JP2015201388A - Cathode active material for non-aqueous secondary battery and manufacturing method for the same - Google Patents

Cathode active material for non-aqueous secondary battery and manufacturing method for the same Download PDF

Info

Publication number
JP2015201388A
JP2015201388A JP2014080382A JP2014080382A JP2015201388A JP 2015201388 A JP2015201388 A JP 2015201388A JP 2014080382 A JP2014080382 A JP 2014080382A JP 2014080382 A JP2014080382 A JP 2014080382A JP 2015201388 A JP2015201388 A JP 2015201388A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
coating
electrode active
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080382A
Other languages
Japanese (ja)
Other versions
JP6524610B2 (en
Inventor
吉田 秀樹
Hideki Yoshida
秀樹 吉田
将人 園尾
Masahito Sonoo
将人 園尾
晃輔 下北
Kosuke Shimokita
晃輔 下北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014080382A priority Critical patent/JP6524610B2/en
Publication of JP2015201388A publication Critical patent/JP2015201388A/en
Application granted granted Critical
Publication of JP6524610B2 publication Critical patent/JP6524610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a cathode active material that can implement a nonaqueous secondary battery that can endure use in a field where larger scale and longer-term use are assumed.SOLUTION: A cathode active material contains core particles formed of lithium transition metal composite oxide and coating layers formed on the surfaces of the core particles. The coating layer contains at least one kind of element M selected from the group consisting of boron and tungsten, and niobium. A manufacturing method comprises a first coating step of coating the surfaces of the core particles with first coating raw material comprising compounds containing the element M to obtain first coated particles, and a second coating step of coating the surfaces of the first coated particles with second coating raw material comprising compounds containing niobium to obtain second coated particles.

Description

本発明は非水系二次電池用正極活物質及びその製造方法に関する。   The present invention relates to a positive electrode active material for a non-aqueous secondary battery and a method for producing the same.

リチウムイオン二次電池に代表される非水系二次電池は、正極活物質にアルカリ金属イオンを脱離・挿入可能な物質を、負極活物質に金属リチウム等のアルカリ金属単体あるいはアルカリ金属イオンを脱離・挿入可能な物質を、アルカリ金属イオン伝導媒体に非水電解液等を用い、アルカリ金属イオン伝導媒体を通じて正負極間でアルカリ金属イオンをやり取りし、外部と電力をやり取りする電池である。リチウムイオン二次電池においては、コバルト酸リチウム等のリチウム遷移金属複合酸化物が正極活物質として代表的に用いられている。   A non-aqueous secondary battery represented by a lithium ion secondary battery has a positive electrode active material that can desorb / insert alkali metal ions, and a negative electrode active material that removes alkali metal alone or alkali metal ions such as metallic lithium. A battery that exchanges electric power with the outside by exchanging alkali metal ions between positive and negative electrodes through an alkali metal ion conductive medium using a non-aqueous electrolyte or the like as a separable / insertable substance. In lithium ion secondary batteries, lithium transition metal composite oxides such as lithium cobaltate are typically used as positive electrode active materials.

ところで、正極活物質の界面を改質する技術に、正極活物質の表面を特定の物質で被覆する技術がある。   By the way, as a technique for modifying the interface of the positive electrode active material, there is a technique for coating the surface of the positive electrode active material with a specific substance.

特許文献1では、高温保存等によるインピーダンス上昇を抑制する目的で、LiNi0.82Co0.15Al0.03等のリチウムニッケル複合酸化物の表面に酸化ニオブ等を存在させた後に焼成する技術が提案されている。 In Patent Document 1, for the purpose of suppressing an increase in impedance due to high-temperature storage or the like, after firing niobium oxide or the like on the surface of a lithium nickel composite oxide such as LiNi 0.82 Co 0.15 Al 0.03 O 2 , firing is performed. Techniques to do this have been proposed.

特許文献2では、高容量化と充放電効率の向上を目的として、Li1.03Ni0.77Co0.20Al0.03等の複合酸化物粒子に五ホウ酸アンモニウム等のホウ酸化合物等を被着させ、次いで酸化性雰囲気下で焼成する技術が提案されている。 In Patent Document 2, for the purpose of increasing capacity and improving charge and discharge efficiency, composite oxide particles such as Li 1.03 Ni 0.77 Co 0.20 Al 0.03 O 2 are added to boron such as ammonium pentaborate. Techniques have been proposed in which an acid compound or the like is deposited and then fired in an oxidizing atmosphere.

特許文献3では、初期充放電容量を大きく劣化させることなく熱安定性を向上する目的で、Li1.03(Ni0.8Co0.20.9Al0.1等のリチウム複合酸化物粉末の表面にW等とLiとを含む表面層を形成する技術が提案されている。具体例としてはLi1.03(Ni0.8Co0.20.9Al0.1とLiWOとを混合し、752℃で熱処理したものが開示されている。 In Patent Document 3, lithium such as Li 1.03 (Ni 0.8 Co 0.2 ) 0.9 Al 0.1 O 2 is used for the purpose of improving thermal stability without greatly degrading the initial charge / discharge capacity. A technique for forming a surface layer containing W or the like and Li on the surface of the composite oxide powder has been proposed. As a specific example, a mixture of Li 1.03 (Ni 0.8 Co 0.2 ) 0.9 Al 0.1 O 2 and Li 4 WO 5 and heat-treated at 752 ° C. is disclosed.

特開2004−253305号公報Japanese Patent Laid-Open No. 2004-253305 特開2009−146739号公報JP 2009-146739 A 特開2002−75367号公報JP 2002-75367 A

これまでの非水系二次電池の改良の積み重ねに伴い、その適用分野として電気自動車の様な大型機器の動力源や、電力平準化用蓄電池等、より大規模、長期使用を想定した分野が検討されている。このような適用分野の拡大に伴い、非水系二次電池にはより充放電容量、出力特性、熱的安定性、寿命特性(保存特性、サイクル特性等)等についてより高い性能が求められている。   As non-aqueous secondary batteries have been improved so far, fields that are expected to be used for large-scale and long-term use, such as power sources for large equipment such as electric vehicles and storage batteries for power leveling, are being studied. Has been. With such expansion of application fields, non-aqueous secondary batteries are required to have higher performance in terms of charge / discharge capacity, output characteristics, thermal stability, life characteristics (storage characteristics, cycle characteristics, etc.). .

アルカリ金属イオン伝導媒体に固体電解質を採用した全固体二次電池の場合、非水電解液を採用した非水電解液二次電池の場合に比べて熱的、化学的安定性が極めて向上する。しかし、固体電解質におけるアルカリ金属イオン伝導性は非水電解液のそれに比べて低いため、取り出し電流が同じである場合、全固体二次電池の放電容量は非水電解液二次電池のそれに比べて低くなる。   In the case of an all-solid secondary battery that employs a solid electrolyte as the alkali metal ion conductive medium, the thermal and chemical stability is significantly improved as compared with the case of a non-aqueous electrolyte secondary battery that employs a non-aqueous electrolyte. However, since the alkali metal ion conductivity in the solid electrolyte is lower than that of the non-aqueous electrolyte, when the extraction current is the same, the discharge capacity of the all-solid secondary battery is compared to that of the non-aqueous electrolyte secondary battery. Lower.

非水電解液二次電池の場合も、近年の急速充電に対する要求を踏まえれば依然改良の余地がある。これは、充放電時の電流が高くなるとリチウム遷移金属複合酸化物の結晶構造が破壊され易く、非水電解液中の電解質との反応が促進されることが関係する。   In the case of non-aqueous electrolyte secondary batteries, there is still room for improvement in view of the recent demand for rapid charging. This is related to the fact that when the current during charge / discharge increases, the crystal structure of the lithium transition metal composite oxide is easily destroyed, and the reaction with the electrolyte in the nonaqueous electrolytic solution is promoted.

このように、全固体二次電池にせよ、非水電解液二次電池にせよ近年検討されてる分野への適用には克服すべき点が存在していた。本発明の目的は、より大規模、長期使用を想定した分野での使用に耐え得る非水系二次電池を実現可能な正極活物質を提供することである。   As described above, there is a point to be overcome in application to the field that has been studied recently, whether it is an all-solid secondary battery or a non-aqueous electrolyte secondary battery. The objective of this invention is providing the positive electrode active material which can implement | achieve the non-aqueous secondary battery which can endure use in the field | area which assumed larger scale and long-term use.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者は、リチウム遷移金属複合酸化物からなるコア粒子の表面に、複数の特定元素を含む被覆層を形成することで全固体二次電池における放電容量を高められること、及び高電流で充放電を繰り返しても非水電解液中の電解質と正極活物質との反応が抑制されることを見出した。   In order to achieve the above object, the present inventors have conducted intensive studies and have completed the present invention. The inventor of the present invention can increase the discharge capacity in an all-solid-state secondary battery by forming a coating layer containing a plurality of specific elements on the surface of the core particle made of lithium transition metal composite oxide, and can be charged with a high current. It has been found that the reaction between the electrolyte in the non-aqueous electrolyte and the positive electrode active material is suppressed even when the discharge is repeated.

本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層であることを特徴とする。   The positive electrode active material of the present invention includes core particles made of a lithium transition metal composite oxide and a coating layer present on the surface of the core particles, and the coating layer is at least selected from the group consisting of boron and tungsten. It is a coating layer containing a kind of element M and niobium.

本発明の正極活物質は上記の特徴を備えているため、全固体二次電池における放電容量が増加する。また、本発明の正極活物質は上記の特徴を備えているため、高電流で充放電を繰り返しても非水電解液中の電解質との反応が抑制される。このため、非水電解液二次電池において高電流サイクル特性が向上する。   Since the positive electrode active material of the present invention has the above characteristics, the discharge capacity in the all-solid secondary battery is increased. Moreover, since the positive electrode active material of this invention is equipped with said characteristic, even if it repeats charging / discharging with a high electric current, reaction with the electrolyte in a non-aqueous electrolyte is suppressed. For this reason, the high current cycle characteristic is improved in the non-aqueous electrolyte secondary battery.

図1は本発明の正極活物質を製造するため好ましい形態の一例に関する概念図である。FIG. 1 is a conceptual diagram relating to an example of a preferred form for producing the positive electrode active material of the present invention.

以下、本発明の正極活物質及びその製造方法について、実施の形態及び実施例を用いて詳細に説明する。   Hereinafter, the positive electrode active material and the manufacturing method thereof of the present invention will be described in detail using embodiments and examples.

本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含む。以下、主にこれらについて説明する。   The positive electrode active material of the present invention includes core particles made of a lithium transition metal composite oxide and a coating layer present on the surface of the core particles. Hereinafter, these will be mainly described.

[コア粒子]
コア粒子は公知のリチウム遷移金属複合酸化物を用いれば良い。例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、スピネル構造のマンガン酸リチウム(LiMn)、ニッケルコバルトマンガン酸リチウム(Li(Ni,Co,Mn)O)、オリビン構造のリン酸鉄リチウム(LiFePO)等がある。
[Core particles]
For the core particles, a known lithium transition metal composite oxide may be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate having a spinel structure (LiMn 2 O 4 ), lithium nickel cobalt manganate (Li (Ni, Co, Mn) O 2 ), olivine structure And lithium iron phosphate (LiFePO 4 ).

コバルト酸リチウム等の層状構造のリチウム遷移金属複合酸化物は、充放電容量、エネルギー密度等のバランスが良い非水系二次電池を得やすいので好ましい。特に遷移金属としてニッケル、コバルト及びマンガンを含有するリチウム遷移金属複合酸化物が好ましい。前記三元素中のニッケル含有量は充放電容量と合成のし易さとの兼ね合いで30mol%程度から70mol%程度、コバルト含有量はコストと出力特性との兼ね合いで10mol%から35mol%程度、マンガン含有量は熱的安定性と充放電容量との兼ね合いで20mol%程度から35mol%程度が好ましい。ニッケル、コバルト及びマンガン以外の遷移金属としてはタングステン、ジルコニウム、モリブデン、ニオブ等を目的に応じて全遷移金属の2mol%程度まで含有させても良い。組成として表すと、一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物が特に好ましい。 A lithium transition metal composite oxide having a layered structure such as lithium cobaltate is preferable because a non-aqueous secondary battery having a good balance of charge / discharge capacity, energy density, and the like can be easily obtained. In particular, lithium transition metal composite oxides containing nickel, cobalt and manganese as transition metals are preferred. The nickel content in the three elements is about 30 to 70 mol% in terms of charge / discharge capacity and ease of synthesis, and the cobalt content is about 10 to 35 mol% in terms of cost and output characteristics, and contains manganese. The amount is preferably about 20 mol% to about 35 mol% in view of thermal stability and charge / discharge capacity. As transition metals other than nickel, cobalt, and manganese, tungsten, zirconium, molybdenum, niobium, or the like may be contained up to about 2 mol% of the total transition metals depending on the purpose. Expressed as a composition, the general formula Li a Ni 1-xy Co x Mn y L z O 2 (0.95 ≦ a ≦ 1.2, 0.10 ≦ x ≦ 0.35, 0.20 ≦ y ≦ A lithium transition metal composite oxide represented by 0.35, 0 ≦ z ≦ 0.02, and L is at least one element selected from the group consisting of W, Zr, Mo and Nb is particularly preferable.

[被覆層]
被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む。正極活物質がこれら特定の少なくとも二種の元素を含有する被覆層を有することで、固体電解質と正極活物質との界面抵抗が劇的に低下し、結果として全固体二次電池の放電容量が増加する。また、正極活物質全体の結晶構造が安定化し、高電流で充放電しても非水電解液中の電解質と正極活物質との反応が抑制される。
[Coating layer]
The coating layer includes at least one element M selected from the group consisting of boron and tungsten, and niobium. Since the positive electrode active material has a coating layer containing at least two kinds of these specific elements, the interface resistance between the solid electrolyte and the positive electrode active material is drastically reduced. As a result, the discharge capacity of the all-solid secondary battery is reduced. To increase. Moreover, the crystal structure of the whole positive electrode active material is stabilized, and the reaction between the electrolyte in the non-aqueous electrolyte and the positive electrode active material is suppressed even when charging / discharging with a high current.

被覆層中の元素Mは主に正極活物質全体の結晶構造の安定化に寄与する。元素Mが少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。元素Mのコア粒子に対する物質量比が0.1以上5.0以下ならニオブと共存することで前述の効果を十分に発揮することが出来、好ましい。   The element M in the coating layer mainly contributes to stabilization of the crystal structure of the entire positive electrode active material. Note that if the amount of the element M is too small, the above-described effect becomes insufficient, and if the amount is too large, the capacity decreases. If the ratio of the amount of the element M to the core particles is 0.1 or more and 5.0 or less, it is preferable because the above-mentioned effects can be sufficiently exhibited by coexisting with niobium.

被覆層中のニオブは主に固体電解質と正極活物質との界面抵抗低減に寄与すると考えられ、結果として全固体二次電池における放電容量が増加する。少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。ニオブのコア粒子に対する物質量比が0.1以上7.0以下なら元素Mと共存することで前述の効果を十分に発揮することが出来、好ましい。   Niobium in the coating layer is considered to contribute mainly to reducing the interface resistance between the solid electrolyte and the positive electrode active material, and as a result, the discharge capacity in the all-solid secondary battery increases. Note that if the amount is too small, the above-described effects become insufficient, and if the amount is too large, the capacity decreases. If the ratio of the amount of niobium to the core particles is 0.1 or more and 7.0 or less, the coexistence with the element M can sufficiently exhibit the above-described effects, which is preferable.

被覆層における元素Mとニオブとの比率を適切に調節すると、元素M及びニオブの夫々の効果が増幅されるので好ましい。好ましい比率の範囲は、元素Mのニオブに対する物質量比として0.01以上50.0以下となる範囲である。   It is preferable to appropriately adjust the ratio of the element M and niobium in the coating layer because the effects of the element M and niobium are amplified. A preferable range of the ratio is a range in which the mass ratio of the element M to niobium is 0.01 to 50.0.

次に本発明の正極活物質の製造方法を説明する。本発明の正極活物質は、公知の手法で得られるコア粒子に公知の手法で被覆層を形成すれば良い。   Next, the manufacturing method of the positive electrode active material of this invention is demonstrated. In the positive electrode active material of the present invention, a coating layer may be formed by a known method on core particles obtained by a known method.

被覆層の好ましい形成方法について、図1を用いて説明する。なお、図1は概念を説明するためのものであり、図内の各要素は誇張、省略等されている。   A preferred method for forming the coating layer will be described with reference to FIG. FIG. 1 is for explaining the concept, and each element in the figure is exaggerated or omitted.

[第一の被覆工程]
まず、コア粒子1の表面に、元素Mを含む化合物からなる第一の被覆原料2を付着させ(図1の(a))、第一の被覆粒子3を得る(図1の(b))。図1の(b)において、第一の被覆原料2はコア粒子1の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。
[First coating step]
First, the first coated raw material 2 made of a compound containing the element M is attached to the surface of the core particle 1 (FIG. 1 (a)) to obtain the first coated particle 3 (FIG. 1 (b)). . In FIG. 1B, the first coating raw material 2 uniformly coats the entire surface of the core particle 1, but such a form is only an example and does not necessarily need to be such a form. .

第一の被覆原料は、元素Mを含んでいればどのような化合物でもよい。酸化物、ハロゲン化物、オキソ酸塩、水酸化物等が取り得る。また、本明細書において、「元素Mを含む化合物」は元素Mの単体をも含むものとする。また、元素Mが複数選択される場合は、複数の元素Mの合金も含むものとする。   The first coating material may be any compound as long as it contains the element M. Oxides, halides, oxoacid salts, hydroxides and the like can be taken. Further, in this specification, the “compound containing the element M” includes the element M alone. When a plurality of elements M are selected, an alloy of a plurality of elements M is also included.

第一の被覆原料をコア粒子の表面に付着させる手法は特に限定されない。例えばコア粒子と第一の被覆原料とを高速で撹拌してメカノケミカルに付着させる、コア粒子と第一の被覆原料を分散媒に分散し、混合した後乾燥させて物理的に付着させる、第一の被覆原料の前駆体となる水溶液とコア粒子とを混合し、コア粒子の表面に第一の被覆原料を析出させる、等の手法がとり得る。   The technique for attaching the first coating material to the surface of the core particles is not particularly limited. For example, the core particles and the first coating raw material are stirred at high speed to adhere to the mechanochemical, the core particles and the first coating raw material are dispersed in a dispersion medium, mixed and then dried to physically adhere. For example, a method may be used in which an aqueous solution serving as a precursor of one coating raw material and core particles are mixed and the first coating raw material is deposited on the surface of the core particles.

[第一の熱処理工程]
得られる第一の被覆粒子は、さらに熱処理を施してもよい。熱処理によって、第一の被覆原料とコア粒子の一部が反応し、コア粒子の表面のより多くの領域が第一の被覆原料等で被覆される。この結果、全固体二次電池においては放電容量がより増加する。そのため、第一の熱処理工程は全固体二次電池用正極活物質を得る場合に特に好ましい。
[First heat treatment process]
The obtained first coated particles may be further subjected to heat treatment. By the heat treatment, the first coating raw material reacts with a part of the core particle, and a larger area of the surface of the core particle is coated with the first coating raw material or the like. As a result, the discharge capacity is further increased in the all solid state secondary battery. Therefore, the first heat treatment step is particularly preferable when obtaining a positive electrode active material for an all-solid secondary battery.

第一の熱処理工程における熱処理温度は、高過ぎると第一の被覆原料とコア粒子との反応が進み、コア粒子本来の特性を損ねかねないので注意する。熱処理温度が800℃以下なら通常問題ない。熱処理温度として効果が発現するのは150℃程度からである。このため、熱処理温度は150℃以上500℃以下が好ましい。   Note that if the heat treatment temperature in the first heat treatment step is too high, the reaction between the first coating material and the core particles proceeds, and the original properties of the core particles may be impaired. If the heat treatment temperature is 800 ° C. or lower, there is usually no problem. The effect of the heat treatment temperature appears from about 150 ° C. For this reason, the heat treatment temperature is preferably 150 ° C. or higher and 500 ° C. or lower.

[第二の被覆工程]
得られる第一の被覆粒子3の表面に、ニオブを含む化合物からなる第二の被覆原料4を付着させ(図1の(c))、第二の被覆粒子5を得、(図1の(d))正極活物質とする。図1の(d)において、第二の被覆原料2は第一の被覆粒子3の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、図1の(d)において、第二の被覆粒子5は二層からなる被覆層を有しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、被覆層は第一の被覆原料に由来する領域と第二の被覆原料に由来する領域とが明確に区別される必要はない。
[Second coating step]
A second coated raw material 4 made of a compound containing niobium is attached to the surface of the obtained first coated particle 3 ((c) in FIG. 1) to obtain a second coated particle 5 ((( d) A positive electrode active material. In FIG. 1 (d), the second coating raw material 2 uniformly coats the entire surface of the first coated particles 3, but such a form is only an example and is not necessarily such a form. There is no need. Further, in FIG. 1 (d), the second coated particle 5 has a coating layer composed of two layers, but such a form is only an example, and it is not always necessary to have such a form. . Moreover, it is not necessary for the coating layer to clearly distinguish the region derived from the first coating material from the region derived from the second coating material.

第二の被覆原料として取り得る化合物及び第二の被覆原料を第一の被覆粒子の表面に付着させる手法については、第一の被覆工程のそれらに準ずる。   About the method which makes the compound which can be taken as a 2nd coating raw material, and the 2nd coating raw material adhere to the surface of the 1st coating particle, it applies to those of the 1st coating process.

[第二の熱処理工程]
得られる第二の被覆粒子は、さらに熱処理を施してもよい。熱処理によって被覆が強固になるので好ましい。
[Second heat treatment step]
The obtained second coated particles may be further subjected to heat treatment. It is preferable because the coating is strengthened by heat treatment.

第二の熱処理工程における熱処理温度は、高過ぎると第二の被覆原料と第一の被覆粒子との反応が進み、被覆層本来の特性を損ねかねないので注意する。熱処理温度が500℃以下なら通常問題ない。熱処理温度として効果が発現するのは250℃程度からである。このため、熱処理温度は250℃以上800℃以下が好ましい。   Note that if the heat treatment temperature in the second heat treatment step is too high, the reaction between the second coating material and the first coated particles proceeds, and the original properties of the coating layer may be impaired. If the heat treatment temperature is 500 ° C. or lower, there is usually no problem. The effect of the heat treatment temperature appears from about 250 ° C. For this reason, the heat treatment temperature is preferably 250 ° C. or higher and 800 ° C. or lower.

以下、実施例等を用いてより具体的に説明する。   Hereinafter, it demonstrates more concretely using an Example etc.

一般式Li1.12Ni0.33Co0.33Mn0.330.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中400℃で10時間熱処理し、第一の被覆粒子を得た。 A lithium transition metal composite oxide represented by the general formula Li 1.12 Ni 0.33 Co 0.33 Mn 0.33 W 0.005 O 2 is used as a core particle, and 0.5 mol% as tungsten with respect to the core particle. Of tungsten oxide (VI) and core particles were mixed with a high-speed shear mixer to obtain a first mixture. After mixing, the first mixture was heat-treated in the atmosphere at 400 ° C. for 10 hours to obtain first coated particles.

第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして2.0mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中350℃で5時間熱処理し、目的の正極組成物を得た。   While stirring the first coated particles with a high-speed shear mixer, a commercially available niobium oxide sol (containing 5% as niobium) was dropped in an amount of 2.0 mol% as niobium with respect to the core particles, and the second mixture was added. Obtained. After the dropping, the second mixture was heat-treated at 350 ° C. in the atmosphere for 5 hours to obtain the desired positive electrode composition.

酸化タングステン(VI)の代わりに、コア粒子に対してホウ素として0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中250℃で10時間熱処理し、第一の被覆粒子を得た。以降実施例1と同様に行い、目的の正極組成物を得た。   Instead of tungsten oxide (VI), 0.5 mol% of boric acid and core particles as boron with respect to the core particles were mixed with a high speed shear mixer to obtain a first mixture. After mixing, the first mixture was heat treated at 250 ° C. in the atmosphere for 10 hours to obtain first coated particles. Thereafter, the same procedure as in Example 1 was performed to obtain a target positive electrode composition.

実施例1におけるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)及びコア粒子に対して0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。以降実施例1と同様に行い、目的の正極組成物を得た。   The lithium transition metal composite oxide in Example 1 was used as a core particle, 0.5 mol% tungsten oxide (VI) as tungsten with respect to the core particle, and 0.5 mol% boric acid and the core particle with respect to the core particle. The first mixture was obtained by mixing with a high-speed shear mixer. Thereafter, the same procedure as in Example 1 was performed to obtain a target positive electrode composition.

ホウ酸の混合量をコア粒子に対してホウ素として4.0mol%とした以外は実施例2と同様にし、目的の正極組成物を得た。   The target positive electrode composition was obtained in the same manner as in Example 2 except that the amount of boric acid mixed was 4.0 mol% as boron with respect to the core particles.

[比較例1]
実施例1におけるコア粒子を比較用に用いた。
[Comparative Example 1]
The core particles in Example 1 were used for comparison.

一般式Li1.05Ni0.6Co0.2Mn0.2Zr0.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してホウ素として0.5mol%のホウ酸を高速せん断型ミキサーで混合し、第一の混合物を得た。 A lithium transition metal composite oxide represented by the general formula Li 1.05 Ni 0.6 Co 0.2 Mn 0.2 Zr 0.005 O 2 is used as a core particle, and 0.5 mol% as boron with respect to the core particle. Was mixed with a high-speed shearing mixer to obtain a first mixture.

第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。   While stirring the first coated particles with a high-speed shear mixer, a commercially available niobium oxide sol (containing 5% as niobium) was dropped in an amount of 0.5 mol% as niobium with respect to the core particles, and the second mixture was added. Obtained. After the dropping, the second mixture was heat-treated at 450 ° C. for 10 hours in the atmosphere to obtain the desired positive electrode composition.

[比較例2]
実施例5におけるコア粒子を比較用に用いた。
[Comparative Example 2]
The core particles in Example 5 were used for comparison.

[比較例3]
実施例5と同様のリチウム遷移金属複合酸化物をコア粒子とし、高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。
[Comparative Example 3]
The same lithium transition metal composite oxide as in Example 5 was used as core particles, and a commercially available niobium oxide sol (containing 5% as niobium) was stirred with a high-speed shear mixer, and 0.5 mol% as niobium with respect to the core particles. Was added dropwise to obtain a second mixture. After the dropping, the second mixture was heat-treated at 450 ° C. for 10 hours in the atmosphere to obtain the desired positive electrode composition.

<3.全固体二次電池の評価>
実施例1〜4及び比較例1の正極活物質を用いて全固体二次電池を作製し、電池特性を評価した。
<3. Evaluation of all-solid-state secondary battery>
All-solid secondary batteries were produced using the positive electrode active materials of Examples 1 to 4 and Comparative Example 1, and the battery characteristics were evaluated.

[3−1.固体電解質の作製]
アルゴン雰囲気下で硫化リチウム及び五硫化リンを、その物質量比が7:3となるように秤量した。秤量物をメノウ乳鉢で粉砕混合し、硫化物ガラスを得た。これを固体電解質として用いた。
[3-1. Preparation of solid electrolyte]
Under an argon atmosphere, lithium sulfide and phosphorus pentasulfide were weighed so that the mass ratio was 7: 3. The weighed product was pulverized and mixed in an agate mortar to obtain sulfide glass. This was used as a solid electrolyte.

[3−2.正極の作製]
正極活物質60重量部、固体電解質36重量部及びVGCF(気相法炭素繊維)4重量部を混合し、正極合材を得た。
[3-2. Preparation of positive electrode]
A positive electrode mixture was obtained by mixing 60 parts by weight of a positive electrode active material, 36 parts by weight of a solid electrolyte, and 4 parts by weight of VGCF (vapor phase grown carbon fiber).

[3−3.負極の作製]
厚さ0.05mmのインジウム箔を直径11.00mmの円形にくり抜き、負極とした。
[3-3. Production of negative electrode]
A 0.05 mm thick indium foil was cut into a circular shape with a diameter of 11.00 mm to form a negative electrode.

[3−4.評価用電池の組み立て]
内径11.00mmの円筒状外型に外径11.00mmの円柱状下型を、外型下部から挿入した。下型の上端は外型の中間に位置に固定した。この状態で外型の上部から下型の上端に固体電解質80mgを投入した。投入後、外形11.00mmの円柱状上型を外型の上部から挿入した。挿入後、上型の上方から90MPaの圧力をかけて、固体電解質を成形し、固体電解質層とした。成形後上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入した。投入後、再度上型を挿入し、今度は360MPaの圧力をかけて正極合材を成形し、正極層とした。成形後上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極を投入した。投入後、再度下型を挿入し、下型の下方から150MPaの圧力をかけて負極を成形し、負極層とした。圧力をかけた状態で下型を固定し、上型に正極端子、下型に負極端子を取り付け、全固体二次電池を得た。
[3-4. Assembly of evaluation battery]
A cylindrical lower mold having an outer diameter of 11.00 mm was inserted into a cylindrical outer mold having an inner diameter of 11.00 mm from the lower part of the outer mold. The upper end of the lower mold was fixed in the middle of the outer mold. In this state, 80 mg of solid electrolyte was charged from the upper part of the outer mold to the upper end of the lower mold. After the introduction, a cylindrical upper mold having an outer shape of 11.00 mm was inserted from the upper part of the outer mold. After the insertion, a solid electrolyte was formed by applying a pressure of 90 MPa from above the upper mold to form a solid electrolyte layer. After molding, the upper mold was pulled out from the upper part of the outer mold, and 20 mg of the positive electrode mixture was put into the upper part of the solid electrolyte layer from the upper part of the outer mold. After the addition, the upper mold was inserted again, and this time a pressure of 360 MPa was applied to form a positive electrode mixture to form a positive electrode layer. After molding, the upper die was fixed, the lower die was released and pulled out from the lower portion of the outer die, and the negative electrode was introduced from the lower portion of the lower die to the lower portion of the solid electrolyte layer. After the charging, the lower mold was inserted again, and a negative electrode was formed by applying a pressure of 150 MPa from below the lower mold to obtain a negative electrode layer. The lower mold was fixed in a state where pressure was applied, the positive terminal was attached to the upper mold, and the negative terminal was attached to the lower mold to obtain an all-solid-state secondary battery.

[3−5.初期放電容量]
電流密度0.195μA/cm、充電電圧4.0Vで定電流定電圧充電を行った。充電後、電流密度0.195μA/cm、放電電圧1.9Vで定電流放電を行い、放電容量Qを測定した。
[3-5. Initial discharge capacity]
Constant current and constant voltage charging was performed at a current density of 0.195 μA / cm 2 and a charging voltage of 4.0 V. After charging, the current density 0.195μA / cm 2, a constant current discharge at a discharge voltage 1.9V, the discharge capacity was measured Q d.

<4.非水電解液二次電池の評価>
実施例5及び比較例2、3の正極活物質を用いて非水電解液二次電池を作製し、電池特性を評価した。
<4. Evaluation of non-aqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery was produced using the positive electrode active materials of Example 5 and Comparative Examples 2 and 3, and the battery characteristics were evaluated.

[4−1.正極の作製]
正極組成物85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッ化ビニリデン)5.0重量部を、NMP(ノルマルメチル−2−ピロリドン)に分散させて正極スラリーを調製した。得られる正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[4-1. Preparation of positive electrode]
A positive electrode slurry was prepared by dispersing 85 parts by weight of the positive electrode composition, 10 parts by weight of acetylene black, and 5.0 parts by weight of PVDF (polyvinylidene fluoride) in NMP (normal methyl-2-pyrrolidone). The obtained positive electrode slurry was applied to an aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a positive electrode.

[4−2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調製した。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[4-2. Production of negative electrode]
A negative electrode slurry was prepared by dispersing 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethylcellulose), and 1.0 part by weight of SBR (styrene butadiene rubber) in water. The obtained negative electrode slurry was applied to a copper foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a negative electrode.

[4−3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られる混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/lになるように溶解させて、非水電解液を得た。
[4-3. Preparation of non-aqueous electrolyte]
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7 to obtain a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained mixed solvent so that the concentration thereof was 1 mol / l to obtain a nonaqueous electrolytic solution.

[4−4.評価用電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、ラミネートタイプの非水電解液二次電池を得た。
[4-4. Assembly of evaluation battery]
After the lead electrodes were attached to the positive and negative electrode current collectors, vacuum drying was performed at 120 ° C. Next, a separator made of porous polyethylene was disposed between the positive electrode and the negative electrode, and these were stored in a bag-like laminate pack. After storage, the moisture adsorbed on each member was removed by vacuum drying at 60 ° C. After vacuum drying, the above-mentioned non-aqueous electrolyte solution was injected into the laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery.

[4−5.高電流サイクル特性]
非水電解液二次電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後、電池を45℃に設定した恒温槽内に入れ、充電電圧4.4V、充電電流2.0C(1C:1時間で放電が終了する電流)での充電と、放電電圧2.75V、放電電流2.0Cでの放電を1サイクルとし、充放電を繰り返した。nサイクル目の放電容量を1サイクル目の放電容量で除した値を、nサイクル目の放電容量維持率Qs(n)とした。Qs(n)が高いことは、サイクル特性が良いことを意味する。
[4-5. High current cycle characteristics]
The non-aqueous electrolyte secondary battery was aged with a weak current, and the electrolyte was sufficiently applied to the positive electrode and the negative electrode. After aging, the battery is placed in a thermostatic chamber set at 45 ° C., charged with a charging voltage of 4.4 V, a charging current of 2.0 C (1 C: current that discharges in 1 hour), a discharging voltage of 2.75 V, The discharge at a discharge current of 2.0 C was defined as one cycle, and charging / discharging was repeated. A value obtained by dividing the discharge capacity at the nth cycle by the discharge capacity at the first cycle was defined as the discharge capacity retention rate Qs (n) at the nth cycle. A high Qs (n) means that the cycle characteristics are good.

[4−6.出力特性]
非水電解液二次電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流での放電と、微弱電流での充電を繰り返した。10回目の充電における充電容量を電池の全充電容量とした。11回目の放電後、全充電容量の4割まで充電した。11回目の充電後、電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、放電電流0.02A、0.04A、0.06Aで放電し、各放電時の電圧を測定した。横軸に電流を、縦軸に電圧をとって交点をプロットし、交点を結んだ直線の傾きの絶対値を直流内部抵抗Rとした。Rが低いことは、出力特性が良いことを意味する。
[4-6. Output characteristics]
A weak current was passed through the non-aqueous electrolyte secondary battery for aging, and the electrolyte was sufficiently applied to the positive electrode and the negative electrode. Thereafter, discharging with a high current and charging with a weak current were repeated. The charge capacity in the 10th charge was defined as the total charge capacity of the battery. After the 11th discharge, the battery was charged to 40% of the total charge capacity. After the 11th charge, the battery was placed in a thermostatic chamber set at −25 ° C., left for 6 hours, then discharged at a discharge current of 0.02A, 0.04A, 0.06A, and the voltage at each discharge was measured. did. The intersection is plotted with the current on the horizontal axis and the voltage on the vertical axis, and the absolute value of the slope of the straight line connecting the intersections is defined as the DC internal resistance R. Low R means that the output characteristics are good.

実施例1〜4及び比較例1についてそれらの製造条件を表1に、正極活物質の特性及び該正極活物質を用いた全固体二次電池の特性を表2に示す。   The manufacturing conditions for Examples 1 to 4 and Comparative Example 1 are shown in Table 1, and the characteristics of the positive electrode active material and the characteristics of the all-solid-state secondary battery using the positive electrode active material are shown in Table 2.

Figure 2015201388
Figure 2015201388

Figure 2015201388
Figure 2015201388

表1、2から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例1〜4の正極活物質を用いた全固体二次電池の放電容量が極めて高くなっている。これは、被覆層の元素M及びニオブが共に存在することで正極活物質と固体電解質との界面抵抗を劇的に低減した結果と考えられる。   As can be seen from Tables 1 and 2, the discharge capacity of the all-solid secondary battery using the positive electrode active materials of Examples 1 to 4 in which both the element M and niobium are contained in the coating layer is extremely high. This is considered to be a result of dramatically reducing the interface resistance between the positive electrode active material and the solid electrolyte due to the presence of both the element M and niobium in the coating layer.

実施例5及び比較例2、3についてそれらの製造条件を表3に、正極活物質の特性及び該正極活物質を用いた非水電解液二次電池の特性を表4に示す。   The production conditions for Example 5 and Comparative Examples 2 and 3 are shown in Table 3, and the characteristics of the positive electrode active material and the characteristics of the nonaqueous electrolyte secondary battery using the positive electrode active material are shown in Table 4.

Figure 2015201388
Figure 2015201388

Figure 2015201388
Figure 2015201388

表3、4から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例5の正極活物質を用いた非水電解液二次電池の高電流サイクル特性及び出力特性が共によい。特に高電流サイクル特性の向上は、被覆層に元素M及びニオブが存在することで急速な充放電にも耐えられる安定した結晶構造が得られた結果と考えられる。   As can be seen from Tables 3 and 4, the high current cycle characteristics and output characteristics of the nonaqueous electrolyte secondary battery using the positive electrode active material of Example 5 in which both the element M and niobium are contained in the coating layer are good. In particular, the improvement of the high current cycle characteristics is considered to be a result of obtaining a stable crystal structure that can withstand rapid charge / discharge due to the presence of the element M and niobium in the coating layer.

本発明の非水系二次電池用正極活物質を用いると、大電流を取り出しても放電容量の高い全固体二次電池を得ることが出来る。あるいは、大電流で充放電を繰り返しても長期間使用可能な非水電解液二次電池を得ることが出来る。このようにして得られる非水系二次電池は、電気自動車等の大型機器の動力源として特に好適に利用可能である。   When the positive electrode active material for a non-aqueous secondary battery of the present invention is used, an all-solid secondary battery having a high discharge capacity can be obtained even when a large current is taken out. Alternatively, it is possible to obtain a non-aqueous electrolyte secondary battery that can be used for a long time even when charging and discharging are repeated with a large current. The non-aqueous secondary battery obtained in this way can be particularly suitably used as a power source for large equipment such as an electric vehicle.

1 コア粒子
2 第一の被覆原料
3 第一の被覆粒子
4 第二の被覆原料
5 第二の被覆粒子
1 Core particle 2 First coated raw material 3 First coated particle 4 Second coated raw material 5 Second coated particle

Claims (10)

リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、
前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層である、
非水系二次電池用正極活物質。
A core particle comprising a lithium transition metal composite oxide, and a coating layer present on the surface of the core particle,
The coating layer is a coating layer containing at least one element M selected from the group consisting of boron and tungsten, and niobium.
Positive electrode active material for non-aqueous secondary batteries.
前記被覆層における前記元素Mの、前記コア粒子に対する物質量比が0.1以上5.0以下である、請求項1に記載の正極活物質。   2. The positive electrode active material according to claim 1, wherein a substance amount ratio of the element M to the core particle in the coating layer is 0.1 or more and 5.0 or less. 前記被覆層における前記ニオブの、前記コア粒子に対する物質量比が0.1以上5.0以下である、請求項1又は2に記載の正極活物質。   3. The positive electrode active material according to claim 1, wherein a material amount ratio of the niobium to the core particles in the coating layer is 0.1 or more and 5.0 or less. 前記被覆層における前記元素Mの前記ニオブに対する物質量比が0.01以上50.0以下である請求項1乃至3のいずれか一項に記載の正極活物質。   4. The positive electrode active material according to claim 1, wherein a material amount ratio of the element M to the niobium in the coating layer is 0.01 or more and 50.0 or less. 前記リチウム遷移金属複合酸化物が、一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表される、請求項1乃至4のいずれか一項に記載の正極活物質。 The lithium transition metal composite oxide has a general formula of Li a Ni 1-xy Co x Mn y L z O 2 (0.95 ≦ a ≦ 1.2, 0.10 ≦ x ≦ 0.35,. 20 ≦ y ≦ 0.35, 0 ≦ z ≦ 0.02, L is represented by at least one element selected from the group consisting of W, Zr, Mo and Nb). The positive electrode active material according to one item. リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在し、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mとニオブとを含む被覆層と、を含む非水系二次電池用正極活物質の製造方法であって、
前記コア粒子の表面に元素Mを含む化合物からなる第一の被覆原料を付着させて第一の被覆粒子を得る第一の被覆工程と、
前記第一の被覆粒子の表面にニオブを含む化合物からなる第二の被覆原料を付着させて第二の被覆粒子を得る第二の被覆工程と、
を含む、製造方法。
A non-aqueous two-layer coating comprising: core particles made of a lithium transition metal composite oxide; and a coating layer present on the surface of the core particles and containing at least one element M selected from the group consisting of boron and tungsten and niobium. A method for producing a positive electrode active material for a secondary battery, comprising:
A first coating step of obtaining a first coated particle by attaching a first coated raw material comprising a compound containing the element M to the surface of the core particle;
A second coating step of obtaining a second coated particle by attaching a second coated raw material comprising a compound containing niobium to the surface of the first coated particle;
Manufacturing method.
前記第一の被覆粒子を熱処理する第一の熱処理工程をさらに含む、請求項6に記載の製造方法。   The manufacturing method according to claim 6, further comprising a first heat treatment step of heat treating the first coated particles. 前記第二の被覆粒子を熱処理する第二の熱処理工程をさらに含む、請求項6又は7に記載の製造方法。   The manufacturing method according to claim 6 or 7, further comprising a second heat treatment step of heat treating the second coated particles. 前記第一の熱処理工程における熱処理温度が150℃以上800℃以下である、請求項7に記載の製造方法。   The manufacturing method of Claim 7 whose heat processing temperature in said 1st heat processing process is 150 degreeC or more and 800 degrees C or less. 前記第二の熱処理工程における熱処理温度が250℃以上500℃以下である、請求項8に記載の製造方法。   The manufacturing method of Claim 8 whose heat processing temperature in said 2nd heat processing process is 250 degreeC or more and 500 degrees C or less.
JP2014080382A 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same Active JP6524610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015201388A true JP2015201388A (en) 2015-11-12
JP6524610B2 JP6524610B2 (en) 2019-06-05

Family

ID=54552457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080382A Active JP6524610B2 (en) 2014-04-09 2014-04-09 Positive electrode active material for non-aqueous secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6524610B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054830A (en) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2019066403A3 (en) * 2017-09-28 2019-05-16 주식회사 엘지화학 Electrode active material complex for lithium secondary battery, and method for producing electrode active material complex
WO2020022305A1 (en) 2018-07-25 2020-01-30 三井金属鉱業株式会社 Positive electrode active material
WO2020174937A1 (en) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 Method for producing positive electrode active substance for non-aqueous electrolyte secondary battery
WO2020202745A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2021025370A1 (en) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 Cathode active material for lithium secondary battery
WO2021049416A1 (en) 2019-09-11 2021-03-18 三井金属鉱業株式会社 Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method
CN114072934A (en) * 2019-03-22 2022-02-18 株式会社Lg新能源 Positive electrode active material particles for sulfide-based all-solid-state batteries
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
WO2023106562A1 (en) * 2021-12-07 2023-06-15 주식회사 엘지에너지솔루션 Positive electrode active material for sulfide-based all-solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228653A (en) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mixture for it
WO2012144021A1 (en) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 Lithium secondary battery
WO2014049964A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228653A (en) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mixture for it
WO2012144021A1 (en) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 Lithium secondary battery
WO2014049964A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054830A (en) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2019066403A3 (en) * 2017-09-28 2019-05-16 주식회사 엘지화학 Electrode active material complex for lithium secondary battery, and method for producing electrode active material complex
WO2020022305A1 (en) 2018-07-25 2020-01-30 三井金属鉱業株式会社 Positive electrode active material
KR20210016026A (en) 2018-07-25 2021-02-10 미쓰이금속광업주식회사 Positive electrode active material
WO2020174937A1 (en) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 Method for producing positive electrode active substance for non-aqueous electrolyte secondary battery
CN113382965B (en) * 2019-02-27 2023-10-10 松下知识产权经营株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
CN113382965A (en) * 2019-02-27 2021-09-10 松下知识产权经营株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JPWO2020174937A1 (en) * 2019-02-27 2021-12-23 パナソニックIpマネジメント株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2022518416A (en) * 2019-03-22 2022-03-15 エルジー エナジー ソリューション リミテッド Positive electrode active material particles for sulfide-based all-solid-state batteries
JP7297191B2 (en) 2019-03-22 2023-06-26 エルジー エナジー ソリューション リミテッド Positive electrode active material particles for sulfide-based all-solid-state batteries
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
CN114072934A (en) * 2019-03-22 2022-02-18 株式会社Lg新能源 Positive electrode active material particles for sulfide-based all-solid-state batteries
WO2020202745A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2021025370A1 (en) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 Cathode active material for lithium secondary battery
KR20210107793A (en) 2019-09-11 2021-09-01 미쓰이금속광업주식회사 Method for producing sulfide solid electrolyte, electrode mixture, solid battery and sulfide solid electrolyte
WO2021049416A1 (en) 2019-09-11 2021-03-18 三井金属鉱業株式会社 Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method
WO2023106562A1 (en) * 2021-12-07 2023-06-15 주식회사 엘지에너지솔루션 Positive electrode active material for sulfide-based all-solid-state battery

Also Published As

Publication number Publication date
JP6524610B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
CN105552344B (en) A kind of based lithium-ion battery positive plate, lithium ion battery and preparation method thereof
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JP5972513B2 (en) Cathode and lithium battery using the same
CN109390563B (en) Modified lithium iron phosphate positive electrode material, preparation method thereof, positive plate and lithium secondary battery
EP2996180A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
CN105742713B (en) All-solid-state polymer lithium battery
KR20080109298A (en) Cathode comprising active material composite and lithium battery using the same
KR20170071408A (en) All-solid-state battery and method of manufacturing the same
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
KR20160081692A (en) Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
KR20150074744A (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3675252A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
KR20210007483A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
EP2672553B1 (en) Nonaqueous electrolyte secondary battery
CN109935801B (en) Anode active material for lithium secondary battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP3033795B1 (en) Lithium sulfur cell and preparation method
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP2013084399A (en) Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery manufacturing method
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250