JP2015088343A - Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries - Google Patents

Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
JP2015088343A
JP2015088343A JP2013226089A JP2013226089A JP2015088343A JP 2015088343 A JP2015088343 A JP 2015088343A JP 2013226089 A JP2013226089 A JP 2013226089A JP 2013226089 A JP2013226089 A JP 2013226089A JP 2015088343 A JP2015088343 A JP 2015088343A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particles
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013226089A
Other languages
Japanese (ja)
Other versions
JP6232931B2 (en
Inventor
直弥 原田
Naoya Harada
直弥 原田
昭博 木村
Akihiro Kimura
昭博 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013226089A priority Critical patent/JP6232931B2/en
Publication of JP2015088343A publication Critical patent/JP2015088343A/en
Application granted granted Critical
Publication of JP6232931B2 publication Critical patent/JP6232931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium nickelate-based positive electrode active material arranged so that the generation of gas can be suppressed, and enables the achievement of a high charge and discharge capacities and good cycle characteristics.SOLUTION: A method for manufacturing a positive electrode active material for nonaqueous electrolyte secondary batteries comprises: a cleaning step of preparing cleaned particles by rinsing, by deionized water, core particles including a lithium transition metal complex oxide expressed by the general formula, LiNiMO(where 0.95≤a≤1.05; 0≤x≤0.25; M is at least one element selected from Co, Mn and Al); a mixing step of preparing mix particles by mixing the cleaned particles with a boron compound containing oxygen; and a thermal treatment step of performing a thermal treatment on the mix particles at a thermal treatment temperature of 100-400°C, thereby preparing the positive electrode active material.

Description

本発明は、正極活物質の製造方法に関する。特にニッケル酸リチウム系のリチウム遷移金属複合酸化物を用いた非水電解液二次電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material. In particular, the present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery using a lithium nickel oxide-based lithium transition metal composite oxide.

近年、VTR、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。   In recent years, portable devices such as VTRs, cellular phones, and notebook personal computers have become widespread and miniaturized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for the power supply. Furthermore, it has been attracting attention as a power battery for electric vehicles and the like due to recent environmental problems.

リチウムイオン二次電池の正極活物質としては、層状構造のコバルト酸リチウムが代表的に実用化されているが、資源的に貴重なコバルトを用いているため、コスト面での不利がある。こういった事情に鑑み、遷移金属としてニッケルを用いた層状構造のニッケル酸リチウムが検討されている。、ニッケル酸リチウムはコバルト酸リチウムに比べて単位重量当たりの充放電容量が多いという利点を有するが、一方で合成がしにくく未反応原料が発生し易いという難点も有する。未反応原料が残留するニッケル酸リチウムを正極活物質として用いると、充電時に未反応原料が分解し、ガス発生の原因となる。ガス発生によって電池内部では圧力が高まるので、電池容器の形状が円筒形以外の場合、大抵はその圧力変化に耐え切れず電池容器の形状が変化する。例え圧力変化に耐えられる構造だとしても電池容器が破裂する危険を孕むので、何らかの対策が必要である。その他コバルト酸リチウムとは異なる問題を抱えている。   As a positive electrode active material of a lithium ion secondary battery, lithium cobaltate having a layered structure is typically put into practical use. However, since valuable cobalt is used in terms of resources, there is a cost disadvantage. In view of these circumstances, lithium nickelate having a layered structure using nickel as a transition metal has been studied. Lithium nickelate has the advantage that it has a higher charge / discharge capacity per unit weight than lithium cobaltate, but also has the disadvantage that it is difficult to synthesize and unreacted raw materials are likely to be generated. When lithium nickelate in which unreacted raw material remains is used as the positive electrode active material, the unreacted raw material is decomposed during charging, causing gas generation. Since the pressure is increased inside the battery due to the generation of gas, when the shape of the battery container is other than the cylindrical shape, the shape of the battery container changes in most cases because it cannot withstand the pressure change. Even if the structure can withstand pressure changes, there is a risk of the battery container bursting, so some countermeasures are necessary. Other problems are different from lithium cobaltate.

ニッケル酸リチウム等の、ニッケルを遷移金属の主成分として用いた(所謂ニッケル酸リチウム系の)リチウム遷移金属複合酸化物において、目的に応じて純水等で洗浄する技術が存在する。   In a lithium transition metal composite oxide (so-called lithium nickelate type) lithium oxide using nickel as a main component of a transition metal, such as lithium nickelate, there is a technique of cleaning with pure water or the like according to the purpose.

特許文献1には、ニッケル酸リチウムを正極活物質として用いた二次電池において、正極中の不純物を低減し、放電容量を向上する目的で正極活物質を水洗又は酸洗する技術が開示されている。   Patent Document 1 discloses a technique of washing or pickling a positive electrode active material for the purpose of reducing impurities in the positive electrode and improving discharge capacity in a secondary battery using lithium nickelate as the positive electrode active material. Yes.

特許文献2には、ニッケルを必須とするリチウム遷移金属複合酸化物を特定の方法で水洗し、炭酸リチウム等ガス発生の元となる物質を除去する技術が開示されている。   Patent Document 2 discloses a technique in which a lithium transition metal composite oxide containing nickel as an essential component is washed with water by a specific method to remove a substance that causes gas generation such as lithium carbonate.

特許文献3には、正極スラリーのゲル化を抑制するために上澄み液のpH範囲を特定範囲に調整しながら正極活物質を純水で洗浄する技術が開示されている。   Patent Document 3 discloses a technique for washing the positive electrode active material with pure water while adjusting the pH range of the supernatant to a specific range in order to suppress gelation of the positive electrode slurry.

また、特許文献4によると、無作為にリチウムニッケル複合酸化物を水洗すると、リチウムイオンの溶出や高温による正極活物質の構造変化を招くとされている。このため、特許文献4では高温時の熱安定性を向上させるために水洗時間を特定の条件で規定している。   According to Patent Document 4, when lithium nickel composite oxide is randomly washed with water, elution of lithium ions and structural change of the positive electrode active material due to high temperature are caused. For this reason, in patent document 4, in order to improve the thermal stability at the time of high temperature, the washing time is prescribed | regulated on the specific conditions.

一方、種々の目的に応じて、ホウ酸等のホウ素化合物とリチウム遷移金属複合酸化物とを混合させる、あるいはリチウム遷移金属複合酸化物表面にホウ素化合物を存在させる技術も存在する。   On the other hand, depending on various purposes, there is a technique in which a boron compound such as boric acid and a lithium transition metal composite oxide are mixed, or a boron compound is present on the surface of the lithium transition metal composite oxide.

特許文献5には、マンガン酸リチウムを用いた正極において、酸化ホウ素、オルトホウ酸、メタホウ酸、四ホウ酸等電解液に溶解可能なホウ素化合物を含ませることでスピネル構造のマンガン酸リチウムとハロゲン化水素酸との反応を抑制し、サイクル特性を改善させる技術が開示されている。   In Patent Document 5, in a positive electrode using lithium manganate, a boron compound soluble in an electrolyte such as boron oxide, orthoboric acid, metaboric acid, tetraboric acid, or the like, and a halogenated spinel lithium manganate are included. A technique for improving the cycle characteristics by suppressing the reaction with hydroacid has been disclosed.

特許文献6には、リチウム遷移金属複合酸化物の表面に、ホウ素等コーティング元素の、ヒドロキシド、オキシヒドロキシド等を含むイオン伝導度に優れた表面処理層を形成して平均放電電位を高め、寿命特性を向上する技術が開示されている。具体的に開示されているコーティング手法は、溶媒に溶解したコーティング元素をリチウム遷移金属複合酸化物の表面に析出させ、溶媒を除去してなるものである。   In Patent Document 6, on the surface of the lithium transition metal composite oxide, a surface treatment layer having excellent ion conductivity including a hydroxide, an oxyhydroxide, or the like of a coating element such as boron is formed to increase an average discharge potential, A technique for improving the life characteristics is disclosed. Specifically, the coating technique disclosed is formed by depositing a coating element dissolved in a solvent on the surface of the lithium transition metal composite oxide and removing the solvent.

特許文献7には、リチウム遷移金属複合酸化物等を用いた電極中に、無機酸としてホウ酸等を含有させ、電極ペーストのゲル化を防止する技術が開示されている。具体的なリチウム遷移金属複合酸化物としてはニッケル酸リチウムが開示されている。   Patent Document 7 discloses a technique for preventing gelation of an electrode paste by containing boric acid or the like as an inorganic acid in an electrode using a lithium transition metal composite oxide or the like. As a specific lithium transition metal composite oxide, lithium nickelate is disclosed.

特許文献8には、ニッケルまたはコバルトを必須としたリチウム遷移金属複合酸化物粒子の表面に、ホウ酸アンモニウム、ホウ酸リチウム等のホウ酸化合物等を被着させ、酸化性雰囲気下で加熱処理することで、二次電池の高容量化と、二次電池の充放電効率向上を図る技術が開示されている。具体的に開示されているリチウム遷移金属複合酸化物は、ニッケルの一部をコバルト及びアルミニウムで置換したニッケル酸リチウムである。   In Patent Document 8, boric acid compounds such as ammonium borate and lithium borate are deposited on the surface of lithium transition metal composite oxide particles essentially containing nickel or cobalt and heat-treated in an oxidizing atmosphere. Thus, a technique for increasing the capacity of the secondary battery and improving the charge / discharge efficiency of the secondary battery is disclosed. The lithium transition metal complex oxide specifically disclosed is lithium nickelate in which a part of nickel is substituted with cobalt and aluminum.

特開平6−111820号公報JP-A-6-111820 特開2003−017054号公報JP 2003-017054 A 特開2003−031222号公報JP 2003-031222 A 特開2003−273108号公報JP 2003-273108 A 特開2001−257003号公報JP 2001-257003 A 特開2002−124262号公報JP 2002-124262 A 特開平10−079244号公報JP-A-10-079244 特開2009−146739号公報JP 2009-146739 A

特許文献1によれば水洗によって不純物を除去することで充放電容量が向上するとされているが、本発明者らの研究によれば、充放電容量はむしろ低下する傾向が確認された。また、サイクル特性が悪化する傾向も確認された。特許文献2にもあるように、ニッケル酸リチウム系のリチウム遷移金属複合酸化物を水洗することは、ガス発生の抑制に有効であるが、充放電容量及びサイクル特性と両立することができず、解決が求められていた。   According to Patent Document 1, it is said that the charge / discharge capacity is improved by removing impurities by washing with water. However, according to the study by the present inventors, it has been confirmed that the charge / discharge capacity tends to decrease. Moreover, the tendency for the cycle characteristics to deteriorate was also confirmed. As also in Patent Document 2, washing the lithium nickel oxide-based lithium transition metal composite oxide with water is effective in suppressing gas generation, but cannot be compatible with charge / discharge capacity and cycle characteristics, A solution was sought.

本発明はこれらの事情に鑑みてなされたものである。本発明の目的は、ニッケル酸リチウム系の正極活物質において、ガス発生を抑制し、且つ高い充放電容量と良好なサイクル特性を実現することにある。   The present invention has been made in view of these circumstances. An object of the present invention is to suppress gas generation and realize high charge / discharge capacity and good cycle characteristics in a lithium nickelate-based positive electrode active material.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者らはニッケル酸リチウム系のリチウム遷移金属複合酸化物を洗浄した後、特定のホウ素化合物と混合し、特定の熱処理温度で熱処理することでガス発生抑制、充放電容量及びサイクル特性の全てを満足させられることを見出した。   In order to achieve the above object, the present inventors have conducted intensive studies and have completed the present invention. The present inventors washed lithium nickel oxide-based lithium transition metal composite oxide, mixed with a specific boron compound, and heat treated at a specific heat treatment temperature to suppress gas generation, charge / discharge capacity, and cycle characteristics. It was found that can be satisfied.

本発明の正極活物質の製造方法は、一般式LiNi1−x(0.95≦a≦1.05、0≦x≦0.25、MはCo、Mn、Alから選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物を含むコア粒子を洗浄し、洗浄粒子を得る洗浄工程と、前記洗浄粒子と、酸素を含むホウ素化合物とを混合し、混合粒子を得る混合工程と、前記混合粒子を100℃以上400℃以下の熱処理温度で熱処理する熱処理工程とを含むことを特徴とする。 The method for producing a positive electrode active material according to the present invention has a general formula Li a Ni 1-x M x O 2 (0.95 ≦ a ≦ 1.05, 0 ≦ x ≦ 0.25, where M is Co, Mn, and Al. The core particles containing a lithium transition metal composite oxide represented by at least one element selected from the above are washed to obtain washing particles, and the washing particles and a boron compound containing oxygen are mixed and mixed A mixing step of obtaining particles, and a heat treatment step of heat-treating the mixed particles at a heat treatment temperature of 100 ° C. or higher and 400 ° C. or lower.

本発明の正極活物質の製造方法は上記の特徴を備えているため、ニッケル酸リチウム系のリチウム遷移金属複合酸化物を正極活物質として用いた非水電解液二次電池において、ガス発生を抑制し、且つ高い充放電容量と良好なサイクル特性とを実現することができる。   Since the method for producing a positive electrode active material of the present invention has the above-described features, in a non-aqueous electrolyte secondary battery using a lithium nickelate-based lithium transition metal composite oxide as a positive electrode active material, gas generation is suppressed. In addition, a high charge / discharge capacity and good cycle characteristics can be realized.

以下、本発明の正極活物質の製造方法について、実施の形態及び実施例を用いて詳細に説明する。但し、本発明はこれら実施の形態及び実施例に限定されるものではない。   Hereinafter, the manufacturing method of the positive electrode active material of this invention is demonstrated in detail using embodiment and an Example. However, the present invention is not limited to these embodiments and examples.

本発明の製造方法は、洗浄工程、混合工程及び熱処理工程を含む。以下これらの工程を中心に説明する。   The production method of the present invention includes a cleaning step, a mixing step, and a heat treatment step. Hereinafter, these steps will be mainly described.

[コア粒子]
コア粒子は、遷移金属にニッケルを必須として含むリチウム遷移金属複合酸化物(所謂ニッケル酸リチウム系)を主成分とした粒子を用いる。ニッケル酸リチウム系の充放電容量に関する長所を十分生かすため、遷移金属中におけるニッケルの比率は75mol%以上とする。ニッケルを置換する金属としてはコバルト、マンガン及びアルミニウムからなる少なくとも一種の元素が選択可能である。一方、リチウムの遷移金属に対する比は、1近辺とする。化学量論比から5%程度ならずれていても差し支えない。これらをまとめると、コア粒子の主成分は、一般式LiNi1−x(0.95≦a≦1.05、0≦x≦0.25、MはCo、Mn、Alから選択される少なくとも一種の元素)で表される。コア粒子ではそのままでは未反応原料等が存在してガス発生が生じるので、後述の洗浄工程を施す。なお、コア粒子自体は公知の手法を用いて製造すれば良い。
[Core particles]
As the core particle, a particle whose main component is a lithium transition metal composite oxide (so-called lithium nickelate) containing nickel as an essential transition metal is used. In order to take full advantage of the charge / discharge capacity of the lithium nickelate system, the ratio of nickel in the transition metal is set to 75 mol% or more. As the metal replacing nickel, at least one element composed of cobalt, manganese and aluminum can be selected. On the other hand, the ratio of lithium to transition metal is around 1. The stoichiometric ratio may be about 5%. In summary, the main component of the core particles is the general formula Li a Ni 1-x M x O 2 (0.95 ≦ a ≦ 1.05, 0 ≦ x ≦ 0.25, where M is Co, Mn, Al At least one element selected from If the core particles are left as they are, unreacted raw materials and the like are present and gas generation occurs, so a cleaning process described later is performed. In addition, what is necessary is just to manufacture core particle itself using a well-known method.

[洗浄工程]
コア粒子を洗浄し、洗浄粒子を得る。洗浄に用いる液相は、未反応原料を除去することが出来ればその種類は特に問わない。通常は純水を用いれば十分である。洗浄工程の細かい条件は特に限定されない。この工程によって未反応原料等の主成分以外の成分がコア粒子から洗浄される。洗浄粒子中には不純物の類は存在しないか存在しても検出できない程度しか存在しない。しかし、洗浄粒子の表面近辺はリチウム欠損があり、リチウム欠損のある領域ではリチウムイオンの脱離挿入が阻害される。そのため、洗浄粒子を正極活物質として用いると充放電特性及びサイクル特性が悪化する。これらの事情を踏まえ、後述の工程を施す。
[Washing process]
The core particles are washed to obtain washed particles. The type of the liquid phase used for washing is not particularly limited as long as unreacted raw materials can be removed. Usually, pure water is sufficient. The fine conditions of the washing process are not particularly limited. By this step, components other than the main component such as unreacted raw materials are washed from the core particles. There are no impurities in the cleaning particles, or there is only a degree that cannot be detected even if they exist. However, the vicinity of the surface of the cleaning particle has lithium deficiency, and lithium ion desorption / insertion is inhibited in a region having lithium deficiency. Therefore, when the cleaning particles are used as the positive electrode active material, charge / discharge characteristics and cycle characteristics are deteriorated. Based on these circumstances, the steps described below are performed.

[混合工程]
得られる洗浄粒子を酸素を含むホウ素化合物と混合し、混合粒子を得る。混合されるホウ素化合物は、洗浄粒子に対して少なすぎると効果が十分に発揮されず、多すぎると充放電容量が低下するので適宜調整する。好ましい範囲は、洗浄粒子に対してホウ素として0.4mol%以上1.5mol%以下である。混合粒子のままでは充放電特性及びサイクル特性の改善効果はまだ発揮されないので、以下の熱処理工程を施す。酸素を含むホウ素化合物としては、酸化ホウ素、ホウ素のオキソ酸及びホウ素のオキソ酸塩からなる群より選択される少なくとも一種が選択可能である。より具体的な例としては、四ホウ酸リチウム(Li)、五ホウ酸アンモニウム(NH)、オルトホウ酸(HBO;所謂普通のホウ酸)、メタホウ酸リチウム(LiBO)、酸化ホウ素(B)等が挙げられる。
[Mixing process]
The resulting cleaning particles are mixed with a boron compound containing oxygen to obtain mixed particles. If the amount of the boron compound to be mixed is too small relative to the cleaning particles, the effect is not sufficiently exhibited. If the amount is too large, the charge / discharge capacity decreases, so the amount is adjusted as appropriate. A preferable range is 0.4 mol% or more and 1.5 mol% or less as boron with respect to the cleaning particles. Since the effect of improving the charge / discharge characteristics and the cycle characteristics is not yet exhibited with the mixed particles, the following heat treatment process is performed. The boron compound containing oxygen can be selected from at least one selected from the group consisting of boron oxide, boron oxoacids, and boron oxoacid salts. More specific examples include lithium tetraborate (Li 2 B 4 O 7 ), ammonium pentaborate (NH 4 B 5 O 8 ), orthoboric acid (H 3 BO 3 ; so-called ordinary boric acid), metabora Examples include lithium acid (LiBO 2 ) and boron oxide (B 2 O 3 ).

[熱処理工程]
得られる混合粒子に熱処理を施し、コア粒子にホウ素及び酸素を含む被覆層が形成された正極活物質を得る。被覆層は、混合工程で混合されるホウ素化合物の少なくとも一部と、コア粒子を構成する元素の一部とが反応した結果得られるものである。熱処理工程の有無、あるいは被覆層形成に用いられたプロセスの違いは、正極活物質表面近辺について、最表面から20nm程度までのX線蛍光分析(XPS)のスペクトルにに反映される。熱処理温度は、100℃より低いと被覆層が形成されず、400℃より高いとコア粒子からリチウムが粒子表面に溶出し、炭酸リチウム等のガス発生源に変化するので100℃以上400℃以下とする。
[Heat treatment process]
The obtained mixed particles are subjected to a heat treatment to obtain a positive electrode active material in which core layers are formed with a coating layer containing boron and oxygen. The coating layer is obtained as a result of a reaction between at least part of the boron compound mixed in the mixing step and part of the elements constituting the core particle. The presence or absence of the heat treatment step or the difference in the process used for forming the coating layer is reflected in the spectrum of X-ray fluorescence analysis (XPS) from the outermost surface to about 20 nm around the positive electrode active material surface. When the heat treatment temperature is lower than 100 ° C., a coating layer is not formed. When the heat treatment temperature is higher than 400 ° C., lithium elutes from the core particles to the particle surface and changes to a gas generation source such as lithium carbonate. To do.

以下、実施例を用いてより具体的に説明する。   Hereinafter, it demonstrates more concretely using an Example.

公知の手法を用いて一般式LiNi0.829Co0.155Al0.016で表されるリチウム遷移金属複合酸化物を主成分とするコア粒子を得た。 To obtain a core particle composed mainly of general formula LiNi 0.829 Co 0.155 lithium transition metal composite oxide represented by Al 0.016 O 2 using a known technique.

得られたコア粒子を洗浄容器に移し、質量比で10倍の純水を洗浄容器に加え、そのまま固相と液相の境界が明確になるまで静置した。静置後、液相の電気伝導度を測定し、デカンテーションを行った。液相の電気伝導度が0.5mS/cm以下になるまで純水投入、静置及びデカンテーションを繰り返した。最後のデカンテーション後、固相を脱水し、さらに120℃で10時間乾燥して洗浄粒子を得た。   The obtained core particles were transferred to a washing container, and 10 times as much pure water as mass ratio was added to the washing container, and allowed to stand until the boundary between the solid phase and the liquid phase became clear. After standing, the electric conductivity of the liquid phase was measured and decanted. The addition of pure water, standing and decantation were repeated until the electric conductivity of the liquid phase was 0.5 mS / cm or less. After the final decantation, the solid phase was dehydrated and further dried at 120 ° C. for 10 hours to obtain washed particles.

得られた洗浄粒子に対し、ホウ素として0.5mol%のホウ酸を添加し、撹拌機を用いて混合し、混合粒子を得た。得られた混合粒子を250℃で10時間熱処理を行い、目開き75μmの乾式篩を通し、目的の正極活物質を得た。   0.5 mol% boric acid as boron was added to the obtained washed particles and mixed using a stirrer to obtain mixed particles. The obtained mixed particles were heat-treated at 250 ° C. for 10 hours, and passed through a dry sieve having an opening of 75 μm to obtain a target positive electrode active material.

添加するホウ酸が洗浄粒子に対してホウ素として1.0mol%である以外実施例1と同様にし、目的の正極活物質を得た。   A target positive electrode active material was obtained in the same manner as in Example 1 except that the boric acid to be added was 1.0 mol% as boron with respect to the cleaning particles.

添加するホウ酸が洗浄粒子に対してホウ素として0.3mol%である以外実施例1と同様にし、目的の正極活物質を得た。   The target positive electrode active material was obtained in the same manner as in Example 1 except that the boric acid to be added was 0.3 mol% as boron with respect to the cleaning particles.

リチウム遷移金属複合酸化物の組成が一般式LiNi0.8Co0.1Mn0.1であるコア粒子を用いた以外実施例1と同様にし、目的の正極活物質を得た。 A target positive electrode active material was obtained in the same manner as in Example 1 except that the core particles having a composition of the lithium transition metal composite oxide having the general formula LiNi 0.8 Co 0.1 Mn 0.1 O 2 were used.

[比較例1]
実施例1において、洗浄工程以降を省略し、目的の正極活物質を得た。
[Comparative Example 1]
In Example 1, the steps after the cleaning step were omitted, and the target positive electrode active material was obtained.

[比較例2]
実施例1において、混合工程以降を省略し、目的の正極活物質を得た。
[Comparative Example 2]
In Example 1, the steps after the mixing step were omitted to obtain the target positive electrode active material.

[比較例3]
実施例1において、熱処理工程を省略し、目的の正極活物質を得た。
[Comparative Example 3]
In Example 1, the heat treatment step was omitted, and the target positive electrode active material was obtained.

[比較例4]
熱処理工程における熱処理温度を600℃とした以外実施例1と同様にし、目的の正極活物質を得た。
[Comparative Example 4]
The target positive electrode active material was obtained in the same manner as in Example 1 except that the heat treatment temperature in the heat treatment step was 600 ° C.

[比較例5]
実施例4において、洗浄工程以降を省略し、目的の正極活物質を得た。
[Comparative Example 5]
In Example 4, the steps after the washing step were omitted to obtain the target positive electrode active material.

[比較例6]
実施例4において、混合工程以降を省略し、目的の正極活物質を得た。
[Comparative Example 6]
In Example 4, the steps after the mixing step were omitted to obtain the target positive electrode active material.

[サイクル特性評価]
実施例1〜3及び比較例1〜6について、サイクル特性を以下のようにして評価する。
[Cycle characteristics evaluation]
About Examples 1-3 and Comparative Examples 1-6, a cycle characteristic is evaluated as follows.

[1.正極の作製]
正極活物質90重量部、アセチレンブラック2.5重量部、グラファイトカーボン2.5重量部及びPVDF(ポリフッカビニリデン)5重量部をNMP(ノルマルメチル−2−ピロリドン)に分散、溶解し、正極スラリーを調整した。得られた正極スラリーをアルミニウム箔からなる集電板に塗布、乾燥し、正極を得た。
[1. Preparation of positive electrode]
90 parts by weight of a positive electrode active material, 2.5 parts by weight of acetylene black, 2.5 parts by weight of graphite carbon, and 5 parts by weight of PVDF (polyfucavinylidene) are dispersed and dissolved in NMP (normal methyl-2-pyrrolidone) to obtain a positive electrode slurry Adjusted. The obtained positive electrode slurry was applied to a current collector plate made of aluminum foil and dried to obtain a positive electrode.

[2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調整した。得られた負極スラリーを銅箔に塗布、乾燥し、さらに圧縮成型して負極を得た。
[2. Production of negative electrode]
An anode slurry was prepared by dispersing 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethylcellulose) and 1.0 part by weight of SBR (styrene butadiene rubber) in water. The obtained negative electrode slurry was applied to a copper foil, dried, and further compression molded to obtain a negative electrode.

[3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られた混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/lになるように溶解させて、非水電解液を得た。
[3. Preparation of non-aqueous electrolyte]
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7 to obtain a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained mixed solvent so as to have a concentration of 1 mol / l to obtain a nonaqueous electrolytic solution.

[4.評価用電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、評価用のラミネートタイプの非水電解液二次電池を得た。
[4. Assembly of evaluation battery]
After the lead electrodes were attached to the positive and negative electrode current collectors, vacuum drying was performed at 120 ° C. Next, a separator made of porous polyethylene was disposed between the positive electrode and the negative electrode, and these were stored in a bag-like laminate pack. After storage, the moisture adsorbed on each member was removed by vacuum drying at 60 ° C. After the vacuum drying, the above-described non-aqueous electrolyte was poured into the laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery for evaluation.

[5.エージング]
得られた評価用電池に充電電圧4.2V、充電電流0.1C(1C≡1時間で放電が終了する電流)での定電圧定電流充電と、放電電圧2.75V、放電電流0.2Cの定電流放電からなる充放電を二回行った。その後、充電電流を0.2Cに替えて充放電を一回行い、正極及び負極に非水電解液をなじませた。
[5. aging]
The obtained battery for evaluation was charged at a constant voltage and a constant current at a charging voltage of 4.2 V and a charging current of 0.1 C (current that discharges after 1 C≡1 hour), a discharging voltage of 2.75 V and a discharging current of 0.2 C Charging / discharging consisting of constant current discharge was performed twice. Thereafter, the charge current was changed to 0.2C, and charge / discharge was performed once, and the nonaqueous electrolyte was applied to the positive electrode and the negative electrode.

[6.放電容量維持率測定]
エージング後、充電電圧4.2V、充電電流1Cでの定電圧定電流充電と、放電電圧2.75V、放電電流1Cでの定電流放電とを1サイクルとし、各サイクル後の放電容量を測定する。nサイクル後の放電容量Ed(n)の、1サイクル後の放電容量Ed(1)に対する比(≡Ed(n)/Ed(1))を、nサイクル後の放電容量維持率Rs(n)とする。
[6. Discharge capacity maintenance rate measurement]
After aging, a constant voltage and constant current charge at a charge voltage of 4.2 V and a charge current of 1 C and a constant current discharge at a discharge voltage of 2.75 V and a discharge current of 1 C are taken as one cycle, and the discharge capacity after each cycle is measured. . The ratio (≡Ed (n) / Ed (1)) of the discharge capacity Ed (n) after n cycles to the discharge capacity Ed (1) after one cycle is expressed as the discharge capacity retention ratio Rs (n) after n cycles. And

[充放電特性評価]
実施例1、2及び比較例1〜3について、充放電特性を以下のようにして評価した。
[Charge / discharge characteristics evaluation]
For Examples 1 and 2 and Comparative Examples 1 to 3, charge / discharge characteristics were evaluated as follows.

サイクル特性評価用と同様の二次電池を作製し、エージングを行った。エージング後、充電電圧4.3V、充電電流0.2Cで定電圧定電流充電を行い、充電容量Ecを測定した。測定後、放電電圧2.75V、放電電流0.2Cで定電流放電を行い、放電容量Edを測定した。   A secondary battery similar to that for cycle characteristic evaluation was produced and aged. After aging, constant voltage and constant current charging was performed at a charging voltage of 4.3 V and a charging current of 0.2 C, and the charging capacity Ec was measured. After the measurement, a constant current discharge was performed at a discharge voltage of 2.75 V and a discharge current of 0.2 C, and the discharge capacity Ed was measured.

[ガス発生評価]
実施例1〜4及び比較例1〜6について、ガス発生量を以下のようにして評価した。
[Gas generation evaluation]
About Examples 1-4 and Comparative Examples 1-6, the gas generation amount was evaluated as follows.

サイクル特性評価用と同様の二次電池を作製し、エージングを行った。エージング後、充電電圧4.2V、充電電流0.2Cで最後の定電圧定電流充電を行った。最後の充電後、評価用電池を分解して正極及び負極を取り出した。取り出した正極板、負極板及び新たな非水電解液500μLを新たなラミネートパックに封入し、80℃の恒温槽で24時間静置し、ガスを発生させた。静置前後のラミネートパックの体積変化をアルキメデスの原理を用いて測定し、ガス発生量Vgとした。   A secondary battery similar to that for cycle characteristic evaluation was produced and aged. After aging, the last constant voltage and constant current charging was performed at a charging voltage of 4.2 V and a charging current of 0.2 C. After the last charge, the evaluation battery was disassembled and the positive electrode and the negative electrode were taken out. The taken out positive electrode plate, negative electrode plate, and 500 μL of a new non-aqueous electrolyte solution were sealed in a new laminate pack, and left in a constant temperature bath at 80 ° C. for 24 hours to generate gas. The volume change of the laminate pack before and after standing was measured using Archimedes' principle, and the amount of gas generated was Vg.

実施例1〜4及び比較例1〜6の製造条件を表1に、ガス発生量Vg、充電容量Ec、放電容量Ed及び100サイクル後の放電容量維持率Rs(100)を表2に示す   The production conditions of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in Table 1, and the gas generation amount Vg, the charge capacity Ec, the discharge capacity Ed, and the discharge capacity maintenance rate Rs (100) after 100 cycles are shown in Table 2.

Figure 2015088343
Figure 2015088343

Figure 2015088343
Figure 2015088343

表1及び表2より以下のことが分かる。   Table 1 and Table 2 show the following.

比較例1と比較例2の結果、あるいは比較例5と比較例6の結果から、ガス発生量を低減するには洗浄工程が必要である。一方、比較例2と実施例1〜3の結果、あるいは比較例6と実施例4の結果から、充放電容量及びサイクル特性を満足行く程度にするには混合工程以降によって被覆層を形成する必要がある。比較例3、4と実施例1〜3の結果、あるいは比較例6と実施例4の結果から、被覆層の形成には適切な熱処理温度の熱処理工程が必要である。   From the results of Comparative Example 1 and Comparative Example 2 or the results of Comparative Example 5 and Comparative Example 6, a cleaning step is necessary to reduce the amount of gas generated. On the other hand, from the results of Comparative Example 2 and Examples 1 to 3, or the results of Comparative Example 6 and Example 4, it is necessary to form a coating layer after the mixing step in order to satisfy the charge / discharge capacity and cycle characteristics. There is. From the results of Comparative Examples 3 and 4 and Examples 1 to 3, or the results of Comparative Examples 6 and 4, a heat treatment step at an appropriate heat treatment temperature is required for forming the coating layer.

本発明の製造方法によって得られる正極活物質を用いると、ガス発生が抑制され、且つ充放電容量及びサイクル特性に優れた非水電解液二次電池が得られる。こうして得られる二次電池は、ガス発生が抑制されているため、電池容器の形状を角型にして電源スペースを有効に使うことも可能になる。このため、前記二次電池は、電気自動車等の体積当たりのエネルギー密度が高く、且つ高出力、高寿命が求められる大型機器の動力源として特に好適に利用可能である。   When the positive electrode active material obtained by the production method of the present invention is used, a non-aqueous electrolyte secondary battery that suppresses gas generation and is excellent in charge / discharge capacity and cycle characteristics can be obtained. Since the secondary battery obtained in this way suppresses gas generation, it is possible to use the power supply space effectively by making the shape of the battery container square. For this reason, the secondary battery can be particularly suitably used as a power source for large-scale equipment that has a high energy density per volume such as an electric vehicle and requires high output and long life.

Claims (2)

一般式
LiNi1−x(0.95≦a≦1.05、0≦x≦0.25、MはCo、Mn、Alから選択される少なくとも一種の元素)
で表されるリチウム遷移金属複合酸化物を含むコア粒子を洗浄し、洗浄粒子を得る洗浄工程と、
前記洗浄粒子と、酸素を含むホウ素化合物とを混合し、混合粒子を得る混合工程と、
前記混合粒子を100℃以上400℃以下の熱処理温度で熱処理する熱処理工程と、
を含む、正極活物質の製造方法。
General formula Li a Ni 1-x M x O 2 (0.95 ≦ a ≦ 1.05, 0 ≦ x ≦ 0.25, M is at least one element selected from Co, Mn, and Al)
Washing the core particles containing the lithium transition metal composite oxide represented by
A mixing step of mixing the cleaning particles and a boron compound containing oxygen to obtain mixed particles;
A heat treatment step of heat treating the mixed particles at a heat treatment temperature of 100 ° C. or higher and 400 ° C. or lower;
A method for producing a positive electrode active material, comprising:
前記混合粒子における前記ホウ素化合物が、前記洗浄粒子に対してホウ素として0.4mol%以上1.5%以下である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the boron compound in the mixed particles is 0.4 mol% or more and 1.5% or less as boron with respect to the cleaning particles.
JP2013226089A 2013-10-31 2013-10-31 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. Active JP6232931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013226089A JP6232931B2 (en) 2013-10-31 2013-10-31 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226089A JP6232931B2 (en) 2013-10-31 2013-10-31 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

Publications (2)

Publication Number Publication Date
JP2015088343A true JP2015088343A (en) 2015-05-07
JP6232931B2 JP6232931B2 (en) 2017-11-22

Family

ID=53050918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226089A Active JP6232931B2 (en) 2013-10-31 2013-10-31 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP6232931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073238A1 (en) * 2015-10-28 2017-05-04 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode mixture paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111771301A (en) * 2017-12-26 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
EP3764433A1 (en) 2019-07-11 2021-01-13 Nichia Corporation Positive electrode active material and method of producing positive electrode active material
JP2022513765A (en) * 2018-12-10 2022-02-09 エルジー エナジー ソリューション リミテッド Positive electrode for secondary battery, this manufacturing method and lithium secondary battery including this
WO2022070648A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192720A (en) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd Nonaqueous battery
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2010040382A (en) * 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
WO2013108571A1 (en) * 2012-01-17 2013-07-25 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192720A (en) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd Nonaqueous battery
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2010040382A (en) * 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
WO2013108571A1 (en) * 2012-01-17 2013-07-25 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013871B2 (en) 2015-10-28 2022-02-01 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN108352526A (en) * 2015-10-28 2018-07-31 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method, non-aqueous electrolyte secondary battery anode composite material paste and non-aqueous electrolyte secondary battery
JPWO2017073238A1 (en) * 2015-10-28 2018-08-16 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, non-aqueous electrolyte secondary battery positive electrode mixture paste, and non-aqueous electrolyte secondary battery
WO2017073238A1 (en) * 2015-10-28 2017-05-04 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode mixture paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11411214B2 (en) 2015-10-28 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN108352526B (en) * 2015-10-28 2022-04-01 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN111771301A (en) * 2017-12-26 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2021508658A (en) * 2017-12-26 2021-03-11 ポスコPosco Positive electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
CN111771301B (en) * 2017-12-26 2023-08-15 浦项控股股份有限公司 Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP2022081638A (en) * 2017-12-26 2022-05-31 ポスコ Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP7445692B2 (en) 2017-12-26 2024-03-07 ポスコホールディングス インコーポレーティッド Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JP7119093B2 (en) 2017-12-26 2022-08-16 ポスコ Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US11611074B2 (en) 2017-12-26 2023-03-21 Posco Holdings Inc. Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
JP2022513765A (en) * 2018-12-10 2022-02-09 エルジー エナジー ソリューション リミテッド Positive electrode for secondary battery, this manufacturing method and lithium secondary battery including this
JP7276969B2 (en) 2018-12-10 2023-05-18 エルジー エナジー ソリューション リミテッド Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US11621415B2 (en) 2019-07-11 2023-04-04 Nichia Corporation Positive electrode active material and method of producing positive electrode active material
KR20210007858A (en) 2019-07-11 2021-01-20 니치아 카가쿠 고교 가부시키가이샤 Cathode active material and method of manufacturing the same
EP3764433A1 (en) 2019-07-11 2021-01-13 Nichia Corporation Positive electrode active material and method of producing positive electrode active material
US11942631B2 (en) 2019-07-11 2024-03-26 Nichia Corporation Positive electrode active material and method of producing positive electrode active material
WO2022070648A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6232931B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP6524651B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JP2019512450A (en) Method of manufacturing lithium secondary battery positive electrode active material and lithium secondary battery positive electrode active material manufactured thereby
JP2013246936A (en) Positive-electrode active material for nonaqueous secondary batteries
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
JP2016006762A (en) Positive electrode active material for nonaqueous secondary battery
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
CN108987683A (en) A kind of preparation method of carbon coating tertiary cathode material
CN103000879B (en) Preparation method of spinel type lithium-nickel-manganese oxide with one-dimensional porous structure
JP2016033854A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP4973826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
Liu et al. Improved rate capability and cycle stability of Li [Ni0. 5Co0. 2Mn0. 3] O2 with Li2MnO3 coating under high cut-off voltage
LI et al. Improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2 cathode materials
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6232931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250