JP2012146590A - Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012146590A
JP2012146590A JP2011005595A JP2011005595A JP2012146590A JP 2012146590 A JP2012146590 A JP 2012146590A JP 2011005595 A JP2011005595 A JP 2011005595A JP 2011005595 A JP2011005595 A JP 2011005595A JP 2012146590 A JP2012146590 A JP 2012146590A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrolyte secondary
nonaqueous electrolyte
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005595A
Other languages
Japanese (ja)
Inventor
Junichi Sugaya
純一 菅谷
Shinji Kasamatsu
真治 笠松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011005595A priority Critical patent/JP2012146590A/en
Publication of JP2012146590A publication Critical patent/JP2012146590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics and high in capacity by increasing the density of positive electrode active material particles in a positive electrode mixture layer.SOLUTION: A positive electrode for a nonaqueous electrolyte secondary battery includes a positive electrode current collector and a positive electrode mixture layer formed on a surface of the positive electrode current collector. The positive electrode mixture layer includes a positive electrode active material and a conductive auxiliary agent, and has a density in a range of 3.5 to 4.0 g/cm. The positive electrode active material contains a first active material particles having an average particle size (D) of 18 to 25 μm and a second active material particles having an average particle size (D) of 3 to 7 μm at a blending ratio of 9:1 to 6:4, the conductive auxiliary agent contains carbon black and expanded graphite at a blending ratio of 7:3 to 3:7, and the expanded graphite has an average particle size in a rage of 1 to 5 μm.

Description

本発明は、非水電解質二次電池用正極に関し、詳しくは、高密度化された正極合剤層の改良に関する。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, and in particular, relates to an improvement of a densified positive electrode mixture layer.

近年、携帯電話やノートパソコンなどの電子機器の小型化、軽量化に伴い、これらの機器の電源である二次電池に対する高容量化が要求されている。このような要求から、高エネルギー密度化が可能な非水電解質二次電池が広く普及している。非水電解質二次電池は、正極、負極、正極と負極との間に介在するように配されたセパレータおよび非水電解質を備える。正極、負極およびセパレータは、捲回されて電極群を構成する。   In recent years, with the reduction in size and weight of electronic devices such as mobile phones and notebook computers, it is required to increase the capacity of secondary batteries that are power sources of these devices. Due to such demands, non-aqueous electrolyte secondary batteries capable of increasing energy density are widely used. A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed so as to be interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The positive electrode, the negative electrode, and the separator are wound to form an electrode group.

非水電解質二次電池用正極(以下、単に正極ともいう)は、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極活物質粒子と、導電助剤と結着剤を含む。   A positive electrode for a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as a positive electrode) has a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector. The positive electrode mixture layer includes positive electrode active material particles, a conductive additive, and a binder.

非水電解質二次電池の更なる高容量化を目的として、正極活物質粒子を正極合剤層に高密度に充填して、正極合剤層の密度を高くすることや、正極合剤層の厚さを厚くすることが検討されている。   For the purpose of further increasing the capacity of the nonaqueous electrolyte secondary battery, the positive electrode active material particles are filled in the positive electrode mixture layer at a high density to increase the density of the positive electrode mixture layer. Increasing the thickness is being studied.

下記特許文献1は、膨張黒鉛とカーボンブラックとを1:1〜5:1の配合比率で混合した導電助剤を使用した正極合剤層を開示している。そしてこのような正極合剤層を備えた非水電解質二次電池によれば、電池の高容量化と充放電サイクル特性が改善されることが述べられている。   The following Patent Document 1 discloses a positive electrode mixture layer using a conductive additive in which expanded graphite and carbon black are mixed at a blending ratio of 1: 1 to 5: 1. And it is stated that according to the nonaqueous electrolyte secondary battery provided with such a positive electrode mixture layer, the capacity of the battery is increased and the charge / discharge cycle characteristics are improved.

また、下記特許文献2は、正極活物質の平均粒子径が5〜20μmの範囲内にあり、導電性物質として膨張黒鉛を用いたことを特徴とする、高容量で、負荷特性及びサイクル特性にも優れた非水二次電池を開示している。   Patent Document 2 below has a high capacity, load characteristics and cycle characteristics, characterized in that the average particle diameter of the positive electrode active material is in the range of 5 to 20 μm, and expanded graphite is used as the conductive material. Discloses an excellent non-aqueous secondary battery.

また、下記特許文献3は、平均粒径1〜30μmの膨張黒鉛を含有する導電助剤を含有する正極を開示している。そしてこのような正極を備えた非水電解質二次電池によれば、正極の導電性が向上することにより、活物質の利用率が向上して高容量化を実現できることが述べられている。   Moreover, the following patent document 3 is disclosing the positive electrode containing the conductive support agent containing the expanded graphite with an average particle diameter of 1-30 micrometers. And it is described that according to the nonaqueous electrolyte secondary battery provided with such a positive electrode, the utilization of the active material can be improved and the capacity can be increased by improving the conductivity of the positive electrode.

特許第3115256号公報Japanese Patent No. 3115256 特開2001−319658号公報JP 2001-319658 A 特開平10−188993号公報JP-A-10-188993

特許文献1〜3は、いずれも導電助剤として膨張黒鉛を含有する正極を開示する。しかし、特許文献1〜3に開示された正極においては、導電助剤をある程度高い割合で配合しなければ、正極活物質粒子間の導電性を充分に確保できなかった。例えば、特許文献1の実施例では、導電助剤を6重量%含有する正極合剤を開示している。しかしながら、導電助剤を6重量%も配合した場合には正極活物質粒子の高密度化が困難になるという問題があった。すなわち、正極活物質粒子を高密度化するために、正極合剤の圧延時に無理に高い圧力で正極合剤層を圧延しようとした場合には、正極活物質粒子に粒子割れが生じて導電性が低下するなどの理由により、サイクル特性が低下するという問題があった。   Patent Documents 1 to 3 all disclose a positive electrode containing expanded graphite as a conductive additive. However, in the positive electrodes disclosed in Patent Documents 1 to 3, the conductivity between the positive electrode active material particles could not be sufficiently ensured unless a conductive assistant was blended at a certain high ratio. For example, in the Example of Patent Document 1, a positive electrode mixture containing 6% by weight of a conductive additive is disclosed. However, when 6% by weight of the conductive assistant is blended, there is a problem that it is difficult to increase the density of the positive electrode active material particles. That is, in order to increase the density of the positive electrode active material particles, if the positive electrode mixture layer is rolled with a high pressure at the time of rolling of the positive electrode mixture, the positive electrode active material particles are cracked and become conductive. There is a problem that the cycle characteristics deteriorate due to a decrease in the cycle time.

本発明は、正極合剤層中の正極活物質粒子を高密度化することにより、サイクル特性に優れた高容量の非水電解質二次電池を提供することを目的とする。   An object of the present invention is to provide a high-capacity non-aqueous electrolyte secondary battery excellent in cycle characteristics by increasing the density of positive electrode active material particles in a positive electrode mixture layer.

本発明者らは、特定の範囲に平均粒子径を有する2種類の正極活物質粒子を正極活物質として配合し、さらに、カーボンブラックと特定の範囲に平均粒子径を有する膨張黒鉛とを7:3〜3:7の配合比率で配合した正極合剤によれば、正極合剤層の圧延時に正極活物質粒子の粒子割れの発生等が抑制されて正極合剤層の密度を容易に高密度化することができることを見出した。また、このような平均粒子径を有する正極活物質粒子、カーボンブラック、及び膨張黒鉛を配合することにより、正極活物質粒子同士が充分に接触するために、導電剤の含有割合を比較的低くしても、充分な導電性が得られることを見出し、本発明を完成するに至った。   The present inventors blended two types of positive electrode active material particles having an average particle diameter in a specific range as a positive electrode active material, and further added carbon black and expanded graphite having an average particle diameter in a specific range: According to the positive electrode mixture compounded at a mixing ratio of 3 to 3: 7, the occurrence of particle cracking of the positive electrode active material particles is suppressed during rolling of the positive electrode mixture layer, and the density of the positive electrode mixture layer is easily increased. I found out that In addition, by mixing the positive electrode active material particles having such an average particle diameter, carbon black, and expanded graphite, the positive electrode active material particles are sufficiently brought into contact with each other. However, it has been found that sufficient conductivity can be obtained, and the present invention has been completed.

すなわち、本発明の一局面は、正極集電体と正極集電体表面に形成された正極合剤層とを備え、正極合剤層は正極活物質と導電助剤とを含み、且つ、密度3.5〜4.0g/cm3の範囲であり、正極活物質が平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で含有し、導電助剤がカーボンブラックと膨張黒鉛とを7:3〜3:7の配合比率で含有し、膨張黒鉛の平均粒子径が1〜5μmの範囲である非水電解質二次電池用正極である。このような正極においては、それぞれ所定の平均粒子を有する第一活物質粒子と第二活物質粒子とを所定の配合比率で配合することにより、正極活物質粒子を高密度で充填しやすくなる。また、カーボンブラックと所定の範囲の平均粒子径を有する膨張黒鉛とを所定の配合比率で配合することにより、導電助材による導電性付与効果を充分に維持することができ、また、圧延時においては、膨張黒鉛が潤滑剤となるために、高密度化が容易になる。 That is, one aspect of the present invention includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector, the positive electrode mixture layer includes a positive electrode active material and a conductive additive, and has a density. in the range of 3.5~4.0g / cm 3, average particle diameter (D 50) the positive electrode active material average particle diameter (D 50) and the first active material particles of 18~25μm second active of 3~7μm The material particles are contained in a blending ratio of 9: 1 to 6: 4, the conductive assistant contains carbon black and expanded graphite in a blending ratio of 7: 3 to 3: 7, and the average particle diameter of the expanded graphite is It is a positive electrode for nonaqueous electrolyte secondary batteries in the range of 1 to 5 μm. In such a positive electrode, the first active material particles and the second active material particles each having predetermined average particles are blended at a predetermined blending ratio, so that the positive electrode active material particles can be easily filled at a high density. In addition, by blending carbon black and expanded graphite having an average particle diameter within a predetermined range at a predetermined blending ratio, the conductivity imparting effect by the conductive auxiliary agent can be sufficiently maintained, and at the time of rolling Since expanded graphite becomes a lubricant, it is easy to increase the density.

また、本発明の他の一局面は、正極合剤スラリーを正極集電体の表面に塗布することにより正極合剤層を形成する合剤層形成工程と、正極合剤層を圧延する圧延工程と、を備え、正極合剤スラリーは、正極活物質として、平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で含有し、さらに、導電助剤としてカーボンブラックと平均粒子径が1〜5μmの範囲である膨張黒鉛とを7:3〜3:7の配合比率で含有し、圧延工程において、密度3.5〜4.0g/cm3の範囲になるように圧延する非水電解質二次電池用正極の製造方法である。このような組成の正極合剤スラリーを用いて圧延工程において密度3.5〜4.0g/cm3の範囲になるように圧延することにより、正極活物質の割れ等を抑制しながら、高密度の圧延が可能になる。 Another aspect of the present invention is a mixture layer forming step for forming a positive electrode mixture layer by applying a positive electrode mixture slurry to the surface of a positive electrode current collector, and a rolling step for rolling the positive electrode mixture layer. When provided with a positive electrode mixture slurry as a positive electrode active material, the average particle diameter (D 50) a first active material particles 18~25μm average particle diameter (D 50) and a second active material particles 3~7μm In a blending ratio of 9: 1 to 6: 4, and further, carbon black as a conductive additive and expanded graphite having an average particle diameter in the range of 1 to 5 μm in a blending ratio of 7: 3 to 3: 7. It is a manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries which contains and is rolled so that it may become a range of density 3.5-4.0 g / cm < 3 > in a rolling process. The positive electrode mixture slurry having such a composition is rolled to a density in the range of 3.5 to 4.0 g / cm 3 in the rolling process, thereby suppressing cracks and the like of the positive electrode active material and increasing the density. Can be rolled.

また、本発明の他の一局面は、上記正極と負極とをセパレータを介在させて捲回した電極群と、非水電解質とを備える非水電解質二次電池である。   Another aspect of the present invention is a nonaqueous electrolyte secondary battery including an electrode group obtained by winding the positive electrode and the negative electrode with a separator interposed therebetween, and a nonaqueous electrolyte.

本発明によれば、サイクル特性に優れた高容量の非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high capacity | capacitance nonaqueous electrolyte secondary battery excellent in cycling characteristics can be provided.

本発明の一実施形態に係る角型の非水電解質二次電池の構成を概略的に示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows roughly the structure of the square-shaped nonaqueous electrolyte secondary battery which concerns on one Embodiment of this invention.

はじめに、本実施形態の非水電解質二次電池用正極について詳しく説明する。
本実施形態の非水電解質二次電池用正極は、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極活物質粒子、導電助剤、及び結着剤を含む。
First, the positive electrode for a nonaqueous electrolyte secondary battery according to this embodiment will be described in detail.
The positive electrode for a non-aqueous electrolyte secondary battery of the present embodiment has a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector. The positive electrode mixture layer includes positive electrode active material particles, a conductive auxiliary agent, and a binder.

正極活物質粒子としては、通常、リチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、従来から、非水電解質二次電池の正極活物質として用いられているものであれば、特に限定なく用いられる。特には、例えば、Ni、CoおよびMnよりなる群から選ばれる少なくとも1種の元素を含む、層状もしくは六方晶の結晶構造またはスピネル構造を有するリチウム含有複合酸化物が好ましい。特にNiを含むリチウム含有複合酸化物は、高容量が得られるものの、充填性が低下する傾向があるが、本発明によれば、このようなリチウム含有複合酸化物を用いるときでも、充填性を向上させることができるために、極めて高い高容量化を実現できる。   As the positive electrode active material particles, a lithium-containing composite oxide is usually used. Any lithium-containing composite oxide can be used without particular limitation as long as it is conventionally used as a positive electrode active material for a non-aqueous electrolyte secondary battery. In particular, for example, a lithium-containing composite oxide having a layered or hexagonal crystal structure or a spinel structure containing at least one element selected from the group consisting of Ni, Co, and Mn is preferable. In particular, lithium-containing composite oxides containing Ni have a high capacity, but the filling properties tend to decrease. According to the present invention, even when such lithium-containing composite oxides are used, the filling properties are reduced. Since it can be improved, an extremely high capacity can be realized.

Ni、CoおよびMnよりなる群から選ばれる少なくとも1種の元素を含むリチウム含有複合酸化物の具体例としては、例えば、ニッケル酸リチウム(LiNiO2),ニッケル酸リチウムの変性体,コバルト酸リチウム(LiCoO2),コバルト酸リチウムの変性体,マンガン酸リチウム(LiMn24),マンガン酸リチウムの変性体,これらの酸化物のCo,NiもしくはMnの一部を、他の遷移金属元素、アルミニウムなどの典型金属元素もしくはマグネシウムなどのアルカリ土類金属元素で置換したもの等が挙げられる。 Specific examples of the lithium-containing composite oxide containing at least one element selected from the group consisting of Ni, Co and Mn include, for example, lithium nickelate (LiNiO 2 ), a modified lithium nickelate, lithium cobaltate ( LiCoO 2 ), lithium cobaltate modifications, lithium manganate (LiMn 2 O 4 ), lithium manganate modifications, some of these oxides Co, Ni or Mn, other transition metal elements, aluminum And the like substituted with a typical metal element such as magnesium or an alkaline earth metal element such as magnesium.

さらに好ましくは、例えば、一般式:LixyMe1-yz(Mは、Ni、CoおよびMnよりなる群から選ばれる少なくとも1種の元素であり、Meは、Al、Mg、Fe、Ca、Ti、Zr、Pよりなる群から選ばれる少なくとも1種の元素であり、0.9≦x≦1.1、0.9≦y≦2.0および1.9≦z≦4.0を満たす)で表されるリチウム含有複合酸化物が挙げられる。 More preferably, for example, the general formula: Li x M y Me 1- y O z (M is, Ni, at least one element selected from the group consisting of Co and Mn, Me is Al, Mg, Fe , Ca, Ti, Zr, and P, at least one element selected from the group consisting of 0.9 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 2.0, and 1.9 ≦ z ≦ 4. A lithium-containing composite oxide represented by 0).

本実施形態の正極活物質は、平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で含有する。このような正極活物質は、通常、第一活物質粒子の粒子径分布におけるピーク及び第二活物質粒子の粒子径分布におけるピークの少なくとも2つのピークを有する。具体的には、18〜25μmの間に1つのピークを有し、3〜7μmの間に1つのピークを有する。このような第一活物質粒子及び第二活物質粒子を9:1〜6:4の配合比率で配合した正極活物質を用いることにより、圧延により得られる正極合剤層を高密度化することができる。なお、正極活物質粒子の平均粒子径(D50)は、粒度分布計で測定したときの体積基準の粒度分布のメディアン径を意味する。 Positive electrode active material of the present embodiment, the average particle diameter (D 50) mean particle diameter and the first active material particles of 18~25μm (D 50) and a second active material particles of 3 to 7 [mu] m 9: 1 to 6: 4 in a mixing ratio. Such a positive electrode active material usually has at least two peaks, a peak in the particle size distribution of the first active material particles and a peak in the particle size distribution of the second active material particles. Specifically, it has one peak between 18 and 25 μm and one peak between 3 and 7 μm. Densifying the positive electrode mixture layer obtained by rolling by using a positive electrode active material in which the first active material particles and the second active material particles are mixed at a mixing ratio of 9: 1 to 6: 4. Can do. The average particle diameter (D 50 ) of the positive electrode active material particles means the median diameter of the volume-based particle size distribution as measured with a particle size distribution meter.

また、正極活物質粒子は、平均粒子径(D50)20〜23μmの第一活物質粒子と平均粒子径(D50)3〜5μmの第二活物質粒子とを8:2〜7:3の配合比率で含有することが好ましい。このような正極活物質を含有することにより、より優れた充填性が得られるために正極合剤層中の正極活物質粒子をより高密度化することができる。 The positive electrode active material particles are composed of first active material particles having an average particle diameter (D 50 ) of 20 to 23 μm and second active material particles having an average particle diameter (D 50 ) of 3 to 5 μm of 8: 2 to 7: 3. It is preferable to contain by the compounding ratio of. By containing such a positive electrode active material, more excellent filling properties can be obtained, so that the positive electrode active material particles in the positive electrode mixture layer can be densified.

平均粒子径(D50)が25μmを超えるような正極活物質粒子を含有する場合には、充放電時における電子伝導性及びイオン伝導性が低下する。また、平均粒子径(D50)が3μm未満の正極活物質粒子を含有する場合には、3μm未満の正極活物質粒子が圧延時に滑り抵抗を発生させることにより、充分に高密度化することが困難になる。 When the positive electrode active material particles having an average particle diameter (D 50 ) exceeding 25 μm are contained, the electron conductivity and ionic conductivity at the time of charge / discharge are lowered. In addition, when the positive electrode active material particles having an average particle diameter (D 50 ) of less than 3 μm are contained, the positive electrode active material particles of less than 3 μm generate a sliding resistance during rolling, thereby sufficiently increasing the density. It becomes difficult.

また、正極活物質粒子全体の平均粒子径(D50)としては、10〜25μm、さらには12〜18μmであることが好ましい。 Further, the average particle diameter of the entire positive electrode active material particles (D 50), 10 to 25 [mu] m, further particularly 12~18Myuemu.

導電助剤は、カーボンブラックと平均粒子径が1〜5μmの範囲である膨張黒鉛とを7:3〜3:7の配合比率、好ましくは、6:4〜4:6の配合比率で含有する。カーボンブラックの配合比率が7:3よりも多すぎる場合には、導電助剤のかさ密度が増加して正極活物質粒子の充填性が低下する。また、平均粒子径が1〜5μmの範囲である膨張黒鉛の配合比率が3:7よりも多すぎる場合には、導電性が低下することにより容量やサイクル特性が低下する。なお、膨張黒鉛の平均粒子径(D50)は、粒度分布計で測定したときの体積基準の粒度分布のメディアン径を意味する。 The conductive additive contains carbon black and expanded graphite having an average particle diameter in the range of 1 to 5 μm in a mixing ratio of 7: 3 to 3: 7, preferably in a mixing ratio of 6: 4 to 4: 6. . When the compounding ratio of carbon black is too larger than 7: 3, the bulk density of the conductive auxiliary agent increases and the filling property of the positive electrode active material particles decreases. Moreover, when the compounding ratio of the expanded graphite whose average particle diameter is in the range of 1 to 5 μm is more than 3: 7, the capacity and cycle characteristics are lowered due to the decrease in conductivity. The average particle diameter (D 50 ) of expanded graphite means the median diameter of the volume-based particle size distribution measured with a particle size distribution meter.

本実施形態において用いられるカーボンブラックの種類は特に限定されず、従来から、非水電解質二次電池の正極の導電助剤として用いられているものであれば、特に限定なく用いられる。カーボンブラックの具体例としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。カーボンブラックの平均粒子径は特に限定されず、従来から、導電助剤として用いられている、例えば10〜300nmの範囲であれば特に限定されない。   The type of carbon black used in the present embodiment is not particularly limited, and any carbon black can be used without particular limitation as long as it is conventionally used as a conductive additive for a positive electrode of a nonaqueous electrolyte secondary battery. Specific examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like. The average particle diameter of carbon black is not particularly limited, and is not particularly limited as long as it is in the range of, for example, 10 to 300 nm, which has been conventionally used as a conductive additive.

膨張黒鉛としては、従来から知られた公知の方法、具体的には、例えば、天然黒鉛、キッシュ黒鉛、熱分解黒鉛等の高結晶化した黒鉛を濃硫酸と硝酸の混酸、濃硫酸と過マンガン酸カリウムの混酸、濃硫酸と過酸化水素水の混酸等の強酸化性溶液に浸漬させる化学処理、電解処理等の酸化処理を行ない、黒鉛−硫酸層間化合物を生成させ、水洗、乾燥してから急速加熱して黒鉛結晶のC軸方向に膨張させて得られた膨張黒鉛をシート状に圧縮した後、ジェットミル等の公知の粉砕機で粉砕し、必要に応じて分級処理すること等により得られた、平均粒子径1〜5μmの範囲の膨張黒鉛粒子が特に限定なく用いられる。   As the expanded graphite, a conventionally known method, specifically, for example, highly crystallized graphite such as natural graphite, quiche graphite, and pyrolytic graphite is mixed acid of concentrated sulfuric acid and nitric acid, concentrated sulfuric acid and permanganese. Oxidation treatment such as chemical treatment, electrolytic treatment, etc., soaking in a strong oxidizing solution such as mixed acid of potassium acid, concentrated sulfuric acid and hydrogen peroxide water, etc. to produce graphite-sulfuric acid intercalation compound, water washing and drying It is obtained by compressing expanded graphite obtained by rapid heating and expanding in the C-axis direction of the graphite crystal into a sheet, and then pulverizing with a known pulverizer such as a jet mill and classifying as necessary. The expanded graphite particles having an average particle diameter in the range of 1 to 5 μm are used without particular limitation.

本実施形態において用いられる膨張黒鉛の平均粒子径は1〜5μmの範囲であり、好ましくは、3〜5μmの範囲である。膨張黒鉛の粒子サイズが1μm未満の場合には、微細な膨張黒鉛が圧延時の滑り抵抗を発生させることにより、圧延時の正極合剤の充填性が低下する。また、膨張黒鉛の粒子サイズが5μmを超える場合には、膨張黒鉛のサイズが大きすぎることにより、正極活物質粒子間に形成される空隙に充填されにくくなる。このため、合剤密度が低下するとともに導電性も低下する。   The average particle diameter of the expanded graphite used in the present embodiment is in the range of 1 to 5 μm, and preferably in the range of 3 to 5 μm. When the particle size of the expanded graphite is less than 1 μm, the fine expanded graphite generates slip resistance during rolling, thereby reducing the filling property of the positive electrode mixture during rolling. Further, when the expanded graphite particle size exceeds 5 μm, the expanded graphite size is too large, which makes it difficult to fill the voids formed between the positive electrode active material particles. For this reason, the mixture density is lowered and the conductivity is also lowered.

正極活物質100質量部に対する導電助剤の配合割合としては、0.5〜3質量部、さらには1〜2質量部であることが好ましい。導電助剤が多すぎる場合には、正極活物質粒子の高密度化が困難になる傾向がある。導電助剤が少なすぎる場合には、正極内における導電性を充分に確保することが困難になる傾向がある。   The blending ratio of the conductive additive to 100 parts by mass of the positive electrode active material is preferably 0.5 to 3 parts by mass, and more preferably 1 to 2 parts by mass. When there are too many conductive assistants, it tends to be difficult to increase the density of the positive electrode active material particles. When the amount of the conductive auxiliary is too small, it tends to be difficult to ensure sufficient conductivity in the positive electrode.

また、正極活物質100質量部に対する平均粒子径1〜5μmの膨張黒鉛の配合割合としては、0.2〜2質量部、さらには0.4〜1.5質量部であることが好ましい。膨張黒鉛の配合割合が多すぎる場合には、正極内における導電性を充分に確保することが困難になる傾向がある。また、膨張黒鉛の配合割合が低すぎる場合には、圧延時に正極合剤の滑り性が低下することにより、正極活物質粒子の高密度化が困難になる傾向がある。   In addition, the blending ratio of the expanded graphite having an average particle diameter of 1 to 5 μm with respect to 100 parts by mass of the positive electrode active material is preferably 0.2 to 2 parts by mass, and more preferably 0.4 to 1.5 parts by mass. When the proportion of expanded graphite is too large, it tends to be difficult to ensure sufficient conductivity in the positive electrode. Moreover, when the compounding ratio of expanded graphite is too low, there exists a tendency for the densification of a positive electrode active material particle to become difficult because the slip property of a positive electrode mixture falls at the time of rolling.

本実施形態において用いられる結着剤としては、従来から、非水電解質二次電池の正極活物質粒子の結着に用いられている結着剤であれば特に限定なく用いられる。結着剤の具体例としては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などが用いられる。結着剤の含有割合は、正極活物質100質量部に対して、
0.5〜3質量部、さらには、0.7〜1.5質量部であることが好ましい。
The binder used in the present embodiment is not particularly limited as long as it is a binder that has been conventionally used for binding positive electrode active material particles of a nonaqueous electrolyte secondary battery. Specific examples of the binder include, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexafluoro. A propylene copolymer or the like is used. The content ratio of the binder is 100 parts by mass of the positive electrode active material.
It is preferably 0.5 to 3 parts by mass, and more preferably 0.7 to 1.5 parts by mass.

正極は、例えば次のような方法で作製される。はじめに、上述したような、正極活物質粒子と、導電助剤と、結着剤と、分散媒とを混合することにより正極合剤スラリーを調製する。そして、得られた正極合剤スラリーを正極集電体の両面に塗布し、必要に応じて乾燥させて、正極合剤層を形成する。そして、正極集電体の表面に形成された正極合剤層をローラ等で3.5〜4.0g/cm3の密度の範囲になるように圧延する。 The positive electrode is produced, for example, by the following method. First, the positive electrode mixture slurry is prepared by mixing the positive electrode active material particles, the conductive additive, the binder, and the dispersion medium as described above. And the obtained positive mix slurry is apply | coated on both surfaces of a positive electrode electrical power collector, and it is made to dry as needed, and forms a positive mix layer. Then, the positive electrode mixture layer formed on the surface of the positive electrode current collector is rolled with a roller or the like so as to be in a density range of 3.5 to 4.0 g / cm 3 .

正極集電体としては、従来から、非水電解質二次電池の正極集電体として用いられている金属材料を含むシートや金属箔などが特に限定なく用いられうる。金属材料の具体例としては、ステンレス鋼、アルミニウム、チタンなどが挙げられる。正極集電体の厚みは特に限定されないが、5〜20μmであることが好ましい。   As the positive electrode current collector, a sheet or a metal foil containing a metal material conventionally used as a positive electrode current collector of a nonaqueous electrolyte secondary battery can be used without any particular limitation. Specific examples of the metal material include stainless steel, aluminum, titanium, and the like. The thickness of the positive electrode current collector is not particularly limited, but is preferably 5 to 20 μm.

正極合剤スラリーは、正極活物質として、平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で配合し、さらに、導電助剤としてカーボンブラックと平均粒子径が1〜5μmの範囲である膨張黒鉛とを7:3〜3:7の配合比率で配合し、さらに、結着剤と、N−メチル−2−ピロリドン(NMP)等の公知の分散媒とを混合することにより調製される。正極合剤スラリー中の導電助剤及び結着剤の配合割合は上述の通りである。 The positive electrode mixture slurry as the positive electrode active material, the average particle diameter (D 50) mean particle diameter and the first active material particles of 18~25μm (D 50) and a second active material particles of 3 to 7 [mu] m 9:. 1 to 6: 4 is blended at a blending ratio, and carbon black and expanded graphite having an average particle diameter in the range of 1 to 5 μm are blended at a blending ratio of 7: 3 to 3: 7 as a conductive assistant, It is prepared by mixing a binder and a known dispersion medium such as N-methyl-2-pyrrolidone (NMP). The blending ratio of the conductive additive and the binder in the positive electrode mixture slurry is as described above.

このようにして調製された正極合剤スラリーを正極集電体の表面に塗布した後、乾燥することにより正極合剤層が形成される。そして、正極集電体の表面に形成された正極合剤層を、その密度を3.5〜4.0g/cm3範囲になるようにローラ等で圧延することにより、本実施形態の正極が得られる。圧延時の線圧は、例えば、1.0×103〜2.0×103kgf/cm程度とすることが好ましい。また、圧延は、1回のみでも、複数回行ってもよい。 The positive electrode mixture slurry thus prepared is applied to the surface of the positive electrode current collector and then dried to form a positive electrode mixture layer. Then, the positive electrode mixture layer formed on the surface of the positive electrode current collector is rolled with a roller or the like so that the density is in the range of 3.5 to 4.0 g / cm 3. can get. The linear pressure during rolling is preferably about 1.0 × 10 3 to 2.0 × 10 3 kgf / cm, for example. Moreover, rolling may be performed only once or multiple times.

なお、正極集電体を圧延する工程においては、正極合剤層が形成された正極集電体を20〜100℃まで加熱しながら圧延することが好ましい。これにより、正極合剤層の密度をより高くすることができる。   In the step of rolling the positive electrode current collector, the positive electrode current collector on which the positive electrode mixture layer is formed is preferably rolled while being heated to 20 to 100 ° C. Thereby, the density of a positive mix layer can be made higher.

圧延後の正極合剤層の密度は3.5〜4.0g/cm3であり、好ましくは3.7〜4.0g/cm3の範囲である。圧延後の正極合剤層の密度が3.5g/cm3未満の場合には、充分に高容量化された電池が得られず、4.0g/cm3を超える場合には、正極活物質粒子が圧縮されすぎて圧延しにくくなり、割れが生じるおそれ等がある。なお、正極合剤層の密度は、単位体積あたりの正極合剤層中に含まれる正極合剤の構成成分(一般に正極活物質、導電材および結着剤の合計)の質量から算出することができる。 The density of the positive electrode mixture layer after rolling is 3.5 to 4.0 g / cm 3 , and preferably 3.7 to 4.0 g / cm 3 . When the density of the positive electrode mixture layer after rolling is less than 3.5 g / cm 3 , a sufficiently high capacity battery cannot be obtained, and when the density exceeds 4.0 g / cm 3 , the positive electrode active material There is a possibility that the particles are compressed too much to be easily rolled and cracks may occur. The density of the positive electrode mixture layer can be calculated from the mass of the components of the positive electrode mixture contained in the positive electrode mixture layer per unit volume (generally, the total of the positive electrode active material, the conductive material and the binder). it can.

このようにして得られた圧延後の正極合剤層の空隙率としては、20%以下、さらには18%以下であることが好ましい。また、圧延後の正極合剤層の厚さとしては、30〜90μm、さらには40〜60μmの範囲であることが好ましい。   The porosity of the positive electrode mixture layer after rolling thus obtained is preferably 20% or less, more preferably 18% or less. Moreover, as thickness of the positive mix layer after rolling, it is preferable that it is the range of 30-90 micrometers, Furthermore, 40-60 micrometers.

次に、本実施形態の非水電解質二次電池について説明する。本実施形態の非水電解質二次電池は、上述したような正極と、負極とを、セパレータを介在させて捲回した電極群および非水電解質を備える。   Next, the nonaqueous electrolyte secondary battery of this embodiment will be described. The non-aqueous electrolyte secondary battery of this embodiment includes an electrode group and a non-aqueous electrolyte obtained by winding the positive electrode and the negative electrode as described above with a separator interposed therebetween.

負極は、従来から非水電解質二次電池の負極として用いられているものであれば、特に限定なく用いられうる。このような負極は、例えば、負極活物質と、結着剤とを含む負極合剤スラリーを、負極集電体に塗布し、乾燥し、圧延することにより得られる。負極活物質としては、炭素材料、金属、合金、金属酸化物、金属窒化物などが挙げられる。炭素材料の具体例としては、例えば、天然黒鉛、人造黒鉛などが好ましく用いられる。金属もしくは合金としては、リチウム単体、リチウム合金、ケイ素単体、ケイ素合金、スズ単体、スズ合金などが好ましい。金属酸化物の具体例としては、例えば、SiOx(0<x<2、好ましくは0.1≦x≦1.2)等が挙げられる。負極集電体としては、銅、ニッケル、ステンレス鋼などの材料を含むシートや箔が挙げられる。 If a negative electrode is conventionally used as a negative electrode of a nonaqueous electrolyte secondary battery, it may be used without limitation. Such a negative electrode is obtained, for example, by applying a negative electrode mixture slurry containing a negative electrode active material and a binder to a negative electrode current collector, drying, and rolling. Examples of the negative electrode active material include carbon materials, metals, alloys, metal oxides, and metal nitrides. As specific examples of the carbon material, for example, natural graphite and artificial graphite are preferably used. As the metal or alloy, lithium alone, lithium alloy, silicon alone, silicon alloy, tin alone, tin alloy and the like are preferable. Specific examples of the metal oxide include SiO x (0 <x <2, preferably 0.1 ≦ x ≦ 1.2). Examples of the negative electrode current collector include sheets and foils containing materials such as copper, nickel, and stainless steel.

非水電解質としては、従来から非水電解質二次電池の非水電解質として用いられているものであれば、特に限定なく用いられうる。例えば、非水溶媒およびこれに溶解する溶質からなる液状の電解質が好ましい。非水溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が好ましく用いられる。また、γ−ブチロラクトンやジメトキシエタンなども用いられる。リチウム塩としては、無機リチウムフッ化物やリチウムイミド化合物などが挙げられる。無機リチウムフッ化物としては、LiPF6、LiBF4等が挙げられ、リチウムイミド化合物としてはLiN(CF3SO22等が挙げられる。 As the nonaqueous electrolyte, any nonaqueous electrolyte that has been conventionally used as a nonaqueous electrolyte for a nonaqueous electrolyte secondary battery can be used without any particular limitation. For example, a liquid electrolyte composed of a nonaqueous solvent and a solute dissolved therein is preferred. As a specific example of the nonaqueous solvent, for example, a mixed solvent of a cyclic carbonate such as ethylene carbonate or propylene carbonate and a chain carbonate such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferably used. Further, γ-butyrolactone, dimethoxyethane and the like are also used. Examples of lithium salts include inorganic lithium fluorides and lithium imide compounds. Examples of the inorganic lithium fluoride include LiPF 6 and LiBF 4 , and examples of the lithium imide compound include LiN (CF 3 SO 2 ) 2 .

セパレータとしては、従来から非水電解質二次電池のセパレータとして用いられているものであれば、特に限定なく用いられうる。具体的には、例えば、ポリエチレン、ポリプロピレンなどからなる微多孔性フィルムが挙げられる。セパレータの厚みは特に限定されないが、例えば、10〜30μmであることが好ましい。   Any separator can be used without particular limitation as long as it is conventionally used as a separator for non-aqueous electrolyte secondary batteries. Specific examples include microporous films made of polyethylene, polypropylene, and the like. Although the thickness of a separator is not specifically limited, For example, it is preferable that it is 10-30 micrometers.

本発明は、円筒型、角型などの様々な形状の非水電解質二次電池に適用可能である。   The present invention is applicable to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape and a rectangular shape.

次に、本発明を実施例および比較例に基づいて具体的に説明する。なお、本発明の範囲は実施例により何ら限定して解釈されるものではない。   Next, the present invention will be specifically described based on examples and comparative examples. The scope of the present invention is not construed as being limited in any way by the examples.

[実施例1]
(i)正極の作製
平均粒子径(D50)20μmのLiNi0.80Co0.15Al0.05O2と平均粒子径(D50)5μmのLiNi0.80Co0.15Al0.05O2とを8:2の質量比で混合した正極活物質粒子100質量部に対して、結着剤0.9質量部(PVDF、重量平均分子量100万)、アセチレンブラック0.75質量部、膨張黒鉛0.75質量部及び分散媒である適量のN−メチル−2−ピロリドン(NMP)を混合することにより正極合剤スラリーを調製した。なお、膨張黒鉛は、次のように調製した。98質量%の濃硫酸500gに天然黒鉛50gを入れて攪拌しながら、25質量%の過酸化水素水を適量加えることにより黒鉛層間化合物を得た。そして、得られた黒鉛層間化合物を水洗乾燥し、800℃で加熱することにより膨張黒鉛を得た。そして、得られた膨張黒鉛をロールでシート状に圧縮成型した後、ジェットミルで粉砕することにより、平均粒子径(D50)3μmの膨張黒鉛粒子が得られた。
[Example 1]
(I) Preparation average particle diameter of the positive electrode (D 50) 20 [mu] m and LiNi 0.80 Co 0.15 Al 0.05 O 2 having an average particle diameter (D 50) 5 [mu] m and LiNi 0.80 Co 0.15 Al 0.05 O 2 of 8: 2 in weight ratio For 100 parts by mass of the mixed positive electrode active material particles, 0.9 parts by mass of the binder (PVDF, weight average molecular weight 1 million), 0.75 parts by mass of acetylene black, 0.75 parts by mass of expanded graphite, and a dispersion medium A positive electrode mixture slurry was prepared by mixing an appropriate amount of N-methyl-2-pyrrolidone (NMP). The expanded graphite was prepared as follows. A graphite intercalation compound was obtained by adding 50 g of natural graphite to 500 g of concentrated sulfuric acid of 98% by mass and adding an appropriate amount of 25% by mass of hydrogen peroxide while stirring. And the obtained graphite intercalation compound was washed with water and dried, and expanded graphite was obtained by heating at 800 ° C. The obtained expanded graphite was compression molded into a sheet with a roll and then pulverized with a jet mill to obtain expanded graphite particles having an average particle diameter (D 50 ) of 3 μm.

そして、得られた正極合剤スラリーを厚さ15μmのアルミニウム箔(住軽アルミ箔(株)製のアルミニウム合金箔、べスパFS13)からなる正極集電体の両面に塗布した後、80℃で10分間乾燥させることにより正極合剤層が形成された。圧延前の正極合剤層の密度は2.2g/cm3であった。そして、正極合剤層の密度が3.7g/cm3、空隙率が17%となるように、ローラで塗膜を圧延することにより正極シートを作製した。なお、ローラの線圧は2.0×103kgf/cmとした。圧延後の正極合剤層の厚さは50μmであり、シート全体の厚さは115μmであった。正極シートを幅35mm×長さ450mmに切断することにより正極を作製した。 And after apply | coating the obtained positive mix slurry on both surfaces of the positive electrode electrical power collector which consists of 15-micrometer-thick aluminum foil (Sumi Light Aluminum Foil Co., Ltd. aluminum alloy foil, Vespa FS13), at 80 degreeC A positive electrode mixture layer was formed by drying for 10 minutes. The density of the positive electrode mixture layer before rolling was 2.2 g / cm 3 . And the positive electrode sheet was produced by rolling a coating film with a roller so that the density of a positive mix layer might be 3.7 g / cm < 3 >, and the porosity may be 17%. The linear pressure of the roller was 2.0 × 10 3 kgf / cm. The thickness of the positive electrode mixture layer after rolling was 50 μm, and the thickness of the entire sheet was 115 μm. A positive electrode was produced by cutting the positive electrode sheet into a width of 35 mm and a length of 450 mm.

(ii)負極の作製
負極活物質である人造黒鉛100質量部、結着剤であるスチレン−ブタジエン共重合体(日本ゼオン(株)製のBM−400B)1.0質量部、増粘剤であるカルボキシメチルセルロース(CMC)1.0質量部、及び分散媒である適量の水を混合することにより負極合剤スラリーを調製した。
(Ii) Production of negative electrode 100 parts by mass of artificial graphite as a negative electrode active material, 1.0 part by mass of a styrene-butadiene copolymer (BM-400B manufactured by Nippon Zeon Co., Ltd.) as a binder, and a thickener A negative electrode mixture slurry was prepared by mixing 1.0 part by mass of a certain carboxymethyl cellulose (CMC) and an appropriate amount of water as a dispersion medium.

厚さ10μmの銅箔からなる負極集電体の両面に得られた負極合剤スラリーを塗布した後、80℃で20分間乾燥させることにより負極合剤層を形成した。そして、負極合剤層の厚さが140μmとなるようにローラで塗膜を圧延することにより負極シートを作製した。そして、負極シートを幅37mm×長さ460mmに切断することにより負極を作製した。   After apply | coating the negative mix slurry obtained on both surfaces of the negative electrode collector which consists of copper foil with a thickness of 10 micrometers, the negative mix layer was formed by making it dry at 80 degreeC for 20 minutes. And the negative electrode sheet was produced by rolling a coating film with a roller so that the thickness of a negative mix layer might be set to 140 micrometers. And the negative electrode was produced by cut | disconnecting a negative electrode sheet into width 37mm x length 460mm.

(iii)電極群の作製
正極の正極集電体の端部にアルミニウムからなる正極リードを取り付け、負極の負極集電体の端部にニッケルからなる負極リードを取り付けた。そして、正極と負極とを、これらの間に厚さ15μmのポリエチレン製の微多孔質フィルムからなるセパレータを介して捲回することにより、断面が略楕円形である型式504042の電極群を作製した。
(Iii) Production of Electrode Group A positive electrode lead made of aluminum was attached to the end of the positive electrode current collector of the positive electrode, and a negative electrode lead made of nickel was attached to the end of the negative electrode current collector of the negative electrode. Then, a positive electrode and a negative electrode were wound through a separator made of a polyethylene microporous film having a thickness of 15 μm between them to produce an electrode group of type 504042 having a substantially elliptical cross section. .

(iv)電池の作製
以下のようにして、図1に示すような角型リチウムイオン二次電池を作製した。
上述のようにして得られた電極群(電極群21)を角型の電池ケース20の内部に収容した。電池ケース20は、底部と、側壁とを有し、上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。その後、電池ケース20と正極リード22との短絡を防ぐための絶縁体24を、電極群21の上部に配置した。次に、絶縁ガスケット26で囲まれた負極端子27を中央に有する矩形の封口板25を、電池ケース20の開口に配置した。負極リード22は、負極端子27と接続した。正極リード23は、封口板25の下面と接続した。開口の端部と封口板25とをレーザで溶接し、電池ケース20の開口を封口した。その後、封口板25の注液孔から非水電解質を電池ケース20に注入した。非水電解質は、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを3:3:4の体積割合で含む混合溶媒に、1.4mol/Lの濃度でLiPF6を溶解させたものを用いた。最後に、注液孔を封栓29で溶接により塞ぎ、高さ42mm、幅40mm、厚み約5.0mm、設計容量1000mAhの角型リチウムイオン二次電池を作製した。
(Iv) Production of Battery A square lithium ion secondary battery as shown in FIG. 1 was produced as follows.
The electrode group (electrode group 21) obtained as described above was accommodated in the rectangular battery case 20. The battery case 20 has a bottom part and a side wall, the top part is opened, and the shape is substantially rectangular. The thickness of the main flat part of the side wall was 80 μm. Thereafter, an insulator 24 for preventing a short circuit between the battery case 20 and the positive electrode lead 22 was disposed on the electrode group 21. Next, a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 in the center was disposed in the opening of the battery case 20. The negative electrode lead 22 was connected to the negative electrode terminal 27. The positive electrode lead 23 was connected to the lower surface of the sealing plate 25. The end of the opening and the sealing plate 25 were welded by laser to seal the opening of the battery case 20. Thereafter, a nonaqueous electrolyte was injected into the battery case 20 from the injection hole of the sealing plate 25. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.4 mol / L in a mixed solvent containing ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 3: 3: 4 was used. Finally, the liquid injection hole was closed by welding with a sealing plug 29 to produce a prismatic lithium ion secondary battery having a height of 42 mm, a width of 40 mm, a thickness of about 5.0 mm, and a design capacity of 1000 mAh.

[角型電池の評価]
得られた角型リチウムイオン二次電池のサイクル特性を以下の方法により評価した。
(1)放電容量密度の評価
20℃環境下で、下記条件で充放電し、初期容量を求めた。
その初期容量をもとに、下記式より、放電容量密度を求めた。
放電容量密度(mAh/cm3)=初期放電容量(mAh)/合剤層の体積(cm3
<充放電条件>
定電流充電:充電電流値700mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流100mA
定電流放電:放電電流値1000mA/放電終止電圧2.5V
(2)容量維持率の評価
20℃環境下で、下記条件で充放電し、初期容量を求めた。
その後、20℃環境下で、下記条件で、充放電を500サイクル繰り返し、500サイクル目の放電容量を求めた。そして、下記式により、サイクル容量維持率を求めた。
サイクル容量維持率(%)=500サイクル目の放電容量/初期の放電容量×100
[Evaluation of square battery]
The cycle characteristics of the obtained prismatic lithium ion secondary battery were evaluated by the following methods.
(1) Evaluation of discharge capacity density In a 20 degreeC environment, it charged / discharged on the following conditions and calculated | required the initial capacity.
Based on the initial capacity, the discharge capacity density was determined from the following formula.
Discharge capacity density (mAh / cm 3 ) = initial discharge capacity (mAh) / volume of mixture layer (cm 3 )
<Charging / discharging conditions>
Constant current charging: Charging current value 700mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / end-of-charge current 100mA
Constant current discharge: discharge current value 1000 mA / discharge end voltage 2.5 V
(2) Evaluation of capacity maintenance rate Under 20 degreeC environment, it charged / discharged on the following conditions and calculated | required the initial capacity.
Thereafter, charging and discharging were repeated 500 cycles under the following conditions in a 20 ° C. environment, and the discharge capacity at the 500th cycle was determined. And the cycle capacity maintenance rate was calculated | required by the following formula.
Cycle capacity retention rate (%) = 500th cycle discharge capacity / initial discharge capacity × 100

<充放電条件>
定電流充電:充電電流値700mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流100mA
定電流放電:放電電流値1000mA/放電終止電圧2.5V
<Charging / discharging conditions>
Constant current charging: Charging current value 700mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / end-of-charge current 100mA
Constant current discharge: discharge current value 1000 mA / discharge end voltage 2.5 V

(3)電池厚みの増加率の評価
(1)と同様の条件で充放電サイクルを繰り返し500サイクル後の電池の厚みを測定した。そして、予め測定していた初期の電池厚みに対する500サイクル後の電池厚みの増加率を下記式により求めた。
電池厚みの増加率(%)=500サイクル後の電池厚み/初期の電池厚み×100
(3) Evaluation of increase rate of battery thickness The charge / discharge cycle was repeated under the same conditions as in (1), and the thickness of the battery after 500 cycles was measured. And the increase rate of the battery thickness after 500 cycles with respect to the initial battery thickness measured beforehand was calculated | required by the following formula.
Rate of increase in battery thickness (%) = battery thickness after 500 cycles / initial battery thickness × 100

結果を表1に示す。   The results are shown in Table 1.

Figure 2012146590
Figure 2012146590

[実施例2〜3及び比較例1〜2]
正極スラリー中の正極活物質粒子100質量部に対するアセチレンブラック及び膨張黒鉛の配合割合を表1に示すような割合に変更した以外は実施例1と同様にして、正極合剤スラリーを調製し、角型リチウムイオン二次電池を作製し、評価した。結果を表1に示す。
[Examples 2-3 and Comparative Examples 1-2]
A positive electrode mixture slurry was prepared in the same manner as in Example 1 except that the mixing ratio of acetylene black and expanded graphite to 100 parts by mass of the positive electrode active material particles in the positive electrode slurry was changed to the ratio shown in Table 1. Type lithium ion secondary batteries were fabricated and evaluated. The results are shown in Table 1.

表1の実施例1〜3のように、導電助剤にアセチレンブラックと膨張黒鉛を含む正極を用いた合剤層密度が3.69g/cm3以上の正極によれば、500サイクル後の容量維持率が高く、500サイクル後の電池厚み増加率が低いことがわかった。一方、アセチレンブラックのみを用いた比較例1では、正極の高密度化が困難であった。また、膨張黒鉛を用いた比較例2では、正極は高密度化することができたが、500サイクル後の容量維持率が低く、500サイクル後の電池厚み増加率が高いことがわかった。本発明に係る実施例1〜3のカーボンブラックと膨張黒鉛を含む正極は合剤層が3.69g/cm3以上の高密度化が可能であり、サイクル特性にも優れていることがわかった。 As in Examples 1 to 3 in Table 1, according to the positive electrode having a mixture layer density of 3.69 g / cm 3 or more using a positive electrode containing acetylene black and expanded graphite as a conductive additive, the capacity after 500 cycles It was found that the maintenance rate was high and the battery thickness increase rate after 500 cycles was low. On the other hand, in Comparative Example 1 using only acetylene black, it was difficult to increase the density of the positive electrode. Further, in Comparative Example 2 using expanded graphite, the positive electrode could be densified, but it was found that the capacity retention rate after 500 cycles was low and the battery thickness increase rate after 500 cycles was high. It was found that the positive electrode containing carbon black and expanded graphite of Examples 1 to 3 according to the present invention was capable of increasing the density of the mixture layer to 3.69 g / cm 3 or more and excellent in cycle characteristics. .

[実施例4〜7及び比較例3〜4]
正極スラリー中の正極活物質の配合組成及び正極活物質の平均粒子径を表2に示すように変更した以外は実施例1と同様にして、正極合剤スラリーを調製し、角型リチウムイオン二次電池を作製し、評価した。結果を表2に示す。
[Examples 4-7 and Comparative Examples 3-4]
A positive electrode mixture slurry was prepared in the same manner as in Example 1 except that the composition of the positive electrode active material in the positive electrode slurry and the average particle size of the positive electrode active material were changed as shown in Table 2. A secondary battery was fabricated and evaluated. The results are shown in Table 2.

Figure 2012146590
Figure 2012146590

表2の実施例4、5のように、正極活物質の混合割合が6:4〜9:1の範囲では合剤密度が3.61g/cm3以上であり、かつ500サイクル後の容量維持率の向上および電池厚み増加率の低減することがわかった。一方、5:5の割合では、合剤密度が3.48と低く、容量維持率と電池厚み増加率の特性が低下することがわかった。
表2の実施例6、7のように、正極活物質の大きい平均粒子径が25〜18μmの範囲、小さい平均粒子径が3〜7μmの範囲の場合を組み合わせた場合には、合剤密度が3.59g/cm3以上であり、かつ500サイクル後の容量維持率も高く、電池厚み増加率は低いことがわかった。一方、一種類の平均粒子径の正極活物質粒子のみを用いた比較例4の場合には、合剤密度が3.40g/cm3であり、また、容量維持率が低く、電池厚み増加率が高いことがわかった。
As in Examples 4 and 5 in Table 2, when the mixing ratio of the positive electrode active material is in the range of 6: 4 to 9: 1, the mixture density is 3.61 g / cm 3 or more and the capacity is maintained after 500 cycles. It has been found that the rate is improved and the battery thickness increase rate is reduced. On the other hand, when the ratio was 5: 5, the mixture density was as low as 3.48, and it was found that the characteristics of the capacity retention rate and the battery thickness increase rate were reduced.
When the case where the large average particle diameter of the positive electrode active material is in the range of 25 to 18 μm and the small average particle diameter is in the range of 3 to 7 μm is combined as in Examples 6 and 7 in Table 2, the mixture density is It was found to be 3.59 g / cm 3 or more, the capacity retention rate after 500 cycles was high, and the battery thickness increase rate was low. On the other hand, in the case of Comparative Example 4 using only one kind of positive electrode active material particles having an average particle diameter, the mixture density is 3.40 g / cm 3 , the capacity retention rate is low, and the battery thickness increase rate is Was found to be expensive.

[実施例8〜9及び比較例5〜6]
正極スラリー中の膨張黒鉛の粒子サイズを表3に示すように変更した以外は実施例1と同様にして、正極合剤スラリーを調製し、角型リチウムイオン二次電池を作製し、評価した。結果を表3に示す。
[Examples 8 to 9 and Comparative Examples 5 to 6]
A positive electrode mixture slurry was prepared in the same manner as in Example 1 except that the particle size of the expanded graphite in the positive electrode slurry was changed as shown in Table 3, and a square lithium ion secondary battery was prepared and evaluated. The results are shown in Table 3.

Figure 2012146590
Figure 2012146590

表3の実施例8、9のように、膨張黒鉛の平均粒子径が1〜5μmの範囲では合剤密度が3.69g/cc以上であり、かつ500サイクル後の容量維持率が高く、電池厚み増加率は低かった。一方、膨張黒鉛の平均粒子径が0.5μmの比較例5では、粒子のサイズが小さすぎるために、圧延時に微粒子による摩擦が生じることにより充分に高密度化することができなかった。また、膨張黒鉛の平均粒子径が7μmの場合には、活物質粒子間の隙間に膨張黒鉛が嵌らないために合剤密度が低下した。その結果、比較例5及び比較例6では、容量維持率が低くなり、電池厚み増加率は高くなった。   As in Examples 8 and 9 in Table 3, when the average particle diameter of the expanded graphite is in the range of 1 to 5 μm, the mixture density is 3.69 g / cc or more, and the capacity retention rate after 500 cycles is high. The rate of increase in thickness was low. On the other hand, in Comparative Example 5 in which the average particle diameter of the expanded graphite was 0.5 μm, since the particle size was too small, it was not possible to sufficiently increase the density due to friction caused by fine particles during rolling. Moreover, when the average particle diameter of the expanded graphite was 7 μm, the expanded graphite did not fit into the gaps between the active material particles, so that the mixture density decreased. As a result, in Comparative Example 5 and Comparative Example 6, the capacity retention rate was low and the battery thickness increase rate was high.

本発明の非水電解質二次電池用正極を用いた電池は、携帯電話やノートパソコンなどの電子機器の小型、軽量化に適した電源として有用である。   A battery using the positive electrode for a nonaqueous electrolyte secondary battery of the present invention is useful as a power source suitable for reducing the size and weight of electronic devices such as mobile phones and laptop computers.

20 電池ケース
21 電極群
22 負極リード
23 正極リード
24 絶縁体
25 封口板
26 絶縁ガスケット
27 負極端子
29 封栓
20 Battery Case 21 Electrode Group 22 Negative Electrode Lead 23 Positive Electrode Lead 24 Insulator 25 Sealing Plate 26 Insulating Gasket 27 Negative Electrode Terminal 29 Sealing

Claims (7)

正極集電体と前記正極集電体表面に形成された正極合剤層とを備え、
前記正極合剤層は正極活物質と導電助剤とを含み、且つ、密度3.5〜4.0g/cm3の範囲であり、
前記正極活物質が平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で含有し、
前記導電助剤がカーボンブラックと膨張黒鉛とを7:3〜3:7の配合比率で含有し、
前記膨張黒鉛の平均粒子径が1〜5μmの範囲であることを特徴とする非水電解質二次電池用正極。
A positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector;
The positive electrode mixture layer includes a positive electrode active material and a conductive additive, and has a density in the range of 3.5 to 4.0 g / cm 3 .
The positive electrode active material average particle diameter (D 50) a first active material particles with an average particle diameter of 18~25μm (D 50) 3~7μm the second active material and particles 9: 1 to 6: 4 mixing ratio Contained in
The conductive assistant contains carbon black and expanded graphite in a blending ratio of 7: 3 to 3: 7,
The positive electrode for nonaqueous electrolyte secondary batteries, wherein the expanded graphite has an average particle diameter in the range of 1 to 5 μm.
前記正極活物質100質量部に対して前記導電助剤を0.5〜3質量部含有する請求項1に記載の非水電解質二次電池用正極。   The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the conductive auxiliary agent is contained in an amount of 0.5 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material. 前記正極活物質100質量部に対して前記膨張黒鉛を0.2〜2質量部含有する請求項1または2に記載の非水電解質二次電池用正極。   The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein 0.2 to 2 parts by mass of the expanded graphite is contained with respect to 100 parts by mass of the positive electrode active material. 前記第一活物質粒子及び前記第二活物質粒子の少なくとも一方は、Ni、CoおよびMnよりなる群から選ばれる少なくとも1種の元素を含むリチウム含有複合酸化物である請求項1〜3の何れか1項に記載の非水電解質二次電池用正極。   4. The lithium-containing composite oxide containing at least one element selected from the group consisting of Ni, Co, and Mn, at least one of the first active material particles and the second active material particles. The positive electrode for nonaqueous electrolyte secondary batteries of Claim 1. 正極合剤スラリーを正極集電体の表面に塗布することにより正極合剤層を形成する合剤層形成工程と、前記正極合剤層を圧延する圧延工程と、を備え、
前記正極合剤スラリーは、正極活物質として、平均粒子径(D50)18〜25μmの第一活物質粒子と平均粒子径(D50)3〜7μmの第二活物質粒子とを9:1〜6:4の配合比率で含有し、さらに、導電助剤としてカーボンブラックと平均粒子径が1〜5μmの範囲である膨張黒鉛とを7:3〜3:7の配合比率で含有し、
前記圧延工程において、密度3.5〜4.0g/cm3の範囲になるように圧延することを特徴とする非水電解質二次電池用正極の製造方法。
A mixture layer forming step of forming a positive electrode mixture layer by applying a positive electrode mixture slurry to the surface of the positive electrode current collector, and a rolling step of rolling the positive electrode mixture layer,
The positive electrode mixture slurry contains 9: 1 first active material particles having an average particle diameter (D 50 ) of 18 to 25 μm and second active material particles having an average particle diameter (D 50 ) of 3 to 7 μm as a positive electrode active material. -6: 4, and further contains carbon black as a conductive additive and expanded graphite having an average particle size in the range of 1 to 5 μm in a ratio of 7: 3 to 3: 7.
A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, wherein the rolling is performed so that the density is in a range of 3.5 to 4.0 g / cm 3 in the rolling step.
前記正極活物質100質量部に対して前記導電助剤を0.5〜3質量部含有する請求項5に記載の非水電解質二次電池用正極の製造方法。   The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 5 which contains the said conductive support agent 0.5-3 mass parts with respect to 100 mass parts of said positive electrode active materials. 請求項1〜4の何れか1項に記載の正極と負極とをセパレータを介在させて捲回した電極群と、非水電解質とを備えることを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising an electrode group obtained by winding the positive electrode and the negative electrode according to any one of claims 1 to 4 with a separator interposed therebetween, and a nonaqueous electrolyte.
JP2011005595A 2011-01-14 2011-01-14 Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery Pending JP2012146590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005595A JP2012146590A (en) 2011-01-14 2011-01-14 Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005595A JP2012146590A (en) 2011-01-14 2011-01-14 Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012146590A true JP2012146590A (en) 2012-08-02

Family

ID=46789963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005595A Pending JP2012146590A (en) 2011-01-14 2011-01-14 Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012146590A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103558A1 (en) * 2012-12-26 2014-07-03 シャープ株式会社 Nonaqueous electrolyte secondary cell electrode and method for manufacturing same
JP2016517155A (en) * 2013-07-26 2016-06-09 エルジー・ケム・リミテッド Secondary battery electrode with improved energy density and lithium secondary battery including the same
WO2017149927A1 (en) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
US10026964B2 (en) 2014-12-26 2018-07-17 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, and winding element rechargeable lithium battery
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
WO2019150909A1 (en) * 2018-01-30 2019-08-08 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
JP2021044209A (en) * 2019-09-13 2021-03-18 株式会社豊田中央研究所 Power storage device
JP2022077116A (en) * 2020-11-11 2022-05-23 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN115053360A (en) * 2020-01-31 2022-09-13 松下知识产权经营株式会社 Positive electrode for secondary battery and secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103558A1 (en) * 2012-12-26 2014-07-03 シャープ株式会社 Nonaqueous electrolyte secondary cell electrode and method for manufacturing same
JP2016517155A (en) * 2013-07-26 2016-06-09 エルジー・ケム・リミテッド Secondary battery electrode with improved energy density and lithium secondary battery including the same
US9991507B2 (en) 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
US10026964B2 (en) 2014-12-26 2018-07-17 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, and winding element rechargeable lithium battery
WO2017149927A1 (en) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2017149927A1 (en) * 2016-03-03 2018-12-27 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6995738B2 (en) 2016-03-03 2022-01-17 株式会社エンビジョンAescジャパン Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
JPWO2019150909A1 (en) * 2018-01-30 2021-02-12 日本ゼオン株式会社 Additives for electrochemical elements, binder compositions for electrochemical elements, slurry compositions for electrochemical elements, electrodes for electrochemical elements, and electrochemical elements
WO2019150909A1 (en) * 2018-01-30 2019-08-08 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
US11302923B2 (en) 2018-01-30 2022-04-12 Zeon Corporation Additive for electrochemical device, binder composition for electrochemical device, slurry composition for electrochemical device, electrode for electrochemical device, and electrochemical device
JP7314802B2 (en) 2018-01-30 2023-07-26 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
JP2021044209A (en) * 2019-09-13 2021-03-18 株式会社豊田中央研究所 Power storage device
JP7302402B2 (en) 2019-09-13 2023-07-04 株式会社豊田中央研究所 storage device
CN115053360A (en) * 2020-01-31 2022-09-13 松下知识产权经营株式会社 Positive electrode for secondary battery and secondary battery
CN115053360B (en) * 2020-01-31 2024-03-22 松下知识产权经营株式会社 Positive electrode for secondary battery and secondary battery
JP2022077116A (en) * 2020-11-11 2022-05-23 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7245812B2 (en) 2020-11-11 2023-03-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3754218B2 (en) Non-aqueous electrolyte battery positive electrode and manufacturing method thereof, and non-aqueous electrolyte battery using the positive electrode and manufacturing method thereof
CN111480251B (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR102426797B1 (en) Negative electrode active material for lithium secondary battery, method of manufacturing the same, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
TWI504037B (en) Lithium secondary battery pack, and the use of this electronic machine, charging system and charging method
JP2010080105A (en) Method of manufacturing nonaqueous electrolyte secondary battery
WO2010106768A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and method for producing same
JP2006294393A (en) Lithium ion secondary battery
TW200301022A (en) Lithium ion secondary battery
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2006294482A (en) Lithium ion secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2018190582A (en) Method for manufacturing lithium ion secondary battery
CN113574696A (en) Negative electrode and lithium secondary battery comprising same
WO2011114626A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method for same, and nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
JP2012089464A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2022548846A (en) Cathode material for secondary battery and lithium secondary battery containing the same
WO2014068903A1 (en) Non-aqueous electrolyte secondary cell
US20230223535A1 (en) Negative electrode and secondary battery including the same