることがわかる。リチウムの除去処理を施していない比較例3、4が97%以上の高いLi席占有率を示しているにもかかわらず、放電容量が低いことからもこのことは明らかである。
[Evaluation]
As shown in Table 1, the lithium nickel composite oxide obtained in Examples 1 to 8 shows a high discharge capacity of 180 mAh / g or more, and a new high capacity positive electrode replacing lithium cobalt composite oxide (LiCoO 2 ). It turns out that it is a material which can be used as a material.
In particular, it is considered that one of the reasons is that the Li seat occupancy rate is higher than that of Comparative Examples 1 and 2. However, as shown in Example 1, the Li seat occupancy rate is 97% or higher. It can be seen that a high capacity of 180 mAh / g or more, which could not be obtained unless otherwise, was obtained even with a Li seat occupancy of less than 97% by performing the removal treatment of unreacted lithium. This is also clear from the fact that the discharge capacity is low, even though Comparative Examples 3 and 4 that have not been subjected to lithium removal treatment show a high Li seat occupancy of 97% or more.

本発明による正極材料は、未反応リチウムを低減させたことで、電池にしたときのガス発生や、電極作成時のゲル化が抑えられるなど、電池の安全性向上、電池の作成工程の安定化につながる。また、比較的低いLi席占有率を持つリチウムニッケル複合酸化物であっても高い放電容量を有するということは、合成条件の緩和をもたらし、製品の品質安定性向上につながる。このような正極材料を用いた電池は、常に高容量を要求される小型携帯電子機器の電源や、電気自動車用の電源としての用途に好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源として用い得る。   The positive electrode material according to the present invention reduces the amount of unreacted lithium, thereby suppressing the generation of gas when the battery is formed and the gelation during electrode preparation, etc., improving battery safety and stabilizing the battery preparation process. Leads to. In addition, even a lithium nickel composite oxide having a relatively low Li seat occupancy has a high discharge capacity, which reduces the synthesis conditions and leads to improved product quality stability. A battery using such a positive electrode material is suitable for use as a power source for small portable electronic devices that always require a high capacity and a power source for electric vehicles. The electric vehicle power source can be used not only for an electric vehicle driven purely by electric energy but also for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

本実施例に用いたコイン電池を示す図で、(a)は外観斜視図、(b)は図1(a)のa−a線断面図である。It is a figure which shows the coin battery used for the present Example, (a) is an external appearance perspective view, (b) is the sectional view on the aa line of Fig.1 (a).

符号の説明Explanation of symbols

1 負極(リチウム金属負極)
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
10 コイン電池
1 Negative electrode (lithium metal negative electrode)
2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector 10 Coin battery

Claims (5)

層状構造の六方晶系リチウムニッケル複合酸化物であって、
LiNi(1−y−z)Coの組成式で表され、
前記組成式における
xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、
M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなり、
前記リチウムニッケル複合酸化物の比表面積が0.5〜2.0m/gであることを特徴とするリチウムニッケル複合酸化物。
A hexagonal lithium nickel composite oxide having a layered structure,
Li x Ni (1-yz) Co y M z O 2 is represented by a composition formula,
X in the composition formula is 0.95 or more and 1.10 or less, y is greater than 0, 0.20 or less, z is greater than 0, and 0.15 or less.
M element consists of at least one element selected from the element group of Al, Ti, Mn, Ga, Mg, Nb,
The lithium nickel composite oxide has a specific surface area of 0.5 to 2.0 m 2 / g.
中間生成体が、xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなるLiNi(1−y−z)Coの組成式で表される、Li主体層のLi席占有率が95%以上、結晶子径が73から200nm、且つ比表面積が0.2から1.0m/gであることを特徴とする請求項1記載のリチウムニッケル複合酸化物。
The intermediate product has x of 0.95 or more and 1.10 or less, y is greater than 0, 0.20 or less, z is greater than 0 and 0.15 or less, and M element is Al, Ti, Mn, Ga Li seat occupancy of the Li main layer represented by the composition formula of Li x Ni (1-yz) Co y M z O 2 composed of at least one element selected from the element group of Mg, Mg, and Nb 2. The lithium nickel composite oxide according to claim 1, having a crystallite diameter of 73 to 200 nm and a specific surface area of 0.2 to 1.0 m 2 / g.
xが0.95以上、1.10以下、yが0より大きく、0.20以下、zが0より大きく、0.15以下で、M元素がAl、Ti、Mn、Ga、Mg、Nbの元素群から選択される少なくとも1種の元素からなるLiNi(1−y−z)Coの組成式で表される、比表面積が0.5〜2.0m/gである層状構造の六方晶系リチウムニッケル複合酸化物であって、
前記層状構造の六方晶系リチウムニッケル複合酸化物は、素原料のリチウム化合物とNi(1−y−z)CoOの組成式で表されるCo元素及びM元素を含むニッケル複合酸化物を、前記リチウム化合物のLi元素と前記ニッケル複合酸化物のNi元素、Co元素及びM元素のモル和におけるモル比:[Li/Ni+Co+M]が1.0以上の混合物を焼成した、Li主体層のLi席占有率が95%以上、結晶子径が73から200nm、且つ比表面積が0.2から1.0m/gである中間生成体に、Li除去処理を施して生成したことを特徴とするリチウムニッケル複合酸化物。
x is 0.95 or more and 1.10 or less, y is greater than 0, 0.20 or less, z is greater than 0 and 0.15 or less, and the M element is Al, Ti, Mn, Ga, Mg, or Nb. A specific surface area represented by a composition formula of Li x Ni (1-yz) Co y M z O 2 composed of at least one element selected from the element group is 0.5 to 2.0 m 2 / g. A hexagonal lithium nickel composite oxide having a layered structure,
The hexagonal lithium-nickel composite oxide having a layered structure is a nickel composite oxide containing a Co element and an M element represented by a composition formula of a raw material lithium compound and Ni (1-yz) Co y M z O. Li main layer obtained by firing a mixture in which a molar ratio of a Li element of the lithium compound and a Ni element, a Co element and a M element of the nickel composite oxide in a molar sum: [Li / Ni + Co + M] is 1.0 or more Produced by subjecting an intermediate product having a Li seat occupancy of 95% or more, a crystallite diameter of 73 to 200 nm, and a specific surface area of 0.2 to 1.0 m 2 / g to Li removal treatment Lithium nickel composite oxide.
前記リチウムニッケル複合酸化物が、平均粒径が0.1〜1.0μmの一次粒子を複数集合した球状又は楕円球状の二次粒子から構成されていることを特徴とする請求項1乃至3のいずれか1項に記載のリチウムニッケル複合酸化物。
The lithium nickel composite oxide is composed of spherical or oval spherical secondary particles in which a plurality of primary particles having an average particle diameter of 0.1 to 1.0 μm are assembled. The lithium nickel composite oxide according to any one of the above.
請求項1乃至4のいずれか1項に記載のリチウムニッケル複合酸化物を正極活物質とすることを特徴とする非水系電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the lithium nickel composite oxide according to claim 1 as a positive electrode active material.
JP2008235724A 2008-09-12 2008-09-12 Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material Active JP5618116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235724A JP5618116B2 (en) 2008-09-12 2008-09-12 Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235724A JP5618116B2 (en) 2008-09-12 2008-09-12 Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material

Publications (3)

Publication Number Publication Date
JP2010064944A true JP2010064944A (en) 2010-03-25
JP2010064944A5 JP2010064944A5 (en) 2011-10-20
JP5618116B2 JP5618116B2 (en) 2014-11-05

Family

ID=42190854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235724A Active JP5618116B2 (en) 2008-09-12 2008-09-12 Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material

Country Status (1)

Country Link
JP (1) JP5618116B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155523A1 (en) * 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
WO2012011212A1 (en) * 2010-07-23 2012-01-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2012043716A (en) * 2010-08-20 2012-03-01 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material
WO2013077441A1 (en) * 2011-11-25 2013-05-30 三井金属鉱業株式会社 Lithium metal complex oxide having layered structure
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
WO2014017583A1 (en) * 2012-07-26 2014-01-30 Tdk株式会社 Lithium ion secondary battery
WO2014061654A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
KR101395846B1 (en) 2010-09-08 2014-05-19 에스케이이노베이션 주식회사 Cathode Active Materials for Li Secondary Cell and the Fabrication Method Thereof
JP5518182B2 (en) * 2010-03-29 2014-06-11 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
US20150188136A1 (en) * 2012-07-12 2015-07-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
WO2015156399A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Electrical device
JP2017045633A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
WO2017034000A1 (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing said material, and non-aqueous electrolyte secondary cell
US9755223B2 (en) 2013-03-14 2017-09-05 Nihonkagakusangyo Co., Ltd. Treatment process for a positive electrode active material for lithium-ion secondary battery
WO2019004148A1 (en) * 2017-06-28 2019-01-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2019167582A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
CN111033821A (en) * 2017-09-27 2020-04-17 松下知识产权经营株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN111344256A (en) * 2017-11-13 2020-06-26 株式会社Lg化学 Method for preparing positive electrode active material for secondary battery
JP2020115485A (en) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020115484A (en) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11495791B2 (en) 2017-06-07 2022-11-08 L&F Co., Ltd. Cathode active material and lithium secondary battery comprising same
JP7454642B1 (en) 2022-12-22 2024-03-22 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030693A (en) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2003346797A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery using nickel- lithium compound oxide
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
JP2004171961A (en) * 2002-11-20 2004-06-17 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2008117729A (en) * 2006-11-08 2008-05-22 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030693A (en) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2003346797A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery using nickel- lithium compound oxide
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
JP2004171961A (en) * 2002-11-20 2004-06-17 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2008117729A (en) * 2006-11-08 2008-05-22 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518182B2 (en) * 2010-03-29 2014-06-11 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
US9553311B2 (en) 2010-03-29 2017-01-24 Sumitomo Metal Mining Co., Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US8999573B2 (en) 2010-03-29 2015-04-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN102939263A (en) * 2010-06-09 2013-02-20 户田工业株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
KR101787141B1 (en) 2010-06-09 2017-10-18 도다 고교 가부시끼가이샤 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
WO2011155523A1 (en) * 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2012017253A (en) * 2010-06-09 2012-01-26 Toda Kogyo Corp Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
US8986571B2 (en) 2010-06-09 2015-03-24 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
WO2012011212A1 (en) * 2010-07-23 2012-01-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN103098272A (en) * 2010-07-23 2013-05-08 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2012043716A (en) * 2010-08-20 2012-03-01 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
KR101395846B1 (en) 2010-09-08 2014-05-19 에스케이이노베이션 주식회사 Cathode Active Materials for Li Secondary Cell and the Fabrication Method Thereof
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
JP5308600B1 (en) * 2011-11-25 2013-10-09 三井金属鉱業株式会社 Lithium metal composite oxide with layer structure
WO2013077441A1 (en) * 2011-11-25 2013-05-30 三井金属鉱業株式会社 Lithium metal complex oxide having layered structure
CN103165935A (en) * 2011-12-08 2013-06-19 索尼公司 Electrode, secondary battery, battery pack, electric vehicle and electric power storage system
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
US10084188B2 (en) 2012-07-12 2018-09-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
KR101767888B1 (en) * 2012-07-12 2017-08-14 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US20150188136A1 (en) * 2012-07-12 2015-07-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
WO2014017583A1 (en) * 2012-07-26 2014-01-30 Tdk株式会社 Lithium ion secondary battery
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery
CN104703921B (en) * 2012-10-17 2018-01-12 户田工业株式会社 Li Ni composite oxide particle powders and rechargeable nonaqueous electrolytic battery
US9698420B2 (en) 2012-10-17 2017-07-04 Toda Kogyo Corp. Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
JPWO2014061653A1 (en) * 2012-10-17 2016-09-05 戸田工業株式会社 Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JPWO2014061654A1 (en) * 2012-10-17 2016-09-05 戸田工業株式会社 Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
CN104703921A (en) * 2012-10-17 2015-06-10 户田工业株式会社 Li-ni complex oxide particle powder and non-aqueous electrolyte secondary battery
KR20150073970A (en) 2012-10-17 2015-07-01 도다 고교 가부시끼가이샤 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
KR102168980B1 (en) 2012-10-17 2020-10-22 도다 고교 가부시끼가이샤 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
KR102168979B1 (en) * 2012-10-17 2020-10-22 도다 고교 가부시끼가이샤 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN104704659A (en) * 2012-10-17 2015-06-10 户田工业株式会社 Li-ni composite oxide particle powder and method for manufacturing same, and nonaqueous electrolyte secondary cell
WO2014061654A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
KR20150073969A (en) 2012-10-17 2015-07-01 도다 고교 가부시끼가이샤 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US9755223B2 (en) 2013-03-14 2017-09-05 Nihonkagakusangyo Co., Ltd. Treatment process for a positive electrode active material for lithium-ion secondary battery
WO2015156399A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Electrical device
CN106165181A (en) * 2014-04-11 2016-11-23 日产自动车株式会社 Electric device
WO2017034001A1 (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
KR102582927B1 (en) 2015-08-27 2023-09-26 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
KR20180044285A (en) * 2015-08-27 2018-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
CN107925079A (en) * 2015-08-27 2018-04-17 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacture method and non-aqueous electrolyte secondary battery
US11289688B2 (en) 2015-08-27 2022-03-29 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
US11223033B2 (en) 2015-08-27 2022-01-11 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
KR102632822B1 (en) * 2015-08-27 2024-02-02 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US10586983B2 (en) 2015-08-27 2020-03-10 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
CN107925079B (en) * 2015-08-27 2021-05-28 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2017045633A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017045632A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
KR20180043276A (en) * 2015-08-27 2018-04-27 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
WO2017034000A1 (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing said material, and non-aqueous electrolyte secondary cell
US11495791B2 (en) 2017-06-07 2022-11-08 L&F Co., Ltd. Cathode active material and lithium secondary battery comprising same
US11777090B2 (en) 2017-06-28 2023-10-03 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US11424448B2 (en) 2017-06-28 2022-08-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2019004148A1 (en) * 2017-06-28 2019-01-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2019064995A1 (en) * 2017-09-27 2020-10-15 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7182288B2 (en) 2017-09-27 2022-12-02 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11462726B2 (en) 2017-09-27 2022-10-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111033821A (en) * 2017-09-27 2020-04-17 松下知识产权经营株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN111344256A (en) * 2017-11-13 2020-06-26 株式会社Lg化学 Method for preparing positive electrode active material for secondary battery
JP7098185B2 (en) 2017-11-13 2022-07-11 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode active material for secondary batteries
JP2021501975A (en) * 2017-11-13 2021-01-21 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material for secondary batteries
US11508961B2 (en) 2017-11-13 2022-11-22 Lg Energy Solution, Ltd. Method of preparing positive electrode active material for secondary battery
JPWO2019167582A1 (en) * 2018-02-28 2021-03-18 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery
CN111201648A (en) * 2018-02-28 2020-05-26 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2019167582A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2022095989A (en) * 2020-04-28 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020115484A (en) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7262418B2 (en) 2020-04-28 2023-04-21 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7262419B2 (en) 2020-04-28 2023-04-21 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2020115485A (en) * 2020-04-28 2020-07-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7454642B1 (en) 2022-12-22 2024-03-22 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries

Also Published As

Publication number Publication date
JP5618116B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
JP2010064944A5 (en)
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4997693B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2014010448A1 (en) Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPWO2018221664A1 (en) Positive active material for non-aqueous electrolyte secondary battery and method for producing the same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181482B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP2008257992A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP4268442B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5618116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150