JP6524610B2 - Positive electrode active material for non-aqueous secondary battery and method for producing the same - Google Patents

Positive electrode active material for non-aqueous secondary battery and method for producing the same Download PDF

Info

Publication number
JP6524610B2
JP6524610B2 JP2014080382A JP2014080382A JP6524610B2 JP 6524610 B2 JP6524610 B2 JP 6524610B2 JP 2014080382 A JP2014080382 A JP 2014080382A JP 2014080382 A JP2014080382 A JP 2014080382A JP 6524610 B2 JP6524610 B2 JP 6524610B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
mol
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014080382A
Other languages
Japanese (ja)
Other versions
JP2015201388A (en
Inventor
吉田 秀樹
秀樹 吉田
将人 園尾
将人 園尾
晃輔 下北
晃輔 下北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014080382A priority Critical patent/JP6524610B2/en
Publication of JP2015201388A publication Critical patent/JP2015201388A/en
Application granted granted Critical
Publication of JP6524610B2 publication Critical patent/JP6524610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は非水系二次電池用正極活物質及びその製造方法に関する。   The present invention relates to a positive electrode active material for non-aqueous secondary batteries and a method for producing the same.

リチウムイオン二次電池に代表される非水系二次電池は、正極活物質にアルカリ金属イオンを脱離・挿入可能な物質を、負極活物質に金属リチウム等のアルカリ金属単体あるいはアルカリ金属イオンを脱離・挿入可能な物質を、アルカリ金属イオン伝導媒体に非水電解液等を用い、アルカリ金属イオン伝導媒体を通じて正負極間でアルカリ金属イオンをやり取りし、外部と電力をやり取りする電池である。リチウムイオン二次電池においては、コバルト酸リチウム等のリチウム遷移金属複合酸化物が正極活物質として代表的に用いられている。   A non-aqueous secondary battery typified by a lithium ion secondary battery removes a substance capable of desorbing and inserting an alkali metal ion into a positive electrode active material and removes an alkali metal simple substance such as metallic lithium or an alkali metal ion into a negative electrode active material. It is a battery that uses a non-aqueous electrolyte as an alkali metal ion conduction medium, and exchanges alkali metal ions between the positive and negative electrodes through the alkali metal ion conduction medium to exchange electric power with the outside. In lithium ion secondary batteries, lithium transition metal complex oxides such as lithium cobaltate are typically used as a positive electrode active material.

ところで、正極活物質の界面を改質する技術に、正極活物質の表面を特定の物質で被覆する技術がある。   By the way, there exists a technique which coat | covers the surface of a positive electrode active material with a specific substance in the technique of modify | reforming the interface of a positive electrode active material.

特許文献1では、高温保存等によるインピーダンス上昇を抑制する目的で、LiNi0.82Co0.15Al0.03等のリチウムニッケル複合酸化物の表面に酸化ニオブ等を存在させた後に焼成する技術が提案されている。 In Patent Document 1, for the purpose of suppressing an increase in impedance due to high temperature storage etc., firing is carried out after niobium oxide or the like is present on the surface of a lithium nickel composite oxide such as LiNi 0.82 Co 0.15 Al 0.03 O 2 Technology has been proposed.

特許文献2では、高容量化と充放電効率の向上を目的として、Li1.03Ni0.77Co0.20Al0.03等の複合酸化物粒子に五ホウ酸アンモニウム等のホウ酸化合物等を被着させ、次いで酸化性雰囲気下で焼成する技術が提案されている。 In Patent Document 2, for the purpose of increasing the capacity and improving the charge and discharge efficiency, complex oxide particles such as Li 1.03 Ni 0.77 Co 0.20 Al 0.03 O 2 and the like, and borates such as ammonium pentaborate There has been proposed a technique in which an acid compound or the like is deposited and then fired in an oxidizing atmosphere.

特許文献3では、初期充放電容量を大きく劣化させることなく熱安定性を向上する目的で、Li1.03(Ni0.8Co0.20.9Al0.1等のリチウム複合酸化物粉末の表面にW等とLiとを含む表面層を形成する技術が提案されている。具体例としてはLi1.03(Ni0.8Co0.20.9Al0.1とLiWOとを混合し、752℃で熱処理したものが開示されている。 In Patent Document 3, lithium such as Li 1.03 (Ni 0.8 Co 0.2 ) 0.9 Al 0.1 O 2 or the like is used for the purpose of improving the thermal stability without significantly deteriorating the initial charge and discharge capacity. There has been proposed a technique for forming a surface layer containing W and the like and Li on the surface of a composite oxide powder. Specific examples was mixed with Li 1.03 (Ni 0.8 Co 0.2) 0.9 Al 0.1 O 2 and Li 4 WO 5, discloses that heat-treated at 752 ° C..

特開2004−253305号公報Unexamined-Japanese-Patent No. 2004-253305 特開2009−146739号公報JP, 2009-146739, A 特開2002−75367号公報Japanese Patent Application Laid-Open No. 2002-75367

これまでの非水系二次電池の改良の積み重ねに伴い、その適用分野として電気自動車の様な大型機器の動力源や、電力平準化用蓄電池等、より大規模、長期使用を想定した分野が検討されている。このような適用分野の拡大に伴い、非水系二次電池にはより充放電容量、出力特性、熱的安定性、寿命特性(保存特性、サイクル特性等)等についてより高い性能が求められている。   With the progress of improvement of non-aqueous secondary batteries up to now, the field of application for larger-scale and long-term use, such as power source of large equipment such as electric car and storage battery for electric power leveling, is examined as its application field It is done. With the expansion of such application fields, non-aqueous secondary batteries are required to have higher performance in charge / discharge capacity, output characteristics, thermal stability, life characteristics (storage characteristics, cycle characteristics, etc.), etc. .

アルカリ金属イオン伝導媒体に固体電解質を採用した全固体二次電池の場合、非水電解液を採用した非水電解液二次電池の場合に比べて熱的、化学的安定性が極めて向上する。しかし、固体電解質におけるアルカリ金属イオン伝導性は非水電解液のそれに比べて低いため、取り出し電流が同じである場合、全固体二次電池の放電容量は非水電解液二次電池のそれに比べて低くなる。   In the case of an all-solid secondary battery employing a solid electrolyte as the alkali metal ion conductive medium, the thermal and chemical stability is extremely improved as compared to the case of a non-aqueous electrolyte secondary battery employing a non-aqueous electrolyte. However, since the alkali metal ion conductivity in the solid electrolyte is lower than that of the non-aqueous electrolyte, the discharge capacity of the all-solid secondary battery is lower than that of the non-aqueous electrolyte secondary battery when the extraction current is the same. It gets lower.

非水電解液二次電池の場合も、近年の急速充電に対する要求を踏まえれば依然改良の余地がある。これは、充放電時の電流が高くなるとリチウム遷移金属複合酸化物の結晶構造が破壊され易く、非水電解液中の電解質との反応が促進されることが関係する。   In the case of non-aqueous electrolyte secondary batteries, there is still room for improvement given the recent demand for rapid charging. This is related to the fact that the crystal structure of the lithium transition metal complex oxide is easily broken when the current at the time of charge and discharge becomes high, and the reaction with the electrolyte in the non-aqueous electrolyte is promoted.

このように、全固体二次電池にせよ、非水電解液二次電池にせよ近年検討されてる分野への適用には克服すべき点が存在していた。本発明の目的は、より大規模、長期使用を想定した分野での使用に耐え得る非水系二次電池を実現可能な正極活物質を提供することである。   As described above, there are points to be overcome in the application to the field which has been studied in recent years, whether it is the all solid secondary battery or the non-aqueous electrolyte secondary battery. An object of the present invention is to provide a positive electrode active material that can realize a non-aqueous secondary battery that can withstand use in fields intended for larger scale and long-term use.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者は、リチウム遷移金属複合酸化物からなるコア粒子の表面に、複数の特定元素を含む被覆層を形成することで全固体二次電池における放電容量を高められること、及び高電流で充放電を繰り返しても非水電解液中の電解質と正極活物質との反応が抑制されることを見出した。   In order to achieve the above object, the present inventors have intensively studied and completed the present invention. The inventor of the present invention can increase the discharge capacity in an all solid secondary battery by forming a covering layer containing a plurality of specific elements on the surface of a core particle made of a lithium transition metal composite oxide, and charging with high current. It has been found that even if the discharge is repeated, the reaction between the electrolyte in the non-aqueous electrolyte and the positive electrode active material is suppressed.

本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層であることを特徴とする。   The positive electrode active material of the present invention comprises a core particle composed of a lithium transition metal complex oxide and a covering layer present on the surface of the core particle, wherein the covering layer is at least selected from the group consisting of boron and tungsten. It is characterized in that it is a covering layer containing one kind of element M and niobium.

本発明の正極活物質は上記の特徴を備えているため、全固体二次電池における放電容量が増加する。また、本発明の正極活物質は上記の特徴を備えているため、高電流で充放電を繰り返しても非水電解液中の電解質との反応が抑制される。このため、非水電解液二次電池において高電流サイクル特性が向上する。   Since the positive electrode active material of the present invention has the above features, the discharge capacity in the all solid secondary battery is increased. In addition, since the positive electrode active material of the present invention has the above-described features, reaction with the electrolyte in the non-aqueous electrolytic solution is suppressed even if charge and discharge are repeated at high current. Therefore, high current cycle characteristics are improved in the non-aqueous electrolyte secondary battery.

図1は本発明の正極活物質を製造するため好ましい形態の一例に関する概念図である。FIG. 1 is a conceptual view of an example of a preferred embodiment for producing the positive electrode active material of the present invention.

以下、本発明の正極活物質及びその製造方法について、実施の形態及び実施例を用いて詳細に説明する。   Hereinafter, the positive electrode active material of the present invention and the method for producing the same will be described in detail using embodiments and examples.

本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含む。以下、主にこれらについて説明する。   The positive electrode active material of the present invention includes core particles made of a lithium transition metal composite oxide, and a covering layer present on the surface of the core particles. Hereinafter, these will be mainly described.

[コア粒子]
コア粒子は公知のリチウム遷移金属複合酸化物を用いれば良い。例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、スピネル構造のマンガン酸リチウム(LiMn)、ニッケルコバルトマンガン酸リチウム(Li(Ni,Co,Mn)O)、オリビン構造のリン酸鉄リチウム(LiFePO)等がある。
[Core particle]
The core particle may be a known lithium transition metal complex oxide. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate with spinel structure (LiMn 2 O 4 ), lithium nickel cobalt manganate (Li (Ni, Co, Mn) O 2 ), olivine structure Lithium iron phosphate (LiFePO 4 ) and the like.

コバルト酸リチウム等の層状構造のリチウム遷移金属複合酸化物は、充放電容量、エネルギー密度等のバランスが良い非水系二次電池を得やすいので好ましい。特に遷移金属としてニッケル、コバルト及びマンガンを含有するリチウム遷移金属複合酸化物が好ましい。前記三元素中のニッケル含有量は充放電容量と合成のし易さとの兼ね合いで30mol%程度から70mol%程度、コバルト含有量はコストと出力特性との兼ね合いで10mol%から35mol%程度、マンガン含有量は熱的安定性と充放電容量との兼ね合いで20mol%程度から35mol%程度が好ましい。ニッケル、コバルト及びマンガン以外の遷移金属としてはタングステン、ジルコニウム、モリブデン、ニオブ等を目的に応じて全遷移金属の2mol%程度まで含有させても良い。組成として表すと、一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物が特に好ましい。 A lithium transition metal complex oxide having a layered structure such as lithium cobaltate is preferable because it is easy to obtain a non-aqueous secondary battery having a good balance of charge and discharge capacity, energy density and the like. In particular, lithium transition metal complex oxides containing nickel, cobalt and manganese as transition metals are preferred. The content of nickel in the above three elements is about 30 mol% to about 70 mol% in terms of balance between charge and discharge capacity and easiness of synthesis, and the content of cobalt is about 10 mol% to about 35 mol% in terms of cost and output characteristics. The amount is preferably about 20 mol% to about 35 mol% in view of thermal stability and charge and discharge capacity. As transition metals other than nickel, cobalt and manganese, tungsten, zirconium, molybdenum, niobium and the like may be contained up to about 2 mol% of all transition metals according to the purpose. When expressed as a composition of the general formula Li a Ni 1-x-y Co x Mn y L z O 2 (0.95 ≦ a ≦ 1.2,0.10 ≦ x ≦ 0.35,0.20 ≦ y ≦ Particularly preferred is a lithium transition metal complex oxide represented by 0.35, 0 ≦ z ≦ 0.02, L is at least one element selected from the group consisting of W, Zr, Mo and Nb.

[被覆層]
被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む。正極活物質がこれら特定の少なくとも二種の元素を含有する被覆層を有することで、固体電解質と正極活物質との界面抵抗が劇的に低下し、結果として全固体二次電池の放電容量が増加する。また、正極活物質全体の結晶構造が安定化し、高電流で充放電しても非水電解液中の電解質と正極活物質との反応が抑制される。
[Covering layer]
The covering layer contains at least one element M selected from the group consisting of boron and tungsten, and niobium. When the positive electrode active material has a coating layer containing these specific at least two elements, the interfacial resistance between the solid electrolyte and the positive electrode active material is dramatically reduced, and as a result, the discharge capacity of the all solid secondary battery is increased. To increase. Moreover, the crystal structure of the whole positive electrode active material is stabilized, and even when charging and discharging with high current, the reaction between the electrolyte in the non-aqueous electrolyte and the positive electrode active material is suppressed.

被覆層中の元素Mは主に正極活物質全体の結晶構造の安定化に寄与する。元素Mが少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。元素Mがコア粒子に対して、0.1mol%以上5.0mol%以下ならニオブと共存することで前述の効果を十分に発揮することが出来、好ましい。 The element M in the covering layer mainly contributes to the stabilization of the crystal structure of the whole positive electrode active material. If the amount of the element M is too small, the above-mentioned effects become insufficient, and if it is too large, the capacity decreases. If the element M is 0.1 mol% or more and 5.0 mol% or less with respect to the core particle, the above effect can be sufficiently exhibited by coexisting with niobium, which is preferable.

被覆層中の元素Mは主に正極活物質全体の結晶構造の安定化に寄与する。元素Mが少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。元素Mがコア粒子に対して、0.1mol%以上7.0mol%以下ならニオブと共存することで前述の効果を十分に発揮することが出来、好ましい。 The element M in the covering layer mainly contributes to the stabilization of the crystal structure of the whole positive electrode active material. If the amount of the element M is too small, the above-mentioned effects become insufficient, and if it is too large, the capacity decreases. If the element M is 0.1 mol% or more and 7.0 mol% or less with respect to the core particle, the above effect can be sufficiently exhibited by coexisting with niobium, which is preferable.

被覆層における元素Mとニオブとの比率を適切に調節すると、元素M及びニオブの夫々の効果が増幅されるので好ましい。好ましい比率の範囲は、元素Mがニオブに対して、0.01mol%以上50.0mol%以下となる範囲である。
Appropriate adjustment of the ratio of the element M to niobium in the covering layer is preferable because the effects of the element M and niobium are amplified. The preferable range of the ratio is 0.01 mol% or more of the element M to niobium . It is a range which becomes 0 mol% or less.

次に本発明の正極活物質の製造方法を説明する。本発明の正極活物質は、公知の手法で得られるコア粒子に公知の手法で被覆層を形成すれば良い。   Next, the method for producing the positive electrode active material of the present invention will be described. In the positive electrode active material of the present invention, a coating layer may be formed on core particles obtained by a known method by a known method.

被覆層の好ましい形成方法について、図1を用いて説明する。なお、図1は概念を説明するためのものであり、図内の各要素は誇張、省略等されている。   The preferable formation method of a coating layer is demonstrated using FIG. FIG. 1 is for explaining the concept, and each element in the figure is exaggerated, omitted, and the like.

[第一の被覆工程]
まず、コア粒子1の表面に、元素Mを含む化合物からなる第一の被覆原料2を付着させ(図1の(a))、第一の被覆粒子3を得る(図1の(b))。図1の(b)において、第一の被覆原料2はコア粒子1の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。
[First coating process]
First, the first covering material 2 made of a compound containing the element M is attached to the surface of the core particle 1 ((a) in FIG. 1) to obtain the first covering particle 3 ((b) in FIG. 1) . In (b) of FIG. 1, although the 1st coating raw material 2 coat | covers the whole surface of the core particle 1 uniformly, such a form is only an example, It is not necessary to be such a form necessarily. .

第一の被覆原料は、元素Mを含んでいればどのような化合物でもよい。酸化物、ハロゲン化物、オキソ酸塩、水酸化物等が取り得る。また、本明細書において、「元素Mを含む化合物」は元素Mの単体をも含むものとする。また、元素Mが複数選択される場合は、複数の元素Mの合金も含むものとする。   The first coating material may be any compound as long as it contains the element M. An oxide, a halide, an oxo acid salt, a hydroxide and the like can be taken. Further, in the present specification, the “compound containing the element M” also includes a single element of the element M. In addition, when a plurality of elements M are selected, an alloy of a plurality of elements M is also included.

第一の被覆原料をコア粒子の表面に付着させる手法は特に限定されない。例えばコア粒子と第一の被覆原料とを高速で撹拌してメカノケミカルに付着させる、コア粒子と第一の被覆原料を分散媒に分散し、混合した後乾燥させて物理的に付着させる、第一の被覆原料の前駆体となる水溶液とコア粒子とを混合し、コア粒子の表面に第一の被覆原料を析出させる、等の手法がとり得る。   There is no particular limitation on the method of attaching the first coating material to the surface of the core particle. For example, the core particles and the first coating material are stirred at high speed and attached to the mechanochemical, the core particles and the first coating material are dispersed in a dispersion medium, mixed and then dried and physically attached, A method may be adopted such as mixing an aqueous solution as a precursor of one coating material and core particles and depositing a first coating material on the surface of the core particles.

[第一の熱処理工程]
得られる第一の被覆粒子は、さらに熱処理を施してもよい。熱処理によって、第一の被覆原料とコア粒子の一部が反応し、コア粒子の表面のより多くの領域が第一の被覆原料等で被覆される。この結果、全固体二次電池においては放電容量がより増加する。そのため、第一の熱処理工程は全固体二次電池用正極活物質を得る場合に特に好ましい。
[First heat treatment process]
The resulting first coated particles may be further subjected to heat treatment. The heat treatment causes the first coating material and a part of the core particles to react, and more areas of the surface of the core particles are coated with the first coating material and the like. As a result, the discharge capacity is further increased in the all solid secondary battery. Therefore, the first heat treatment step is particularly preferable in the case of obtaining a positive electrode active material for an all solid secondary battery.

第一の熱処理工程における熱処理温度は、高過ぎると第一の被覆原料とコア粒子との反応が進み、コア粒子本来の特性を損ねかねないので注意する。熱処理温度が00℃以下なら通常問題ない。熱処理温度として効果が発現するのは150℃程度からである。このため、熱処理温度は150℃以上500℃以下が好ましい。 It should be noted that if the heat treatment temperature in the first heat treatment step is too high, the reaction between the first coating material and the core particles may proceed, which may impair the inherent properties of the core particles. Not usually a problem if the heat treatment temperature is 5 00 ℃ or less. The effect of the heat treatment temperature is about 150 ° C. Therefore, the heat treatment temperature is preferably 150 ° C. or more and 500 ° C. or less.

[第二の被覆工程]
得られる第一の被覆粒子3の表面に、ニオブを含む化合物からなる第二の被覆原料4を付着させ(図1の(c))、第二の被覆粒子5を得、(図1の(d))正極活物質とする。図1の(d)において、第二の被覆原料2は第一の被覆粒子3の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、図1の(d)において、第二の被覆粒子5は二層からなる被覆層を有しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、被覆層は第一の被覆原料に由来する領域と第二の被覆原料に由来する領域とが明確に区別される必要はない。
[Second coating step]
The second coated raw material 4 consisting of a compound containing niobium is attached to the surface of the first coated particle 3 obtained ((c) in FIG. 1), to obtain a second coated particle 5 (see FIG. d) The positive electrode active material is used. In (d) of FIG. 1, although the 2nd coating raw material 2 coat | covers the whole surface of the 1st coated particle 3 uniformly, such a form is only an example and is not necessarily such a form. There is no need. Further, in FIG. 1D, the second coated particle 5 has a two-layered coating layer, but such a form is merely an example, and it is not necessary to be such a form. . In addition, the coating layer does not have to be clearly distinguished from the area derived from the first coating material and the area derived from the second coating material.

第二の被覆原料として取り得る化合物及び第二の被覆原料を第一の被覆粒子の表面に付着させる手法については、第一の被覆工程のそれらに準ずる。   About the method which adheres the compound which can be taken as a 2nd coating raw material and a 2nd coating raw material to the surface of 1st coating particle, it applies to them of a 1st coating process.

[第二の熱処理工程]
得られる第二の被覆粒子は、さらに熱処理を施してもよい。熱処理によって被覆が強固になるので好ましい。
[Second heat treatment step]
The resulting second coated particles may be further subjected to heat treatment. The heat treatment is preferable because the coating becomes strong.

第二の熱処理工程における熱処理温度は、高過ぎると第二の被覆原料と第一の被覆粒子との反応が進み、被覆層本来の特性を損ねかねないので注意する。熱処理温度が500℃以下なら通常問題ない。熱処理温度として効果が発現するのは250℃程度からである。このため、熱処理温度は250℃以上00℃以下が好ましい。 It should be noted that if the heat treatment temperature in the second heat treatment step is too high, the reaction between the second coating material and the first coated particles may proceed to damage the original characteristics of the coating layer. There is usually no problem if the heat treatment temperature is 500 ° C. or less. The effect of the heat treatment temperature is about 250 ° C. Therefore, the heat treatment temperature is preferably 5 00 ° C. less than 250 ° C..

以下、実施例等を用いてより具体的に説明する。   Hereinafter, the present invention will be described more specifically using examples and the like.

一般式Li1.12Ni0.33Co0.33Mn0.330.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中400℃で10時間熱処理し、第一の被覆粒子を得た。 Lithium transition metal complex oxide represented by general formula Li 1.12 Ni 0.33 Co 0.33 Mn 0.33 W 0.005 O 2 is used as a core particle, and 0.5 mol% as tungsten with respect to the core particle The tungsten oxide (VI) and core particles were mixed in a high speed shear mixer to obtain a first mixture. After mixing, the first mixture was heat treated in air at 400 ° C. for 10 hours to obtain first coated particles.

第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして2.0mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中350℃で5時間熱処理し、目的の正極組成物を得た。   A commercially available niobium oxide sol (containing 5% as niobium) is dropped to an amount of 2.0 mol% as niobium with respect to the core particles while the first coated particles are stirred with a high-speed shear mixer, and the second mixture is added. Obtained. After dropping, the second mixture was heat-treated at 350 ° C. in the atmosphere for 5 hours to obtain the intended positive electrode composition.

酸化タングステン(VI)の代わりに、コア粒子に対してホウ素として0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中250℃で10時間熱処理し、第一の被覆粒子を得た。以降実施例1と同様に行い、目的の正極組成物を得た。   Instead of tungsten oxide (VI), 0.5 mol% of boric acid as boron with respect to the core particles and the core particles were mixed by a high speed shear mixer to obtain a first mixture. After mixing, the first mixture was heat treated in air at 250 ° C. for 10 hours to obtain first coated particles. The subsequent steps were performed in the same manner as in Example 1 to obtain a target positive electrode composition.

実施例1におけるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)及びコア粒子に対して0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。以降実施例1と同様に行い、目的の正極組成物を得た。   The lithium transition metal complex oxide in Example 1 is used as a core particle, 0.5 mol% of tungsten (VI) oxide as tungsten with respect to the core particle, and 0.5 mol% of boric acid and core particles with respect to the core particle. The mixture was mixed with a high speed shear mixer to obtain a first mixture. The subsequent steps were performed in the same manner as in Example 1 to obtain a target positive electrode composition.

ホウ酸の混合量をコア粒子に対してホウ素として4.0mol%とした以外は実施例2と同様にし、目的の正極組成物を得た。   A target positive electrode composition was obtained in the same manner as in Example 2 except that the amount of boric acid mixed was 4.0 mol% as boron based on the core particles.

[比較例1]
実施例1におけるコア粒子を比較用に用いた。
Comparative Example 1
The core particles in Example 1 were used for comparison.

一般式Li1.05Ni0.6Co0.2Mn0.2Zr0.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してホウ素として0.5mol%のホウ酸を高速せん断型ミキサーで混合し、第一の混合物を得た。 Lithium transition metal complex oxide represented by the general formula Li 1.05 Ni 0.6 Co 0.2 Mn 0.2 Zr 0.005 O 2 is used as a core particle, and 0.5 mol% as boron based on the core particle The boric acid was mixed with a high speed shear mixer to obtain a first mixture.

第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。   Commercially available niobium oxide sol (containing 5% as niobium) is added dropwise to the core particles in an amount of 0.5 mol% as niobium while stirring the first coated particles with a high speed shear mixer, and the second mixture is added. Obtained. After dropping, the second mixture was heat-treated in air at 450 ° C. for 10 hours to obtain a target positive electrode composition.

[比較例2]
実施例5におけるコア粒子を比較用に用いた。
Comparative Example 2
The core particles in Example 5 were used for comparison.

[比較例3]
実施例5と同様のリチウム遷移金属複合酸化物をコア粒子とし、高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。
Comparative Example 3
A lithium transition metal complex oxide similar to that of Example 5 is used as a core particle, and a commercially available niobium oxide sol (containing 5% as niobium) is mixed with a core particle in an amount of 0.5 mol% as niobium with stirring using a high speed shear mixer. The following amount was dropped to obtain a second mixture. After dropping, the second mixture was heat-treated in air at 450 ° C. for 10 hours to obtain a target positive electrode composition.

<3.全固体二次電池の評価>
実施例1〜4及び比較例1の正極活物質を用いて全固体二次電池を作製し、電池特性を評価した。
<3. Evaluation of all solid secondary battery>
All solid secondary batteries were produced using the positive electrode active materials of Examples 1 to 4 and Comparative Example 1, and the battery characteristics were evaluated.

[3−1.固体電解質の作製]
アルゴン雰囲気下で硫化リチウム及び五硫化リンを、その物質量比が7:3となるように秤量した。秤量物をメノウ乳鉢で粉砕混合し、硫化物ガラスを得た。これを固体電解質として用いた。
[3-1. Preparation of solid electrolyte]
Under an argon atmosphere, lithium sulfide and phosphorus pentasulfide were weighed so that their mass ratio would be 7: 3. The weighed material was ground and mixed in an agate mortar to obtain a sulfide glass. This was used as a solid electrolyte.

[3−2.正極の作製]
正極活物質60重量部、固体電解質36重量部及びVGCF(気相法炭素繊維)4重量部を混合し、正極合材を得た。
[3-2. Preparation of positive electrode]
60 parts by weight of a positive electrode active material, 36 parts by weight of a solid electrolyte, and 4 parts by weight of VGCF (gas phase grown carbon fiber) were mixed to obtain a positive electrode mixture.

[3−3.負極の作製]
厚さ0.05mmのインジウム箔を直径11.00mmの円形にくり抜き、負極とした。
[3-3. Fabrication of negative electrode]
An indium foil having a thickness of 0.05 mm was cut out into a circular shape having a diameter of 11.00 mm and used as a negative electrode.

[3−4.評価用電池の組み立て]
内径11.00mmの円筒状外型に外径11.00mmの円柱状下型を、外型下部から挿入した。下型の上端は外型の中間に位置に固定した。この状態で外型の上部から下型の上端に固体電解質80mgを投入した。投入後、外形11.00mmの円柱状上型を外型の上部から挿入した。挿入後、上型の上方から90MPaの圧力をかけて、固体電解質を成形し、固体電解質層とした。成形後上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入した。投入後、再度上型を挿入し、今度は360MPaの圧力をかけて正極合材を成形し、正極層とした。成形後上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極を投入した。投入後、再度下型を挿入し、下型の下方から150MPaの圧力をかけて負極を成形し、負極層とした。圧力をかけた状態で下型を固定し、上型に正極端子、下型に負極端子を取り付け、全固体二次電池を得た。
[3-4. Assembly of evaluation battery]
A cylindrical lower die having an outer diameter of 11.00 mm was inserted into a cylindrical outer die having an inner diameter of 11.00 mm from the lower portion of the outer die. The upper end of the lower mold was fixed at a position in the middle of the outer mold. In this state, 80 mg of the solid electrolyte was charged from the top of the outer mold to the top of the lower mold. After the introduction, a cylindrical upper mold having an outer diameter of 11.00 mm was inserted from the top of the outer mold. After insertion, a pressure of 90 MPa was applied from above the upper mold to form a solid electrolyte to obtain a solid electrolyte layer. After molding, the upper mold was pulled out from the upper part of the outer mold, and 20 mg of the positive electrode mixture was charged from the upper part of the outer mold to the upper part of the solid electrolyte layer. After charging, the upper die was inserted again, and this time, a pressure of 360 MPa was applied to shape the positive electrode mixture, to form a positive electrode layer. After molding, the upper mold was fixed, the lower mold was released from fixation, and the lower mold was pulled out from the lower part of the lower mold, and the negative electrode was introduced from the lower part of the lower mold to the lower part of the solid electrolyte layer. After charging, the lower mold was inserted again, and a pressure of 150 MPa was applied from below the lower mold to mold the negative electrode, thereby forming a negative electrode layer. The lower mold was fixed in a state where pressure was applied, and a positive electrode terminal was attached to the upper mold and a negative electrode terminal was attached to the lower mold to obtain an all solid secondary battery.

[3−5.初期放電容量]
電流密度0.195μA/cm、充電電圧4.0Vで定電流定電圧充電を行った。充電後、電流密度0.195μA/cm、放電電圧1.9Vで定電流放電を行い、放電容量Qを測定した。
[3-5. Initial discharge capacity]
Constant current constant voltage charging was performed at a current density of 0.195 μA / cm 2 and a charging voltage of 4.0 V. After charging, the current density 0.195μA / cm 2, a constant current discharge at a discharge voltage 1.9V, the discharge capacity was measured Q d.

<4.非水電解液二次電池の評価>
実施例5及び比較例2、3の正極活物質を用いて非水電解液二次電池を作製し、電池特性を評価した。
<4. Evaluation of Nonaqueous Electrolyte Secondary Battery>
A non-aqueous electrolyte secondary battery was produced using the positive electrode active materials of Example 5 and Comparative Examples 2 and 3, and the battery characteristics were evaluated.

[4−1.正極の作製]
正極組成物85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッ化ビニリデン)5.0重量部を、NMP(ノルマルメチル−2−ピロリドン)に分散させて正極スラリーを調製した。得られる正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[4-1. Preparation of positive electrode]
A positive electrode slurry was prepared by dispersing 85 parts by weight of the positive electrode composition, 10 parts by weight of acetylene black, and 5.0 parts by weight of PVDF (polyvinylidene fluoride) in NMP (normal methyl 2-pyrrolidone). The obtained positive electrode slurry was applied to an aluminum foil, dried, compression molded using a roll press, and cut into a predetermined size to obtain a positive electrode.

[4−2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調製した。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[4-2. Fabrication of negative electrode]
A negative electrode slurry was prepared by dispersing 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethylcellulose), and 1.0 parts by weight of SBR (styrene butadiene rubber) in water. The obtained negative electrode slurry was applied to a copper foil, dried, compression molded using a roll press, and cut into a predetermined size to obtain a negative electrode.

[4−3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られる混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/lになるように溶解させて、非水電解液を得た。
[4-3. Preparation of non-aqueous electrolyte]
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7, and used as a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the resulting mixed solvent to a concentration of 1 mol / l to obtain a non-aqueous electrolytic solution.

[4−4.評価用電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、ラミネートタイプの非水電解液二次電池を得た。
[4-4. Assembly of evaluation battery]
After lead electrodes were attached to the current collectors of the positive electrode and the negative electrode, respectively, vacuum drying was performed at 120 ° C. Subsequently, a separator made of porous polyethylene was disposed between the positive electrode and the negative electrode, and the separator was housed in a bag-like laminate pack. After storage, it was vacuum dried at 60 ° C. to remove the moisture adsorbed on each member. After vacuum drying, the non-aqueous electrolyte described above was injected into the laminate pack and sealed, to obtain a laminate-type non-aqueous electrolyte secondary battery.

[4−5.高電流サイクル特性]
非水電解液二次電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後、電池を45℃に設定した恒温槽内に入れ、充電電圧4.4V、充電電流2.0C(1C:1時間で放電が終了する電流)での充電と、放電電圧2.75V、放電電流2.0Cでの放電を1サイクルとし、充放電を繰り返した。nサイクル目の放電容量を1サイクル目の放電容量で除した値を、nサイクル目の放電容量維持率Qs(n)とした。Qs(n)が高いことは、サイクル特性が良いことを意味する。
[4-5. High current cycle characteristics]
The non-aqueous electrolyte secondary battery was subjected to aging with a weak current, and the positive electrode and the negative electrode were sufficiently impregnated with the electrolyte. After aging, place the battery in a thermostatic chamber set at 45 ° C., charge at a charge voltage of 4.4 V, charge current of 2.0 C (1 C: current at which discharge ends in 1 hour), discharge voltage of 2.75 V, The discharge at a discharge current of 2.0 C was regarded as one cycle, and charge and discharge were repeated. The value obtained by dividing the discharge capacity at the nth cycle by the discharge capacity at the first cycle is taken as the discharge capacity maintenance rate Qs (n) at the nth cycle. A high Qs (n) means good cycle characteristics.

[4−6.出力特性]
非水電解液二次電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流での放電と、微弱電流での充電を繰り返した。10回目の充電における充電容量を電池の全充電容量とした。11回目の放電後、全充電容量の4割まで充電した。11回目の充電後、電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、放電電流0.02A、0.04A、0.06Aで放電し、各放電時の電圧を測定した。横軸に電流を、縦軸に電圧をとって交点をプロットし、交点を結んだ直線の傾きの絶対値を直流内部抵抗Rとした。Rが低いことは、出力特性が良いことを意味する。
[4-6. Output characteristics]
The non-aqueous electrolyte secondary battery was aged by passing a weak current, and the positive electrode and the negative electrode were sufficiently impregnated with the electrolyte. After that, discharge at high current and charge at weak current were repeated. The charge capacity at the 10th charge was taken as the total charge capacity of the battery. After the 11th discharge, the battery was charged to 40% of the total charge capacity. After the 11th charge, put the battery in a thermostat set at -25 ° C, set it for 6 hours, and then discharge it with discharge current 0.02A, 0.04A, 0.06A, and measure the voltage at each discharge did. The abscissa represents the current, and the ordinate represents the voltage. The intersection is plotted, and the absolute value of the slope of the straight line connecting the intersections is taken as the DC internal resistance R. Low R means that the output characteristics are good.

実施例1〜4及び比較例1についてそれらの製造条件を表1に、正極活物質の特性及び該正極活物質を用いた全固体二次電池の特性を表2に示す。   The production conditions of Examples 1 to 4 and Comparative Example 1 are shown in Table 1, and the characteristics of the positive electrode active material and the characteristics of the all solid secondary battery using the positive electrode active material are shown in Table 2.

Figure 0006524610
Figure 0006524610

Figure 0006524610
Figure 0006524610

表1、2から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例1〜4の正極活物質を用いた全固体二次電池の放電容量が極めて高くなっている。これは、被覆層の元素M及びニオブが共に存在することで正極活物質と固体電解質との界面抵抗を劇的に低減した結果と考えられる。   As can be seen from Tables 1 and 2, the discharge capacity of the all-solid secondary battery using the positive electrode active material of Examples 1 to 4 in which the covering layer contains both the element M and niobium is extremely high. This is considered to be a result of the interface resistance between the positive electrode active material and the solid electrolyte being dramatically reduced by the coexistence of the element M and the niobium of the covering layer.

実施例5及び比較例2、3についてそれらの製造条件を表3に、正極活物質の特性及び該正極活物質を用いた非水電解液二次電池の特性を表4に示す。   Table 3 shows the manufacturing conditions of Example 5 and Comparative Examples 2 and 3 and Table 4 shows the characteristics of the positive electrode active material and the characteristics of the non-aqueous electrolyte secondary battery using the positive electrode active material.

Figure 0006524610
Figure 0006524610

Figure 0006524610
Figure 0006524610

表3、4から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例5の正極活物質を用いた非水電解液二次電池の高電流サイクル特性及び出力特性が共によい。特に高電流サイクル特性の向上は、被覆層に元素M及びニオブが存在することで急速な充放電にも耐えられる安定した結晶構造が得られた結果と考えられる。   As can be seen from Tables 3 and 4, both the high current cycle characteristics and the output characteristics of the non-aqueous electrolyte secondary battery using the positive electrode active material of Example 5 in which the covering layer contains both the element M and niobium are good. In particular, the improvement of the high current cycle characteristics is considered to be the result of the presence of the element M and niobium in the coating layer, which results in a stable crystal structure that can withstand rapid charge and discharge.

本発明の非水系二次電池用正極活物質を用いると、大電流を取り出しても放電容量の高い全固体二次電池を得ることが出来る。あるいは、大電流で充放電を繰り返しても長期間使用可能な非水電解液二次電池を得ることが出来る。このようにして得られる非水系二次電池は、電気自動車等の大型機器の動力源として特に好適に利用可能である。   By using the positive electrode active material for a non-aqueous secondary battery of the present invention, it is possible to obtain an all-solid secondary battery having a high discharge capacity even when taking out a large current. Alternatively, it is possible to obtain a non-aqueous electrolyte secondary battery which can be used for a long time even if charge and discharge are repeated with a large current. The non-aqueous secondary battery obtained in this manner can be particularly suitably used as a power source for large-sized devices such as electric vehicles.

1 コア粒子
2 第一の被覆原料
3 第一の被覆粒子
4 第二の被覆原料
5 第二の被覆粒子
1 core particle 2 first coated material 3 first coated particle 4 second coated material 5 second coated particle

Claims (9)

リチウム遷移金属複合酸化物からなるコア粒子と、
前記コア粒子の表面に存在する第一被覆層と、
前記第一被覆層の表面に存在する第二被覆層を含み、
前記第一被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mを含み、
前記第二被覆層は、ニオブを含み、
前記リチウム遷移金属複合酸化物が、層状構造を有し、
一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表される
非水系二次電池用正極活物質。
Core particles comprising lithium transition metal complex oxide,
A first covering layer present on the surface of the core particle;
Including a second covering layer present on the surface of the first covering layer,
The first covering layer contains at least one element M selected from the group consisting of boron and tungsten,
The second covering layer contains niobium,
The lithium transition metal complex oxide has a layered structure,
Formula Li a Ni 1-x-y Co x Mn y L z O 2 (0.95 ≦ a ≦ 1.2,0.10 ≦ x ≦ 0.35,0.20 ≦ y ≦ 0.35,0 The positive electrode active material for non-aqueous secondary batteries represented by <= z <= 0.02, L is at least 1 type of element selected from the group which consists of W, Zr, Mo, and Nb.
前記第一被覆層における前記元素Mが、前記コア粒子に対して0.1mol%以上5.0mol%以下である、請求項に記載の正極活物質。 The positive electrode active material according to claim 1 , wherein the element M in the first covering layer is 0.1 mol% or more and 5.0 mol% or less with respect to the core particle. 前記第二被覆層における前記ニオブが、前記コア粒子に対して0.1mol%以上7.0mol%以下である、請求項又はに記載の正極活物質。 Wherein said niobium in the second coating layer is not less than 0.1 mol% 7.0 mol% or less with respect to the core particles, the positive active material of claim 1 or 2. 前記第一および第二被覆層における前記元素Mが前記ニオブに対して0.01mol%以上50.0mol%である請求項乃至のいずれか一項に記載の正極活物質。 0.01 mol% or more of the element M in the first and second covering layers with respect to the niobium 50 . The positive electrode active material according to any one of claims 1 to 3 , which is 0 mol%. リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在し、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mとニオブとを含む被覆層と、を含む非水系二次電池用正極活物質の製造方法であって、
前記コア粒子の表面に元素Mを含む化合物からなる第一の被覆原料を付着させて第一の被覆粒子を得る第一の被覆工程と、
前記第一の被覆粒子の表面にニオブを含む化合物からなる第二の被覆原料を付着させて第二の被覆粒子を得る第二の被覆工程と、
を含み、前記リチウム遷移金属複合酸化物が、層状構造を有し、
一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表される、製造方法。
A non-aqueous system comprising a core particle comprising a lithium transition metal complex oxide, and a covering layer present on the surface of the core particle and containing at least one element M selected from the group consisting of boron and tungsten and niobium. A method of manufacturing a positive electrode active material for a secondary battery,
A first coating step of depositing a first coating material comprising a compound containing an element M on the surface of the core particle to obtain a first coated particle;
A second coating step of depositing a second coating material consisting of a compound containing niobium on the surface of the first coated particle to obtain a second coated particle;
And the lithium transition metal complex oxide has a layered structure,
Formula Li a Ni 1-x-y Co x Mn y L z O 2 (0.95 ≦ a ≦ 1.2,0.10 ≦ x ≦ 0.35,0.20 ≦ y ≦ 0.35,0 A manufacturing method represented by ≦ z ≦ 0.02, L is at least one element selected from the group consisting of W, Zr, Mo and Nb).
前記第一の被覆粒子を熱処理する第一の熱処理工程をさらに含む、請求項に記載の製造方法。 The method according to claim 5 , further comprising a first heat treatment step of heat treating the first coated particles. 前記第二の被覆粒子を熱処理する第二の熱処理工程をさらに含む、請求項又はに記載の製造方法。 The manufacturing method according to claim 5 or 6 , further comprising a second heat treatment step of heat treating the second coated particles. 前記第一の熱処理工程における熱処理温度が150℃以上500℃以下である、請求項に記載の製造方法。 The manufacturing method according to claim 6 whose heat treatment temperature in said 1st heat treatment process is 150 ° C or more and 500 ° C or less. 前記第二の熱処理工程における熱処理温度が250℃以上500℃以下である、請求項に記載の製造方法。 The manufacturing method according to claim 7 whose heat treatment temperature in said 2nd heat treatment process is 250 ° C or more and 500 ° C or less.
JP2014080382A 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same Active JP6524610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015201388A JP2015201388A (en) 2015-11-12
JP6524610B2 true JP6524610B2 (en) 2019-06-05

Family

ID=54552457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080382A Active JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6524610B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222337B2 (en) * 2016-12-19 2017-11-01 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2019066403A2 (en) * 2017-09-28 2019-04-04 주식회사 엘지화학 Electrode active material complex for lithium secondary battery, and method for producing electrode active material complex
EP3828968A4 (en) 2018-07-25 2021-09-29 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material
US20220033276A1 (en) * 2019-02-27 2022-02-03 Panasonic Intellectual Property Management Co., Ltd. Method for producing positive electrode active substance for non-aqueous electrolyte secondary battery
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
EP3896761A4 (en) * 2019-03-22 2022-03-09 Lg Energy Solution, Ltd. Cathode active material particles for sulfide-based all-solid battery
US20220166007A1 (en) * 2019-03-29 2022-05-26 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2021025370A1 (en) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 Cathode active material for lithium secondary battery
EP4030509A4 (en) 2019-09-11 2022-11-23 Mitsui Mining & Smelting Co., Ltd. Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method
KR20230085517A (en) * 2021-12-07 2023-06-14 주식회사 엘지에너지솔루션 Positive electrode active material for sulfide all-solid-state battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765254B2 (en) * 2004-02-13 2011-09-07 日亜化学工業株式会社 Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
US9553306B2 (en) * 2011-04-19 2017-01-24 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
WO2014049964A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP2015201388A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
US20180047980A1 (en) Positive active material for rechargeable lithium battery
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
KR101485382B1 (en) Lithium secondary battery
JP5491459B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
WO2020078361A1 (en) Secondary battery
JP5491461B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2012033482A (en) Composite material for electrode, method for manufacturing the same, and lithium ion battery prepared therewith
KR20080109298A (en) Cathode comprising active material composite and lithium battery using the same
KR20190087948A (en) Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
KR20140084567A (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
KR102159243B1 (en) Cathode active material of lithium secondary battery
JP5373858B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5491462B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP5449265B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2014170656A (en) Method for producing positive electrode active material for nonaqueous secondary battery
CN112054193A (en) Positive electrode material for secondary battery and secondary battery using the same
KR20130052926A (en) Zno-mno composite anode active material for lithium secondary battery and synthesis method thereof
JP5836601B2 (en) Nonaqueous electrolyte secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250