JP2003017054A - Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery - Google Patents

Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery

Info

Publication number
JP2003017054A
JP2003017054A JP2001200011A JP2001200011A JP2003017054A JP 2003017054 A JP2003017054 A JP 2003017054A JP 2001200011 A JP2001200011 A JP 2001200011A JP 2001200011 A JP2001200011 A JP 2001200011A JP 2003017054 A JP2003017054 A JP 2003017054A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
composite oxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001200011A
Other languages
Japanese (ja)
Inventor
Kimio Takahashi
公雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001200011A priority Critical patent/JP2003017054A/en
Publication of JP2003017054A publication Critical patent/JP2003017054A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate influence of lithium carbonate and lithium sulfate in the positive electrode active material. SOLUTION: The lithium compound oxide expressed in a general formula Lix Niy M1-y O2 (M means at least one kind of transient metal among B, Al, Co, Cr, Ga, In, and 0.05<=x<=1.10, 0.7<=y<=1.0) is washed with the water at a rate of at least 500 ml to the lithium compound oxide of 100g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸リチウム、硫
酸リチウムを除去し、充放電効率を向上させた正極活物
質及び非水電解質電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material in which lithium carbonate and lithium sulfate are removed to improve charge / discharge efficiency and a method for manufacturing a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これらの電
子機器に使用される高エネルギー密度電池の要求が強ま
ってきている。このような状況下において、LiCoO
を正極材料とし、リチウムをドープ・脱ドープ可能な
炭素材料を負極材料に用いたリチウムイオン二次電池が
商品化され、カムコーダ、携帯電話、及びノート型パソ
コン等の各種携帯用電子機器の電源として採用されてい
る。
2. Description of the Related Art In recent years, due to advances in electronic technology, electronic devices have been improved in performance, downsized, and made portable, and there has been an increasing demand for high energy density batteries used in these electronic devices. Under such circumstances, LiCoO 2
A lithium-ion secondary battery using 2 as a positive electrode material and a carbon material capable of doping and dedoping lithium as a negative electrode material has been commercialized, and is a power source for various portable electronic devices such as camcorders, mobile phones, and laptop computers. Has been adopted as.

【0003】最近では、このリチウムイオン二次電池
が、常温環境下のみならず、低温から高温までの各種環
境下で使用される電子機器に採用されることが多くなっ
ている。特に、最近採用が増えているノート型パソコン
においては、中央演算装置の高速化に伴い、パソコン内
部温度が高くなり、内蔵されたリチウムイオン二次電池
が高温環境下で長時間使用されるため、高温環境下での
電池特性が重要となっている。
Recently, this lithium ion secondary battery is often used not only in a room temperature environment but also in electronic equipment used in various environments from low temperature to high temperature. In particular, in laptop computers that have been increasingly adopted recently, the internal temperature of the computer rises with the speeding up of the central processing unit, and the built-in lithium ion secondary battery is used for a long time in a high temperature environment. Battery characteristics under high temperature environment are important.

【0004】一方、このリチウムイオン二次電池の原材
料の安定供給のために、LiCoO の代わりに、ニッ
ケルを主体とした一般式LiNi1−y(但
し、Mは遷移金属、B、Al、Co、Cr、Ga、In
の内の少なくとも1種を表し、0.05≦x≦1.10
であり、0.7≦y≦1.0である。)で表されるリチ
ウム複合酸化物を正極活物質として用いる手法が探索さ
れている。
On the other hand, the raw material for this lithium ion secondary battery
LiCoO for stable supply of materials TwoInstead of
General formula Li mainlyxNiyM1-yOTwo(However
Where M is a transition metal, B, Al, Co, Cr, Ga, In
Of at least one of 0.05 ≦ x ≦ 1.10.
And 0.7 ≦ y ≦ 1.0. ) Represented by
There is a need for a method of using a composite oxide of um as a positive electrode active material.
Has been.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記L
Ni1−yは、Mによる置換の影響で充放
電容量が実質的に小さくなるが、それ以上に、特にMが
Alを含む場合、顕著に初回の充電容量に対しての放電
容量の比率(初回充放電効率)が非常に低くなる。ま
た、合成後に炭酸リチウムや硫酸リチウムが生成してい
るため、充電状態かつ高温環境下におかれると、これら
化合物が酸化分解しガスが発生する。
However, the above L
i x Ni y M 1-y O 2 is the charge-discharge capacity due to the effect of substitution with M becomes substantially smaller, the more, especially if M contains Al, against charge capacity significantly Initial The discharge capacity ratio (first charge / discharge efficiency) becomes very low. Further, since lithium carbonate and lithium sulfate are produced after the synthesis, these compounds are oxidatively decomposed to generate gas when placed in a charged state and in a high temperature environment.

【0006】このことは、従来の電池のように金属を材
料とした外装を用いた場合にはほとんど問題にならない
ことであったが、ポリマー系電池の様に外装にアルミラ
ミネート材等を用いる場合、ほんの僅かなガスの発生に
より電池外装が大きく膨らむため、非常に厳しい条件と
なる。すなわち、外装にアルミラミネート材等を用いる
場合、このほんの僅かなガス発生のため、寸法不良とな
ったり、あるいは、電池性能の劣化が著しいものとな
る。そして、このことがポリマー系電池におけるLi
Ni1−yの実用化を阻む最大の課題となる。
This is not a problem when using a metal-made exterior as in conventional batteries, but when using an aluminum laminate or the like for the exterior as in polymer batteries. However, the battery exterior greatly swells due to the generation of a slight amount of gas, which is a very severe condition. That is, when an aluminum laminate material or the like is used for the exterior, this slight amount of gas generation causes dimensional defects or marked deterioration of battery performance. And this is Li x in the polymer battery.
This is the biggest problem that prevents the practical use of Ni y M 1-y O 2 .

【0007】そこで、特開平6−342657号公報で
は、合成後のリチウム複合酸化物中の炭酸リチウムを最
小限の水で水洗し乾燥することにより除去し、悪影響を
避けるという方法が開示されている。しかしながら、特
開平6−342657号公報の実施例に基づいて作製さ
れた正極活物質においては、固体内でのHとLi
交換の速さが考慮されておらず、明らかにLix−z
Ni2−x−yが生成し充放電容量の劣化を
招くおそれがあり、また、水洗を最小限の水で行うた
め、水中のLiイオン濃度が高くなり、乾燥後に水酸
化リチウムや炭酸リチウムが再析出する虞がある。外装
がアルミラミネート材のように、柔らかい素材を使用し
たセルにおいては、このような徴量な成分から生成する
ガスも無視できるものではない。
Therefore, Japanese Patent Laid-Open No. 6-342657 discloses a method in which lithium carbonate in the synthesized lithium composite oxide is removed by washing with minimal water and drying to avoid adverse effects. . However, in the positive electrode active material produced based on the example of JP-A-6-342657, the exchange rate of H + and Li + in the solid is not taken into consideration, and Li x- z H
z Ni 2-x-y M y O 2 is may cause the generated charge and discharge capacity degradation, also, in order to perform washing with minimal water, the higher the Li + ion concentration in the water, the water after drying Lithium oxide and lithium carbonate may re-precipitate. In a cell using a soft material such as an aluminum laminate material, the gas generated from such a small amount of components cannot be ignored.

【0008】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、正極活物質中に生成する炭
酸リチウム、硫酸リチウムの影響をなくした正極活物質
の製造方法、及びそのような正極活物質を用いること
で、高容量で、かつ高温環境下での保存特性に優れた非
水電解質電池の製造方法を提供することを目的とする。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and a method for producing a positive electrode active material in which the effects of lithium carbonate and lithium sulfate formed in the positive electrode active material are eliminated, and a method for producing the same. An object of the present invention is to provide a method for producing a non-aqueous electrolyte battery having a high capacity and excellent storage characteristics under a high temperature environment by using such a positive electrode active material.

【0009】[0009]

【課題を解決するための手段】本発明の正極活物質の製
造方法は、一般式LiNi1−y(但し、M
は遷移金属、B、Al、Co、Cr、Ga、Inの内の
少なくとも1種を表し、0.05≦x≦1.10であ
り、0.7≦y≦1.0である。)で表されるリチウム
複合酸化物を、当該リチウム複合酸化物100gに対し
500ml以上の水により水洗することを特徴とする。
The method for producing a positive electrode active material according to the present invention comprises a general formula Li x Ni y M 1-y O 2 (where M
Represents at least one of transition metals, B, Al, Co, Cr, Ga, and In, and 0.05 ≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.0. ) The lithium composite oxide represented by (4) is washed with 500 ml or more of water per 100 g of the lithium composite oxide.

【0010】上述したような本発明に係る正極活物質の
製造方法では、リチウム複合酸化物を、当該リチウム複
合酸化物100gに対し500ml以上の水により水洗
しているので、当該リチウム複合酸化物合成時に生成す
る炭酸リチウムや硫酸リチウムが十分に除去され、ま
た、Liイオンの再結晶化も防止される。
In the method for producing a positive electrode active material according to the present invention as described above, since the lithium composite oxide is washed with 500 ml or more of water per 100 g of the lithium composite oxide, the lithium composite oxide synthesis is performed. Lithium carbonate and lithium sulfate that are sometimes generated are sufficiently removed, and recrystallization of Li ions is also prevented.

【0011】また、本発明の非水電解質電池の製造方法
は、正極活物質を有する正極と、負極活物質を有する負
極と、正極と負極との間に介在された非水電解質とを備
えた非水電解質電池の製造方法であって、上記正極活物
質を製造するに際し、一般式LiNi1−y
(但し、Mは遷移金属、B、Al、Co、Cr、Ga、
Inの内の少なくとも1種を表し、0.05≦x≦1.
10であり、0.7≦y≦1.0である。)で表される
リチウム複合酸化物を、当該リチウム複合酸化物100
gに対し500ml以上の水により水洗することを特徴
とする。
The method for producing a non-aqueous electrolyte battery of the present invention comprises a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode. a method of manufacturing a nonaqueous electrolyte battery, when manufacturing the positive electrode active material, the general formula Li x Ni y M 1-y O 2
(However, M is a transition metal, B, Al, Co, Cr, Ga,
Represents at least one of In and 0.05 ≦ x ≦ 1.
10 and 0.7 ≦ y ≦ 1.0. ) The lithium composite oxide represented by
It is characterized by being washed with 500 ml or more of water per g.

【0012】上述したような本発明に係る非水電解質電
池の製造方法では、正極活物質を製造するに際し、リチ
ウム複合酸化物を、当該リチウム複合酸化物100gに
対し500ml以上の水により水洗しているので、当該
リチウム複合酸化物合成時に生成する炭酸リチウムや硫
酸リチウムが十分に除去され、また、Liイオンの再結
晶化も防止される。そしてこのような正極活物質を用い
ることで、充放電効率が向上するほか、高温環境下にお
けるガス発生を抑えられた非水電解質電池が得られる。
In the method of manufacturing a non-aqueous electrolyte battery according to the present invention as described above, when manufacturing the positive electrode active material, the lithium composite oxide is washed with 500 ml or more of water per 100 g of the lithium composite oxide. Therefore, lithium carbonate and lithium sulfate generated during the synthesis of the lithium composite oxide are sufficiently removed, and recrystallization of Li ions is also prevented. By using such a positive electrode active material, a charge / discharge efficiency is improved and a non-aqueous electrolyte battery in which gas generation in a high temperature environment is suppressed can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明を適用した正極活物
質及び非水電解質電池について、その実施の形態につい
て図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a positive electrode active material and a non-aqueous electrolyte battery to which the present invention is applied will be described with reference to the drawings.

【0014】この正極活物質は、一般式LiNi
1−y(但し、Mは遷移金属、B、Al、Co、C
r、Ga、Inの内の少なくとも1種を表し、0.05
≦x≦1.10であり、0.7≦y≦1.0である。)
で表されるリチウム複合酸化物を、当該リチウム複合酸
化物100gに対し500ml以上の水により4時間以
内の水洗を行い、200℃以上の温度で乾燥することに
より得られる。
This positive electrode active material has the general formula Li x Ni y M
1-y O 2 (however, M is a transition metal, B, Al, Co, C
represents at least one of r, Ga and In, and is 0.05
≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.0. )
The lithium composite oxide represented by is washed with water of 500 ml or more for 4 hours or less with respect to 100 g of the lithium composite oxide, and dried at a temperature of 200 ° C. or more.

【0015】具体的には、まず、リチウム塩と、ニッケ
ル塩と、M塩(但し、Mは遷移金属、B、Al、Co、
Cr、Ga、Inの内の少なくとも1種を表す。)とを
混合し、この混合体を焼成することにより、一般式Li
Ni1−yで表されるリチウム複合酸化物を
得る。
Specifically, first, a lithium salt, a nickel salt, and an M salt (where M is a transition metal, B, Al, Co,
It represents at least one of Cr, Ga and In. ) Are mixed with each other, and the mixture is fired to obtain the general formula Li
A lithium composite oxide represented by x Ni y M 1-y O 2 is obtained.

【0016】次に、得られた上記リチウム複合酸化物を
水で洗浄する。リチウム複合酸化物を洗浄することで、
当該リチウム複合酸化物合成時に生成する炭酸リチウム
や硫酸リチウムを除去する。この炭酸リチウムや硫酸リ
チウムは、リチウム複合酸化物の充放電反応時のLi
のドープ−脱ドープ反応を阻害していると考えられる。
Next, the obtained lithium composite oxide is washed with water. By cleaning the lithium composite oxide,
Lithium carbonate and lithium sulfate produced during the synthesis of the lithium composite oxide are removed. The lithium carbonate and lithium sulfate are Li + during the charge and discharge reaction of the lithium composite oxide.
It is considered that the dope-dedoping reaction is inhibited.

【0017】ここで本発明では、リチウム複合酸化物の
洗浄において、当該リチウム複合酸化物100g当たり
500ml以上の水を用いる。リチウム複合酸化物10
0gに対し500ml未満の水による水洗では、当該リ
チウム複合酸化物合成時に生成する炭酸リチウムや硫酸
リチウムを除去することが十分にできないほか、水洗水
中のLiイオン濃度が高くなり、リチウム複合酸化物の
乾燥後に、上記Liイオンが水酸化リチウム、炭酸リチ
ウムとして再結晶化してしまう。正極活物質中に水酸化
リチウム、炭酸リチウムが含まれていると、電池を構成
した際に、充電状態で水酸化リチウム、炭酸リチウムが
酸化分解し、ガス発生の原因となる。リチウム複合酸化
物100g当たり500ml以上の水を用いて洗浄する
ことで、当該リチウム複合酸化物合成時に生成する炭酸
リチウムや硫酸リチウムを十分に除去できるほか、Li
イオンの再結晶化も防止することができる。
In the present invention, in washing the lithium composite oxide, 500 ml or more of water is used per 100 g of the lithium composite oxide. Lithium composite oxide 10
Washing with less than 500 ml of water with respect to 0 g cannot sufficiently remove lithium carbonate or lithium sulfate generated during the synthesis of the lithium composite oxide, and the Li ion concentration in the wash water becomes high, so that the lithium composite oxide After drying, the Li ions are recrystallized as lithium hydroxide and lithium carbonate. When the positive electrode active material contains lithium hydroxide and lithium carbonate, when a battery is constructed, lithium hydroxide and lithium carbonate are oxidized and decomposed in a charged state, which causes gas generation. By washing with 500 ml or more of water per 100 g of the lithium composite oxide, lithium carbonate and lithium sulfate produced during the synthesis of the lithium composite oxide can be sufficiently removed, and Li
Recrystallization of ions can also be prevented.

【0018】なお、リチウム複合酸化物の洗浄方法とし
ては、特に限定されるものではなく、流水で洗浄する方
法でもよいし、あるいは、溜水中にリチウム複合酸化物
を投入し、攪拌することにより洗浄する方法でもよい。
また、洗浄においては、一度に多量の水で洗浄する方法
でもよいし、少量の水で複数回の洗浄を行う方法でもよ
い。複数回の洗浄を行う場合には、用いた水の総量が、
正極活物質100g当たり500ml以上になるように
する。
The method for washing the lithium composite oxide is not particularly limited, and a method of washing with running water may be used, or alternatively, the lithium composite oxide may be washed by pouring the lithium composite oxide into stagnant water and stirring. You can also do
Further, in the cleaning, a method of cleaning with a large amount of water at a time may be used, or a method of cleaning a plurality of times with a small amount of water may be used. When washing multiple times, the total amount of water used is
The amount is 500 ml or more per 100 g of the positive electrode active material.

【0019】次に、水洗されたリチウム複合酸化物を脱
水する。脱水の方法としては、特に限定されるものでは
なく、濾過、デカンテーション、フィルタープレス等、
各種手法を用いることができる。
Next, the washed lithium composite oxide is dehydrated. The method of dehydration is not particularly limited, filtration, decantation, filter press, etc.
Various techniques can be used.

【0020】ここで本発明では、洗浄〜脱水の一連の工
程を、4時間以内で行う。洗浄〜脱水の一連の工程が4
時間以上になると、LiとHとのイオン交換が無視
できなくなり、正極活物質の充放電容量が著しく低下す
る。HとLiの交換は、水洗時に使用する水の量で
はなく、時間に依存して進行する。そのため、洗浄〜脱
水の一連の工程を4時間以内で行うことで、正極活物質
の充放電容量に悪影響を与えるLiとHとのイオン
交換をほぼ抑えることができる。
Here, in the present invention, a series of steps from washing to dehydration is performed within 4 hours. 4 steps of washing-dehydration
When the time is exceeded, the ion exchange between Li + and H + cannot be ignored, and the charge / discharge capacity of the positive electrode active material is significantly reduced. The exchange of H + and Li + proceeds depending on the time, not the amount of water used for washing. Therefore, by performing the series of steps from washing to dehydration within 4 hours, it is possible to substantially suppress ion exchange between Li + and H + , which adversely affects the charge and discharge capacity of the positive electrode active material.

【0021】次に、脱水されたリチウムイオン複合酸化
物を200℃以上の空気雰囲気、あるいは、真空雰囲気
とした恒温槽内で乾燥する。乾燥温度が200℃以下で
は、リチウム複合酸化物表面に吸着した水を十分に取り
除くことができない。正極活物質表面に水が吸着してい
ると、電池を構成した際に、充電状態でこの水が電気分
解しガス発生の原因となる。乾燥温度を200℃以上と
することで、リチウム複合酸化物表面に吸着した水を十
分に取り除くことができる。また、乾燥終了の目安とし
ては、カールフィッシャー水分計を用い、測定温度25
0℃として測定した場合の残留水分量が800ppm以
下となるまでとする。残留水分量を800ppm以下と
することで、正極活物質表面に吸着している水の電気分
解によるガス発生を無視できるものとすることができ
る。
Next, the dehydrated lithium ion composite oxide is dried in an air atmosphere at 200 ° C. or higher or in a thermostatic chamber in a vacuum atmosphere. If the drying temperature is 200 ° C. or lower, water adsorbed on the surface of the lithium composite oxide cannot be sufficiently removed. When water is adsorbed on the surface of the positive electrode active material, when the battery is constructed, this water is electrolyzed in a charged state and causes gas generation. By setting the drying temperature to 200 ° C. or higher, water adsorbed on the surface of the lithium composite oxide can be sufficiently removed. A Karl Fischer moisture meter is used to measure the end of drying at a measurement temperature of 25
The amount of residual water when measured as 0 ° C. is 800 ppm or less. By setting the residual water content to 800 ppm or less, generation of gas due to electrolysis of water adsorbed on the surface of the positive electrode active material can be neglected.

【0022】なお、乾燥の方法としては、特に限定され
るものではなく、スプレードライ、フリーズドライ等、
各種手法を用いることができる。また、真空雰囲気中で
の乾燥についても必ず必要ではなく、空気等の雰囲気中
で可能である。
The drying method is not particularly limited, and spray drying, freeze drying, etc. may be used.
Various techniques can be used. Further, drying in a vacuum atmosphere is not always necessary, and it is possible to perform it in an atmosphere such as air.

【0023】以上のようにして、一般式LiNi
1−y(但し、Mは遷移金属、B、Al、Co、C
r、Ga、Inの内の少なくとも1種を表し、0.05
≦x≦1.10であり、0.7≦y≦1.0である。)
で表されるリチウム複合酸化物からなる正極活物質が得
られる。
As described above, the general formula Li x Ni y M
1-y O 2 (however, M is a transition metal, B, Al, Co, C
represents at least one of r, Ga and In, and is 0.05
≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.0. )
A positive electrode active material composed of a lithium composite oxide represented by is obtained.

【0024】上述したような正極活物質の製造方法によ
れば、リチウム複合酸化物100g当たり500ml以
上の水を用いて洗浄しているので、リチウム複合酸化物
合成時に生成する炭酸リチウムや硫酸リチウムが水洗に
より除去される。また、洗浄中に発生するHとLi
の交換は、水洗時に使用する水の量ではなく、時間に依
存して進行するため、本発明のように4時間以下という
短時間で水洗を行うことで、イオン交換が殆ど起こらな
い。
According to the method for producing a positive electrode active material as described above, since 500 ml or more of water is washed with 100 g of the lithium composite oxide, lithium carbonate or lithium sulfate produced during the synthesis of the lithium composite oxide is not generated. It is removed by washing with water. In addition, H + and Li + generated during cleaning
The ion exchange proceeds depending on the time, not the amount of water used at the time of washing with water. Therefore, by performing washing with water in a short time of 4 hours or less as in the present invention, ion exchange hardly occurs.

【0025】そして、この正極活物質を用いた電池は、
充放電効率が大幅に向上し、放電容量が大きく増大す
る。さらに、この正極活物質を用いた電池においては、
高温環境下におけるガス発生が無く、保存特性に優れ高
温環境下での電池性能の劣化が抑えられた優れたものと
なる。
A battery using this positive electrode active material is
The charge / discharge efficiency is greatly improved, and the discharge capacity is greatly increased. Furthermore, in a battery using this positive electrode active material,
No gas is generated in a high-temperature environment, the storage characteristics are excellent, and deterioration of battery performance in a high-temperature environment is suppressed.

【0026】つぎに、上述したような正極活物質を用い
た非水電解質電池について説明する。
Next, a non-aqueous electrolyte battery using the above positive electrode active material will be described.

【0027】この非水電解液電池1は、図1に示すよう
に、負極2と、負極2を収容する負極缶3と、正極4
と、正極4を収容する正極缶5と、正極4と負極2との
間に配されたセパレータ6と、絶縁ガスケット7とを備
え、負極缶3及び正極缶5内に非水電解液が充填されて
なる。
As shown in FIG. 1, the non-aqueous electrolyte battery 1 includes a negative electrode 2, a negative electrode can 3 for accommodating the negative electrode 2, and a positive electrode 4.
A positive electrode can 5 accommodating the positive electrode 4, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and an insulating gasket 7. The negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte solution. It will be done.

【0028】負極2は、負極活物質となる例えば金属リ
チウム箔からなる。また、負極活物質として、リチウム
をドープ、脱ドープ可能な材料を用いる場合には、負極
2は、負極集電体上に、上記負極活物質を含有する負極
活物質層が形成されてなる。負極集電体としては、例え
ば、銅、ステンレス、ニッケル等を用いることができ、
その形状としては、箔状、或いはメッシュ、エキスパン
ドメタル等の網状のものが好ましい。厚さとしては、5
μm〜30μmのものが好適に用いられる。
The negative electrode 2 is made of, for example, a metallic lithium foil which serves as a negative electrode active material. When a material capable of being doped with lithium and dedoped from lithium is used as the negative electrode active material, the negative electrode 2 has the negative electrode active material layer containing the negative electrode active material formed on the negative electrode current collector. As the negative electrode current collector, for example, copper, stainless steel, nickel or the like can be used,
The shape thereof is preferably a foil shape, or a mesh shape such as mesh or expanded metal. The thickness is 5
Those having a thickness of μm to 30 μm are preferably used.

【0029】負極活物質としては、リチウム金属或いは
リチウムをドープ・脱ドープ可能なものであればよく、
リチウムとアルミニウム、鉛、インジウム等とのリチウ
ム合金や、リチウムをドープ・脱ドープ可能な炭素材
料、或いはポリアセチレン、ポリピロール等のポリマー
が用いられる。上記炭素材料としては、特に限定するも
のではないが、熱分解炭素類、コークス類(ピッチコー
クス、二ードルコークス、石油コークス等)、黒鉛類、
ガラス状炭素類、有機高分子化合物焼成体(フェノール
樹脂、フラン樹脂等を適当な温度で焼成したもの)、炭
素繊維、活性炭等が使用可能である。
The negative electrode active material may be any one that can be doped or dedoped with lithium metal or lithium,
A lithium alloy of lithium and aluminum, lead, indium, or the like, a carbon material capable of being doped or dedoped with lithium, or a polymer such as polyacetylene or polypyrrole is used. The carbon material is not particularly limited, but pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphite,
Glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc. fired at an appropriate temperature), carbon fibers, activated carbon and the like can be used.

【0030】特に、難黒鉛化炭素類は、重量当たりの充
放電能力が大きい、サイクル特性に優れる等の理由から
好適に用いられる。このなかでも、(002)面の面間
隔が0.370nm以上、真密度が1.70g/cm
未満であり、かつ空気気流中における示差熱分析で70
0℃以上に発熱ピークを有しない炭素質材料が用いられ
る。
Particularly, non-graphitizable carbons are preferably used because of their large charge / discharge capacity per weight and excellent cycle characteristics. Among these, the (002) plane spacing is 0.370 nm or more, and the true density is 1.70 g / cm 3.
And less than 70 by differential thermal analysis in air flow
A carbonaceous material having no exothermic peak above 0 ° C. is used.

【0031】このような性質を有する材料としては、有
機材料を焼成等の手法により炭素化して得られる炭素質
材料が挙げられ、炭素化の出発原料としては、フルフリ
ルアルコール或いはフルフラールのホモポリマー、コポ
リマーよりなるフラン樹脂が好適である。具体的には、
フルフラール+フェノール、フルフリルアルコール+ジ
メチロール尿素、フルフリルアルコール、フルフリルア
ルコール+ホルムアルデヒド、フルフリルアルコール+
フルフラール、フルフラール+ケトン類等によりなる重
合体が好ましく用いられる。
Examples of the material having such a property include a carbonaceous material obtained by carbonizing an organic material by a method such as firing, and as a starting material for carbonization, a furfuryl alcohol or a furfural homopolymer, Furan resins consisting of copolymers are preferred. In particular,
Furfural + phenol, furfuryl alcohol + dimethylol urea, furfuryl alcohol, furfuryl alcohol + formaldehyde, furfuryl alcohol +
A polymer composed of furfural or furfural + ketones is preferably used.

【0032】或いは、原料として水素/炭素原子比0.
6〜0.8の石油ピッチを用い、これに酸素を含む官能
基を導入し、いわゆる酸素架橋を施して酸素含有量10
〜20重量%の前駆体とした後、焼成して得られる炭素
質材料も好適である。さらには、上記フラン樹脂や石油
ピッチ等を炭素化する際にリン化合物、あるいはホウ素
化合物を添加することにより、リチウムに対するドープ
量を大きなものとした炭素質材料も使用可能である。
Alternatively, as a raw material, a hydrogen / carbon atomic ratio of 0.
A petroleum pitch of 6 to 0.8 is used, a functional group containing oxygen is introduced into this, and so-called oxygen crosslinking is performed to obtain an oxygen content of 10
A carbonaceous material obtained by firing after forming a precursor of about 20% by weight is also suitable. Further, a carbonaceous material having a large doping amount with respect to lithium by adding a phosphorus compound or a boron compound when carbonizing the furan resin, petroleum pitch or the like can be used.

【0033】黒鉛材料としては、より高い負極合剤充填
性を得るために、真比重が2.10g/cm以上であ
ることが必要であり、2.18g/cm以上であるも
のが好適に用いられる。このような真比重を得るために
は、X線回折法で得られる面間隔が0.335nm以
上、0.34nm以下であることが必要であり、0.3
35nm以上、0.337nm以下であることがより好
ましい。c軸方向の結晶厚みは、16.0nm以上であ
ることが好ましく、24.0nm以上であることがより
好ましい。
The graphite material must have a true specific gravity of 2.10 g / cm 3 or more, and a material having a true specific gravity of 2.18 g / cm 3 or more is preferable in order to obtain a higher negative electrode mixture filling property. Used for. In order to obtain such a true specific gravity, it is necessary that the interplanar spacing obtained by the X-ray diffraction method is 0.335 nm or more and 0.34 nm or less.
More preferably, it is 35 nm or more and 0.337 nm or less. The crystal thickness in the c-axis direction is preferably 16.0 nm or more, and more preferably 24.0 nm or more.

【0034】負極活物質層に含有される結合剤として
は、この種の非水電解液電池の負極活物質層の結合剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the negative electrode active material layer, a known resin material or the like usually used as a binder for the negative electrode active material layer of this type of non-aqueous electrolyte battery can be used.

【0035】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 accommodates the negative electrode 2 and serves as an external negative electrode of the non-aqueous electrolyte battery 1.

【0036】正極4は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極集電体と
しては、例えば、アルミニウム、ステンレス、ニッケル
等を用いることができ、その形状としては、箔状、或い
はメッシュ、エキスパンドメタル等の網状のものが好ま
しい。厚さとしては、10μm〜50μmのものが好適
に用いられる。
The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode current collector, for example, aluminum, stainless steel, nickel or the like can be used, and the shape thereof is preferably a foil shape, or a mesh shape such as mesh or expanded metal. A thickness of 10 μm to 50 μm is preferably used.

【0037】正極活物質は、上述したように、一般式L
Ni1−y(但し、Mは遷移金属、B、A
l、Co、Cr、Ga、Inの内の少なくとも1種を表
し、0.05≦x≦1.10であり、0.7≦y≦1.
0である。)で表されるリチウム複合酸化物を、当該リ
チウム複合酸化物100gに対し500ml以上の水に
より4時間以内の水洗を行い、200℃以上の温度で乾
燥したものである。
As described above, the positive electrode active material has the general formula L
i x Ni y M 1-y O 2 (where M is a transition metal, B, A
1, at least one of Co, Cr, Ga, and In, and 0.05 ≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.
It is 0. ) The lithium composite oxide represented by (4) was washed with 500 ml or more of water for 100 g of the lithium composite oxide within 4 hours and dried at a temperature of 200 ° C. or more.

【0038】正極活物質層に含有される結合剤として
は、この種の非水電解液電池の正極活物質層の結合剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the positive electrode active material layer, a known resin material or the like usually used as a binder for the positive electrode active material layer of this type of non-aqueous electrolyte battery can be used.

【0039】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the non-aqueous electrolyte battery 1.

【0040】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えば織布、不織布、合成樹脂多孔膜等が挙げ
られる。特に、合成樹脂多孔膜が好適に用いられるが、
その中でもポリオレフィン系微多孔膜が、厚さ、強度、
膜抵抗等の面で好適に用いられる。具体的には、ポリエ
チレン又はポリプロピレン製微多孔膜、これらを複合し
た微多孔膜が挙げられる。また、リチウムイオン伝導度
とエネルギー密度との関係から、セパレータの厚みはで
きるだけ薄いことが必要である。具体的には、セパレー
タの厚みは例えば50μm以下が適当である。
The separator 6 is for separating the positive electrode 4 and the negative electrode 2 from each other, and a known material that is usually used as a separator for a non-aqueous electrolyte battery of this type can be used. Examples include non-woven fabrics and synthetic resin porous membranes. In particular, a synthetic resin porous membrane is preferably used,
Among them, the polyolefin-based microporous film has a thickness, strength,
It is preferably used in terms of film resistance and the like. Specific examples include a microporous membrane made of polyethylene or polypropylene, and a microporous membrane obtained by combining these. Further, the thickness of the separator needs to be as thin as possible in view of the relationship between lithium ion conductivity and energy density. Specifically, the thickness of the separator is preferably 50 μm or less.

【0041】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is incorporated in and integrated with the negative electrode can 3. The insulating gasket 7 is for preventing leakage of the nonaqueous electrolytic solution filled in the negative electrode can 3 and the positive electrode can 5.

【0042】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution prepared by dissolving an electrolyte in an aprotic non-aqueous solvent is used.

【0043】非水溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、γ−ブチロラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、2−メチルテトラヒドロフラン、3−メチル
1,3−ジオキソラン、プロピオン酸メチル、酪酸メチ
ル、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等を使用することができる。特
に、電圧安定性の点からは、プロピレンカーボネート、
ビニレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、ジエチルカーボネート、ジプロピルカ
ーボネート等の鎖状カーボネート類を使用することが好
ましい。また、このような非水溶媒は、1種類を単独で
用いてもよいし、2種類以上を混合して用いてもよい。
As the non-aqueous solvent, for example, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 3- Methyl 1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. Particularly, from the viewpoint of voltage stability, propylene carbonate,
It is preferable to use cyclic carbonates such as vinylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. Moreover, such non-aqueous solvents may be used alone or in combination of two or more.

【0044】また、非水溶媒に溶解させる電解質として
は、例えば、LiPF、LiClO、LiAs
、LiBF、LiCFSO、LiN(CF
SO 等のリチウム塩を使用することができる。こ
れらのリチウム塩の中でも、LiPF、LiBF
使用することが好ましい。
Further, as an electrolyte to be dissolved in a non-aqueous solvent
Is, for example, LiPF6, LiClOFour, LiAs
F6, LiBFFour, LiCFThreeSOThree, LiN (CFThree
SOTwo) TwoLithium salts such as This
Among these lithium salts, LiPF6, LiBFFourTo
Preference is given to using.

【0045】そして、このような非水電解液電池1は例
えばつぎのようにして製造される。
Then, such a non-aqueous electrolyte battery 1 is manufactured, for example, as follows.

【0046】負極2としては、まず、負極活物質と結着
剤とを溶媒中に分散させてスラリーの負極合剤を調製す
る。次に、得られた負極合剤を負極集電体上に均一に塗
布、乾燥して負極活物質層を形成することにより負極2
が作製される。上記負極合剤の結着剤としては、公知の
結着剤を用いることができるほか、上記負極合剤に公知
の添加剤等を添加することができる。また、負極活物質
となる金属リチウムをそのまま負極2として用いること
もできる。
As the negative electrode 2, first, a negative electrode active material and a binder are dispersed in a solvent to prepare a slurry negative electrode mixture. Next, the obtained negative electrode mixture is uniformly applied onto the negative electrode current collector and dried to form a negative electrode active material layer, thereby forming the negative electrode 2
Is created. As the binder for the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture. Further, metallic lithium serving as the negative electrode active material can be used as it is as the negative electrode 2.

【0047】正極4としては、まず、一般式LiNi
1−y(但し、Mは遷移金属、B、Al、C
o、Cr、Ga、Inの内の少なくとも1種を表し、
0.05≦x≦1.10であり、0.7≦y≦1.0で
ある。)で表されるリチウム複合酸化物を合成し、当該
リチウム複合酸化物の100gに対し500ml以上の
水により4時間以内の水洗を行い、200℃以上の温度
で乾燥することにより正極活物質を得る。なお、乾燥終
了の目安としては、カールフィッシャー水分計を用い、
測定温度250℃として測定した場合の残留水分量が8
00ppm以下となるまでとする。
As the positive electrode 4, first, the general formula Li x Ni is used.
y M 1-y O 2 (where M is a transition metal, B, Al, C
represents at least one of o, Cr, Ga and In,
0.05 ≦ x ≦ 1.10 and 0.7 ≦ y ≦ 1.0. ) The lithium composite oxide represented by the formula (1) is synthesized, 100 g of the lithium composite oxide is washed with 500 ml or more of water for 4 hours or less, and dried at a temperature of 200 ° C. or more to obtain a positive electrode active material. . In addition, as a guide for the end of drying, use a Karl Fischer moisture meter,
The residual water content is 8 when measured at a measurement temperature of 250 ° C.
Until it becomes less than 00 ppm.

【0048】次に、得られた正極活物質と結着剤とを溶
媒中に分散させてスラリーの正極合剤を調製する。次
に、得られた正極合剤を正極集電体上に均一に塗布、乾
燥して正極活物質層を形成することにより正極4が作製
される。上記正極合剤の結着剤としては、公知の結着剤
を用いることができるほか、上記正極合剤に公知の添加
剤等を添加することができる。
Next, the obtained positive electrode active material and the binder are dispersed in a solvent to prepare a slurry positive electrode mixture. Next, the obtained positive electrode mixture is uniformly applied onto the positive electrode current collector and dried to form a positive electrode active material layer, whereby the positive electrode 4 is manufactured. As the binder of the positive electrode mixture, a known binder can be used, and a known additive or the like can be added to the positive electrode mixture.

【0049】非水電解液は、電解質塩を非水溶媒中に溶
解することにより調製される。
The non-aqueous electrolytic solution is prepared by dissolving an electrolyte salt in a non-aqueous solvent.

【0050】そして、負極2を負極缶3に収容し、正極
4を正極缶5に収容し、負極2と正極4との間に、ポリ
プロピレン製多孔質膜等からなるセパレータ6を配す
る。負極缶3及び正極缶5内に非水電解液を注入し、絶
縁ガスケット7を介して負極缶3と正極缶5とをかしめ
て固定することにより、非水電解液電池1が完成する。
Then, the negative electrode 2 is accommodated in the negative electrode can 3, the positive electrode 4 is accommodated in the positive electrode can 5, and the separator 6 made of a polypropylene porous film or the like is disposed between the negative electrode 2 and the positive electrode 4. The nonaqueous electrolytic solution battery 1 is completed by injecting the nonaqueous electrolytic solution into the negative electrode can 3 and the positive electrode can 5, and caulking and fixing the negative electrode can 3 and the positive electrode can 5 via the insulating gasket 7.

【0051】以上のような非水電解液電池1の製造にお
いては、正極活物質を製造する際に、リチウム複合酸化
物100g当たり500ml以上の水を用いて洗浄して
いるので、リチウム複合酸化物合成時に生成する炭酸リ
チウムや硫酸リチウムが水洗により除去される。また、
洗浄中に発生するHとLiの交換は、水洗時に使用
する水の量ではなく、時間に依存して進行するため、本
発明のように4時間以下という短時間で水洗を行うこと
で、イオン交換が殆ど起こらない。
In the production of the non-aqueous electrolyte battery 1 as described above, since 500 ml or more of water is washed with 100 g of the lithium composite oxide when producing the positive electrode active material, the lithium composite oxide is obtained. Lithium carbonate and lithium sulfate produced during the synthesis are removed by washing with water. Also,
Since the exchange of H + and Li + generated during washing proceeds depending on the time, not the amount of water used during washing, it is possible to perform washing in a short time of 4 hours or less as in the present invention. , Ion exchange hardly occurs.

【0052】そして、このような正極活物質を用いて得
られる非水電解液電池1は、充放電効率が大幅に向上
し、放電容量が大きく増大したものとなる。さらに、こ
の非水電解液電池1においては、高温環境下におけるガ
ス発生が無く、保存特性に優れ高温環境下での電池性能
の劣化が抑えられた優れたものとなる。
The non-aqueous electrolyte battery 1 obtained by using such a positive electrode active material has significantly improved charge / discharge efficiency and greatly increased discharge capacity. Further, the non-aqueous electrolyte battery 1 is excellent in that no gas is generated in a high temperature environment, storage characteristics are excellent, and deterioration of battery performance in a high temperature environment is suppressed.

【0053】なお、上述した実施の形態では、非水電解
液を用いた非水電解液電池を例に挙げて説明したが、本
発明はこれに限定されるものではなく、導電性高分子化
合物の単体あるいは混合物を含有する高分子固体電解質
を用いた固体電解質電池や、膨潤溶媒を含有するゲル状
の固体電解質を用いたゲル状電解質電池についても適用
可能である。
In the above-mentioned embodiment, the non-aqueous electrolyte battery using the non-aqueous electrolyte was described as an example, but the present invention is not limited to this, and the conductive polymer compound is used. It is also applicable to a solid electrolyte battery using a polymer solid electrolyte containing a single substance or a mixture thereof, and a gel electrolyte battery using a gel solid electrolyte containing a swelling solvent.

【0054】上記の高分子固体電解質やゲル状電解質に
含有される導電性高分子化合物として具体的には、シリ
コン、アクリル、アクリロニトリル、ポリフォスファゼ
ン変性ポリマ、ポリエチレンオキサイド、ポリプロピレ
ンオキサイド、フッ素系ポリマ又はこれらの化合物の複
合ポリマや架橋ポリマ、変性ポリマ等が挙げられる。上
記フッ素系ポリマとしては、ポリ(ビニリデンフルオラ
イド)、ポリ(ビニリデンフルオライド−co−ヘキサ
フルオロプロピレン)、ポリ(ビニリデンフルオライド
−co−テトラフルオロエチレン)、ポリ(ビニリデン
フルオライド−co−トリフルオリエチレン)等が挙げ
られる。
Specific examples of the conductive polymer compound contained in the above-mentioned polymer solid electrolyte or gel electrolyte include silicon, acrylic, acrylonitrile, polyphosphazene modified polymer, polyethylene oxide, polypropylene oxide, fluorine-based polymer or Examples thereof include composite polymers, crosslinked polymers and modified polymers of these compounds. Examples of the fluorine-based polymer include poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-tetrafluoroethylene), and poly (vinylidene fluoride-co-trifluorethylene). ) And the like.

【0055】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
Further, in the above-mentioned embodiment, the secondary battery is described as an example, but the present invention is not limited to this, and can be applied to a primary battery. Further, the battery of the present invention is not particularly limited in its shape such as a cylindrical type, a square type, a coin type, a button type,
Further, it can be formed in various sizes such as thin and large.

【0056】[0056]

【実施例】以下、本発明の効果を確認すべく行った実施
例について説明する。なお、以下の説明では、数値等具
体的な例を挙げて説明しているが、本発明はこれに限定
されるものではないことは言うまでもない。
EXAMPLES Examples will be described below for confirming the effects of the present invention. In the following description, specific examples such as numerical values are described, but it goes without saying that the present invention is not limited to this.

【0057】〈サンプル1〉まず、正極を次のように作
製した。水酸化リチウムと、酸化ニッケルと、酸化コバ
ルトとをモル比でLi:Ni:Co=1.01:0.8
0:0.20になるようにボールミルで混合した。この
混合体を100%酸素中で450℃で5時間仮焼した
後、さらに750℃で10時間焼成してリチウム複合酸
化物を得た。そして、焼成終了後、リチウム複合酸化物
を粉砕した。
<Sample 1> First, a positive electrode was prepared as follows. Li: Ni: Co = 1.01: 0.8 in molar ratio of lithium hydroxide, nickel oxide, and cobalt oxide.
The mixture was mixed with a ball mill so that the ratio became 0: 0.20. This mixture was calcined in 100% oxygen at 450 ° C. for 5 hours and then further calcined at 750 ° C. for 10 hours to obtain a lithium composite oxide. After the firing was completed, the lithium composite oxide was crushed.

【0058】その後、1000mlのビーカー中にリチ
ウム複合酸化物を100gと蒸留水を500mlとを入
れ、攪拌器で10分間攪拌後、吸引濾過器に移し、5分
で脱水を行った。水洗に要した時間は、ビーカーヘの蒸
留水投入から吸引濾過終了までの時間として、0.25
時間を要した。次に、濾紙上に残った正極活物質を手早
く200℃に保った恒温槽に入れ、0.5時間の予備乾
燥を行い、その後高温室内を真空にして4時間の乾燥を
行い、正極活物質を得た。この正極活物質の残留水分量
を、カールフィッシャー水分計を用い、測定温度250
℃として測定すると、残留水分量は700ppmであっ
た。
Then, 100 g of lithium composite oxide and 500 ml of distilled water were placed in a 1000 ml beaker, stirred with a stirrer for 10 minutes, transferred to a suction filter and dehydrated in 5 minutes. The time required for washing with water is 0.25 as the time from the addition of distilled water to the beaker until the end of suction filtration.
It took time. Next, the positive electrode active material remaining on the filter paper was quickly placed in a constant temperature bath maintained at 200 ° C., preliminarily dried for 0.5 hours, and then the high temperature chamber was evacuated to dry for 4 hours to obtain the positive electrode active material. Got The residual water content of this positive electrode active material was measured at a measurement temperature of 250 using a Karl Fischer moisture meter.
When measured as ° C, the residual water content was 700 ppm.

【0059】そして、この正極活物質を用いて、コイン
型の非水電解質電池を作製した。まず、この正極活物質
を91重量%と、導電剤としてグラファイトを6重量%
と、結着剤としてポリフッ化ビニリデンを3重量%とを
混合して正極合剤を調製し、N−メチル−2ピロリドン
に分散させて正極合剤スラリーとした。その後、このス
ラリーを乾燥させたものを粉砕して、正極合剤を得た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was produced. First, 91% by weight of this positive electrode active material and 6% by weight of graphite as a conductive agent.
And 3% by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was dispersed in N-methyl-2pyrrolidone to obtain a positive electrode mixture slurry. Then, the dried slurry was pulverized to obtain a positive electrode mixture.

【0060】そして、この正極合剤をアルミニウムメッ
シュと共に加圧成形し、直径15.5mmの円形状に打
ち抜くことにより、正極ペレットを得た。また、リチウ
ム金属箔を直径15.5mmの円形状に打ち抜くことに
より負極ペレットを作製した。
Then, this positive electrode mixture was pressure-molded together with an aluminum mesh and punched into a circular shape having a diameter of 15.5 mm to obtain a positive electrode pellet. Further, a negative electrode pellet was prepared by punching out a lithium metal foil into a circular shape having a diameter of 15.5 mm.

【0061】そして、負極ペレットを負極缶に収容し、
正極ペレットを正極缶に収容し、負極ペレットと正極ペ
レットとの間に、ポリプロピレン製多孔質膜等からなる
セパレータを配した。負極缶及び正極缶内に非水電解液
を注入し、絶縁ガスケットを介して負極缶と正極缶とを
かしめて固定することにより、非水電解液電池を完成し
た。なお、上記非水電解液は、プロピレンカーボネート
中にLiPFを1mol/Lで溶解させて調製した。
Then, the negative electrode pellets were placed in a negative electrode can,
The positive electrode pellet was housed in a positive electrode can, and a separator made of a polypropylene porous film or the like was placed between the negative electrode pellet and the positive electrode pellet. A nonaqueous electrolytic solution battery was completed by injecting a nonaqueous electrolytic solution into the negative electrode can and the positive electrode can, and caulking and fixing the negative electrode can and the positive electrode can through an insulating gasket. The non-aqueous electrolyte was prepared by dissolving LiPF 6 in propylene carbonate at 1 mol / L.

【0062】〈サンプル2〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し2
50mlとし、攪拌器で2分間攪拌した。そして、リチ
ウム複合酸化物の沈殿を3分待った後デカンテーション
により上澄み液を排水し、改めて蒸留水を250ml加
え、攪拌器で5分間攪拌し、吸引濾過器に移し、5分で
脱水を行った。したがって、使用した蒸留水の量、及
び、水洗に要した時間は、サンプル1と同じになり、そ
れぞれ500ml、0.25時間となる。以後、サンプ
ル1と同様の方法で乾燥を行い正極活物質を得た。この
正極活物質の残留水分量は700ppmであった。
<Sample 2> The amount of water used for washing the lithium composite oxide was 2 with respect to 100 g of the lithium composite oxide.
It was adjusted to 50 ml and stirred for 2 minutes with a stirrer. Then, after waiting 3 minutes for the precipitation of the lithium composite oxide, the supernatant was drained by decantation, 250 ml of distilled water was added again, the mixture was stirred for 5 minutes with a stirrer, transferred to a suction filter, and dehydrated in 5 minutes. . Therefore, the amount of distilled water used and the time required for washing with water are the same as those of Sample 1, which are 500 ml and 0.25 hours, respectively. After that, the positive electrode active material was obtained by drying in the same manner as in Sample 1. The residual water content of this positive electrode active material was 700 ppm.

【0063】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0064】〈サンプル3〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し1
000mlとしたこと以外は、サンプル1と同様にして
正極活物質を得た。この正極活物質の残留水分量は80
0ppmであった。
<Sample 3> The amount of water used for cleaning the lithium composite oxide was 1 with respect to 100 g of the lithium composite oxide.
A positive electrode active material was obtained in the same manner as in Sample 1 except that the amount was 000 ml. The residual water content of this positive electrode active material is 80
It was 0 ppm.

【0065】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0066】〈サンプル4〉サンプル1と同様にリチウ
ム複合酸化物を焼成し、焼成終了後、リチウム複合酸化
物を粉砕した。その後、水洗を行わずに、以下、サンプ
ル1と同様に、空気中200℃の予備乾燥を0.5時間
行い、次いで雰囲気を真空として4時間の乾燥を行い、
正極活物質を得た。この正極活物質の残留水分量は70
0ppmであった。
<Sample 4> The lithium composite oxide was fired in the same manner as in sample 1, and after the firing, the lithium composite oxide was pulverized. Then, without washing with water, pre-drying at 200 ° C. in air is performed for 0.5 hours in the same manner as in Sample 1 below, and then the atmosphere is vacuumed for 4 hours to dry.
A positive electrode active material was obtained. The positive electrode active material has a residual water content of 70.
It was 0 ppm.

【0067】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0068】〈サンプル5〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し3
00mlとしたこと以外は、サンプル1と同様にして正
極活物質を得た。この正極活物質の残留水分量は800
ppmであった。
<Sample 5> The amount of water used for washing the lithium composite oxide was 3 with respect to 100 g of the lithium composite oxide.
A positive electrode active material was obtained in the same manner as in Sample 1 except that the amount was set to 00 ml. The residual water content of this positive electrode active material is 800
It was ppm.

【0069】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0070】〈サンプル6〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し1
50mlとし、攪拌器で2分間攪拌した。そして、リチ
ウム複合酸化物の沈殿を3分待った後デカンテーション
により上澄液を排水し、改めて蒸留水を150ml加
え、攪拌器で5分攪拌し、吸引濾過器に移し、5分間の
脱水を行った。したがって、使用した蒸留水の量、及
び、水洗に要した時間は、サンプル5と同じになり、そ
れぞれ300ml、0.25時間となる。以後、サンプ
ル1と同様の方法で乾燥を行い、正極活物質を得た。こ
の正極活物質の残留水分量は800ppmであった。
<Sample 6> The amount of water used for washing the lithium composite oxide was 1 with respect to 100 g of the lithium composite oxide.
It was adjusted to 50 ml and stirred for 2 minutes with a stirrer. Then, after waiting 3 minutes for the precipitation of the lithium composite oxide, the supernatant was drained by decantation, 150 ml of distilled water was added again, the mixture was stirred for 5 minutes with a stirrer, transferred to a suction filter, and dehydrated for 5 minutes. It was Therefore, the amount of distilled water used and the time required for washing with water are the same as those of Sample 5, which are 300 ml and 0.25 hours, respectively. Thereafter, it was dried in the same manner as in Sample 1 to obtain a positive electrode active material. The positive electrode active material had a residual water content of 800 ppm.

【0071】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0072】〈サンプル7〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し1
000mlとし、水洗時間を0.5時間としたこと以外
は、サンプル1と同様にして水洗を行った。そして、濾
紙上に残った正極活物質を手早く200℃に保った恒温
槽に入れ、0.5時間の予備乾燥を行い、その後恒温槽
内を真空にして1.5時間の乾燥を行い、正極活物質を
得た。この正極活物質の残留水分量は1500ppmで
あった。
<Sample 7> The amount of water used for washing the lithium composite oxide was 1 with respect to 100 g of the lithium composite oxide.
Rinsing with water was performed in the same manner as in Sample 1 except that the amount was 000 ml and the washing time was 0.5 hours. Then, the positive electrode active material remaining on the filter paper was quickly placed in a constant temperature bath maintained at 200 ° C., pre-dried for 0.5 hours, and then the interior of the constant temperature bath was evacuated for 1.5 hours to dry the positive electrode. An active material was obtained. The residual water content of this positive electrode active material was 1500 ppm.

【0073】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0074】〈サンプル8〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し1
000mlとし、水洗時間を0.5時間としたこと以外
は、サンプル1と同様にして水洗を行った。そして、濾
紙上に残ったリチウム複合酸化物を手早く200℃に保
った恒温槽に入れ、0.5時間の予備乾燥を行い、その
後恒温槽内を真空にして4時間の乾燥を行い、正極活物
質を得た。この正極活物質の残留水分量は800ppm
であった。
<Sample 8> The amount of water used for washing the lithium composite oxide was 1 with respect to 100 g of the lithium composite oxide.
Rinsing with water was performed in the same manner as in Sample 1 except that the amount was 000 ml and the washing time was 0.5 hours. Then, the lithium composite oxide remaining on the filter paper was quickly put in a constant temperature bath kept at 200 ° C., pre-dried for 0.5 hours, and then the interior of the constant temperature bath was evacuated for 4 hours to dry the positive electrode. The substance was obtained. The residual water content of this positive electrode active material is 800 ppm
Met.

【0075】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0076】〈サンプル9〉リチウム複合酸化物の洗浄
に使用する水量をリチウム複合酸化物100gに対し1
000mlとし、水洗時間を0.5時間としたこと以外
は、サンプル1と同様にして水洗を行った。そして、濾
紙上に残った正極活物質を手早く200℃に保った恒温
槽に入れ、0.5時間の予備乾燥を行い、その後恒温槽
内を真空にして15時間の乾燥を行い、正極活物質を得
た。この正極活物質の残留水分量は100ppmであっ
た。
<Sample 9> The amount of water used for washing the lithium composite oxide was 1 with respect to 100 g of the lithium composite oxide.
Rinsing with water was performed in the same manner as in Sample 1 except that the amount was 000 ml and the washing time was 0.5 hours. Then, the positive electrode active material remaining on the filter paper was quickly placed in a constant temperature bath kept at 200 ° C., pre-dried for 0.5 hours, and then the interior of the constant temperature bath was evacuated for 15 hours to dry the positive electrode active material. Got The residual water content of this positive electrode active material was 100 ppm.

【0077】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0078】〈サンプル10〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を1時間としたこと以外
は、サンプル1と同様にして正極活物質を得た。この正
極活物質の残留水分量は700ppmであった。
<Sample 10> A positive electrode active material was obtained in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 1 hour. It was The residual water content of this positive electrode active material was 700 ppm.

【0079】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0080】〈サンプル11〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を4時間としたこと以外
は、サンプル1と同様にして正極活物質を得た。この正
極活物質の残留水分量は800ppmであった。
<Sample 11> A positive electrode active material was obtained in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 4 hours. It was The positive electrode active material had a residual water content of 800 ppm.

【0081】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0082】〈サンプル12〉リチウム複合酸化物の水
洗時間が0.1時間となる様に、次に記す手順で水洗を
行った。まず、水量をリチウム複合酸化物の100gに
対し1000mlとし、攪拌器で3分攪拌した。そし
て、リチウム複合酸化物のの沈殿を特った後デカンテー
ションにより上澄液を排水し、余分な水を綿で吸い取っ
た状態を水洗終了と見なし、ここまでの時間を0.1時
間で行った。以後、サンプル1と同様の方法で乾燥を行
ない正極活物質を得た。この正極活物質の残留水分量は
800ppmであった。
<Sample 12> The lithium composite oxide was washed with water in the following procedure so that the washing time was 0.1 hour. First, the amount of water was set to 1000 ml per 100 g of the lithium composite oxide, and the mixture was stirred for 3 minutes with a stirrer. Then, after the precipitation of the lithium composite oxide is specified, the supernatant liquid is drained by decantation, and the state in which excess water is absorbed with cotton is considered to be washing, and the time up to this point is 0.1 hour. It was Thereafter, the positive electrode active material was obtained by drying in the same manner as in Sample 1. The positive electrode active material had a residual water content of 800 ppm.

【0083】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0084】〈サンプル13〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を6時間としたこと以外
は、サンプル1と同様にして正極活物質を得た。この正
極活物質の残留水分量は700ppmであった。
<Sample 13> A positive electrode active material was obtained in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 6 hours. It was The residual water content of this positive electrode active material was 700 ppm.

【0085】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0086】〈サンプル14〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を12時間としたこと以外
は、サンプル1と同様にして正極活物質を得た。この正
極活物質の残留水分量は700ppmであった。
<Sample 14> A positive electrode active material was obtained in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 12 hours. It was The residual water content of this positive electrode active material was 700 ppm.

【0087】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0088】〈サンプル15〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を0.5時間としたこと以
外は、サンプル1と同様にして水洗を行った。そして、
濾紙上に残ったリチウム複合酸化物を手早く250℃に
保った恒温槽に入れ、0.5時間の予備乾燥を行い、そ
の後恒温槽内を真空にして4時間の乾燥を行い、正極活
物質を得た。この正極活物質の残留水分量は500pp
mであった。
<Sample 15> Washing with water was carried out in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 0.5 hours. It was And
The lithium composite oxide remaining on the filter paper was quickly put in a constant temperature bath kept at 250 ° C., pre-dried for 0.5 hours, and then the interior of the constant temperature bath was evacuated for 4 hours to dry the positive electrode active material. Obtained. The residual water content of this positive electrode active material is 500 pp
It was m.

【0089】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0090】〈サンプル16〉リチウム複合酸化物の洗
浄に使用する水量をリチウム複合酸化物100gに対し
1000mlとし、水洗時間を0.5時間としたこと以
外は、サンプル1と同様にして水洗を行った。そして、
濾紙上に残ったリチウム複合酸化物を手早く150℃に
保った恒温槽に入れ、0.5時間の予備乾燥を行い、そ
の後恒温槽内を真空にして4時間の乾燥を行い、正極活
物質を得た。この正極活物質の残留水分量は2000p
pmであった。そこで、更に真空中で12時間の乾燥を
行い、最終的に1500ppmの残留水分量とした。
<Sample 16> Washing with water was carried out in the same manner as in Sample 1, except that the amount of water used for washing the lithium composite oxide was 1000 ml with respect to 100 g of the lithium composite oxide, and the washing time was 0.5 hours. It was And
The lithium composite oxide remaining on the filter paper was quickly placed in a constant temperature bath kept at 150 ° C, pre-dried for 0.5 hours, and then the interior of the constant temperature bath was evacuated for 4 hours to dry the positive electrode active material. Obtained. The residual water content of this positive electrode active material is 2000 p
It was pm. Then, it was further dried in a vacuum for 12 hours to finally give a residual water content of 1500 ppm.

【0091】そして、この正極活物質を用いて、サンプ
ル1と同様にしてコイン型の非水電解液電池を作製し
た。
Then, using this positive electrode active material, a coin type non-aqueous electrolyte battery was prepared in the same manner as in Sample 1.

【0092】そして、以上のようにしてサンプル1〜サ
ンプル16で作製した非水電解質電池について、初回サ
イクルの充電容量と放容量を測定し、放電容量/充電容
量(%)を初回充放電効率とした。その後、充電を行
い、コイン型電池解体後、膨れ試験を行い、ガス発生の
有無を評価した。
With respect to the non-aqueous electrolyte batteries prepared in Samples 1 to 16 as described above, the charge capacity and discharge capacity in the first cycle were measured, and the discharge capacity / charge capacity (%) was taken as the initial charge / discharge efficiency. did. After that, the battery was charged, the coin-type battery was disassembled, and then a swelling test was performed to evaluate the presence or absence of gas generation.

【0093】<充放電サイクルの評価>サンプル1〜サ
ンプル16で作製した電池について、電池温度を室温と
してつぎに示すような充放電試験を行った。
<Evaluation of Charge / Discharge Cycle> With respect to the batteries prepared in Samples 1 to 16, the following charge / discharge test was conducted with the battery temperature at room temperature.

【0094】先ず、各電池に対して、電流密度を0.2
7mA/cmとし、回路電圧が4.2Vに達するまで
定電流充電を行い、その後、回路電圧が4.2Vに達し
た時点から満充電まで電圧を4.2Vで一定として定電
圧充電を行った。次に、充電後の各電池に対して、終止
電圧が2.5Vとなるまで放電を行った。この充放電を
1サイクルとし、初回サイクルの放電容量/充電容量
(%)を初回充放電効率とした。
First, a current density of 0.2 was set for each battery.
Constant current charging is performed at 7 mA / cm 2 until the circuit voltage reaches 4.2 V, and then constant voltage charging is performed at a constant voltage of 4.2 V from the time when the circuit voltage reaches 4.2 V to full charge. It was Next, each battery after charging was discharged until the final voltage reached 2.5V. This charge / discharge was defined as one cycle, and the discharge capacity / charge capacity (%) of the first cycle was defined as the initial charge / discharge efficiency.

【0095】<ガス発生の評価>そして、上記の充電条
件で充電を行った各電池を、短絡させないように解体し
て正極ペレットのみ取り出した。この正極ペレットをア
ルミパックで真空封入した。この真空封入したパックを
90℃に保った恒温槽内に4時間静置し、ガス発生によ
るパックの膨れを目視により観察した。
<Evaluation of Gas Generation> Then, each battery charged under the above charging conditions was disassembled so as not to short-circuit, and only the positive electrode pellet was taken out. This positive electrode pellet was vacuum sealed in an aluminum pack. The vacuum-sealed pack was allowed to stand in a thermostat kept at 90 ° C. for 4 hours, and the swelling of the pack due to gas generation was visually observed.

【0096】サンプル1〜サンプル16で作製した電池
について、以上の評価結果を表1に示す。
Table 1 shows the above evaluation results of the batteries prepared in Samples 1 to 16.

【0097】[0097]

【表1】 [Table 1]

【0098】また、サンプル1〜サンプル16で合成し
た正極活物質について、X線回折測定を行った。サンプ
ル1及びサンプル4で得られた正極活物質のX線回折チ
ャートを図2に示す。また、図2中、20°〜35°部
分を拡大したものを図3に示す。
Further, the positive electrode active materials synthesized in Samples 1 to 16 were subjected to X-ray diffraction measurement. The X-ray diffraction charts of the positive electrode active materials obtained in Sample 1 and Sample 4 are shown in FIG. Further, an enlarged view of the 20 ° to 35 ° portion in FIG. 2 is shown in FIG.

【0099】水洗を全く行わなかったサンプル4を除い
て、炭酸リチウム、硫酸リチウムの回折ピークが無く、
ISDDカード09−0063に記載のLiNiO
よい一致を見た。サンプル4においては、炭酸リチウ
ム、硫酸リチウムが存在することを示唆するピークが、
ノイズレベルに近いものではあるが、僅かに存在した。
Except for sample 4 which was not washed with water at all, there were no diffraction peaks of lithium carbonate and lithium sulfate,
A good match was found with the LiNiO 2 described in ISDD card 09-0063. In Sample 4, peaks indicating the presence of lithium carbonate and lithium sulfate were
Although it was close to the noise level, it was slightly present.

【0100】X線回折測定結果から、水洗により炭酸リ
チウムや硫酸リチウムが減少していることは明らかであ
る。そして、表1に示される結果から判るように、サン
プル4の充放電効率は84.5%程度であり、また、ガ
スが発生していることがわかる。
From the result of X-ray diffraction measurement, it is clear that the amount of lithium carbonate and lithium sulfate decreased by washing with water. Then, as can be seen from the results shown in Table 1, it is found that the charge / discharge efficiency of Sample 4 is about 84.5% and that gas is generated.

【0101】表1にも示されているように、まず、サン
プル1〜サンプル3、サンプル5及びサンプル6は、水
洗時間を0.25時間としたものであるが、この場合、
水量をリチウム複合酸化物100g当たり500ml以
上としたサンプル1〜サンプル3では、充放電効率が大
幅に向上し、放電容量が大きいものとなっていることが
分かる。また、ガスの発生も無い。しかし、水量を30
0mlとしたサンプル5及びサンプル6では、充放電効
率、放電容量がサンプル4に比較して若干向上している
が、ガスの発生があり、好ましくない。これは、洗浄に
用いる水量が少ないために、炭酸リチウムや硫酸リチウ
ムの除去が不十分となるためであると考えられる。
As shown in Table 1, first, in Samples 1 to 3, Sample 5 and Sample 6, the washing time was 0.25 hours. In this case,
It can be seen that in Samples 1 to 3 in which the amount of water was 500 ml or more per 100 g of the lithium composite oxide, the charge / discharge efficiency was significantly improved and the discharge capacity was large. Also, no gas is generated. However, the amount of water is 30
The charge and discharge efficiency and discharge capacity of Sample 5 and Sample 6 of 0 ml are slightly improved as compared with Sample 4, but gas is generated, which is not preferable. It is considered that this is because the amount of water used for washing is small, so that the removal of lithium carbonate and lithium sulfate becomes insufficient.

【0102】したがって、リチウム複合酸化物の水洗処
理においては、リチウム複合酸化物100g当たり50
0ml以上の水量とすることが好ましいことがわかっ
た。
Therefore, in the washing treatment of the lithium composite oxide with water, 50% per 100 g of the lithium composite oxide was used.
It has been found that the amount of water is preferably 0 ml or more.

【0103】なお、サンプル2及びサンプル6では、水
洗を2回に分けて行っっているが、この場合、1回当た
りの水量が少なくても、複数回水洗することで、水の総
量として同程度の量で1回の水洗を行った場合と同等の
効果が得られていることが分かる。
In Samples 2 and 6, washing with water is carried out in two steps. In this case, even if the amount of water per washing is small, the total amount of water is the same by washing with water several times. It can be seen that the same effect as that obtained by washing once with a moderate amount is obtained.

【0104】したがって、水洗処理においては、少量の
水で複数回の水洗を行うことが可能であるが、その場合
でも、水の総量として、リチウム複合酸化物100g当
たり500ml以上の水量とすることが好ましいと考え
られる。
Therefore, in the water washing treatment, it is possible to perform water washing a plurality of times with a small amount of water, but even in that case, the total amount of water should be 500 ml or more per 100 g of the lithium composite oxide. Considered preferable.

【0105】つぎに、サンプル7〜サンプル9は、水洗
に用いる水量をリチウム複合酸化物100g当たり10
00mlとし、水洗時間を0.5時間とし、乾燥温度を
200℃として、乾燥時間を変えることにより乾燥後の
正極活物質の残留水分量を変えたものである。この場
合、サンプル8のように乾燥後の残留水分量が800p
pm以下であれば、充放電効率が大幅に向上し、放電容
量が大きいものとなり、かつ、ガスの発生も無い。ま
た、サンプル9のように残留水分量を100ppmまで
落としても、800ppmのものと同等であることが分
かる。しかし、乾燥後の残留水分量が1500ppmの
サンプル7の場合、ガスが発生した。これは、残留水分
が多いため、充電状態で水が電気分解し、ガス発生した
ためであると考えられる。
Next, in Samples 7 to 9, the amount of water used for washing was 10 per 100 g of the lithium composite oxide.
The residual water content of the positive electrode active material after drying was changed by changing the drying time to 00 ml, the washing time to 0.5 hours, the drying temperature to 200 ° C. In this case, the residual water content after drying is 800 p as in Sample 8.
When it is pm or less, the charge and discharge efficiency is significantly improved, the discharge capacity is large, and no gas is generated. Further, it can be seen that even if the residual water content is reduced to 100 ppm as in Sample 9, it is equivalent to 800 ppm. However, in the case of Sample 7 having a residual water content of 1500 ppm after drying, gas was generated. It is considered that this is because water was electrolyzed and gas was generated in the charged state due to the large amount of residual water.

【0106】したがって、乾燥後の残留水分量として
は、800ppm以下とすることが好ましいことがわか
った。
Therefore, it was found that the residual water content after drying is preferably 800 ppm or less.

【0107】つぎに、サンプル8、サンプル10〜サン
プル14は、水量をリチウム複合酸化物100g当たり
1000mlとし、水洗時間を変えたこと以外、他の条
件をほぼ同じとしたものである。この場合、水洗時間を
0.1時間より長く、4時間以下としたサンプルサンプ
ル8、サンプル10及びサンプル11では、充放竃効率
が大幅に向上し、放電容量が大きいものとなることが分
かる。また、ガスの発生も無い。
Next, in Sample 8 and Sample 10 to Sample 14, the amount of water was set to 1000 ml per 100 g of the lithium composite oxide, and the other conditions were almost the same except that the washing time was changed. In this case, it can be seen that in Sample 8, Sample 10, and Sample 11 in which the washing time was longer than 0.1 hour and 4 hours or less, the charging and discharging efficiency was significantly improved and the discharge capacity was large. Also, no gas is generated.

【0108】しかし、水洗時間を0.1時間としたサン
プル12では、充放電容量、充放電効率は増加している
が、ガスが発生してしまっている。これは、水洗時間が
0.1時間以下と短い場合、リチウム複合酸化物粉末中
の気泡が抜けきらないために活物質表面が完全に濡れ
ず、炭酸リチウムや硫酸リチウムの溶解が妨げられたこ
と、また、それら不純物の溶解拡散が不十分となったこ
と等により、リチウム複合酸化物中の炭酸リチウムや硫
酸リチウムが完全に除去されずに、ガスが発生したため
と考えられる。
However, in sample 12 in which the washing time was 0.1 hour, the charge and discharge capacity and charge and discharge efficiency increased, but gas was generated. This is because when the water washing time was as short as 0.1 hour or less, the bubbles in the lithium composite oxide powder were not completely removed, so that the surface of the active material was not completely wetted and the dissolution of lithium carbonate or lithium sulfate was hindered. It is also considered that the gas was generated without completely removing lithium carbonate and lithium sulfate in the lithium composite oxide due to insufficient dissolution and diffusion of these impurities.

【0109】また、水洗時間を6時間としたサンプル1
3では、充放電容量や充放電効率がともに減少し始め、
水洗時間を12時間としたサンプル14では、充放電容
量や充放電効率の減少が著しいことが分かる。これは、
4時間を越える水洗を行った場合、炭酸リチウムや硫酸
リチウムは、水洗により除去できたが、リチウム複合酸
化物結晶内でのLiとHの交換が無視できない程度
に起こり、充放電容量や充放電効率が低下したと考えら
れ、また、それらイオンの交換量は時間に依存している
ことを示唆していると考えられる。
Further, Sample 1 in which the washing time was 6 hours
In 3, the charge and discharge capacity and charge and discharge efficiency started to decrease,
It can be seen that in Sample 14 in which the washing time is 12 hours, the charge / discharge capacity and charge / discharge efficiency are significantly reduced. this is,
When washing with water for more than 4 hours, lithium carbonate and lithium sulfate could be removed by washing with water, but the exchange of Li + and H + in the lithium composite oxide crystals occurred to a non-negligible level, and the charge and discharge capacity and It is considered that the charging / discharging efficiency was lowered, and that the exchange amount of these ions was time-dependent.

【0110】すなわち、LiとHの交換の速さは、
炭酸リチウムや硫酸リチウムの溶解速度に比べて遅いた
め、水洗時間が4時間以下では、LiとHとの交換
は無視でき、そのため、不純物である炭酸リチウムや硫
酸リチウムは除去できたと考えられる。しかし、水洗時
間が4時間を越えると、LiとHの交換が無視でき
なくなり、リチウム複合酸化物の充放電容量や充放電効
率が著しく低下したと考えられる。
That is, the exchange rate of Li + and H + is
Since it is slower than the dissolution rate of lithium carbonate or lithium sulfate, the exchange of Li + and H + can be neglected when the washing time is 4 hours or less, and therefore it is considered that the impurities lithium carbonate and lithium sulfate could be removed. . However, it is considered that when the water washing time exceeds 4 hours, the exchange of Li + and H + cannot be ignored, and the charge / discharge capacity and charge / discharge efficiency of the lithium composite oxide are significantly reduced.

【0111】したがって、水洗処理においては、水洗時
間を0.1時間より長く、4時間以下の範囲とすること
が好ましいことがわかった。
Therefore, it was found that in the water washing treatment, the water washing time is preferably longer than 0.1 hour and 4 hours or less.

【0112】つぎに、サンプル8、サンプル15及びサ
ンプル16では、水洗を同条件で行い、乾燥温度のみ変
えたものであるが、この場合、サンプル8及びサンプル
15の結果から、乾燥温度を200℃以上とすると、充
放電効率が大幅に向上し、放電容量が大きいものとなる
ことが分かる。また、ガスの発生も無い。
Next, in Samples 8, 15 and 16, washing with water was carried out under the same conditions and only the drying temperature was changed. In this case, from the results of Samples 8 and 15, the drying temperature was 200 ° C. It can be seen that, by the above, the charging / discharging efficiency is significantly improved and the discharging capacity is large. Also, no gas is generated.

【0113】しかし、乾燥を150℃で行ったサンプル
16の場合、充放電効率、放電容量が若干向上している
が、ガスの発生があり、好ましくないものであることが
分かる。これは、乾燥温度が低いため、リチウム複合酸
化物表面に吸着している水が充分に除去できなかったた
め、水が充電状態で電気分解し、ガス発生したためであ
ると考えられる。したがって、正極活物質表面に吸着し
ている水の電気分解によるガス発生を抑えるためには、
残留水分量を800ppm以下とすることが必要である
といえる。また、この水分は、サンプル16のように乾
燥時間を12時間延長しても減少量が小さかったことか
ら、150℃の温度で800ppm以下とする為には非
常に長い時間を要することが推測され、実用的ではな
い。
However, in the case of Sample 16 which was dried at 150 ° C., although the charge and discharge efficiency and the discharge capacity were slightly improved, it was found that gas was generated, which is not preferable. It is considered that this is because the water adsorbed on the surface of the lithium composite oxide could not be sufficiently removed due to the low drying temperature, so that the water was electrolyzed in the charged state and gas was generated. Therefore, in order to suppress gas generation due to electrolysis of water adsorbed on the surface of the positive electrode active material,
It can be said that the residual water content needs to be 800 ppm or less. Moreover, since the amount of decrease of this water was small even when the drying time was extended by 12 hours as in Sample 16, it is estimated that it takes a very long time to reach 800 ppm or less at the temperature of 150 ° C. , Not practical.

【0114】したがって、水洗処理後の乾燥は、200
℃以上の雰囲気下で行い、残留水分量を800ppm以
下とすることが好ましいことがわかった。
Therefore, the drying after the water washing treatment is 200
It was found that it is preferable to carry out the treatment in an atmosphere at a temperature of not less than 0 ° C. and to set the residual water content to 800 ppm or less.

【0115】[0115]

【発明の効果】本発明では、正極活物質を製造する際
に、リチウム複合酸化物100g当たり500ml以上
の水を用いて洗浄しているので、リチウム複合酸化物合
成時に生成する炭酸リチウムや硫酸リチウムが水洗によ
り除去される。また、洗浄中に発生するHとLi
交換は、水洗時に使用する水の量ではなく、時間に依存
して進行するため、本発明のように4時間以下という短
時間で水洗を行うことで、イオン交換が殆ど起こらな
い。
In the present invention, when the positive electrode active material is manufactured, 500 ml or more of water is used for washing per 100 g of lithium composite oxide, so that lithium carbonate or lithium sulfate produced during the synthesis of lithium composite oxide is used. Are removed by washing with water. Further, since the exchange of H + and Li + generated during washing proceeds depending on the time, not the amount of water used during washing, the washing is performed in a short time of 4 hours or less as in the present invention. Therefore, ion exchange hardly occurs.

【0116】そして、このような正極活物質を用いて得
られる非水電解質電池は、充放電効率が大幅に向上し、
放電容量が大きく増大したものとなる。さらに、この非
水電解質電池においては、高温環境下におけるガス発生
が無く、保存特性に優れ高温環境下での電池性能の劣化
が抑えられた優れたものとなる。
The non-aqueous electrolyte battery obtained by using such a positive electrode active material has significantly improved charge / discharge efficiency,
The discharge capacity is greatly increased. Furthermore, this non-aqueous electrolyte battery is excellent in that no gas is generated in a high temperature environment, the storage characteristics are excellent, and the deterioration of the battery performance in the high temperature environment is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用して製造される非水電解液電池の
一構成例を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration example of a non-aqueous electrolyte battery manufactured by applying the present invention.

【図2】サンプル1及びサンプル4で得られた正極活物
質のX線回折チャートである。
FIG. 2 is an X-ray diffraction chart of the positive electrode active materials obtained in Sample 1 and Sample 4.

【図3】図2中、20°〜35°部分を拡大して示すX
線回折チャートである。
FIG. 3 is an enlarged view of a portion of 20 ° to 35 ° in FIG.
It is a line diffraction chart.

【符号の説明】[Explanation of symbols]

1 非水電解液電池、 2 負極、 3 負極缶、 4
正極、 5 正極缶、 6 セパレータ、 7 絶縁
ガスケット
1 non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4
Positive electrode, 5 positive electrode can, 6 separator, 7 insulating gasket

フロントページの続き Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AE05 5H029 AJ03 AJ04 AJ14 AK03 AL06 AL12 AL16 AM03 AM04 AM05 AM07 AM16 CJ02 CJ12 CJ28 HJ00 HJ01 HJ02 HJ14 5H050 AA08 AA09 AA19 BA15 CA08 CB07 CB12 CB20 DA02 GA02 GA12 GA27 HA00 HA01 HA02 HA14 HA20 Continued front page    F-term (reference) 4G048 AA04 AB02 AB05 AC06 AE05                 5H029 AJ03 AJ04 AJ14 AK03 AL06                       AL12 AL16 AM03 AM04 AM05                       AM07 AM16 CJ02 CJ12 CJ28                       HJ00 HJ01 HJ02 HJ14                 5H050 AA08 AA09 AA19 BA15 CA08                       CB07 CB12 CB20 DA02 GA02                       GA12 GA27 HA00 HA01 HA02                       HA14 HA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiNi1−y(但
し、Mは遷移金属、B、Al、Co、Cr、Ga、In
の内の少なくとも1種を表し、0.05≦x≦1.10
であり、0.7≦y≦1.0である。)で表されるリチ
ウム複合酸化物を、当該リチウム複合酸化物100gに
対し500ml以上の水により水洗することを特徴とす
る正極活物質の製造方法。
1. A general formula Li x Ni y M 1-y O 2 (where M is a transition metal, B, Al, Co, Cr, Ga, In).
Of at least one of 0.05 ≦ x ≦ 1.10.
And 0.7 ≦ y ≦ 1.0. The method for producing a positive electrode active material, comprising rinsing the lithium composite oxide represented by (4) with 500 ml or more of water per 100 g of the lithium composite oxide.
【請求項2】 水洗時間を4時間以内とすることを特徴
とする請求項1記載の正極活物質の製造方法。
2. The method for producing a positive electrode active material according to claim 1, wherein the washing time with water is within 4 hours.
【請求項3】 リチウム複合酸化物の水洗後に200℃
以上の温度で乾燥を行い、リチウム複合酸化物に含まれ
る最終的な水分量を800ppm以下とすることを特徴
とする請求項1記載の正極活物質の製造方法。
3. 200 ° C. after washing the lithium composite oxide with water
The method for producing a positive electrode active material according to claim 1, wherein the final amount of water contained in the lithium composite oxide is 800 ppm or less by drying at the above temperature.
【請求項4】 正極活物質を有する正極と、負極活物質
を有する負極と、正極と負極との間に介在された非水電
解質とを備えた非水電解質電池の製造方法において、上
記正極活物質を製造するに際し、 一般式LiNi1−y(但し、Mは遷移金
属、B、Al、Co、Cr、Ga、Inの内の少なくと
も1種を表し、0.05≦x≦1.10であり、0.7
≦y≦1.0である。)で表されるリチウム複合酸化物
を、当該リチウム複合酸化物100gに対し500ml
以上の水により水洗することを特徴とする非水電解質電
池の製造方法。
4. A method for manufacturing a non-aqueous electrolyte battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode. In producing the substance, the general formula Li x Ni y M 1-y O 2 (wherein M represents at least one of transition metals, B, Al, Co, Cr, Ga and In, and 0.05 ≦ x ≦ 1.10 and 0.7
≦ y ≦ 1.0. ) 500 ml of the lithium composite oxide represented by
A method for manufacturing a non-aqueous electrolyte battery, which comprises washing with water as described above.
【請求項5】 水洗時間を4時間以内とすることを特徴
とする請求項4記載の非水電解質電池の製造方法。
5. The method for producing a non-aqueous electrolyte battery according to claim 4, wherein the washing time is within 4 hours.
【請求項6】 リチウム複合酸化物の水洗後に200℃
以上の温度で乾燥を行い、リチウム複合酸化物に含まれ
る最終的な水分量を800ppm以下とすることを特徴
とする請求項4記載の非水電解質電池の製造方法。
6. 200 ° C. after washing the lithium composite oxide with water
The method for producing a non-aqueous electrolyte battery according to claim 4, wherein the final amount of water contained in the lithium composite oxide is 800 ppm or less by performing drying at the above temperature.
JP2001200011A 2001-06-29 2001-06-29 Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery Withdrawn JP2003017054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200011A JP2003017054A (en) 2001-06-29 2001-06-29 Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200011A JP2003017054A (en) 2001-06-29 2001-06-29 Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2003017054A true JP2003017054A (en) 2003-01-17

Family

ID=19037208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200011A Withdrawn JP2003017054A (en) 2001-06-29 2001-06-29 Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2003017054A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2008117729A (en) * 2006-11-08 2008-05-22 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2009536436A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド High performance lithium secondary battery materials
JP2009289448A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Aqueous lithium ion secondary battery and method of manufacturing the same
JP2010064944A (en) * 2008-09-12 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2010082261A1 (en) * 2009-01-16 2010-07-22 パナソニック株式会社 Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010238387A (en) * 2009-03-30 2010-10-21 Tdk Corp Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material
CN102009969A (en) * 2010-11-10 2011-04-13 河北力滔电池材料有限公司 Method for treating anode material lithium iron phosphate of lithium ion battery
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US8153302B2 (en) 2007-02-28 2012-04-10 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material
US8187747B2 (en) 2006-03-30 2012-05-29 Sumitomo Metal Mining Co., Ltd. Positive Electrode active material for non-aqueous electrolyte-based secondary battery, production method therefor and non-aqueous electrolyte-based secondary battery using the same
WO2012128289A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2012128288A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2013015007A1 (en) * 2011-07-26 2013-01-31 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
US8404211B2 (en) 2008-11-28 2013-03-26 Panasonic Corporation Method for producing lithium-containing composite oxide and non-aqueous secondary battery
CN103400978A (en) * 2013-08-01 2013-11-20 奇瑞汽车股份有限公司 Method for modifying lithium nickel manganese oxide material, lithium nickel manganese oxide material and lithium ion battery
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
WO2014189108A1 (en) * 2013-05-22 2014-11-27 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same
WO2015008582A1 (en) 2013-07-17 2015-01-22 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
JP2015088343A (en) * 2013-10-31 2015-05-07 日亜化学工業株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
JPWO2013172133A1 (en) * 2012-05-14 2016-01-12 Necエナジーデバイス株式会社 Positive electrode for secondary battery, secondary battery, and manufacturing method thereof
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
US9325005B2 (en) 2009-08-04 2016-04-26 Sumitomo Metal Mining Co., Ltd. Positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery using same
JP2016178089A (en) * 2016-05-16 2016-10-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2016177901A (en) * 2015-03-18 2016-10-06 株式会社東芝 Positive electrode active material for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP6113902B1 (en) * 2016-10-31 2017-04-12 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US20170294652A1 (en) * 2016-04-11 2017-10-12 Tesla Motors, Inc. Drying procedure in manufacturing process for cathode material
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
WO2018123817A1 (en) * 2016-12-26 2018-07-05 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR20180079478A (en) * 2016-12-30 2018-07-11 일진머티리얼즈 주식회사 Lithium composite oxide, manufacturing method thereof
WO2018172272A1 (en) 2017-03-24 2018-09-27 Umicore Lithium metal composite oxide powder with suppressed gas generation
JP6426820B1 (en) * 2017-11-30 2018-11-21 住友化学株式会社 Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium-containing transition metal composite oxide
JP2019003955A (en) * 2018-09-27 2019-01-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2019506703A (en) * 2016-01-15 2019-03-07 トダアメリカ・インク Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
CN109713228A (en) * 2019-01-04 2019-05-03 南通瑞翔新材料有限公司 A kind of washing drop alkali method that lithium ion battery ternary material is recyclable
US10361423B2 (en) 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
KR20200021445A (en) 2017-06-28 2020-02-28 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary batteries, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery
JP2020173968A (en) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery
CN114243006A (en) * 2021-12-20 2022-03-25 上海华谊新材料有限公司 Lithium iron manganese phosphate positive electrode material, preparation method thereof and soft package lithium battery

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
KR101381761B1 (en) * 2006-03-30 2014-04-07 파나소닉 주식회사 Positive Electrode Active Material for Non-aqueous Electrolyte-based Secondary Battery, Production Method therefor and Non-aqueous Electrolyte-based Secondary Battery Using the Same
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US8158283B2 (en) 2006-03-30 2012-04-17 Sumitomo Metal Mining Co., Ltd. Lithium/nickel composite oxide positive electrode active material for non-aqueous electrolyte-based secondary battery and battery using the same
US8187747B2 (en) 2006-03-30 2012-05-29 Sumitomo Metal Mining Co., Ltd. Positive Electrode active material for non-aqueous electrolyte-based secondary battery, production method therefor and non-aqueous electrolyte-based secondary battery using the same
JP2009536436A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド High performance lithium secondary battery materials
JP2008117729A (en) * 2006-11-08 2008-05-22 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
US8153302B2 (en) 2007-02-28 2012-04-10 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2009289448A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Aqueous lithium ion secondary battery and method of manufacturing the same
JP2010064944A (en) * 2008-09-12 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
US8404211B2 (en) 2008-11-28 2013-03-26 Panasonic Corporation Method for producing lithium-containing composite oxide and non-aqueous secondary battery
US9455444B2 (en) 2008-12-04 2016-09-27 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2016084279A (en) * 2008-12-04 2016-05-19 戸田工業株式会社 Lithium complex compound particle powder and production method therefor, nonaqueous electrolyte secondary battery
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
EP2368851A4 (en) * 2008-12-04 2015-05-13 Toda Kogyo Corp Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR20170106519A (en) 2008-12-04 2017-09-20 도다 고교 가부시끼가이샤 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2010082261A1 (en) * 2009-01-16 2010-07-22 パナソニック株式会社 Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010238387A (en) * 2009-03-30 2010-10-21 Tdk Corp Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material
US9325005B2 (en) 2009-08-04 2016-04-26 Sumitomo Metal Mining Co., Ltd. Positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery using same
KR101787141B1 (en) 2010-06-09 2017-10-18 도다 고교 가부시끼가이샤 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
CN102939263A (en) * 2010-06-09 2013-02-20 户田工业株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2012017253A (en) * 2010-06-09 2012-01-26 Toda Kogyo Corp Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US8986571B2 (en) 2010-06-09 2015-03-24 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material
CN102009969A (en) * 2010-11-10 2011-04-13 河北力滔电池材料有限公司 Method for treating anode material lithium iron phosphate of lithium ion battery
WO2012062111A1 (en) * 2010-11-10 2012-05-18 河北力滔电池材料有限公司 Processing method of lithium iron phosphate used as positive electrode material of lithium ion battery
JP6026403B2 (en) * 2011-03-24 2016-11-16 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012128289A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2012128288A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP6026404B2 (en) * 2011-03-24 2016-11-16 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US11251428B2 (en) 2011-07-26 2022-02-15 Sumitomo Metal Mining Co., Ltd. Positive electrode active material manufacturing method with control of washing slurry liquid electrical conductivity
US10601038B2 (en) 2011-07-26 2020-03-24 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP2013026199A (en) * 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the same
WO2013015007A1 (en) * 2011-07-26 2013-01-31 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
US9315882B2 (en) 2011-10-24 2016-04-19 Lg Chem, Ltd. Method for preparing anode active material, anode active material prepared therefrom and lithium secondary battery having the same
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same
US11024845B2 (en) 2012-04-16 2021-06-01 Lg Chem, Ltd. Moisture-limited electrode active material, moisture-limited electrode and lithium secondary battery comprising the same
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
JPWO2013172133A1 (en) * 2012-05-14 2016-01-12 Necエナジーデバイス株式会社 Positive electrode for secondary battery, secondary battery, and manufacturing method thereof
WO2014189108A1 (en) * 2013-05-22 2014-11-27 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20210043720A (en) 2013-05-22 2021-04-21 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JPWO2014189108A1 (en) * 2013-05-22 2017-02-23 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US10056610B2 (en) 2013-05-22 2018-08-21 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20160010420A (en) 2013-05-22 2016-01-27 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10516164B2 (en) 2013-05-22 2019-12-24 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
US10050267B2 (en) 2013-07-17 2018-08-14 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for producing the positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material for non-aqueous electrolyte secondary battery
WO2015008582A1 (en) 2013-07-17 2015-01-22 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
US10347914B2 (en) 2013-07-17 2019-07-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for producing the positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material for non-aqueous electrolyte secondary battery
KR20160030878A (en) 2013-07-17 2016-03-21 스미토모 긴조쿠 고잔 가부시키가이샤 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
CN103400978A (en) * 2013-08-01 2013-11-20 奇瑞汽车股份有限公司 Method for modifying lithium nickel manganese oxide material, lithium nickel manganese oxide material and lithium ion battery
JP2015088343A (en) * 2013-10-31 2015-05-07 日亜化学工業株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
US10516159B2 (en) 2014-05-28 2019-12-24 Nichia Corporation Positive electrode active material for nonaqueous secondary battery
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
JP2016177901A (en) * 2015-03-18 2016-10-06 株式会社東芝 Positive electrode active material for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2019506703A (en) * 2016-01-15 2019-03-07 トダアメリカ・インク Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2022003648A (en) * 2016-01-15 2022-01-11 トダアメリカ・インク Lithium nickelate positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US11552292B2 (en) 2016-01-15 2023-01-10 Toda Kogyo Corp. Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP7427156B2 (en) 2016-01-15 2024-02-05 戸田工業株式会社 Lithium nickelate-based positive electrode active material particles and method for producing the same, and non-aqueous electrolyte secondary battery
US10361423B2 (en) 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
US10541413B2 (en) * 2016-04-11 2020-01-21 Tesla, Inc. Drying procedure in manufacturing process for cathode material
CN108883944A (en) * 2016-04-11 2018-11-23 特斯拉公司 For the drying program in the manufacturing process of cathode material
US20170294652A1 (en) * 2016-04-11 2017-10-12 Tesla Motors, Inc. Drying procedure in manufacturing process for cathode material
CN108883944B (en) * 2016-04-11 2021-11-19 特斯拉公司 Drying procedure for use in the manufacturing process of cathode materials
WO2017180425A1 (en) * 2016-04-11 2017-10-19 Tesla, Inc. Drying procedure in manufacturing process for cathode material
JP2016178089A (en) * 2016-05-16 2016-10-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP6113902B1 (en) * 2016-10-31 2017-04-12 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2018073654A (en) * 2016-10-31 2018-05-10 Basf戸田バッテリーマテリアルズ合同会社 Nonaqueous electrolyte secondary battery cathode active material production method and nonaqueous electrolyte secondary battery production method
JP2018106892A (en) * 2016-12-26 2018-07-05 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11532814B2 (en) 2016-12-26 2022-12-20 Sumitomo Chemical Company, Limited Lithium nickel cobalt composite oxide positive active material, positive electrode, and lithium secondary battery using the same
WO2018123817A1 (en) * 2016-12-26 2018-07-05 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN110192297A (en) * 2016-12-26 2019-08-30 住友化学株式会社 Positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR20180079478A (en) * 2016-12-30 2018-07-11 일진머티리얼즈 주식회사 Lithium composite oxide, manufacturing method thereof
JP2018073800A (en) * 2017-03-13 2018-05-10 Basf戸田バッテリーマテリアルズ合同会社 Nonaqueous electrolyte secondary battery cathode active material production method and nonaqueous electrolyte secondary battery production method
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US11848443B2 (en) 2017-03-24 2023-12-19 Umicore Lithium metal composite oxide powder with suppressed gas generation
WO2018172272A1 (en) 2017-03-24 2018-09-27 Umicore Lithium metal composite oxide powder with suppressed gas generation
KR20200021445A (en) 2017-06-28 2020-02-28 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary batteries, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery
US11424448B2 (en) 2017-06-28 2022-08-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US11777090B2 (en) 2017-06-28 2023-10-03 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2019099410A (en) * 2017-11-30 2019-06-24 住友化学株式会社 Lithium-containing transition metal composite oxide, cathode active material for lithium secondary battery, cathode for lithium secondary battery lithium secondary battery, and manufacturing method of lithium-containing transition metal composite oxide
US11855247B2 (en) 2017-11-30 2023-12-26 Sumitomo Chemical Company, Limited Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium-containing transition metal composite oxide
JP6426820B1 (en) * 2017-11-30 2018-11-21 住友化学株式会社 Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium-containing transition metal composite oxide
JP2019003955A (en) * 2018-09-27 2019-01-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN109713228B (en) * 2019-01-04 2021-07-23 南通瑞翔新材料有限公司 Recyclable washing alkali reduction method for ternary material of lithium ion battery
CN109713228A (en) * 2019-01-04 2019-05-03 南通瑞翔新材料有限公司 A kind of washing drop alkali method that lithium ion battery ternary material is recyclable
JP2020173968A (en) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery
JP7336648B2 (en) 2019-04-10 2023-09-01 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium ion secondary battery
CN114243006A (en) * 2021-12-20 2022-03-25 上海华谊新材料有限公司 Lithium iron manganese phosphate positive electrode material, preparation method thereof and soft package lithium battery

Similar Documents

Publication Publication Date Title
JP2003017054A (en) Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
EP4220754A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
KR101546251B1 (en) Electrolyte for electrochemical device and the electrochemical device thereof
KR101802342B1 (en) Organic electrolytic solution and lithium battery employing the same
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001338681A (en) Nonaqueous electrolyte and secondary cell using the same
WO2010082261A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20090092104A (en) Electrode comprising niobium oxide and lithium battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
JP2005285491A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4429411B2 (en) Method for producing carbon material for lithium ion secondary battery
KR20040081043A (en) Lithium Battery
JP4354723B2 (en) Method for producing graphite particles
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2002270230A (en) Battery
JP5167566B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP2004273186A (en) Lithium battery
JP2002198036A (en) Negative electrode, nonaqueous electrolyte cell and their manufacturing method
WO2002073731A1 (en) Battery
JP2004363076A (en) Battery
CN112820940B (en) Non-aqueous electrolyte containing 2-fluoro-3-pyridineboronic acid, and lithium metal battery containing same
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902