JP2005285492A - Nonaqueous electrolyte solution and lithium secondary battery using it - Google Patents

Nonaqueous electrolyte solution and lithium secondary battery using it Download PDF

Info

Publication number
JP2005285492A
JP2005285492A JP2004096475A JP2004096475A JP2005285492A JP 2005285492 A JP2005285492 A JP 2005285492A JP 2004096475 A JP2004096475 A JP 2004096475A JP 2004096475 A JP2004096475 A JP 2004096475A JP 2005285492 A JP2005285492 A JP 2005285492A
Authority
JP
Japan
Prior art keywords
carbonate
lithium
battery
group
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096475A
Other languages
Japanese (ja)
Inventor
Shoichi Tsujioka
辻岡  章一
Yoshitaka Kurihara
由貴 栗原
Shigeo Takeuchi
重雄 竹内
Kazunari Takeda
一成 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Central Glass Co Ltd
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Tomiyama Pure Chemical Industries Ltd filed Critical Central Glass Co Ltd
Priority to JP2004096475A priority Critical patent/JP2005285492A/en
Publication of JP2005285492A publication Critical patent/JP2005285492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonaqueous electrolyte solution for a secondary battery with excellent cycle characteristics, high-temperature preservation characteristics and gas generation restraint as well as a nonaqueous electrolyte solution battery with improved cycle characteristics, high-temperature preservation characteristics or the like. <P>SOLUTION: The nonaqueous electrolyte solution battery is structured by using nonaqueous electrolyte solution with cyclic carbonic acid ester, chained carbonic acid ester, carboxylic acid ester, cyclic carbonic acid ester having unsaturated bond, and lithium salt, prepared with a certain range of volume of addition of ionic metal complex expressed in formula (I). Here in formula (I), M denotes transition metal, metal of III, IV, and V groups of the periodic table, m denotes 1 to 4, n denotes 0 to 8, q is either 0 or 1, R<SP>1</SP>denotes C<SB>1</SB>to C<SB>10</SB>alkylene, C<SB>4</SB>to C<SB>20</SB>arylene or the like, R<SP>2</SP>denotes halogen, C<SB>1</SB>to C<SB>10</SB>alkyl group, and X<SP>1</SP>, X<SP>2</SP>denote O, S or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池用の非水系電解液の改良技術に関する、およびそれを用いたリチウム二次電池に関する。さらに詳しくは、環状カルボン酸エステル、および不飽和結合を有する環状炭酸エステルを含む非水溶媒、該非水溶媒に溶解されるリチウム塩、およびイオン性金属錯体を含む非水系電解液、並びにそれを用いたリチウム二次電池に関する。   The present invention relates to a technique for improving a non-aqueous electrolyte for a lithium secondary battery, and to a lithium secondary battery using the same. More specifically, a non-aqueous solvent containing a cyclic carboxylic acid ester and a cyclic carbonate having an unsaturated bond, a lithium salt dissolved in the non-aqueous solvent, and a non-aqueous electrolyte solution containing an ionic metal complex, and use thereof The present invention relates to a lithium secondary battery.

近年、携帯電話あるいはノートパソコンなどに代表される携帯用電子端末等の種々小型携帯電子機器の普及にともない、それらの電源として二次電池は重要な役割を果たしている。一般用途の二次電池としては、鉛蓄電池、ニッケル・カドミウム電池等の水溶液系電池、非水電解液電池が挙げられるが、中でも、リチウム等を吸蔵、放出できる正極および負極と非水電解液とからなる非水電解液二次電池は、高電圧で高エネルギー密度を有し、安全性に優れ、環境問題などの点で、他の二次電池と比較して様々な利点を有しており、さらなる特性の向上を図るべく活発に研究開発が進められている。   In recent years, with the spread of various small portable electronic devices such as portable electronic terminals typified by mobile phones or notebook personal computers, secondary batteries play an important role as their power source. Secondary batteries for general use include lead-acid batteries, aqueous batteries such as nickel / cadmium batteries, and non-aqueous electrolyte batteries. Among them, positive and negative electrodes capable of occluding and releasing lithium, and non-aqueous electrolytes Non-aqueous electrolyte secondary battery consisting of has various advantages compared to other secondary batteries in terms of high voltage, high energy density, excellent safety, environmental issues, etc. Therefore, research and development are being actively promoted to further improve the characteristics.

現在実用化されている非水電解液二次電池としては、例えば、正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質としてリチウムをドープ・脱ドープ可能な材料を用いている。このような負極活物質のうち、現在実用化されている電池の中で、優れたサイクル特性を有する材料としては、炭素材料が挙げられる。炭素材料の中でも、黒鉛材料は単位体積あたりのエネルギー密度を向上できる材料として期待されている。   As non-aqueous electrolyte secondary batteries currently in practical use, for example, a composite oxide of lithium and a transition metal is used as a positive electrode active material, and a material capable of doping and dedoping lithium is used as a negative electrode active material. Yes. Among such negative electrode active materials, among materials that are currently in practical use, examples of materials having excellent cycle characteristics include carbon materials. Among carbon materials, graphite materials are expected as materials that can improve the energy density per unit volume.

また、非水電解液電池の特性向上のため、負極/正極の特性のみならず、リチウムイオンの移送を担う非水電解液の特性の向上が求められている。現状の非水電解液二次電池の非水電解液としては、非プロトン性有機溶媒に、LiBF、LiPF、LiClO、LiN(SOCF)やLiN(SOCFCF)などのリチウム塩を混合した非水溶液が用いられている(非特許文献1)。その非プロトン性有機溶媒の代表として、カーボネート類が知られており、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの各種カーボネート化合物の使用が提案されている(特許文献1、特許文献2)。 Further, in order to improve the characteristics of the non-aqueous electrolyte battery, not only the characteristics of the negative electrode / positive electrode but also the characteristics of the non-aqueous electrolyte responsible for transferring lithium ions are required. As a non-aqueous electrolyte of the current non-aqueous electrolyte secondary battery, LiBF 4 , LiPF 6 , LiClO 4 , LiN (SO 2 CF 3 ) 2 or LiN (SO 2 CF 2 CF 3 ) are used in an aprotic organic solvent. ) A non-aqueous solution in which a lithium salt such as 2 is mixed is used (Non-Patent Document 1). Carbonates are known as representatives of such aprotic organic solvents, and the use of various carbonate compounds such as ethylene carbonate, propylene carbonate, and dimethyl carbonate has been proposed (Patent Documents 1 and 2).

すなわち、現状ではエチレンカーボネートやプロピレンカーボネートなどの高誘電率を有する環状炭酸エステルと、ジエチルカ−ボネ−ト、メチルエチルカ−ボネ−トやジメチルカ−ボネ−トなどの低粘度の鎖状炭酸エステル溶媒との混合溶媒に、上記のリチウム塩を混合した溶液が用いられている。   That is, at present, a cyclic carbonate having a high dielectric constant such as ethylene carbonate and propylene carbonate and a low-viscosity chain carbonate solvent such as diethyl carbonate, methyl ethyl carbonate and dimethyl carbonate. A solution obtained by mixing the above lithium salt in a mixed solvent is used.

特に非水溶媒に前記LiBF、LiPFが溶解された非水電解液は、リチウムイオンの移送を表す導電率が高く、かつLiBF、LiPFの酸化分解電圧が高いために高電圧において安定であることが知られており、上述の非水電解液二次電池の有する高電圧、高エネルギー密度という特徴を引き出すことに寄与している。 In particular, a non-aqueous electrolyte in which LiBF 4 and LiPF 6 are dissolved in a non-aqueous solvent has a high conductivity indicating the transfer of lithium ions and a high oxidative decomposition voltage of LiBF 4 and LiPF 6 , so that it is stable at a high voltage. It contributes to drawing out the characteristics of the high voltage and high energy density of the non-aqueous electrolyte secondary battery described above.

しかしながら、非水電解液およびそれを用いた非水電解液電池における従来の技術では、
1) 上記リチウム塩に関しての問題
2) 上記非プロトン性有機溶媒(非水溶媒)に関しての問題
が、サイクル特性、高温保存特性を有する非水電解液およびそれを用いた非水電解液電池を提供する妨げとなっている状況にあった。
However, in the conventional technique in the nonaqueous electrolyte and the nonaqueous electrolyte battery using the nonaqueous electrolyte,
1) Problems with the above lithium salt
2) Problems related to the aprotic organic solvent (non-aqueous solvent) have hindered the provision of a non-aqueous electrolyte having cycle characteristics and high-temperature storage characteristics and a non-aqueous electrolyte battery using the same. there were.

まず、1) 上記リチウム塩に関しての問題は、以下の通りである。
すなわち、LiBF、LiPFを溶解した前記非水溶媒からなる非水電解液は、これらの電解質の熱安定性が劣るため、60℃以上の高温環境下において前記リチウム塩が分解してフッ化水素(HF)が発生するという問題がある。このフッ化水素は前記負極の前記炭素質物を分解するため、前記非水電解液を備えた二次電池は高温環境下において内部抵抗が増大し、充放電サイクル寿命等の電池性能が大幅に低下するという問題点があった。特に、LiPFは最も熱安定性が劣るため、LiPFを含む電解液を備えた非水電解液二次電池において前述した問題点が特に顕著に表れる傾向にあった。
First, 1) The problems regarding the lithium salt are as follows.
That is, the non-aqueous electrolyte composed of the non-aqueous solvent in which LiBF 4 and LiPF 6 are dissolved is inferior in thermal stability of these electrolytes. Therefore, the lithium salt is decomposed in a high temperature environment of 60 ° C. or higher, and fluorinated. There is a problem that hydrogen (HF) is generated. Since this hydrogen fluoride decomposes the carbonaceous material of the negative electrode, the secondary battery equipped with the non-aqueous electrolyte has increased internal resistance under a high temperature environment, and battery performance such as charge / discharge cycle life is greatly reduced. There was a problem of doing. In particular, since LiPF 6 has the lowest thermal stability, the above-described problems tend to be particularly prominent in the non-aqueous electrolyte secondary battery including an electrolyte containing LiPF 6 .

そこで、同問題点を解決するために、新規のリチウム塩を開発が鋭意検討されている。その代表例として、リチウムビス(トリフルオロメタンスルホニル)イミドやリチウムビス(トリフルオロメタンスルホニル)メチドなどが提案されている(特許文献3)。しかしながら、これらのリチウム塩も、LiPFに匹敵する導電率を有しないことと、電池中に使用されるアルミニウム集電体に対して腐食性があるなどの問題があり、LiPFの代替にはなりえていないのが現状である。 Therefore, in order to solve the problem, development of a new lithium salt has been intensively studied. As typical examples, lithium bis (trifluoromethanesulfonyl) imide and lithium bis (trifluoromethanesulfonyl) methide have been proposed (Patent Document 3). However, even these lithium salts, and to have no electrical conductivity comparable to LiPF 6, there are problems such as it is corrosive to aluminum current collectors used in batteries, the alternative LiPF 6 The current situation is not.

そこで従来の技術の欠点を鑑み、例えば、特開平07−65843号公報(特許文献4)には、貯蔵安定性の優れた有機電解液電池を提供するために、有機電解液の電解質として、リチウムボロンジサリチレート〔LiB(−O−C(=O)−C−O−)〕のようなホウ素系アルカリ金属塩を用いることが記載されている。また、特表2002−519352号公報(特許文献5)には電気化学的に安定な新規のリチウム塩としてリチウムビス(オキサレート)ボレート Li[C]B] に代表される、ホウ素含有アルカリ金属塩が提案されている。 Therefore, in view of the drawbacks of the conventional technology, for example, in Japanese Patent Application Laid-Open No. 07-65843 (Patent Document 4), in order to provide an organic electrolyte battery having excellent storage stability, lithium as an electrolyte of the organic electrolyte is used. The use of boron-based alkali metal salts such as boron disalicylate [LiB (—O—C (═O) —C 6 H 4 —O—) 2 ] is described. In addition, Japanese Patent Publication No. 2002-519352 (Patent Document 5) discloses a boron-containing typified by lithium bis (oxalate) borate Li [C 2 O 4 ] 2 B] as a new electrochemically stable lithium salt. Alkali metal salts have been proposed.

特に、後者のリチウムビス(オキサレート)ボレートに関しては、例えば、グラファイト負極を用いた場合、リチウムビス(オキサレート)ボレートを電解質とすることによりプロピレンカーボネートを用いた電解液でも使用可能であることや、グラファイト負極表面上でリチウムビス(オキサレート)ボレートがグラファイト負極/電解液界面にて安定な被膜(カーボネート構造を有したホウ素含有化合物からなる被膜)を形成することなどが示されている(非特許文献2、非特許文献3)。   In particular, regarding the latter lithium bis (oxalate) borate, for example, when a graphite negative electrode is used, an electrolyte using propylene carbonate can be used by using lithium bis (oxalate) borate as an electrolyte. It has been shown that lithium bis (oxalate) borate forms a stable film (a film made of a boron-containing compound having a carbonate structure) at the graphite negative electrode / electrolyte interface on the negative electrode surface (Non-patent Document 2). Non-Patent Document 3).

しかしながら、リチウムビス(オキサレート)ボレートを電解質として用いることに関しては、例えば、本発明者らの検討によると、単独の溶質では、従来から使用されているLiBF、LiPFと比較して、リチウムイオンの移送を表す導電率が幅広い温度範囲にて確保できない状況にあった。また同特性を改善するために、リチウムビス(オキサレート)ボレートの溶解量を増加させることによって改善を図る検討も実施したが、その場合、溶解する非水溶媒として一般的に使用される鎖状カーボネートには溶解しにくいなどの制約があることがわかった。 However, regarding the use of lithium bis (oxalate) borate as an electrolyte, for example, according to the study by the present inventors, a single solute has a lithium ion as compared with LiBF 4 and LiPF 6 conventionally used. It was in a situation where the conductivity representing the transfer of the water could not be secured in a wide temperature range. In addition, in order to improve the same characteristics, an investigation was made to improve by increasing the amount of lithium bis (oxalate) borate dissolved, but in this case, a chain carbonate generally used as a nonaqueous solvent to be dissolved It was found that there are restrictions such as being difficult to dissolve.

次に、2) 上記非プロトン性有機溶媒(非水溶媒)に関しての問題は、以下の通りである。
すなわち、非水電解液電池において、良好な電池特性を得るためには、リチウムイオンの移送を担う非水電解液の特性も重要である。この非水電解液を構成する非水溶媒としては、通常、電解質の溶解性の高い高誘電率溶媒と低粘性溶媒とを組み合わせた混合溶媒が用いられている。高誘電率溶媒は粘度が高く、イオン移送が非常に遅いため、その粘度を下げてイオンの移送能力を高める必要があり、低粘性溶媒を高誘電率溶媒と併用する形を採用している。上記に示した通り、高誘電率溶媒であるエチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステルと低粘性溶媒であるジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状炭酸エステルとの混合溶媒からなる電解液は、高い導電率が得られるため、通常汎用されている。しかし、エチレンカーボネートは、凝固点が38℃付近と高いため、これを単独で用いると、溶質との混合による凝固点降下を見込んでも0℃程度までしか凝固点が下がらない。そのため、上記のようにエチレンカーボネートを低粘性でかつ低凝固点の溶媒と混合することにより、低温特性を確保しなければならない。
Next, 2) The problems concerning the aprotic organic solvent (nonaqueous solvent) are as follows.
That is, in the non-aqueous electrolyte battery, in order to obtain good battery characteristics, the characteristics of the non-aqueous electrolyte responsible for transferring lithium ions are also important. As the non-aqueous solvent constituting the non-aqueous electrolyte, a mixed solvent combining a high dielectric constant solvent having a high electrolyte solubility and a low viscosity solvent is usually used. Since a high dielectric constant solvent has a high viscosity and ion transfer is very slow, it is necessary to lower its viscosity to increase the ion transfer capability, and a form in which a low viscosity solvent is used in combination with a high dielectric constant solvent is adopted. As shown above, electrolysis comprising a mixed solvent of a cyclic carbonate such as ethylene carbonate or propylene carbonate, which is a high dielectric constant solvent, and a chain carbonate such as dimethyl carbonate, diethyl carbonate or methyl ethyl carbonate, which is a low viscosity solvent. The liquid is generally used because of its high conductivity. However, since ethylene carbonate has a high freezing point of around 38 ° C., when it is used alone, the freezing point can be lowered only to about 0 ° C. even if the freezing point depression due to mixing with the solute is expected. Therefore, low temperature characteristics must be ensured by mixing ethylene carbonate with a solvent having a low viscosity and a low freezing point as described above.

また、上述のような非水電解液としてエチレンカーボネートのような環状炭酸エステルと、ジメチルカーボネートあるいはメチルエチルカーボネートといった鎖状炭酸エステルの混合溶媒を用いた場合、電極上で鎖状炭酸エステルによるエステル交換反応が起こり、その中間体として、メトキシ基、あるいはエトキシ基といったアルコキシドラジカルが生じる。特にメチルエチルカーボネートのような非対称な鎖状炭酸エステルのエステル交換反応は分析によっても明らかになりやすいという状況にあるが、ジメチルカーボネートのような対称な鎖状炭酸エステルはその構造上変化がないために、分析しても明らかとはなりにくいという形となっている。   In addition, when a mixed solvent of cyclic carbonate such as ethylene carbonate and chain carbonate such as dimethyl carbonate or methyl ethyl carbonate is used as the non-aqueous electrolyte as described above, transesterification with chain carbonate on the electrode Reaction occurs, and an alkoxide radical such as a methoxy group or an ethoxy group is generated as an intermediate. In particular, the transesterification reaction of an asymmetric chain carbonate such as methyl ethyl carbonate is easily revealed by analysis, but a symmetrical chain carbonate such as dimethyl carbonate has no structural change. In addition, it is difficult to clarify even if analyzed.

しかしながら、ジメチルカーボネート、ジエチルカーボネートのような対称な鎖状炭酸エステルにおいてもエステル交換は起こっているものと考えられ、このエステル交換により生じたこれらのラジカルは、強力な求核剤であるため、環状炭酸エステルである エチレンカーボネート、プロピレンカーボネートなどの開環・分解を促進し、ガス発生を生じせしめ、あるいは、正極活物質の金属を溶解し、結晶構造を破壊することにより、特性を低下させる。   However, transesterification is also considered to occur in symmetrical chain carbonates such as dimethyl carbonate and diethyl carbonate, and these radicals generated by this transesterification are strong nucleophiles, and therefore cyclic. It promotes ring-opening / decomposition of ethylene carbonate and propylene carbonate, which are carbonic acid esters, to generate gas, or dissolve the metal of the positive electrode active material to destroy the crystal structure, thereby reducing the characteristics.

さらに、LiPF の熱安定性は、他のリチウム塩と比較して最も劣るため、LiPFを含む電解液を備えた非水電解液電池においては、前述した問題点が特に顕著に表れる。その結果、初充電における充電効率が低下するため、電池容量が低下するという問題点があった。また、ガス発生によって液漏れや、膨れによる電池サイズの変動、サイクル寿命の低下等が生じる。 Furthermore, the thermal stability of LiPF 6 is the most inferior because as compared with other lithium salts, in the non-aqueous electrolyte battery comprising an electrolytic solution containing LiPF 6, the above-mentioned problems appears particularly remarkably. As a result, there is a problem that the battery capacity is lowered because the charging efficiency in the initial charging is lowered. In addition, the gas generation causes liquid leakage, battery size fluctuation due to swelling, cycle life reduction, and the like.

以上のことから、従来の技術では、上述の通り、1) 上記リチウム塩に関しての問題、および2) 上記非プロトン性有機溶媒(非水溶媒)に関しての問題の全てを満足できる非水電解液は未だ得られておらず、非水電解液構成要素(非水溶媒、リチウム塩など)のそれぞれのマイナス面の効果を現れにくくする組み合わせ、および その処方が重要である。
特開平4−184872号公報 特開平10−27625号公報 特表平01−501822 号公報 特開平07−65843号公報 特表2002−519352号公報 Jean-Paul Gabano編、"Lithium Battery", ACADEMIC PRESS(1983) Electrochemical and Solid-State Letters, 6 (6) A117-A120 (2003) Electrochemical and Solid-State Letters, 6 (7) A144-A148 (2003)
From the above, in the prior art, as described above, a non-aqueous electrolyte solution that can satisfy all of 1) the problem with the lithium salt and 2) the problem with the aprotic organic solvent (non-aqueous solvent) is as follows. Combinations and formulations that make it difficult to show the negative effects of each non-aqueous electrolyte component (non-aqueous solvent, lithium salt, etc.) are important.
JP-A-4-184872 Japanese Patent Laid-Open No. 10-27625 JP-T-01-501822 Japanese Patent Application Laid-Open No. 07-65843 Special table 2002-519352 gazette Jean-Paul Gabano, "Lithium Battery", ACADEMIC PRESS (1983) Electrochemical and Solid-State Letters, 6 (6) A117-A120 (2003) Electrochemical and Solid-State Letters, 6 (7) A144-A148 (2003)

本発明者らは、かかる従来技術の問題点に鑑み、鋭意検討した結果、サイクル特性、高温保存特性に優れた非水電解液の提供を目的に、従来の系では全く見られない新規の組み合わせを見出し、本発明に到達したものである。また本発明は、その優れた非水電解液を含み、サイクル特性、高温保存特性などを高めた非水電解液電池の提供を目的にする。   As a result of intensive investigations in view of the problems of the prior art, the present inventors have found a novel combination that is not found at all in the conventional system for the purpose of providing a non-aqueous electrolyte excellent in cycle characteristics and high-temperature storage characteristics. And the present invention has been achieved. Another object of the present invention is to provide a non-aqueous electrolyte battery including the excellent non-aqueous electrolyte and having improved cycle characteristics, high-temperature storage characteristics, and the like.

すなわち本発明は、リチウムの吸蔵・放出が可能な正極および負極と組み合わせて使用する非水電解液電池用の非水電解液であって、(1)非水溶媒、(2)該非水溶媒に溶解されるリチウム塩、(3)一般式(I)で表されるイオン性金属錯体とを少なくとも含むことを特徴とする非水電解液で、
一般式(I):
That is, the present invention relates to a non-aqueous electrolyte for a non-aqueous electrolyte battery used in combination with a positive electrode and a negative electrode capable of occluding and releasing lithium, comprising (1) a non-aqueous solvent and (2) the non-aqueous solvent. A non-aqueous electrolyte characterized in that it contains at least a lithium salt to be dissolved and (3) an ionic metal complex represented by the general formula (I),
Formula (I):

ただし、Mは、遷移金属、周期律表の III族、IV族、またはV族元素、mは、1〜4、nは、0〜8、qは、0または1をそれぞれ表し、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、またm個存在するRはそれぞれが結合してもよい。)、R2は、ハロゲン、C〜C10のアルキル、C〜C10のハロゲン化アルキル、C〜C20のアリール、C〜C20のハロゲン化アリール、またはX(これらのアルキル及びアリールその構造中に置換基、ヘテロ原子を持ってもよく、またn個存在するRはそれぞれが結合して環を形成してもよい。)、X、X、Xは、O、S、またはNR、R、Rは、それぞれ独立で、水素、C〜C10のアルキル、C〜C10のハロゲン化アルキル、C〜C20のアリール、C〜C20のハロゲン化アリール(これらのアルキル及びアリールその構造中に置換基、ヘテロ原子を持ってもよく、また複数個存在するR、Rはそれぞれが結合して環を形成してもよい。)をそれぞれ表し、また該非水電解液は、該イオン性金属錯体を0.01〜2重量%の範囲で含有することを特徴とし、該リチウム塩が、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSOLiN(CFSO)(CSO)の群より選ばれる少なくとも1種のリチウム塩であり、さらには該非水溶媒が、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルおよび不飽和を有する環状炭酸エステルとを含み、該環状カルボン酸エステルが0.1〜5重量%、該不飽和を有する環状炭酸エステルが0.1〜5重量%含まれる非水溶媒であり、該環状カルボン酸エステルが、γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトンの群より選ばれる少なくとも1種の環状カルボン酸エステルであり、また該不飽和を有する環状炭酸エステルが、一般式(II)で表されるビニレンカーボネート誘導体、 Where M is a transition metal, group III, group IV or group V element of the periodic table, m is 1 to 4, n is 0 to 8, q is 0 or 1, and R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 4 -C 20 arylene, or C 4 -C 20 halogenated arylene (these alkylenes and arylenes are substituents in the structure) And R 1 may be bonded to each other.), R 2 is halogen, C 1 -C 10 alkyl, C 1 -C 10 halogenated alkyl , C 4 -C 20 aryl, C 4 -C 20 aryl halide, or X 3 R 3 (these alkyls and aryls may have substituents, heteroatoms in their structure, and there are n Each R 2 is X 1 , X 2 , and X 3 are O, S, or NR 4 , R 3 , and R 4 are each independently hydrogen, C 1 to C 10 Alkyl, C 1 -C 10 halogenated alkyl, C 4 -C 20 aryl, C 4 -C 20 aryl halide (these alkyls and aryls may have substituents, heteroatoms in their structure, A plurality of R 3 and R 4 may be bonded to each other to form a ring), and the non-aqueous electrolyte contains 0.01 to 2% by weight of the ionic metal complex. The lithium salt contains LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2) (C 2 F 5 SO 2) , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), and at least one lithium salt selected from the group consisting of LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), and the non-aqueous solvent is a cyclic carbonate, a chain carbonate, or a cyclic carboxylate And a non-aqueous solvent containing 0.1 to 5% by weight of the cyclic carboxylic acid ester and 0.1 to 5% by weight of the cyclic carbonate having unsaturation. The cyclic carboxylic acid ester is at least one cyclic carboxylic acid ester selected from the group of γ-butyrolactone, γ-valerolactone, γ-caprolactone, and ε-caprolactone, and the cyclic carbonate having unsaturation is A vinylene carbonate derivative represented by the general formula (II),

[一般式(II)において、RおよびRは、水素原子、ハロゲン原子または炭素数が1〜12のハロゲン原子を含んでいてもよいアルキル基を表し、また、RおよびRは、互いに同一の場合でもよく、あるいは互いに異なっていてもよいものとする。]、
または一般式(III)で示されるアルケニルエチレンカ−ボネ−ト類
[In General Formula (II), R 5 and R 6 represent a hydrogen atom, a halogen atom or an alkyl group which may contain a halogen atom having 1 to 12 carbon atoms, and R 5 and R 6 are The same case may be used, or they may be different from each other. ],
Or alkenylethylene carbonates represented by the general formula (III)

[一般式(III)において、R〜R10は、水素原子、ハロゲン原子、炭素数が1〜12のハロゲン原子を含んでいてもよい炭化水素基、または炭素数が2〜12のアルケニル基であって、その内少なくとも一つは炭素数が2〜12のアルケニル基である。また、R〜R10は、互いに同一の場合でもよく、あるいは互いに異なっていてもよい。]、
であることを特徴とする非水電解液を提供するものである。
[In General Formula (III), R 7 to R 10 are each a hydrogen atom, a halogen atom, a hydrocarbon group which may contain a halogen atom having 1 to 12 carbon atoms, or an alkenyl group having 2 to 12 carbon atoms. And at least one of them is an alkenyl group having 2 to 12 carbon atoms. R 7 to R 10 may be the same as or different from each other. ],
The present invention provides a non-aqueous electrolyte characterized by the above.

さらに本発明は、上記非水電解液と、リチウムの吸蔵・放出が可能な正極および負極を備えた非水電解液電池であって、該正極が、正極活物質として、リチウム遷移金属複合酸化物材料よりなり、該負極が、負極活物質として、(a) X線回折における格子面(002面)のd値が0.340nm以下の炭素質材料、および/または、(b) Sn、SiおよびAlから選ばれる1種以上の金属の酸化物、および/または(c) Sn、SiおよびAlから選ばれる1種以上の金属とリチウムとの合金を少なくとも含む負極活物質よりなることを特徴とするリチウム二次電池を提供するものである。   Furthermore, the present invention is a non-aqueous electrolyte battery comprising the above non-aqueous electrolyte and a positive and negative electrodes capable of occluding and releasing lithium, wherein the positive electrode is a lithium transition metal composite oxide as a positive electrode active material. The negative electrode is made of a material, and the negative electrode is, as a negative electrode active material, (a) a carbonaceous material having a lattice plane (002 plane) d-value of 0.340 nm or less in X-ray diffraction, and / or (b) Sn, Si and It comprises an oxide of at least one metal selected from Al and / or (c) a negative electrode active material containing at least an alloy of at least one metal selected from Sn, Si and Al and lithium. A lithium secondary battery is provided.

上記電池特性を改善できる理由は、以下によるものと推測される。即ち、上記イオン性金属錯体は、非水電解液と負極との界面において分解し、より抵抗の低い反応被膜層を形成する。これにより電池の内部抵抗を下げ、サイクル特性の向上に寄与できるものと考えられる。この効果は、不飽和結合を有する環状炭酸エステルである、一般式(II)で表されるビニレンカーボネート誘導体や一般式(III)で表されるアルケニルエチレンカーボネート誘導体が含有されることによって、さらに良好となる。これは、イオン性金属錯体と不飽和結合を有する環状炭酸エステルがそれぞれ負極表面上で異なる分解電位を有し、段階的に良好な被膜を生成しているためと考えられる。   The reason why the battery characteristics can be improved is presumed to be as follows. That is, the ionic metal complex is decomposed at the interface between the non-aqueous electrolyte and the negative electrode to form a reaction coating layer having a lower resistance. This is considered to reduce the internal resistance of the battery and contribute to the improvement of cycle characteristics. This effect is further improved by containing a vinylene carbonate derivative represented by the general formula (II) and an alkenyl ethylene carbonate derivative represented by the general formula (III), which are cyclic carbonates having an unsaturated bond. It becomes. This is presumably because the ionic metal complex and the cyclic carbonate having an unsaturated bond have different decomposition potentials on the surface of the negative electrode, respectively, and a good film is formed stepwise.

また、一般式(I)で示されるイオン性金属錯体の場合、上述のリチウムビス(オキサレート)ボレートなどのように、非水溶媒として一般的に使用される鎖状カーボネートに溶解しにくいなどの制約がなく、種々の非水溶媒に対して非常に良好な溶解性を示すため、上記イオン性金属錯体を含有することによって、リチウムイオンの移送を表す導電率が幅広い温度範囲にて確保できないという問題も生じない。   Moreover, in the case of the ionic metal complex represented by the general formula (I), restrictions such as difficulty in dissolving in a chain carbonate generally used as a non-aqueous solvent such as the above-described lithium bis (oxalate) borate In order to show very good solubility in various non-aqueous solvents, there is a problem that the conductivity representing the transfer of lithium ions cannot be secured in a wide temperature range by containing the ionic metal complex. Does not occur.

本発明により、サイクル特性、高温保存特性、ガス発生抑制に優れた二次電池用非水電解液として、非常に好適な非水電解液が提供される。すなわち、本発明に示す通り、従来の系では全く見られない新規の組み合わせの非水電解液を使用することにより、初期容量が向上し、非水電解液が高温下での安定性を有するため、高温保存特性も良好となるだけでなく、電池内部でのガス発生が抑制可能な非水電解液電池が提供できる。加えて充放電サイクルを繰り返しても 前記の初期容量を維持することができ、良好なサイクル特性を有する非水電解液電池が提供できる。   According to the present invention, a very suitable non-aqueous electrolyte is provided as a non-aqueous electrolyte for a secondary battery excellent in cycle characteristics, high-temperature storage characteristics, and gas generation suppression. That is, as shown in the present invention, the use of a novel combination of non-aqueous electrolytes that cannot be seen in the conventional system improves the initial capacity, and the non-aqueous electrolyte has stability at high temperatures. Moreover, not only the high-temperature storage characteristics are improved, but also a non-aqueous electrolyte battery capable of suppressing gas generation inside the battery can be provided. In addition, even if the charge / discharge cycle is repeated, the initial capacity can be maintained, and a nonaqueous electrolyte battery having good cycle characteristics can be provided.

本発明に係る非水電解液およびこの非水電解液を用いた非水電解液電池について詳細に説明する。 The nonaqueous electrolyte solution according to the present invention and a nonaqueous electrolyte battery using the nonaqueous electrolyte solution will be described in detail.

非水溶媒
本発明において使用する非水溶媒としては、以下に示す環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、および不飽和結合を有する環状炭酸エステルのほか、従来二次電池非水電解液において用いられているような各種の溶媒を使用することができ、これらは2種以上を混合して用いてもよい。また、特に本発明の非水電解液は、非水溶媒として、プロピレンカーボネート、エチレンカーボネートのいずれか1つを必ず含むとともに、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのいずれか1つを必ず含むことが好ましい。
Nonaqueous solvent The nonaqueous solvent used in the present invention includes the following cyclic carbonate ester, chain carbonate ester, cyclic carboxylate ester, and cyclic carbonate ester having an unsaturated bond, as well as conventional secondary battery nonaqueous electrolysis. Various solvents such as those used in the liquid can be used, and these may be used in combination of two or more. In particular, the non-aqueous electrolyte of the present invention always contains any one of propylene carbonate and ethylene carbonate as a non-aqueous solvent, and always contains any one of dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. Is preferred.

環状炭酸エステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、等が挙げられる。この中で、エチレンカーボネート、プロピレンカーボネートがより好ましいが、特に限定されるものではない。またこれら環状炭酸エステルは2種類以上混合しても良い。   Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Among these, ethylene carbonate and propylene carbonate are more preferable, but not particularly limited. Two or more of these cyclic carbonates may be mixed.

また、環状カルボン酸エステルとしては、総炭素数が3〜9のラクトン化合物が挙げられる。例えば具体的には、γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン等を挙げることができる。これらの中で、γ−ブチロラクトン、γ−バレロラクトンがより好ましいが、特に限定されるものではない。またこれら環状カルボン酸エステルは2種類以上混合しても良い。なお、該環状カルボン酸エステルは、0.1〜5重量%の範囲が好ましく、さらに好ましくは0.1〜3重量%の範囲であることが望ましい。0.1重量%未満では、4.2V満充電の状態で85℃以上の高温保存時でのガス発生の抑制、高温貯蔵特性などの改善効果、特にガス発生の抑制の改善効果が充分でなく、一方、5重量%を超えた場合では、サイクル特性が著しく低下する現象が見られ、特に、急速放電時の放電電圧低下、放電末期のカーブが寝てくる現象といった現象を引き起こし、結果として電圧平坦部が少なくなり、平均電圧を下げてしまう状況となるといった問題が生じるため、好ましくない。   Examples of the cyclic carboxylic acid ester include lactone compounds having 3 to 9 carbon atoms in total. Specific examples include γ-butyrolactone, γ-valerolactone, γ-caprolactone, ε-caprolactone, and the like. Among these, γ-butyrolactone and γ-valerolactone are more preferable, but not particularly limited. Two or more of these cyclic carboxylic acid esters may be mixed. The cyclic carboxylic acid ester is preferably in the range of 0.1 to 5% by weight, more preferably in the range of 0.1 to 3% by weight. If it is less than 0.1% by weight, the effect of suppressing gas generation during high-temperature storage at 85 ° C. or higher in a fully charged state of 4.2 V, the improvement effect of high-temperature storage characteristics, particularly the effect of suppressing gas generation is not sufficient. On the other hand, when the amount exceeds 5% by weight, a phenomenon in which the cycle characteristic is remarkably deteriorated is observed. In particular, a phenomenon in which the discharge voltage is lowered during rapid discharge and a curve at the end of discharge is caused to occur. This is not preferable because there is a problem that the flat portion is reduced and the average voltage is lowered.

鎖状炭酸エステルとしては、例えば、総炭素数が3〜9の鎖状カーボネートが挙げられる。具体的には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、ジ−n−ブチルカーボネート、ジ−t−ブチルカーボネート、n−ブチルイソブチルカーボネート、n−ブチル−t−ブチルカーボネート、イソブチル−t−ブチルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート、n−ブチル−n−プロピルカーボネート、イソブチル−n−プロピルカーボネート、t−ブチル−n−プロピルカーボネート、n−ブチルイソプロピルカーボネート、イソブチルイソプロピルカーボネート、t−ブチルイソプロピルカーボネート等を挙げることができる。これらの中で、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましいが、特に限定されるものではない。またこれら鎖状炭酸エステルは2種類以上混合しても良い。   Examples of the chain carbonate include chain carbonates having 3 to 9 carbon atoms. Specifically, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, di-n-butyl carbonate, di-t-butyl carbonate, n-butyl isobutyl carbonate , N-butyl-t-butyl carbonate, isobutyl-t-butyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, n-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate , N-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate, n-butyl-n-propyl carbonate, isobutyl-n Propyl carbonate, t- butyl -n- propyl carbonate, n- butyl isopropyl carbonate, isobutyl isopropyl carbonate, and t-butyl isopropyl carbonate. Among these, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable, but are not particularly limited. Two or more of these chain carbonates may be mixed.

不飽和結合を有する環状炭酸エステル
次に、不飽和結合を有する環状炭酸エステルとしては、一般式(II)で表されるビニレンカーボネート誘導体、一般式(III)で示されるアルケニルエチレンカ−ボネ−ト誘導体が挙げられる。
Cyclic carbonate having an unsaturated bond Next, the cyclic carbonate having an unsaturated bond includes a vinylene carbonate derivative represented by the general formula (II) and an alkenylethylene carbonate represented by the general formula (III). Derivatives.

ビニレンカーボネート誘導体の具体例として、以下の化合物を挙げられる。すなわち、ビニレンカーボネート、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどであるが、これらに限定されるものではない。 これらの化合物の中でも、ビニレンカーボネートが一番安価で、かつ効果的な化合物である。なお、上記ビニレンカーボネート誘導体に関しては、少なくとも1種であり、単独または、混合していることも可能である。   Specific examples of the vinylene carbonate derivative include the following compounds. That is, vinylene carbonate, fluorovinylene carbonate, methyl vinylene carbonate, fluoromethyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, butyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, dipropyl vinylene carbonate, etc. Is not to be done. Among these compounds, vinylene carbonate is the cheapest and most effective compound. In addition, regarding the said vinylene carbonate derivative, it is at least 1 sort, and it is also possible to be independent or to mix.

アルケニルエチレンカ−ボネ−ト誘導体としては、4−ビニルエチレンカーボネート、4−ビニル−4−メチルエチレンカーボネート、4−ビニル−4−エチルエチレンカーボネート、4−ビニル−4−n−プロピルエチレンカーボネート、4−ビニル−5−メチルエチレンカーボネート、4−ビニル−5−エチルエチレンカーボネート、4−ビニル−5−n−プロピルエチレンカーボネートなどが挙げられるが、これらに限定されるものではない。これらの化合物の中でも、4−ビニルエチレンカーボネートが一番安価で、かつ効果的な化合物である。なお、上記アルケニルエチレンカ−ボネ−ト誘導体に関しては、少なくとも1種であり、単独または、混合していることも可能である。   Examples of alkenyl ethylene carbonate derivatives include 4-vinyl ethylene carbonate, 4-vinyl-4-methyl ethylene carbonate, 4-vinyl-4-ethyl ethylene carbonate, 4-vinyl-4-n-propyl ethylene carbonate, 4 -Vinyl-5-methylethylene carbonate, 4-vinyl-5-ethylethylene carbonate, 4-vinyl-5-n-propylethylene carbonate and the like can be mentioned, but are not limited thereto. Among these compounds, 4-vinylethylene carbonate is the cheapest and most effective compound. The alkenylethylene carbonate derivative is at least one, and can be used alone or in combination.

本発明の上記不飽和結合を有する環状炭酸エステルを単独又は混合して非水電解液中に溶解する場合、それぞれの濃度は、0.1〜5重量%の範囲で、さらに好ましくは0.1〜3重量%であることが望ましい。0.1重量%未満では、初期特性や充放電特性などの改善効果、特にサイクル特性の改善効果が充分でなく、一方、5重量%を超えた場合では、初期充電時に発生するガスが多くなる現象や、4.2V満充電の状態で85℃以上の高温にすると、電池特性が大幅に低下し、また その高温時にて、電池内部にてガス発生により膨れが生じるといった問題がある。   When the cyclic carbonate having an unsaturated bond of the present invention is used alone or mixed and dissolved in the nonaqueous electrolytic solution, each concentration is in the range of 0.1 to 5% by weight, more preferably 0.1. Desirably, it is ˜3 wt%. If the amount is less than 0.1% by weight, the effect of improving the initial characteristics and charge / discharge characteristics, particularly the effect of improving the cycle characteristics is not sufficient. On the other hand, if the amount exceeds 5% by weight, more gas is generated during the initial charge. When the temperature is higher than 85 ° C. in a fully charged state of 4.2V, the battery characteristics are greatly deteriorated, and at the high temperature, there is a problem that gas is blown out inside the battery.

その他の各種溶媒として、例えば、総炭素数3〜9の鎖状エステルや、総炭素数3〜6の鎖状エーテル、およびベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼンを挙げることができるが、特のこれらに限定されるものではない。   Examples of other various solvents include, for example, chain esters having 3 to 9 carbon atoms, chain ethers having 3 to 6 carbon atoms, and benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane. , N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, sulfolane, dichloroethane, chlorobenzene, and nitrobenzene, but are not limited thereto.

総炭素数3〜9の鎖状エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチルを挙げることができる。これらの中で、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルが好ましいができるが、特のこれらに限定されるものではない。   Examples of the chain ester having 3 to 9 carbon atoms include methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-isopropyl, acetic acid-n-butyl, acetic acid isobutyl, acetic acid-t-butyl, methyl propionate, Mention may be made of ethyl propionate, propionate-n-propyl, propionate-isopropyl, propionate-n-butyl, propionate isobutyl, propionate-t-butyl. Among these, ethyl acetate, methyl propionate, and ethyl propionate can be preferable, but are not limited to these.

また、総炭素数3〜6の鎖状エーテル:ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等を挙げることができる。これらの中で、ジメトキシエタン、ジエトキシエタンがより好ましいができるが、特にこれらに限定されるものではない。   Moreover, a C3-C6 chain | strand-shaped ether: Dimethoxymethane, dimethoxyethane, diethoxymethane, diethoxyethane, ethoxymethoxymethane, ethoxymethoxyethane, etc. can be mentioned. Of these, dimethoxyethane and diethoxyethane are more preferable, but are not particularly limited thereto.

非水電解液の溶質(リチウム塩)
本発明で使用される非水電解液の溶質として、リチウム塩が用いられる。リチウム塩については、溶質として使用し得るものであれば特に限定はされない。その具体例として例えば、以下の通りである。
A)LiPF、LiAsF、LiBF等の無機フッ化物塩、LiClO、LiBrO、LiIO、等の過ハロゲン酸塩などの無機リチウム塩。
B)以下に示す有機リチウム塩が挙げられる。
LiCFSO等の有機スルホン酸塩、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)等のパーフルオロアルキルスルホン酸イミド塩、LiC(CFSO等のパーフルオロアルキルスルホン酸メチド塩、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(C、LiPF(C、LiPF(n−C、LiPF(n−C、LiPF(n−C、LiPF(iso−C、LiPF(iso−C、LiPF(iso−C、LiB(CF、LiBF(CF、LiBF(CF、LiBF(CF)、LiB(C、LiBF(C、LiBF(C、LiBF(C)、LiB(n−C、LiBF(n−C、LiBF(n−C、LiBF(n−C)、LiB(iso−C、LiBF(iso−C、LiBF(iso−C、LiBF(iso−C)等の一部のフッ素をパーフルオロアルキル基で置換した無機フッ化物塩フルオロホスフェート、パーフルオロアルキルの含フッ素有機リチウム塩が挙げられる。これらの中、LiPF、LiBF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)がより好ましいが、特に限定されるものではない。またこれらリチウム塩は2種類以上混合しても良い。
Nonaqueous electrolyte solute (lithium salt)
A lithium salt is used as a solute of the nonaqueous electrolytic solution used in the present invention. The lithium salt is not particularly limited as long as it can be used as a solute. Specific examples thereof are as follows.
A) LiPF 6, LiAsF 6, inorganic fluoride salts LiBF 4 or the like, LiClO 4, LiBrO 4, LiIO 4, inorganic lithium salts such as perhalogenates equal.
B) The organic lithium salt shown below is mentioned.
Organic sulfonates such as LiCF 3 SO 3 , perfluoro such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) Alkylsulfonic acid imide salts, perfluoroalkylsulfonic acid methide salts such as LiC (CF 3 SO 2 ) 3 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 2 ( C 2 F 5) 4, LiPF 3 (C 2 F 5) 3, LiPF (n-C 3 F 7) 5, LiPF 2 (n-C 3 F 7) 4, LiPF 3 (n-C 3 F 7) 3, LiPF (iso-C 3 F 7) 5, LiPF 2 (iso-C 3 F 7) 4, LiPF 3 (iso-C 3 F 7) 3, LiB (CF 3) 4, LiBF (CF 3 3, LiBF 2 (CF 3) 2, LiBF 3 (CF 3), LiB (C 2 F 5) 4, LiBF (C 2 F 5) 3, LiBF 2 (C 2 F 5) 2, LiBF 3 (C 2 F 5), LiB (n- C 3 F 7) 4, LiBF (n-C 3 F 7) 3, LiBF 2 (n-C 3 F 7) 2, LiBF 3 (n-C 3 F 7), LiB Some fluorine such as (iso-C 3 F 7 ) 4 , LiBF (iso-C 3 F 7 ) 3 , LiBF 2 (iso-C 3 F 7 ) 2 , LiBF 3 (iso-C 3 F 7 ) Examples thereof include inorganic fluoride salt fluorophosphate substituted with a perfluoroalkyl group and fluorine-containing organic lithium salt of perfluoroalkyl. Among these, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) is more preferable, but it is not particularly limited. Two or more of these lithium salts may be mixed.

なおこれらの溶質は2種類以上混合して用いても良い。非水電解液中の溶質のリチウム塩モル濃度は、0.5〜3モル/リットルであることが望ましい。この濃度が低すぎると、絶対的な濃度不足により非水電解液のイオン伝導率で不十分であり、濃度が濃すぎると、粘度上昇のため イオン伝導率が低下し、また低温での析出が起こりやすくなるなども問題も生じるため、非水電解液電池の性能が低下し好ましくない。   Two or more kinds of these solutes may be mixed and used. It is desirable that the lithium salt molar concentration of the solute in the nonaqueous electrolytic solution is 0.5 to 3 mol / liter. If this concentration is too low, the ionic conductivity of the non-aqueous electrolyte is insufficient due to an absolute lack of concentration. If the concentration is too high, the ionic conductivity decreases due to an increase in viscosity, and precipitation at low temperatures occurs. Since it is likely to occur and causes problems, the performance of the nonaqueous electrolyte battery is undesirably lowered.

イオン性金属錯体
本発明に用いられるイオン性金属錯体を単独又は混合して非水電解液中に溶解する場合、それぞれの濃度は、0.01〜2重量%の範囲で、さらに好ましくは0.05〜1重量%の範囲であることが望ましい。0.01重量%未満では、充放電特性などの改善効果、特にサイクル特性の改善効果が充分でなく、一方、2重量%を超えた場合では、4.2V満充電の状態で85℃以上の高温にすると、電池特性が大幅に低下し、また その高温時にて、電池内部にてガス発生により膨れが生じるといった問題がある。
Ionic metal complex When the ionic metal complex used in the present invention is singly or mixed and dissolved in the non-aqueous electrolyte, the concentration of each is in the range of 0.01 to 2% by weight, more preferably 0.8. The range of 05 to 1% by weight is desirable. If it is less than 0.01% by weight, the effect of improving the charge / discharge characteristics, particularly the effect of improving the cycle characteristics is not sufficient. On the other hand, if it exceeds 2% by weight, it is 85 ° C. or higher at 4.2V full charge. When the temperature is high, battery characteristics are greatly deteriorated, and at the high temperature, there is a problem that expansion occurs due to gas generation inside the battery.

また本発明に用いるイオン性金属錯体としては、例えば下記式(IV)、式(V)および式(VI)にて表されるものでなどが挙げられるが、これらに限定されるものではない。
式(IV):
Examples of the ionic metal complex used in the present invention include those represented by the following formula (IV), formula (V) and formula (VI), but are not limited thereto.
Formula (IV):

式(V): Formula (V):

式(VI): Formula (VI):

イオン性金属錯体に関しては、少なくとも1種であり、単独または、混合していることも可能である。本発明の非水電解液は、例えば、非水溶媒を撹拌しながら、その中に電解質としてリチウム化合物を添加して溶解させ、該イオン性金属錯体を添加して溶解させることにより製造することができる。 The ionic metal complex is at least one, and can be used alone or in combination. The non-aqueous electrolyte of the present invention can be produced, for example, by stirring a non-aqueous solvent and adding and dissolving a lithium compound as an electrolyte therein and adding and dissolving the ionic metal complex. it can.

なお、本発明に用いるイオン性金属錯体、不飽和結合を有する環状炭酸エステルを含有する非水電解液を用いる場合は、特に限定はしないが、必要によっては、乾燥雰囲気下にて 未封口状態の非水電解液電池を予備充電し、初期充電時にて発生するガスを電池内から除去することも可能である。同処方を実施することによって、より安定した品質の非水電解液電池を提供することが可能となり、かつ高温放置時の電池特性の低下を防ぐことが可能となる。   In addition, when using a non-aqueous electrolyte containing an ionic metal complex used in the present invention and a cyclic carbonate having an unsaturated bond, there is no particular limitation, but if necessary, in an unsealed state in a dry atmosphere It is also possible to precharge the non-aqueous electrolyte battery and remove the gas generated during the initial charge from the battery. By implementing this formulation, it becomes possible to provide a non-aqueous electrolyte battery with more stable quality, and to prevent deterioration of battery characteristics when left at high temperature.

負極を構成する負極活物質としては、リチウムイオンのド−プ・脱ド−プが可能な炭素材料、金属リチウム、リチウム含有合金、またはリチウムとの合金化が可能なシリコン、シリコン合金、スズ、スズ合金、リチウムイオンのド−プ・脱ド−プが可能な酸化スズ、酸化シリコン、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物、リチウムイオンのド−プ・脱ド−プが可能な遷移金属窒素化合物、あるいはこれらの混合物のいずれをも用いることができる。なお、負極は、銅製の箔やエキスパンドメタルなどの集電体上に、負極活物質が形成された構成が一般的である。負極活物質の集電体への接着性を向上させるために例えば、ポリフッ化ビニリデン系バインダー、およびラテックス系のバインダーなどを含有してもよく、導電助剤としてカーボンブラック、アモルファスウイスカーカーボンなどを加えて使用してもよい。   Examples of the negative electrode active material constituting the negative electrode include carbon materials capable of doping / de-doping lithium ions, metallic lithium, lithium-containing alloys, silicon capable of being alloyed with lithium, silicon alloys, tin, Tin alloy, tin oxide capable of doping / de-doping lithium ion, silicon oxide, transition metal oxide capable of doping / de-doping lithium ion, doping / desorption of lithium ion Any of the transition metal nitrogen compounds which can be doped, or a mixture thereof can be used. The negative electrode generally has a configuration in which a negative electrode active material is formed on a current collector such as a copper foil or expanded metal. In order to improve the adhesion of the negative electrode active material to the current collector, for example, it may contain a polyvinylidene fluoride binder, a latex binder, etc., and carbon black, amorphous whisker carbon, etc. are added as a conductive aid. May be used.

負極活物質を構成する炭素材料としては、例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられる。当該炭素材料は、黒鉛化したものでもよい。同炭素材料としては、特にX線回折法で測定した(002)面の面間隔(d002)が0.340nm以下の炭素材料が好ましく、真密度が1.70g/cm3以上である黒鉛またはそれに近い性質を有する高結晶性炭素材料が望ましい。このような炭素材料を使用すると、非水電解液電池のエネルギ−密度を高くすることができる。   As the carbon material constituting the negative electrode active material, for example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, organic polymer compound fired bodies (phenol resin, furan resin, etc.) are suitable. And carbonized by firing at a suitable temperature), carbon fiber, activated carbon and the like. The carbon material may be graphitized. The carbon material is preferably a carbon material having a (002) plane spacing (d002) of 0.340 nm or less measured by an X-ray diffraction method, and graphite having a true density of 1.70 g / cm 3 or more or close to it. A highly crystalline carbon material having properties is desirable. When such a carbon material is used, the energy density of the nonaqueous electrolyte battery can be increased.

さらに、同炭素材料中にホウ素を含有するものや、金、白金、銀、銅、Sn、Si等金属で被覆したもの、あるいは非晶質炭素で被覆したもの等を使用することができる。これらの炭素材料は、1種類を使用してもよいし、2種類以上を適宜組み合わせ混合使用してもよい。   Further, those containing boron in the same carbon material, those coated with a metal such as gold, platinum, silver, copper, Sn, Si, or those coated with amorphous carbon can be used. One type of these carbon materials may be used, or two or more types may be used in combination as appropriate.

また、リチウムとの合金化が可能なシリコン、シリコン合金、スズ、スズ合金、リチウムイオンのド−プ・脱ド−プが可能な酸化スズ、酸化シリコン、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物を用いた場合は、いずれも上述の炭素質材料よりも重量あたりの理論容量が高く、好適な材料である。   Also, silicon that can be alloyed with lithium, silicon alloy, tin, tin alloy, tin oxide that can be doped / dedoped with lithium ion, silicon oxide, and doped / dedoped lithium ion In the case of using a transition metal oxide that can be used, the theoretical capacity per weight is higher than that of the above-mentioned carbonaceous material, which is a suitable material.

一方、正極を構成する正極活物質は、充放電が可能な種々 の材料から形成することができ、例えば、 LiCoO、LiNiO、LiMn、LiMnOなどのLixMO(ここで、Mは1種以上の遷移金属であり、xは電池の充放電状態によって異なり、通常0.05≦x≦1.20である)で表される、リチウムと一種以上の遷移金属との複合酸化物(リチウム遷移金属複合酸化物)や、 FeS、TiS、V、MoO、MoSなどの遷移元素のカルコゲナイドあるいはポリアセチレン、ポリピロール等のポリマー等を使用することができるが、Liのドープおよび脱ドープが可能なリチウム遷移金属複合酸化物材料を用いることが最も好ましい。また正極は、アルミニウムやチタンやステンレス製の箔、エキスパンドメタルなどの集電体上に、正極活物質が形成された構成が一般的である。正極活物質の集電体への接着性を向上させるために、例えば、ポリフッ化ビニリデン系バインダー、およびラテックス系のバインダー、正極内の電子伝導性を向上させるためにカーボンブラック、アモルファスウィスカー、グラファイトなどを含有してもよい。 On the other hand, the positive electrode active material constituting the positive electrode can be formed from various materials that can be charged and discharged. For example, LixMO 2 such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 (where M Is one or more transition metals, and x is a composite oxide of lithium and one or more transition metals represented by: (Lithium transition metal composite oxide), chalcogenides of transition elements such as FeS 2 , TiS 2 , V 2 0 5 , MoO 3 , MoS 2 or polymers such as polyacetylene and polypyrrole can be used. Most preferably, a lithium transition metal composite oxide material that can be doped and dedoped is used. The positive electrode generally has a configuration in which a positive electrode active material is formed on a current collector such as aluminum, titanium, stainless steel foil, or expanded metal. In order to improve the adhesion of the positive electrode active material to the current collector, for example, polyvinylidene fluoride binder and latex binder, carbon black, amorphous whisker, graphite etc. to improve the electron conductivity in the positive electrode It may contain.

セパレ−タは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜が好ましく、例えば、微多孔性高分子フィルムなどの多孔性膜が使用される。微多孔性高分子フィルムとしては、特に、多孔性ポリオレフィンフィルムが好ましく、さらに具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムなどが好ましい。さらにセパレ−タとして、高分子電解質を使用することもできる。高分子電解質としては、例えばリチウム塩を溶解した高分子物質や、電解液で膨潤させた高分子物質なども使用できるが、これらに限定されるものではない。   The separator is preferably a membrane that electrically insulates the positive electrode from the negative electrode and is permeable to lithium ions. For example, a porous membrane such as a microporous polymer film is used. As the microporous polymer film, a porous polyolefin film is particularly preferable, and more specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film is preferable. Furthermore, a polymer electrolyte can also be used as a separator. As the polymer electrolyte, for example, a polymer material in which a lithium salt is dissolved, a polymer material swollen with an electrolytic solution, and the like can be used, but the polymer electrolyte is not limited thereto.

本発明の非水電解液は、高分子物質を膨潤させて高分子電解質を得る目的で使用してもよく、また、多孔性ポリオレフィンフィルムと高分子電解質を併用した形のセパレータに非水電解液をしみこませてもよい。   The non-aqueous electrolyte of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer substance, and the non-aqueous electrolyte is used in a separator in which a porous polyolefin film and a polymer electrolyte are used in combination. May be soaked.

本発明の非水電解液を使用した二次電池の形状については 特に限定されることはなく、円筒型、角型、アルミラミネート型、コイン型、ボタン型など種々の形状にすることができる。   The shape of the secondary battery using the non-aqueous electrolyte of the present invention is not particularly limited, and can be various shapes such as a cylindrical shape, a square shape, an aluminum laminate type, a coin shape, and a button shape.

以下に示す実施例により、本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1〜16
まず、基準非水電解液1として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(容量比1:2)に、リチウム塩としてLiPFを1mol/リットルの濃度にて含有、溶解させて調製した。次に この基準電解液1に、表1に記載した化合物を所定量添加し、種々の非水電解液を調製した。
Examples 1-16
First, as a reference non-aqueous electrolyte 1, a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (capacity ratio 1: 2), LiPF 6 as a lithium salt at a concentration of 1 mol / liter, Prepared by dissolving. Next, a predetermined amount of the compounds described in Table 1 was added to the reference electrolyte solution 1 to prepare various nonaqueous electrolyte solutions.

なお、表1に記載される化合物の中で、上述に示した式(IV)、式(V)、式(VI)以外の化合物に関しては、以下の略号にて示した。
GBL;γ−ブチロラクトン、 GVL;γ−バレロラクトン、
VC;ビニレンカーボネート、 VEC;4−ビニルエチレンカーボネート
In addition, among the compounds described in Table 1, the compounds other than the formula (IV), the formula (V), and the formula (VI) shown above are shown by the following abbreviations.
GBL: γ-butyrolactone, GVL; γ-valerolactone,
VC; vinylene carbonate, VEC; 4-vinylethylene carbonate

[負極の作製]
MCMB25−28(大阪ガスケミカル製)93重量部と結着剤のポリフッ化ビニリデン(PVDF)6重量部を混合し、溶剤のN−メチルピロリドンに分散させ、負極合剤スラリーを調製した。そして、この負極合剤スラリーを厚さ18μmの銅箔製の負極集電体に塗布し、乾燥させた後、圧縮成型し、これを直径18mmの円盤状に打ち抜いて、コイン状の負極を得た。この負極合剤の厚さは95μm、重量は直径18mmの円盤状で68mgであった。
[Preparation of negative electrode]
93 parts by weight of MCMB25-28 (manufactured by Osaka Gas Chemical) and 6 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed and dispersed in N-methylpyrrolidone as a solvent to prepare a negative electrode mixture slurry. Then, this negative electrode mixture slurry was applied to a negative electrode current collector made of copper foil having a thickness of 18 μm, dried, compression molded, and punched into a disk shape having a diameter of 18 mm to obtain a coin-shaped negative electrode. It was. The negative electrode mixture had a thickness of 95 μm and a weight of 68 mg in the form of a disk having a diameter of 18 mm.

[正極の作製]
LiCoO(日本化学工業製 C-5)94重量部と、導電剤としてアセチレンブラック3重量部と結着剤のポリフッ化ビニリデン3重量部を混合し、溶剤のN−メチルピロリドンに分散させ、LiCoO合剤スラリーを調製した。このLiCoO合剤スラリーを厚さ20μmのアルミ箔に塗布、乾燥させ、圧縮成型し、これを直径16.5mmにうちぬき、正極を作製した。このLiCoO合剤の厚さは105μm、重量は直径16.5mmの円で65mgであった。
[Preparation of positive electrode]
94 parts by weight of LiCoO 2 (Nippon Kagaku Kogyo C-5), 3 parts by weight of acetylene black as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder are mixed and dispersed in N-methylpyrrolidone as a solvent. Two mixture slurries were prepared. This LiCoO 2 mixture slurry was applied to an aluminum foil having a thickness of 20 μm, dried, compression molded, and punched out to a diameter of 16.5 mm to produce a positive electrode. The LiCoO 2 mixture had a thickness of 105 μm and a weight of 65 mg in a circle with a diameter of 16.5 mm.

[コイン型電池の作製]
直径18mmの負極、直径16.5mmの正極、厚さ25μm、直径18.5mmの微多孔性ポリエチレンフィルムからできたセパレータを、ステンレス製の2032サイズの電池缶内に、負極、セパレータ、正極の順序で積層、配置した。その後、負極、セパレータ、正極へ非水溶液1000μLを真空中にて注入した後、アルミニウム製の板(厚さ1.1mm、直径16.5mm)、およびバネを収納した。最後に、ポリプロピレン製のガスケットを介して、電池缶蓋を専用のコインセルかしめ機を用いて、かしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電池を作製した。
[Production of coin-type battery]
A separator made of a negative electrode having a diameter of 18 mm, a positive electrode having a diameter of 16.5 mm, a microporous polyethylene film having a thickness of 25 μm and a diameter of 18.5 mm is placed in a stainless steel 2032 size battery can in the order of the negative electrode, the separator and the positive electrode. Laminated and arranged. Thereafter, 1000 μL of a non-aqueous solution was injected into the negative electrode, separator, and positive electrode in a vacuum, and then an aluminum plate (thickness 1.1 mm, diameter 16.5 mm) and a spring were housed. Finally, the battery can lid is caulked with a special coin cell caulking machine through a polypropylene gasket, thereby maintaining the airtightness in the battery, and a coin-type battery having a diameter of 20 mm and a height of 3.2 mm. Was made.

[コイン型電池の充放電特性の測定条件]
上述の方法にて作製したコイン型電池を用いて、以下のように充放電特性を測定した。
a)1サイクル目の充電; 25℃にて、3.0Vまで0.6mAで充電し、つづいて1.2mAで4.2Vまで充電し、4.2Vから定電圧充電に移行し全体で6時間経過した時点で充電を終了した。
b)1サイクル目の放電; 上述の充電後、1.2mAで2.75Vまで放電した。
c) 2サイクル、3サイクルめ充電放電条件;1.2mAで4.2Vまで充電し、4.2Vから定電圧充電に移行し全体で6時間経過した時点で充電を終了した。その後、1.2mAで2.75Vまで放電した。この操作を2回
繰り返した。
[Measurement conditions for charge / discharge characteristics of coin-type battery]
Using the coin-type battery produced by the method described above, charge / discharge characteristics were measured as follows.
a) Charging in the first cycle: At 25 ° C., charging at 0.6 mA up to 3.0 V, followed by charging at 1.2 mA up to 4.2 V, then switching from 4.2 V to constant voltage charging, totaling 6 Charging was terminated when time passed.
b) First cycle discharge: After the above charge, the battery was discharged at 1.2 mA to 2.75V.
c) 2nd cycle and 3rd cycle charging / discharging conditions: Charging to 4.2 V at 1.2 mA, shifting from 4.2 V to constant voltage charging, and charging was terminated when 6 hours had elapsed in total. Then, it discharged to 2.75V at 1.2mA. This operation was repeated twice.

また、コイン型電池での高温保存後の特性に関しては、上述と同一充電条件にて、充電後 85℃24時間保存後、25℃にて放電を同一放電条件で放電して容量維持率を次式により算出した。
・容量維持率=(4サイクル目の放電容量/3サイクル目の放電容量)×100 (%)
更に、常温にて初期3サイクルと同一条件で1サイクル充放電して容量回復率を次式により算出した。
・容量回復率=(5サイクル目の放電容量/3サイクル目の放電容量)×100 (%)
In addition, regarding the characteristics of the coin-type battery after high-temperature storage, the storage capacity is maintained at 85 ° C. for 24 hours after charging under the same charging conditions as described above, and then discharged at 25 ° C. under the same discharging conditions. Calculated by the formula.
Capacity retention rate = (discharge capacity at the fourth cycle / discharge capacity at the third cycle) × 100 (%)
Further, charge / discharge was performed for 1 cycle under the same conditions as the initial 3 cycles at room temperature, and the capacity recovery rate was calculated by the following equation.
-Capacity recovery rate = (discharge capacity at the fifth cycle / discharge capacity at the third cycle) x 100 (%)

[ラミネート電池の作製]
上述のコイン型電池と同一の電極を使用し、寸法55mm×90mmの負極、寸法50mm×80mmの正極を切り出し、微多孔性ポリエチレンフィルムからできたセパレータを介して対向させて電極群とした。この電極群を、アルミニウムラミネートフィルム(住友電工製)で作製した筒状の袋に、正極、負極の両リード端子が片方の開放部から引き出されるように収容した。その後、まず、リード端子が引き出された側を熱融着して閉じた。次に、残った開口部を上にして、非水電解液1.2gを電極群に注入し含浸させた後、15mAの定電流にて、90min充電した。
[Production of laminated battery]
Using the same electrode as the coin-type battery described above, a negative electrode having a size of 55 mm × 90 mm and a positive electrode having a size of 50 mm × 80 mm were cut out and faced through a separator made of a microporous polyethylene film to form an electrode group. This electrode group was accommodated in a cylindrical bag made of an aluminum laminate film (manufactured by Sumitomo Electric) so that both the positive and negative lead terminals were drawn out from one open portion. Then, first, the side from which the lead terminal was pulled out was heat-sealed and closed. Next, with the remaining opening facing upward, 1.2 g of the nonaqueous electrolyte solution was injected and impregnated into the electrode group, and then charged for 90 minutes at a constant current of 15 mA.

その後、残った開口部を上にした状態で、さらに非水電解液0.3gを注入し、含浸させた後、同開口部を熱融着して電極群を袋中に密封し、ラミネート電池を得た。   Thereafter, with the remaining opening facing up, 0.3 g of non-aqueous electrolyte was further injected and impregnated, and then the opening was heat-sealed to seal the electrode group in a bag. Got.

上述の工程で作製したラミネート電池を、室温にて1週間放置した後、以下のように充放電特性を測定した。
a) 室温にて1週間放置後の充電(1サイクル目の充電); 同充電は、30mAで4.2Vまで充電し、4.2Vから定電圧充電に移行し全体で5時間経過した時点で充電を終了した。
b) 1サイクル目の放電; 上述の充電後、30mAで2.75Vまで放電した。
c) 2サイクルめ以降の充電;b)の放電終了後、同充電は、30mAで4.2Vまで充電し、4.2Vから定電圧充電に移行し全体で6時間経過した時点で充電を終了した。
d) 2サイクルめ以降の放電;
c)の充電後、30mAで2.75Vまで放電した。同じ方法により、2.75Vから4.2V間の充放電を3回繰り返した。
The laminate battery produced in the above process was allowed to stand for 1 week at room temperature, and the charge / discharge characteristics were measured as follows.
a) Charging after standing for one week at room temperature (charging in the first cycle); charging is performed at 30 mA up to 4.2 V, and after changing from 4.2 V to constant voltage charging for a total of 5 hours I finished charging.
b) First cycle discharge: After the above charge, the battery was discharged at 30 mA to 2.75 V.
c) Charging after the second cycle; after discharging in b), the charging is performed at 30mA up to 4.2V, and then the charging is terminated when the whole of 6 hours elapses from 4.2V to constant voltage charging. did.
d) Discharge after the second cycle;
After charging c), it was discharged to 2.75 V at 30 mA. By the same method, charging / discharging between 2.75V and 4.2V was repeated 3 times.

25℃サイクル特性に関しては、3サイクル目まで上述の充放電試験を実施した後、以下の充放電試験条件を実施した。すなわち25℃で以下の充放電条件にて100サイクル実施後の容量維持率を次式により算出した。
・充電; 100mAで4.2Vまで充電し、4.2Vから定電圧充電に移行し全体で2.5時間経過した時点で充電を終了。
・放電;上述の充電後、100mAで2.75Vまで放電した。
・25℃100サイクル後の容量維持率=(100サイクル目の放電容量/3サイクル目の放電容量)×100 (%)
Regarding the 25 ° C. cycle characteristics, the following charge / discharge test conditions were carried out after the above-described charge / discharge test was performed up to the third cycle. That is, the capacity retention rate after 100 cycles was calculated at 25 ° C. under the following charge / discharge conditions according to the following equation.
-Charging: Charging to 4.2 V at 100 mA, shifting from 4.2 V to constant voltage charging, and finishing charging when 2.5 hours have elapsed as a whole.
-Discharge: After the above-described charging, the battery was discharged to 2.75 V at 100 mA.
・ Capacity maintenance ratio after 100 cycles at 25 ° C. = (Discharge capacity at the 100th cycle / discharge capacity at the third cycle) × 100 (%)

[コイン型電池/ ラミネート電池での電池特性の比較]
上述の表1に示した種々の非水電解液を用いたコイン型電池の高温保存後の特性評価結果と、ラミネート電池での25℃サイクル特性結果を表2に示す。
[Comparison of battery characteristics with coin-type battery / laminate battery]
Table 2 shows the characteristic evaluation results after high-temperature storage of the coin-type battery using the various non-aqueous electrolytes shown in Table 1 above and the 25 ° C. cycle characteristic results in the laminated battery.

表2に示すように、本発明の上記イオン性金属錯体、環状カルボン酸エステルと不飽和結合を有する環状炭酸エステルとを所定量含有した非水電解液を用いたコイン型電池(実施例1〜16)は、いずれの組み合わせにおいても、基準非水電解液(比較例3)と比較して、85℃、24時間保存後では、同電池の容量維持率、および容量回復率に明らかな改善効果を示すことが判る。一方でラミネート電池でのサイクル特性の結果でも、本発明の上記イオン性金属錯体、環状カルボン酸エステルと不飽和結合を有する環状炭酸エステルとを所定量含有した非水電解液を用いた場合において、良好な特性が得られていることを確認した。 As shown in Table 2, a coin-type battery using a nonaqueous electrolytic solution containing a predetermined amount of the ionic metal complex of the present invention, a cyclic carboxylic acid ester and a cyclic carbonate having an unsaturated bond (Examples 1 to 2). 16) In any combination, compared with the reference non-aqueous electrolyte (Comparative Example 3), after storage at 85 ° C. for 24 hours, the battery has a clear improvement effect on the capacity retention rate and the capacity recovery rate. It can be seen that On the other hand, in the result of the cycle characteristics in the laminate battery, in the case of using a nonaqueous electrolytic solution containing a predetermined amount of the ionic metal complex of the present invention, a cyclic carboxylic acid ester and a cyclic carbonate having an unsaturated bond, It was confirmed that good characteristics were obtained.

また、上記イオン性金属錯体単独、環状カルボン酸エステル単独を所定量含有している場合においては(比較例2、3)、実施例1〜16と比較して、高温保存特性が劣る傾向にあり、本発明における非水電解液構成要素 それぞれのマイナス面の効果を現れにくくする組み合わせ、および その処方が影響した形となった。   Further, when the ionic metal complex alone or the cyclic carboxylic acid ester alone is contained in a predetermined amount (Comparative Examples 2 and 3), the high-temperature storage characteristics tend to be inferior as compared with Examples 1 to 16. The combination of the non-aqueous electrolyte constituent elements in the present invention that makes it difficult for the negative effects of each component to appear, and the form of the combination affected.

実施例17〜31
基準非水電解液2として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(容量比1:2)に、リチウム塩としてLiPFを1.1mol/リットル、LiN(SOCFを0.1mol/リットルの濃度にて含有、溶解させて調製した。
Examples 17-31
As a reference non-aqueous electrolyte 2, a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (capacity ratio 1: 2), LiPF 6 as a lithium salt, 1.1 mol / liter, LiN (SO 2 CF 3 ) Prepared by containing and dissolving 2 at a concentration of 0.1 mol / liter.

次に この基準電解液2に、表3に記載した化合物を所定量添加し、種々の非水電解液を調製した。なお、表3に記載される化合物の中で、上述に示した式(V)以外の化合物に関しては、表1と同様の略号にて示した。   Next, a predetermined amount of the compounds described in Table 3 was added to the reference electrolyte solution 2 to prepare various nonaqueous electrolyte solutions. In addition, among the compounds described in Table 3, the compounds other than the formula (V) shown above are represented by the same abbreviations as in Table 1.

[ラミネート電池での電池特性の比較]
上述の表3に示した種々の非水電解液を用いたラミネート電池の高温保存後の特性評価結果と、25℃サイクル特性結果を表4に示す。
[Comparison of battery characteristics in laminated batteries]
Table 4 shows the characteristic evaluation results after high-temperature storage of the laminated battery using the various non-aqueous electrolytes shown in Table 3 and the 25 ° C cycle characteristic results.

なお、ラミネート電池での高温保存後の特性に関しては、上述と同一充電条件にて、充電後 85℃24時間保存後、25℃にて放電を同一放電条件で放電して容量維持率を次式により算出した。
・容量維持率=(4サイクル目の放電容量/3サイクル目の放電容量)×100 (%)
更に、常温にて初期3サイクルと同一条件で1サイクル充放電して容量回復率を次式により算出した。
・容量回復率=(5サイクル目の放電容量/3サイクル目の放電容量)×100 (%)
Regarding the characteristics of the laminated battery after high-temperature storage, the capacity retention rate is expressed by the following equation by discharging the battery at 25 ° C. under the same discharge condition after storage at 85 ° C. for 24 hours under the same charge condition as above. Calculated by
Capacity retention rate = (discharge capacity at the fourth cycle / discharge capacity at the third cycle) × 100 (%)
Further, charge / discharge was performed for 1 cycle under the same conditions as the initial 3 cycles at room temperature, and the capacity recovery rate was calculated by the following equation.
-Capacity recovery rate = (discharge capacity at the fifth cycle / discharge capacity at the third cycle) x 100 (%)

[高温保存中のセルの膨れ評価]
ラミネート電池でのセルの膨れの測定方法は、シリコーンオイル中に同セルを浸漬したときの体積変化により計測した。ラミネート電池の体積を、高温保存試験の前後に室温状態まで冷却した後に測定し、その体積変化率を保存中のセルの膨れとした。
[Evaluation of cell swelling during high-temperature storage]
The method of measuring the swelling of the cell in the laminate battery was measured by the volume change when the cell was immersed in silicone oil. The volume of the laminate battery was measured after cooling to room temperature before and after the high temperature storage test, and the volume change rate was defined as the swelling of the cell during storage.

表4に示すように、本発明の上記イオン性金属錯体、環状カルボン酸エステルと不飽和結合を有する環状炭酸エステルとを本発明の所定範囲の添加量にて調製した非水電解液を用いたラミネート電池(実施例17〜31)では、いずれの組み合わせにおいても、基準非水電解液(比較例4,5,6,7)と比較して、85℃、24時間保存後では、同電池の容量維持率、容量回復率、およびセルの膨れにて明らかな改善効果を示すことが判る。また、サイクル特性の結果でも、本発明の上記イオン性金属錯体、環状カルボン酸エステルと不飽和結合を有する環状炭酸エステルとを本発明の所定範囲の添加量含有した非水電解液を用いた場合において、良好な特性が得られていることを確認した。
As shown in Table 4, a non-aqueous electrolyte prepared by adding the ionic metal complex of the present invention, a cyclic carboxylic acid ester, and a cyclic carbonate having an unsaturated bond in an addition amount within a predetermined range of the present invention was used. In any of the combinations of the laminated batteries (Examples 17 to 31), compared to the reference non-aqueous electrolyte (Comparative Examples 4, 5, 6, and 7), after storage at 85 ° C. for 24 hours, It can be seen that the capacity maintenance rate, the capacity recovery rate, and the swelling of the cells show a clear improvement effect. In addition, when the non-aqueous electrolyte containing the above-mentioned ionic metal complex of the present invention, cyclic carboxylic acid ester and cyclic carbonate having an unsaturated bond is added in a predetermined range of the present invention, the cycle characteristics are also used. It was confirmed that good characteristics were obtained.

Claims (7)

リチウムの吸蔵・放出が可能な正極および負極と組み合わせて使用する非水電解液電池用の非水電解液であって、(1)非水溶媒、(2)該非水溶媒に溶解されるリチウム塩、(3)一般式(I)で表されるイオン性金属錯体とを少なくとも含むことを特徴とする非水電解液。
一般式(I):
ただし、Mは、遷移金属、周期律表の III族、IV族、またはV族元素、mは、1〜4、nは、0〜8、qは、0または1をそれぞれ表し、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、またm個存在するRはそれぞれが結合してもよい。)、R2は、ハロゲン、C〜C10のアルキル、C〜C10のハロゲン化アルキル、C〜C20のアリール、C〜C20のハロゲン化アリール、またはX(これらのアルキル及びアリールその構造中に置換基、ヘテロ原子を持ってもよく、またn個存在するRはそれぞれが結合して環を形成してもよい。)、X、X、Xは、O、S、またはNR、R、Rは、それぞれ独立で、水素、C〜C10のアルキル、C〜C10のハロゲン化アルキル、C〜C20のアリール、C〜C20のハロゲン化アリール(これらのアルキル及びアリールその構造中に置換基、ヘテロ原子を持ってもよく、また複数個存在するR、Rはそれぞれが結合して環を形成してもよい。)をそれぞれ表す。
A non-aqueous electrolyte for a non-aqueous electrolyte battery used in combination with a positive electrode and a negative electrode capable of occluding and releasing lithium, wherein (1) a non-aqueous solvent and (2) a lithium salt dissolved in the non-aqueous solvent (3) A nonaqueous electrolytic solution comprising at least an ionic metal complex represented by the general formula (I).
Formula (I):
Where M is a transition metal, group III, group IV or group V element of the periodic table, m is 1 to 4, n is 0 to 8, q is 0 or 1, and R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 4 -C 20 arylene, or C 4 -C 20 halogenated arylene (these alkylenes and arylenes are substituents in the structure) And R 1 may be bonded to each other.), R 2 is halogen, C 1 -C 10 alkyl, C 1 -C 10 halogenated alkyl , C 4 -C 20 aryl, C 4 -C 20 aryl halide, or X 3 R 3 (these alkyls and aryls may have substituents, heteroatoms in their structure, and there are n Each R 2 is X 1 , X 2 , and X 3 are O, S, or NR 4 , R 3 , and R 4 are each independently hydrogen, C 1 to C 10 Alkyl, C 1 -C 10 halogenated alkyl, C 4 -C 20 aryl, C 4 -C 20 aryl halide (these alkyls and aryls may have substituents, heteroatoms in their structure, A plurality of R 3 and R 4 may be bonded to each other to form a ring).
該非水電解液は、該イオン性金属錯体を0.01〜2重量%の範囲で含有することを特徴とする請求項1記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1, wherein the nonaqueous electrolytic solution contains the ionic metal complex in an amount of 0.01 to 2% by weight. 該リチウム塩が、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSOLiN(CFSO)(CSO)の群より選ばれる少なくとも1種のリチウム塩であることを特徴とする請求項1記載の非水電解液。 The lithium salt is LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ) , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), at least one lithium salt selected from the group. 該非水溶媒が、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルおよび不飽和を有する環状炭酸エステルとを含み、該環状カルボン酸エステルが0.1〜5重量%、該不飽和を有する環状炭酸エステルが0.1〜5重量%含まれる非水溶媒であることを特徴とする請求項1記載の非水電解液。 The non-aqueous solvent includes a cyclic carbonate ester, a chain carbonate ester, a cyclic carboxylic acid ester, and a cyclic carbonate ester having unsaturation, and the cyclic carboxylic acid ester is 0.1 to 5% by weight and the cyclic group having the unsaturation. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous solvent contains 0.1 to 5% by weight of carbonate. 該環状カルボン酸エステルが、γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトンの群より選ばれる少なくとも1種の環状カルボン酸エステルであることを特徴とする請求項4記載の非水電解液。 The non-aqueous solution according to claim 4, wherein the cyclic carboxylic acid ester is at least one cyclic carboxylic acid ester selected from the group consisting of γ-butyrolactone, γ-valerolactone, γ-caprolactone, and ε-caprolactone. Electrolytic solution. 該不飽和を有する環状炭酸エステルが、一般式(II)で表されるビニレンカーボネート誘導体、または一般式(III)で示されるアルケニルエチレンカ−ボネ−ト類であることを特徴とする請求項4記載の非水電解液。
[一般式(II)において、RおよびRは、水素原子、ハロゲン原子または炭素数が1〜12のハロゲン原子を含んでいてもよいアルキル基を表し、また、RおよびRは、互いに同一の場合でもよく、あるいは互いに異なっていてもよいものとする。]
[一般式(III)において、R〜R10は、水素原子、ハロゲン原子、炭素数が1〜12のハロゲン原子を含んでいてもよい炭化水素基、または炭素数が2〜12のアルケニル基であって、その内少なくとも一つは炭素数が2〜12のアルケニル基である。また、R〜R10は、互いに同一の場合でもよく、あるいは互いに異なっていてもよい。]
5. The cyclic carbonic acid ester having unsaturation is a vinylene carbonate derivative represented by the general formula (II) or an alkenyl ethylene carbonate represented by the general formula (III). The non-aqueous electrolyte described.
[In General Formula (II), R 5 and R 6 represent a hydrogen atom, a halogen atom or an alkyl group which may contain a halogen atom having 1 to 12 carbon atoms, and R 5 and R 6 are The same case may be used, or they may be different from each other. ]
[In General Formula (III), R 7 to R 10 are each a hydrogen atom, a halogen atom, a hydrocarbon group which may contain a halogen atom having 1 to 12 carbon atoms, or an alkenyl group having 2 to 12 carbon atoms. And at least one of them is an alkenyl group having 2 to 12 carbon atoms. R 7 to R 10 may be the same as or different from each other. ]
請求項1〜6のいずれかに記載の非水電解液と、リチウムの吸蔵・放出が可能な正極および負極を備えた非水電解液電池であって、該正極が、正極活物質として、リチウム遷移金属複合酸化物材料よりなり、該負極が、負極活物質として、(a) X線回折における格子面(002面)のd値が0.340nm以下の炭素質材料、および/または、(b) Sn、SiおよびAlから選ばれる1種以上の金属の酸化物、および/または(c) Sn、SiおよびAlから選ばれる1種以上の金属とリチウムとの合金を少なくとも含む負極活物質よりなることを特徴とするリチウム二次電池。
A nonaqueous electrolyte battery comprising the nonaqueous electrolyte solution according to any one of claims 1 to 6, a positive electrode capable of inserting and extracting lithium, and a negative electrode, wherein the positive electrode is lithium as a positive electrode active material. It is made of a transition metal composite oxide material, and the negative electrode is used as a negative electrode active material (a) a carbonaceous material having a d-value of 0.340 nm or less on the lattice plane (002 plane) in X-ray diffraction, and / or (b 1) an oxide of one or more metals selected from Sn, Si and Al, and / or (c) a negative electrode active material containing at least one alloy of at least one metal selected from Sn, Si and Al and lithium. A lithium secondary battery characterized by that.
JP2004096475A 2004-03-29 2004-03-29 Nonaqueous electrolyte solution and lithium secondary battery using it Pending JP2005285492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096475A JP2005285492A (en) 2004-03-29 2004-03-29 Nonaqueous electrolyte solution and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096475A JP2005285492A (en) 2004-03-29 2004-03-29 Nonaqueous electrolyte solution and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2005285492A true JP2005285492A (en) 2005-10-13

Family

ID=35183651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096475A Pending JP2005285492A (en) 2004-03-29 2004-03-29 Nonaqueous electrolyte solution and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2005285492A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
JP2009266648A (en) * 2008-04-25 2009-11-12 Toyota Central R&D Labs Inc Lithium-ion secondary battery
WO2010067549A1 (en) * 2008-12-12 2010-06-17 株式会社村田製作所 Nonaqueous electrolyte secondary cell
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
WO2010147106A1 (en) * 2009-06-18 2010-12-23 株式会社 村田製作所 Nonaqueous electrolyte secondary battery
JP2011040333A (en) * 2009-08-18 2011-02-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
JP2012064396A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium secondary battery
JP2012064397A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2014049296A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20150029569A (en) * 2013-09-10 2015-03-18 주식회사 엘지화학 Electrolyte solution and lithium secondary battery comprising the same
US8986881B2 (en) 2012-01-16 2015-03-24 Gs Yuasa International Ltd. Energy storage element, method of producing energy storage element, and non-aqueous electrolyte
JP2020117497A (en) * 2019-01-25 2020-08-06 三井化学株式会社 Boron phosphate lithium compound, additive for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, lithium secondary battery precursor, method for producing lithium secondary battery, and lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845545A (en) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JP2000164248A (en) * 1998-11-25 2000-06-16 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2002184465A (en) * 2000-12-12 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2002184460A (en) * 2000-12-12 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2003331917A (en) * 2002-05-13 2003-11-21 Central Glass Co Ltd Corrosion restraining method for material used for electrochemical device, and cell
JP2004039493A (en) * 2002-07-04 2004-02-05 Sanyo Gs Soft Energy Co Ltd Nonaqueous electrolyte battery
JP2004071159A (en) * 2002-08-01 2004-03-04 Central Glass Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845545A (en) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JP2000164248A (en) * 1998-11-25 2000-06-16 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2002184465A (en) * 2000-12-12 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2002184460A (en) * 2000-12-12 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2003331917A (en) * 2002-05-13 2003-11-21 Central Glass Co Ltd Corrosion restraining method for material used for electrochemical device, and cell
JP2004039493A (en) * 2002-07-04 2004-02-05 Sanyo Gs Soft Energy Co Ltd Nonaqueous electrolyte battery
JP2004071159A (en) * 2002-08-01 2004-03-04 Central Glass Co Ltd Nonaqueous electrolyte secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2009266648A (en) * 2008-04-25 2009-11-12 Toyota Central R&D Labs Inc Lithium-ion secondary battery
WO2010067549A1 (en) * 2008-12-12 2010-06-17 株式会社村田製作所 Nonaqueous electrolyte secondary cell
CN102246341A (en) * 2008-12-12 2011-11-16 株式会社村田制作所 Nonaqueous electrolyte secondary cell
JP5516418B2 (en) * 2008-12-12 2014-06-11 株式会社村田製作所 Non-aqueous electrolyte secondary battery
JPWO2010079565A1 (en) * 2009-01-06 2012-06-21 株式会社村田製作所 Non-aqueous electrolyte secondary battery
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
CN102273000A (en) * 2009-01-06 2011-12-07 株式会社村田制作所 Nonaqueous electrolyte secondary battery
JP5278442B2 (en) * 2009-01-06 2013-09-04 株式会社村田製作所 Non-aqueous electrolyte secondary battery
WO2010147106A1 (en) * 2009-06-18 2010-12-23 株式会社 村田製作所 Nonaqueous electrolyte secondary battery
JP2011040333A (en) * 2009-08-18 2011-02-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
JP2012064397A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2012064396A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium secondary battery
US8986881B2 (en) 2012-01-16 2015-03-24 Gs Yuasa International Ltd. Energy storage element, method of producing energy storage element, and non-aqueous electrolyte
JP2014049296A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20150029569A (en) * 2013-09-10 2015-03-18 주식회사 엘지화학 Electrolyte solution and lithium secondary battery comprising the same
KR101637081B1 (en) 2013-09-10 2016-07-06 주식회사 엘지화학 Electrolyte solution and lithium secondary battery comprising the same
EP3046176A1 (en) * 2013-09-10 2016-07-20 LG Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including same
EP3046176A4 (en) * 2013-09-10 2016-09-14 Lg Chemical Ltd Non-aqueous electrolyte solution and lithium secondary battery including same
US10090559B2 (en) 2013-09-10 2018-10-02 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery including the same
JP2020117497A (en) * 2019-01-25 2020-08-06 三井化学株式会社 Boron phosphate lithium compound, additive for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, lithium secondary battery precursor, method for producing lithium secondary battery, and lithium secondary battery
JP7413635B2 (en) 2019-01-25 2024-01-16 三井化学株式会社 Lithium boron phosphate compound, additive for lithium secondary batteries, non-aqueous electrolyte for lithium secondary batteries, lithium secondary battery precursor, method for producing lithium secondary batteries, and lithium secondary batteries

Similar Documents

Publication Publication Date Title
JP5390736B2 (en) Non-aqueous electrolyte for electrochemical devices
US8053108B2 (en) Organic electrolytic solution and lithium battery employing the same
US7709157B2 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
US8771881B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US9088036B2 (en) Rechargeable lithium battery
JP4012174B2 (en) Lithium battery with efficient performance
US8968920B2 (en) Organic electrolyte solution including silane compound and lithium battery employing the same
US7976988B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2007043624A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
US6479192B1 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
JP4968225B2 (en) Non-aqueous electrolyte battery
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2008198409A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution cell using it
JP2008041366A (en) Battery
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2002343426A (en) Nonaqueous electrolyte and secondary battery using the same
US7422827B2 (en) Nonaqueous electrolyte
JP2007335170A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
JPH11339851A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2004087282A (en) Nonaqueous electrolytic solution and secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026