JP2013084399A - Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery manufacturing method - Google Patents

Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery manufacturing method Download PDF

Info

Publication number
JP2013084399A
JP2013084399A JP2011222339A JP2011222339A JP2013084399A JP 2013084399 A JP2013084399 A JP 2013084399A JP 2011222339 A JP2011222339 A JP 2011222339A JP 2011222339 A JP2011222339 A JP 2011222339A JP 2013084399 A JP2013084399 A JP 2013084399A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222339A
Other languages
Japanese (ja)
Other versions
JP5679206B2 (en
Inventor
Koji Takahata
浩二 高畑
Toshihiko Mihashi
利彦 三橋
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011222339A priority Critical patent/JP5679206B2/en
Publication of JP2013084399A publication Critical patent/JP2013084399A/en
Application granted granted Critical
Publication of JP5679206B2 publication Critical patent/JP5679206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium ion secondary battery anode which has improved low temperature characteristics.SOLUTION: The lithium ion secondary battery anode manufacturing method offered by the present invention includes a step in which an anode mixture material layer formation composition which is composed mainly of an anode active material consisting of a carbon material capable of insertion/separation of lithium and contains a binder, a water soluble thickener and an aqueous solvent is coated on an anode current collector to form an anode mixture layer on the anode current collector, and a step in which the anode mixture layer thus formed is maintained at a temperature of 35°C to 70°C, both ends incl., a relative humidity of 30% to 75%, both ends incl., and under a condition satisfying the equation T×H≤220 (where, T=temperature (K) and H=relative humidity (%)/100).

Description

本発明は、リチウムイオン二次電池用負極の製造方法に関し、より詳しくは、負極活物質と結着材と水溶性増粘材と水系溶媒とを含む負極合材層形成用組成物からなる負極合材層が負極集電体上に形成されたリチウムイオン二次電池用負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a lithium ion secondary battery, and more specifically, a negative electrode comprising a composition for forming a negative electrode mixture layer comprising a negative electrode active material, a binder, a water-soluble thickener, and an aqueous solvent. The present invention relates to a method for producing a negative electrode for a lithium ion secondary battery in which a composite material layer is formed on a negative electrode current collector.

近年、リチウム二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコンおよび携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン二次電池)は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。   In recent years, secondary batteries such as lithium secondary batteries and nickel metal hydride batteries have become increasingly important as power sources mounted on vehicles using electricity as power sources, or power sources mounted on personal computers, portable terminals, and other electrical products. . In particular, a lithium secondary battery (typically a lithium ion secondary battery) that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

上記リチウムイオン二次電池の電極(正極および負極)は、電荷担体となる化学種(典型的にはリチウムイオン)を可逆的に吸蔵および放出し得る電極活物質を主成分とする電極合材層(具体的には、正極合材層および負極合材層)が電極集電体上に形成された構成を備える。かかる電極合材層は、電極活物質を結着材や増粘材等の添加材とともに適当な溶媒を添加して分散させ、それによって得られたペーストまたはスラリー状組成物を電極集電体に塗布することにより形成される。このような電極活物質と結着材と増粘材とから構成される負極合材を用いた電池に関する従来技術として特許文献1が挙げられる。   The electrode (positive electrode and negative electrode) of the lithium ion secondary battery is an electrode mixture layer mainly composed of an electrode active material capable of reversibly occluding and releasing chemical species (typically lithium ions) as charge carriers. (Specifically, a positive electrode mixture layer and a negative electrode mixture layer) are provided on the electrode current collector. Such an electrode mixture layer is prepared by dispersing an electrode active material together with an additive such as a binder and a thickener and adding an appropriate solvent, and using the resulting paste or slurry composition as an electrode current collector. It is formed by coating. Patent document 1 is mentioned as a prior art regarding the battery using the negative electrode compound material comprised from such an electrode active material, a binder, and a thickener.

しかし、上述したようなリチウムイオン二次電池は、低温領域での反応抵抗が増大し、低温特性(典型的には低温時のサイクル特性)が低下してしまう虞がある。そこで、負極合材層の性状を調整することによって、低温特性を向上させる方法が提案されている。この種の従来技術として特許文献2が挙げられる。   However, in the lithium ion secondary battery as described above, the reaction resistance in the low temperature region increases, and the low temperature characteristics (typically, the cycle characteristics at low temperatures) may decrease. Therefore, a method for improving the low temperature characteristics by adjusting the properties of the negative electrode mixture layer has been proposed. Patent document 2 is mentioned as this type of prior art.

特開2002−279995号公報JP 2002-279995 A 特開2010−67436号公報JP 2010-67436 A

上述したような負極活物質と結着材と増粘材とを含有する負極合材層形成用組成物において、結着材や増粘材の配合量を減らせば、ある程度の低温特性の向上は望めるが、結着材量の低減は合材層と集電体との接着強度の低下を招く虞がある。また、増粘材量の低減は合材層中の結着材の分散性を低下させるため、合材層の性能が不均一となる虞がある。このように、結着材や増粘材の配合量の低減には限度があるため、配合材料の選択や配合割合の調整等によって低温特性を向上させることは困難になりつつある。   In the composition for forming a negative electrode mixture layer containing the negative electrode active material, the binder, and the thickener as described above, if the amount of the binder and the thickener is reduced, a certain degree of improvement in low-temperature characteristics can be achieved. Although it can be expected, a reduction in the amount of the binder may cause a decrease in the adhesive strength between the composite layer and the current collector. Moreover, since the reduction of the amount of thickening material reduces the dispersibility of the binder in a composite material layer, there exists a possibility that the performance of a composite material layer may become non-uniform | heterogenous. As described above, since there is a limit to the reduction of the amount of the binder and the thickener, it is becoming difficult to improve the low-temperature characteristics by selecting the compounding material and adjusting the blending ratio.

そこで、本発明は、上述した従来の問題を解決するために創出されたものであり、その目的は、低温特性が向上したリチウムイオン二次電池用負極の製造方法を提供することである。また、低温特性が向上したリチウムイオン二次電池の製造方法を提供することを他の目的とする。   Therefore, the present invention was created to solve the above-described conventional problems, and an object thereof is to provide a method for manufacturing a negative electrode for a lithium ion secondary battery with improved low-temperature characteristics. Another object of the present invention is to provide a method of manufacturing a lithium ion secondary battery with improved low temperature characteristics.

上記目的を実現するべく、本発明により、リチウムを挿入/脱離可能な炭素材料からなる負極活物質を主成分とし、結着材と水溶性増粘材と水系溶媒とを含む負極合材層形成用組成物を負極集電体上に塗布して該負極集電体上に負極合材層を形成すること、および前記形成した負極合材層を、温度35℃以上70℃以下および相対湿度30%以上75%以下、かつ、式:T×H≦220(Tは温度(K)であり、Hは相対湿度(%)/100である。)を満たす条件下に保持すること、を包含する、リチウムイオン二次電池用負極の製造方法が提供される。   In order to achieve the above object, according to the present invention, a negative electrode mixture layer comprising, as a main component, a negative electrode active material comprising a carbon material capable of inserting / extracting lithium, and comprising a binder, a water-soluble thickener, and an aqueous solvent. Applying the forming composition onto a negative electrode current collector to form a negative electrode mixture layer on the negative electrode current collector, and forming the formed negative electrode mixture layer at a temperature of 35 ° C. or higher and 70 ° C. or lower and relative humidity 30% or more and 75% or less, and holding under conditions satisfying the formula: T × H ≦ 220 (T is temperature (K) and H is relative humidity (%) / 100). A method for producing a negative electrode for a lithium ion secondary battery is provided.

本発明者らは、配合材料の選択や配合割合の調整等とは別の手段によりリチウムイオン二次電池の低温特性を向上するべく鋭意検討していたところ、集電体上に形成した合材層を、乾燥後、所定の温度および湿度条件下で保持することが、リチウムイオン二次電池の低温特性を向上させるのに有効であることを見出し、本発明を完成するに至った。すなわち、かかる構成のリチウムイオン二次電池用負極の製造方法によると、負極集電体上に形成した負極合材層を、温度35℃以上70℃以下および相対湿度30%以上75%以下(好ましくは、温度40℃以上65℃以下および相対湿度35%以上55%以下)、かつ、式:T×H≦220(Tは温度(K)であり、Hは相対湿度(%)/100である。)を満たす条件下に保持することで、該負極合材層が形成された負極を備えるリチウムイオン二次電池の低温時における反応抵抗の増大が抑制され、リチウムイオン二次電池の低温特性が向上する。
従って、本発明の製造方法によると、低温特性が向上したリチウムイオン二次電池用負極を提供することができる。
なお、本発明において「低温」とは、特に限定されないが、典型的には10℃以下をいう。従って、0℃〜−20℃またはそれ以下のような氷点下の温度領域は、ここでいう低温の典型例である。よって、低温特性が向上した本発明に係るリチウムイオン二次電池は、寒冷地で使用されるリチウムイオン二次電池用負極として好適である。
The inventors of the present invention have been diligently studying to improve the low-temperature characteristics of the lithium ion secondary battery by means other than selection of compounding materials and adjustment of the compounding ratio, and the like. It was found that holding the layer under a predetermined temperature and humidity condition after drying was effective in improving the low temperature characteristics of the lithium ion secondary battery, and the present invention was completed. That is, according to the method for producing a negative electrode for a lithium ion secondary battery having such a configuration, the negative electrode mixture layer formed on the negative electrode current collector is heated at a temperature of 35 ° C. to 70 ° C. and a relative humidity of 30% to 75% (preferably Is a temperature of 40 ° C. or more and 65 ° C. or less and a relative humidity of 35% or more and 55% or less), and the formula: T × H ≦ 220 (T is temperature (K) and H is relative humidity (%) / 100. )), The increase in reaction resistance at a low temperature of the lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed is suppressed, and the low temperature characteristics of the lithium ion secondary battery are reduced. improves.
Therefore, according to the production method of the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery with improved low temperature characteristics.
In the present invention, “low temperature” is not particularly limited, but typically means 10 ° C. or lower. Therefore, a temperature range below freezing point such as 0 ° C. to −20 ° C. or lower is a typical example of a low temperature mentioned here. Therefore, the lithium ion secondary battery according to the present invention having improved low temperature characteristics is suitable as a negative electrode for a lithium ion secondary battery used in a cold region.

ここで開示されるリチウムイオン二次電池用負極の製造方法の好適な一態様では、前記保持を、少なくとも1時間またはそれ以上行う。このように、負極合材層を所定の温度および湿度条件下で少なくとも1時間保持することにより、該負極合材層が形成された負極を備えるリチウムイオン二次電池は、低温特性がより向上する。また、前記リチウムイオン二次電池用負極をリール状に巻いた状態で前記所定時間の保持を行うことが、低温特性向上の観点からさらに好ましい。   In a preferred aspect of the method for producing a negative electrode for a lithium ion secondary battery disclosed herein, the holding is performed for at least one hour or more. Thus, by holding the negative electrode mixture layer under a predetermined temperature and humidity condition for at least 1 hour, the lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed has improved low-temperature characteristics. . In addition, it is more preferable to hold the predetermined time in a state where the negative electrode for a lithium ion secondary battery is wound in a reel shape from the viewpoint of improving low temperature characteristics.

ここで開示されるリチウムイオン二次電池用負極の製造方法の好適な一態様では、前記形成した負極合材層にプレス処理を行い、その後、前記条件下で保持を行う。このように、プレス処理を行った後に、負極合材層を所定の温度および湿度条件下で保持することにより、該負極合材層が形成された負極を備えるリチウムイオン二次電池は、低温特性がより向上する。   In a preferred embodiment of the method for producing a negative electrode for a lithium ion secondary battery disclosed herein, the formed negative electrode mixture layer is subjected to a press treatment, and then held under the above conditions. As described above, after the press treatment, the lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed by holding the negative electrode mixture layer under a predetermined temperature and humidity condition has low temperature characteristics. Will be improved.

ここで開示されるリチウムイオン二次電池用負極の製造方法の好適な一態様では、前記水溶性増粘材がセルロース誘導体である。水溶性増粘材としてセルロース誘導体を用いることにより、リチウムイオン二次電池の低温特性はより向上する。   In a preferred aspect of the method for producing a negative electrode for a lithium ion secondary battery disclosed herein, the water-soluble thickener is a cellulose derivative. By using a cellulose derivative as the water-soluble thickener, the low temperature characteristics of the lithium ion secondary battery are further improved.

また、本発明によると、リチウムを挿入/脱離可能な正極活物質を主成分として形成された正極合材層を正極集電体上に備えた正極を構築すること、リチウムを挿入/脱離可能な炭素材料からなる負極活物質を主成分として形成された負極合材層を負極集電体上に備えた負極を構築すること、および前記正極および前記負極を用いてリチウムイオン二次電池を構築すること、を包含し、ここで、前記負極として、ここで開示されるいずれかの製造方法によって得られた負極を用いることを特徴とする、リチウムイオン二次電池の製造方法が提供される。このように、負極集電体上に形成した負極合材層を、所定の温度および湿度条件下で保持することによって、該負極合材層が形成された負極を備えるリチウムイオン二次電池は、低温時における反応抵抗の増大が抑制され、低温特性が向上する。   In addition, according to the present invention, it is possible to construct a positive electrode having a positive electrode mixture layer formed mainly on a positive electrode active material capable of inserting / extracting lithium on a positive electrode current collector, and to insert / extract lithium. Constructing a negative electrode having a negative electrode mixture layer formed on a negative electrode current collector, the main component of which is a negative electrode active material made of a carbon material, and a lithium ion secondary battery using the positive electrode and the negative electrode Wherein a negative electrode obtained by any of the manufacturing methods disclosed herein is used as the negative electrode. A method for manufacturing a lithium ion secondary battery is provided. . Thus, by holding the negative electrode mixture layer formed on the negative electrode current collector under predetermined temperature and humidity conditions, the lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed is Increase in reaction resistance at low temperatures is suppressed, and low temperature characteristics are improved.

一実施形態に係るリチウムイオン二次電池用負極の断面を示す模式図である。It is a schematic diagram which shows the cross section of the negative electrode for lithium ion secondary batteries which concerns on one Embodiment. 一実施形態に係るリチウムイオン二次電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lithium ion secondary battery which concerns on one Embodiment. 例1〜例24に係るリチウムイオン二次電池の反応抵抗変化率を示すグラフである。It is a graph which shows the reaction resistance change rate of the lithium ion secondary battery which concerns on Examples 1-24. 例4,例9および例11に係るリチウムイオン二次電池の−30℃におけるインピーダンスの測定結果を示すグラフである。It is a graph which shows the measurement result of the impedance in -30 degreeC of the lithium ion secondary battery which concerns on Example 4, Example 9, and Example 11. FIG. 例4,例25,例26および例27に係るリチウムイオン二次電池の−30℃におけるインピーダンスの測定結果を示すグラフである。It is a graph which shows the measurement result of the impedance in -30 degreeC of the lithium ion secondary battery which concerns on Example 4, Example 25, Example 26, and Example 27. FIG.

以下、図面を参照しながら、本発明による一実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解液の構成および製法、電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, a configuration and a manufacturing method of an electrode body including a positive electrode and a negative electrode, a configuration and a manufacturing method of a separator and an electrolytic solution) , General techniques related to the construction of batteries and other batteries) can be grasped as design matters of those skilled in the art based on the prior art in this field.

図1に示されるように、リチウムイオン二次電池用負極10は、従来と同様の構成をとることができ、本実施形態では、負極集電体1上に負極合材層2が形成された構造を備える。以下、本実施形態に係るリチウムイオン二次電池用負極10の各構成要素について説明する。   As shown in FIG. 1, the negative electrode 10 for a lithium ion secondary battery can have the same configuration as the conventional one. In this embodiment, the negative electrode mixture layer 2 is formed on the negative electrode current collector 1. Provide structure. Hereinafter, each component of the negative electrode 10 for lithium ion secondary batteries which concerns on this embodiment is demonstrated.

負極集電体としては、従来のリチウムイオン二次電池と同様に、導電性の良好な金属(例えば、アルミニウム、ニッケル、銅、ステンレス等の金属または該金属を主成分とする合金)からなるものを好ましく使用することができる。使用する負極集電体の形状は、得られた負極を用いて構築されるリチウムイオン二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここで開示される技術は、例えばシート状または箔状の負極集電体を用いた負極の製造に好ましく適用することができる。かかる負極集電体の厚みは特に限定されないが、負極集電体として銅製のシートを用いる場合、厚みは、例えば凡そ6μm〜30μmの範囲内に設定することが好ましい。   The negative electrode current collector is made of a metal having good conductivity (for example, a metal such as aluminum, nickel, copper, or stainless steel or an alloy containing the metal as a main component) as in the case of a conventional lithium ion secondary battery. Can be preferably used. The shape of the negative electrode current collector to be used is not particularly limited because it may vary depending on the shape of the lithium ion secondary battery constructed using the obtained negative electrode, and is in the form of a rod, plate, sheet, foil, It can be in various forms such as a mesh. The technique disclosed here can be preferably applied to the production of a negative electrode using, for example, a sheet-like or foil-like negative electrode current collector. The thickness of the negative electrode current collector is not particularly limited, but when a copper sheet is used as the negative electrode current collector, the thickness is preferably set within a range of about 6 μm to 30 μm, for example.

負極合材層は、負極活物質を結着材と水溶性増粘材とともに水系溶媒に分散させてペーストまたはスラリー状の負極合材層形成用組成物を得た後、かかる負極合材層形成用組成物を負極集電体の表面に塗布することにより形成することができる。   The negative electrode mixture layer is formed by dispersing a negative electrode active material together with a binder and a water-soluble thickener in an aqueous solvent to obtain a paste or slurry-like composition for forming a negative electrode mixture layer, and then forming the negative electrode mixture layer. It can form by apply | coating the composition for an application | coating to the surface of a negative electrode collector.

負極合材層形成用組成物に含まれる負極活物質としては、典型的なリチウムイオン二次電池に用いられる炭素材料からなるもの(炭素材料を主成分とする炭素系材料)であればよく特に限定されない。例えば、負極活物質として用いられる炭素系材料の代表例としては、グラファイトカーボン、アモルファスカーボン等が挙げられる。中でも天然黒鉛(もしくは人造黒鉛)を主成分とする炭素系材料の使用が好ましい。かかる天然黒鉛(もしくは人造黒鉛)は鱗片状の黒鉛を球形化したものであり得る。例えば、電子顕微鏡(SEMまたはTEM等)観察に基づく平均粒径が凡そ5μm〜30μmの範囲内にある球形化天然黒鉛(もしくは球形化人造黒鉛)を負極活物質として好ましく用いることができる。さらに、該黒鉛粒子の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。   The negative electrode active material contained in the composition for forming a negative electrode mixture layer is not particularly limited as long as it is made of a carbon material (a carbon-based material mainly composed of a carbon material) used in a typical lithium ion secondary battery. It is not limited. For example, typical examples of the carbon-based material used as the negative electrode active material include graphite carbon and amorphous carbon. Among them, the use of a carbon-based material mainly composed of natural graphite (or artificial graphite) is preferable. Such natural graphite (or artificial graphite) may be obtained by spheroidizing graphite. For example, spheroidized natural graphite (or spheroidized artificial graphite) having an average particle size in the range of about 5 μm to 30 μm based on observation with an electron microscope (such as SEM or TEM) can be preferably used as the negative electrode active material. Further, a carbonaceous powder in which the surface of the graphite particles is coated with amorphous carbon may be used.

特に限定されるものではないが、負極合材層形成用組成物の固形分全体に占める負極活物質の割合は凡そ50質量%を超えることが好ましく、リチウムイオン二次電池の低温特性向上の観点から、凡そ90質量%〜99質量%(例えば95質量%〜99質量%、典型的には97質量%〜99質量%)であることがより好ましい。   Although not particularly limited, the proportion of the negative electrode active material in the total solid content of the composition for forming a negative electrode mixture layer is preferably more than about 50% by mass, and the viewpoint of improving the low temperature characteristics of the lithium ion secondary battery From about 90% by mass to 99% by mass (for example, 95% by mass to 99% by mass, typically 97% by mass to 99% by mass) is more preferable.

負極合材層形成用組成物に含まれる結着材(バインダ)としては、一般的なリチウムイオン二次電池の負極に使用される結着材と同様のものを適宜採用することができ、水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解または分散するポリマー材料としては、例えば、スチレンブタジエンゴム(SBR)が挙げられる。ここでSBRとは、スチレンと1,3‐ブタジエンを含む共重合体のことであり、その共重合様式は特に限定されない。さらに不飽和カルボン酸や不飽和ニトリル化合物を共重合させた変性SBRであってもよい。その他のポリマー材料としては、ポリアクリレート(アクリル酸エステル単独重合体または共重合体)、ポリウレタン、ポリエチレンオキサイド(PEO)、ポリエチレン等が挙げられる。かかる結着材は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。   As a binder (binder) contained in the composition for forming a negative electrode mixture layer, the same binder as that used for a negative electrode of a general lithium ion secondary battery can be appropriately adopted, and water can be used. A polymer material that dissolves or disperses in water can be preferably used. Examples of the polymer material dissolved or dispersed in water include styrene butadiene rubber (SBR). Here, SBR is a copolymer containing styrene and 1,3-butadiene, and the copolymerization mode is not particularly limited. Further, it may be a modified SBR obtained by copolymerizing an unsaturated carboxylic acid or an unsaturated nitrile compound. Examples of other polymer materials include polyacrylate (acrylic acid ester homopolymer or copolymer), polyurethane, polyethylene oxide (PEO), polyethylene, and the like. Such a binder may be used alone or in combination of two or more.

結着材の添加量(含有量)は特に限定されないが、負極合材層形成用組成物の固形分全量を100質量%としたときに、好ましくは0.1質量%〜8質量%、より好ましくは0.4質量%〜3質量%(例えば0.5質量%〜1質量%)の範囲内とすることが好ましい。結着材の添加量が上記範囲内であることにより、電池の低温領域での反応抵抗を低く保ちやすく、また、良好な結着力を維持することで活物質の滑落等が防止されやすくなる。   The addition amount (content) of the binder is not particularly limited, but is preferably 0.1% by mass to 8% by mass when the total solid content of the negative electrode composite layer forming composition is 100% by mass. Preferably, the content is in the range of 0.4% by mass to 3% by mass (for example, 0.5% by mass to 1% by mass). When the amount of the binder added is within the above range, the reaction resistance in the low temperature region of the battery can be easily kept low, and the active material can be prevented from slipping down by maintaining a good binding force.

負極合材層形成用組成物に含まれる水溶性増粘材としては、水に溶解する(水溶性の)ポリマー材料を採用し得る。水に溶解する(水溶性の)ポリマー材料としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース誘導体(セルロース系ポリマー);ポリビニルアルコール(PVA);等が挙げられる。後述する所定の温度および湿度条件下での保持による作用との関係、負極合材層形成用組成物の混練(調製)の際の作業性および安定性等の観点からセルロース誘導体が好ましく使用される。   As the water-soluble thickener contained in the composition for forming a negative electrode mixture layer, a polymer material that is soluble in water (water-soluble) can be used. Examples of water-soluble (water-soluble) polymer materials include cellulose derivatives (cellulosic polymers) such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropyl methyl cellulose (HPMC). Polyvinyl alcohol (PVA); and the like. Cellulose derivatives are preferably used from the viewpoints of the relationship with the action by holding under a predetermined temperature and humidity condition described later, workability and stability during kneading (preparation) of the composition for forming a negative electrode mixture layer, and the like. .

水溶性増粘材の添加量(含有量)は、負極活物質の種類や量に応じて適宜選択すればよく特に限定されないが、負極合材層形成用組成物の固形分全量を100質量%としたときに、好ましくは0.3質量%〜2質量%、より好ましくは0.5質量%〜1質量%である。水溶性増粘材の添加量が上記範囲内であることにより、電池の低温領域での反応抵抗を低く保ちやすく、また、結着材が良好に分散しやすい。   The addition amount (content) of the water-soluble thickener is not particularly limited as long as it is appropriately selected depending on the type and amount of the negative electrode active material, but the total solid content of the negative electrode mixture layer forming composition is 100% by mass. Is preferably 0.3% by mass to 2% by mass, and more preferably 0.5% by mass to 1% by mass. When the addition amount of the water-soluble thickener is within the above range, the reaction resistance in the low temperature region of the battery can be easily kept low, and the binder can be easily dispersed well.

負極合材層形成用組成物に含まれる水系溶媒とは、水または水を主体とする混合溶媒を指す概念である。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)の1種または2種以上を適宜選択して用いることができる。例えば、該水系溶媒の凡そ80質量%以上(より好ましくは凡そ90質量%以上、さらに好ましくは凡そ95質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。特に限定されないが、負極合材層形成用組成物の固形分濃度(不揮発分、すなわち合材層形成材料の割合)は、凡そ40質量%以上(例えば凡そ45質量%〜80質量%、典型的には50質量%〜60質量%)とすることが好ましい。固形分濃度が上記範囲内であることにより、負極合材層の乾燥効率を向上させることができ、負極合材層を均一な厚みに塗工しやすく、また、負極合材層形成用組成物の取扱いが容易となる。   The aqueous solvent contained in the composition for forming a negative electrode mixture layer is a concept indicating water or a mixed solvent mainly composed of water. As the solvent other than water constituting the mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used. For example, it is preferable to use an aqueous solvent in which about 80% by mass or more (more preferably about 90% by mass or more, more preferably about 95% by mass or more) of the aqueous solvent is water. A particularly preferred example is an aqueous solvent substantially consisting of water. Although not particularly limited, the solid content concentration of the composition for forming a negative electrode composite material layer (nonvolatile content, that is, the ratio of the material for forming a composite material layer) is approximately 40% by mass or more (for example, approximately 45% by mass to 80% by mass, typically 50 mass% to 60 mass%) is preferable. When the solid content concentration is within the above range, the drying efficiency of the negative electrode mixture layer can be improved, the negative electrode mixture layer can be easily applied to a uniform thickness, and the composition for forming the negative electrode mixture layer Is easy to handle.

負極合材層形成用組成物は、目的や用途に応じて上記以外の材料、例えば導電材や凝集抑制材を適宜含有することができるが、リチウムイオン二次電池の低温特性向上の観点から、固形分として負極活物質と結着材と水溶性増粘材のみを含むことが好ましい。   The composition for forming a negative electrode mixture layer can appropriately contain a material other than the above, for example, a conductive material or an aggregation inhibitor, depending on the purpose and application, from the viewpoint of improving the low temperature characteristics of the lithium ion secondary battery, It is preferable that only a negative electrode active material, a binder, and a water-soluble thickener are included as solid content.

次に、本実施形態に係るリチウムイオン二次電池の負極の製造方法について説明する。かかる製造方法では、まず、上述した負極活物質と結着材と増粘材とを水系溶媒中で混ぜ合わせ(混練)、ペースト状(スラリー状ともいう)の負極合材層形成用組成物を調製する。かかる混練操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。負極合材層形成用組成物を調製するにあたっては、負極活物質と結着材と増粘材とを少量の水系溶媒(例えば水)で固練りし、その後、得られた混練物を適量の溶媒で希釈してもよい。   Next, the manufacturing method of the negative electrode of the lithium ion secondary battery which concerns on this embodiment is demonstrated. In such a production method, first, the negative electrode active material, the binder, and the thickener are mixed (kneaded) in an aqueous solvent, and a paste-like (also referred to as slurry) negative electrode mixture layer forming composition is prepared. Prepare. Such a kneading operation can be performed using, for example, an appropriate kneader (planetary mixer, homodisper, clear mix, fill mix, etc.). In preparing the composition for forming a negative electrode mixture layer, the negative electrode active material, the binder, and the thickener are kneaded with a small amount of an aqueous solvent (for example, water), and then the obtained kneaded product is mixed with an appropriate amount. You may dilute with a solvent.

次に、得られた負極合材層形成用組成物を負極集電体上に塗布して該負極集電体上に負極合材層を形成する。負極合材層形成用組成物を塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、グラビアコーター、コンマコーター、スリットコーター、ダイコーター等の適当な塗布装置を使用することにより、負極集電体の表面に負極合材層形成用組成物を塗布することができる。   Next, the obtained composition for forming a negative electrode mixture layer is applied onto a negative electrode current collector to form a negative electrode mixture layer on the negative electrode current collector. As a method for applying the composition for forming a negative electrode mixture layer, a technique similar to a conventionally known method can be appropriately employed. For example, the composition for forming a negative electrode mixture layer can be applied to the surface of the negative electrode current collector by using an appropriate coating apparatus such as a gravure coater, a comma coater, a slit coater, or a die coater.

塗布する負極合材層形成用組成物の単位面積当たりの塗付量、すなわち目付量は、十分な導電経路(導電パス)を確保することができる限りにおいて特に限定されるものではないが、好ましくは負極合材層の両面の合計で、5mg/cm以上35mg/cm以下(より好ましくは7mg/cm以上25mg/cm以下)である。 The coating amount per unit area of the composition for forming a negative electrode mixture layer to be applied, that is, the basis weight is not particularly limited as long as a sufficient conductive path (conductive path) can be ensured, but preferably Is the total of both surfaces of the negative electrode composite material layer and is 5 mg / cm 2 or more and 35 mg / cm 2 or less (more preferably 7 mg / cm 2 or more and 25 mg / cm 2 or less).

負極合材層形成用組成物を塗布した後、塗布物を乾燥することによって(このとき、必要に応じて適当な乾燥促進手段(ヒータ等)を用いてもよい。)負極合材層形成用組成物中の溶媒を除去することが好ましい。乾燥方法としては、例えば、負極合材層形成用組成物が塗布された負極集電体を乾燥炉内を通過させることが挙げられる。上記乾燥温度は、特に限定されないが、例えば70℃より高く200℃以下(典型的には120℃〜150℃)である。乾燥時間は、例えば凡そ10秒〜120秒(典型的には凡そ20秒〜60秒)である。また、乾燥時の湿度は、特に限定されないが、典型的には相対湿度で30%未満(例えば1%〜25%)が好ましい。   After applying the composition for forming a negative electrode mixture layer, the applied material is dried (at this time, an appropriate drying accelerating means (such as a heater) may be used as necessary). It is preferable to remove the solvent in the composition. Examples of the drying method include passing a negative electrode current collector coated with the composition for forming a negative electrode mixture layer through a drying furnace. Although the said drying temperature is not specifically limited, For example, it is 70 degreeC or more and 200 degrees C or less (typically 120 to 150 degreeC). The drying time is, for example, about 10 seconds to 120 seconds (typically about 20 seconds to 60 seconds). Moreover, the humidity at the time of drying is not particularly limited, but typically, the relative humidity is preferably less than 30% (for example, 1% to 25%).

本実施形態では、上述の方法により負極合材層を形成した後、負極合材層を温度35℃以上70℃以下および相対湿度30%以上75%以下を満たす条件下に保持する。上記保持温度は、好ましくは35℃以上65℃以下(典型的には40℃以上65℃以下)である。上記温度範囲内における相対湿度は、好ましくは35%以上55%以下である。また、上記保持は、上記温度および湿度の条件に加えて、式:
T×H≦220
(Tは温度(K)であり、Hは相対湿度(%)/100である。)を満たす条件下で行う。T×Hは、好ましくは200以下(典型的には180以下)である。かかる条件下に負極合材層を保持することで、該保持が負極合材層を構成する材料に作用し、該負極合材層が形成された負極を備えるリチウムイオン二次電池の低温時における反応抵抗の増大が抑制され、リチウムイオン二次電池の低温特性が向上する。特に、上記温度が80℃を超えるような高温の場合、負極集電体(典型的には銅箔)が酸化する虞があるため、好ましくない。上記式におけるT×Hの下限値は特に限定されないが、リチウムイオン二次電池の低温特性向上の観点から、好ましくは70≦T×Hであり、より好ましくは90≦T×H(典型的には100≦T×H)である。
In the present embodiment, after the negative electrode mixture layer is formed by the above-described method, the negative electrode mixture layer is held under conditions that satisfy a temperature of 35 ° C. to 70 ° C. and a relative humidity of 30% to 75%. The holding temperature is preferably 35 ° C. or higher and 65 ° C. or lower (typically 40 ° C. or higher and 65 ° C. or lower). The relative humidity within the above temperature range is preferably 35% or more and 55% or less. In addition to the above temperature and humidity conditions, the above holding can be performed by the formula:
T × H ≦ 220
(T is temperature (K) and H is relative humidity (%) / 100). T × H is preferably 200 or less (typically 180 or less). By holding the negative electrode mixture layer under such conditions, the holding acts on the material constituting the negative electrode mixture layer, and the lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed is at a low temperature. An increase in reaction resistance is suppressed, and the low temperature characteristics of the lithium ion secondary battery are improved. In particular, when the temperature is higher than 80 ° C., the negative electrode current collector (typically copper foil) may be oxidized, which is not preferable. The lower limit value of T × H in the above formula is not particularly limited, but is preferably 70 ≦ T × H, more preferably 90 ≦ T × H (typically from the viewpoint of improving the low-temperature characteristics of the lithium ion secondary battery. Is 100 ≦ T × H).

上記保持は、少なくとも1時間またはそれ以上(例えば1.5時間以上、典型的には2時間以上)行うことが好ましい。一定時間以上、所定の温度および湿度条件下に保持することで、上記保持による作用が充分に得られる。また、上記保持時間は、24時間以下が好ましく、8時間以下(例えば5時間以下)がより好ましい。上記保持が長期に及ぶと負極集電体(銅箔)が酸化する虞があるため、好ましくない。また、上述した所定時間行う保持は、リチウムイオン二次電池用負極をリール状に巻いた状態で行うことが、低温特性向上の観点からより好ましい。   The holding is preferably performed for at least 1 hour or longer (for example, 1.5 hours or longer, typically 2 hours or longer). By holding under predetermined temperature and humidity conditions for a certain period of time or longer, the above-mentioned action due to the holding can be sufficiently obtained. The holding time is preferably 24 hours or shorter, more preferably 8 hours or shorter (for example, 5 hours or shorter). If the above-mentioned holding is performed for a long time, the negative electrode current collector (copper foil) may be oxidized, which is not preferable. Moreover, it is more preferable that the holding | maintenance performed for the predetermined time mentioned above is performed in the state which wound the negative electrode for lithium ion secondary batteries in the reel shape from a viewpoint of a low-temperature characteristic improvement.

上記保持を行った後の負極合材層の水分含量は、特に限定されないが、例えば質量基準で600ppm以上(典型的には800ppm以上)となり、また、例えば1300ppm以下(典型的には1100ppm以下)となる。上記保持を行うことで負極合材層の水分含量が上記範囲内となり、これが該負極合材層の比表面積を大きくするように作用し、これにより、該負極合材層を備えるリチウムイオン二次電池の低温特性が向上すると推察される。なお、上記保持が完了した後、必要に応じて負極合材層を乾燥させてもよい。かかる乾燥の条件(方法、温度等)は、例えば、上述した負極合材層形成用組成物の塗布後の乾燥条件と同様の条件を採用することができ、後述する実施例においても上記条件のもと乾燥を行うことが可能である。   The moisture content of the negative electrode mixture layer after the above holding is not particularly limited, but is, for example, 600 ppm or more (typically 800 ppm or more) on a mass basis, for example, 1300 ppm or less (typically 1100 ppm or less). It becomes. By performing the above-mentioned holding, the water content of the negative electrode mixture layer falls within the above range, which acts to increase the specific surface area of the negative electrode mixture layer, thereby providing a lithium ion secondary comprising the negative electrode mixture layer. It is assumed that the low temperature characteristics of the battery are improved. In addition, after the said holding | maintenance is completed, you may dry a negative mix layer as needed. As the drying conditions (method, temperature, etc.), for example, the same conditions as the drying conditions after the application of the composition for forming a negative electrode mixture layer described above can be adopted. It is possible to dry.

このようにして形成された負極合材層に、所望により厚み方向にプレス処理を行うことで、目的とする厚みの負極を得ることができる。上記プレス処理方法としては、従来公知のロールプレス法、平板プレス法等を適宜採用することができる。プレス処理後の負極(負極シート)の厚み(典型的には、負極集電体およびその両面に形成された負極合材層の合計厚み)は、特に限定されないが、例えば凡そ30μm〜300μm(典型的には50μm〜180μm)であることが好ましい。負極合材層が負極集電体の片面に形成される場合は、上記厚みの半分の厚みとなる。   A negative electrode having a target thickness can be obtained by subjecting the negative electrode mixture layer thus formed to press treatment in the thickness direction as desired. As the press treatment method, a conventionally known roll press method, flat plate press method, or the like can be appropriately employed. The thickness of the negative electrode (negative electrode sheet) after the press treatment (typically, the total thickness of the negative electrode current collector and the negative electrode mixture layer formed on both sides thereof) is not particularly limited, but is, for example, about 30 μm to 300 μm (typically Specifically, the thickness is preferably 50 μm to 180 μm. When the negative electrode mixture layer is formed on one surface of the negative electrode current collector, the thickness is half of the above thickness.

なお、上記保持はプレス処理の前に行ってもよく、プレス処理と同時並行的に行う(例えば、上記保持中にプレス処理を行う)こともできる。リチウムイオン二次電池の低温特性向上の観点から、上記保持をプレス処理の後に行うことが好ましい。   The holding may be performed before the pressing process, or may be performed concurrently with the pressing process (for example, the pressing process is performed during the holding). From the viewpoint of improving the low temperature characteristics of the lithium ion secondary battery, it is preferable to perform the holding after the press treatment.

次に、上記の方法により製造された負極(負極シート)10を用いて構築される、本実施形態に係るリチウムイオン二次電池について説明する。図2に示されるように、本実施形態に係るリチウムイオン二次電池100は、金属製(樹脂製またはラミネートフィルム製も好適である。)のケース21を備える。このケース(外容器)21は、上端が開口した扁平な直方体状のケース本体22と、その開口部分を塞ぐ蓋体23とを備える。ケース21の上面(すなわち蓋体23)には、捲回電極体80の正極と電気的に接続する正極端子25および捲回電極体80の負極と電気的に接続する負極端子27が設けられている。また、ケース21の内部には、扁平形状の捲回電極体80が収容されている。この捲回電極体80は、例えば長尺シート状の正極(正極シート)50および長尺シート状の負極(負極シート)10を計二枚の長尺シート状セパレータ(セパレータシート)60とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製されるものである。   Next, the lithium ion secondary battery according to this embodiment that is constructed using the negative electrode (negative electrode sheet) 10 manufactured by the above method will be described. As shown in FIG. 2, the lithium ion secondary battery 100 according to the present embodiment includes a case 21 made of metal (a resin or a laminate film is also suitable). The case (outer container) 21 includes a flat rectangular parallelepiped case main body 22 having an open upper end, and a lid 23 that closes the opening. The upper surface of the case 21 (that is, the lid body 23) is provided with a positive electrode terminal 25 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 27 that is electrically connected to the negative electrode of the wound electrode body 80. Yes. Further, a flat wound electrode body 80 is accommodated in the case 21. The wound electrode body 80 is formed by, for example, laminating a long sheet-like positive electrode (positive electrode sheet) 50 and a long sheet-like negative electrode (negative electrode sheet) 10 together with a total of two long sheet-like separators (separator sheets) 60. Then, the wound body is produced by crushing and ablating the obtained wound body from the side surface direction.

正極シート50および負極シート10は、それぞれ、長尺シート状の電極集電体の両面に電極活物質を主成分とする電極合材層が形成された構成を有する。正極シート50の幅方向の一端には、いずれの面にも上記正極合材層が形成されていない正極合材層非形成部分51が設けられており、負極シート10の幅方向の一端には、いずれの面にも上記負極合材層が形成されていない負極合材層非形成部分11が設けられている。そして、上記積層の際に、正極シート50の正極合材層非形成部分51と負極シート10の負極合材層非形成部分11とがセパレータシート60の幅方向の両側からそれぞれはみ出すように、正極シート50と負極シート10とを幅方向にややずらして重ね合わせることで、捲回電極体80の捲回方向に対する横方向において、正負極シート50,10の電極合材層非形成部分51,11が、それぞれ捲回コア部分(すなわち正極シート50の正極合材層形成部分と負極シート10の負極合材層形成部分と二枚のセパレータシート60とが密に捲回された部分)82から外方にはみ出た構成が得られる。かかる正極側はみ出し部分(正極合材層非形成部分)51および負極側はみ出し部分(負極合材層非形成部分)11には、正極リード端子26および負極リード端子28がそれぞれ付設されており、上述の正極端子25および負極端子27とそれぞれ電気的に接続される。   Each of the positive electrode sheet 50 and the negative electrode sheet 10 has a configuration in which an electrode mixture layer mainly composed of an electrode active material is formed on both surfaces of a long sheet-like electrode current collector. One end of the positive electrode sheet 50 in the width direction is provided with a positive electrode mixture layer non-formed portion 51 in which the positive electrode mixture layer is not formed on either side. The negative electrode composite material layer non-formed part 11 in which the negative electrode composite material layer is not formed is provided on any surface. The positive electrode mixture layer non-formed portion 51 of the positive electrode sheet 50 and the negative electrode mixture layer non-formed portion 11 of the negative electrode sheet 10 protrude from both sides in the width direction of the separator sheet 60 during the lamination. By overlapping the sheet 50 and the negative electrode sheet 10 with a slight shift in the width direction, the electrode mixture layer non-forming portions 51 and 11 of the positive and negative electrode sheets 50 and 10 in the lateral direction with respect to the winding direction of the wound electrode body 80. Are removed from the wound core portion 82 (that is, the portion where the positive electrode mixture layer forming portion of the positive electrode sheet 50, the negative electrode mixture layer forming portion of the negative electrode sheet 10 and the two separator sheets 60 are closely wound) 82 A configuration that protrudes is obtained. The positive electrode side protruding portion (positive electrode mixture layer non-forming portion) 51 and the negative electrode side protruding portion (negative electrode mixture layer non-forming portion) 11 are respectively provided with a positive electrode lead terminal 26 and a negative electrode lead terminal 28. The positive electrode terminal 25 and the negative electrode terminal 27 are electrically connected to each other.

かかる捲回電極体80を構成する各構成要素は、従来のリチウムイオン二次電池の電極体の各構成要素と同様でよく、特に制限はない。例えば、正極シート50は、長尺状の正極集電体の上に正極活物質を主成分とする正極合材層が付与されて形成され得る。正極集電体にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。   Each component constituting the wound electrode body 80 may be the same as each component of the electrode body of the conventional lithium ion secondary battery, and is not particularly limited. For example, the positive electrode sheet 50 can be formed by applying a positive electrode mixture layer mainly composed of a positive electrode active material on a long positive electrode current collector. As the positive electrode current collector, an aluminum foil or other metal foil suitable for the positive electrode is preferably used.

正極合材層の主成分となる正極活物質は、従来からリチウムイオン二次電池に用いられる物質の1種または2種以上を特に限定することなく使用することができる。好適例として、層状構造やスピネル構造のリチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、例えばLiFePO等のオリビン型リン酸リチウム等の、リチウムと1種または2種以上の遷移金属元素とを構成金属元素として含むリチウム遷移金属複合酸化物が例示される。正極合材層には、上記正極活物質の他に、さらに導電材や結着材等を含有させることが好ましい。導電材としては、例えばカーボン粉末やカーボンファイバー等のカーボン材料が挙げられ、結着材としては、例えばセルロース誘導体(典型的にはカルボキシメチルセルロース(CMC))等の水溶性ポリマーや水分散性ポリマーが挙げられる。なお、正極シート50および負極シート10のいずれかの表面には、電極合材層の脱落を防止する目的で多孔性保護膜が設けられていてもよい。正極合材層中における正極活物質の含有量は、固形分全量を100質量%としたときに凡そ50質量%を超えること(典型的には凡そ70質量%〜95質量%の範囲内)が好ましい。 The positive electrode active material which is the main component of the positive electrode mixture layer can be used without any particular limitation on one or more of the materials conventionally used in lithium ion secondary batteries. Preferable examples include lithium and lithium oxides having a layered structure or a spinel structure, lithium cobalt composite oxides, lithium manganese composite oxides such as olivine-type lithium phosphates such as LiFePO 4 and one or two of them. Examples thereof include lithium transition metal composite oxides containing at least one kind of transition metal element as a constituent metal element. In addition to the positive electrode active material, the positive electrode mixture layer preferably further contains a conductive material, a binder, and the like. Examples of the conductive material include carbon materials such as carbon powder and carbon fiber. Examples of the binder include water-soluble polymers such as cellulose derivatives (typically carboxymethyl cellulose (CMC)) and water-dispersible polymers. Can be mentioned. A porous protective film may be provided on the surface of either the positive electrode sheet 50 or the negative electrode sheet 10 for the purpose of preventing the electrode mixture layer from falling off. The content of the positive electrode active material in the positive electrode mixture layer exceeds about 50% by mass when the total solid content is 100% by mass (typically in the range of about 70% to 95% by mass). preferable.

正負極シート間に使用されるセパレータ(セパレータシート)の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、厚さ5μm〜30μm程度の合成樹脂製(例えばポリエチレン、ポリプロピレン等のポリオレフィン製)多孔質セパレータシートを好適に使用し得る。なお、電解液に替えて固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要になること(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。   Preferable examples of the separator (separator sheet) used between the positive and negative electrode sheets include those made of a porous polyolefin resin. For example, a synthetic resin (for example, made of polyolefin such as polyethylene or polypropylene) porous separator sheet having a thickness of about 5 to 30 μm can be suitably used. When a solid electrolyte or a gel electrolyte is used instead of the electrolytic solution, a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).

図2を参照し、本実施形態に係るリチウムイオン二次電池100は、例えば次のような方法で製造される。まず、上述したような手法により、正極活物質を主成分として形成された正極合材層を正極集電体上に備えた正極シート50を構築し、上記炭素材料からなる負極活物質を主成分として形成された負極合材層2を負極集電体1上に備えた負極シート10を構築する。その後、上述したように、正極シート50と負極シート10とセパレータシート60とから構成される捲回電極体80を、ケース本体22の上端開口部分から該ケース本体22内に収容するとともに適当な支持塩を含む電解液をケース本体22内に配置(注液)する。   Referring to FIG. 2, the lithium ion secondary battery 100 according to this embodiment is manufactured by, for example, the following method. First, a positive electrode sheet 50 provided with a positive electrode mixture layer formed on the positive electrode active material as a main component on the positive electrode current collector by the above-described technique is constructed, and the negative electrode active material made of the carbon material is used as the main component. The negative electrode sheet 10 provided with the negative electrode mixture layer 2 formed on the negative electrode current collector 1 is constructed. Thereafter, as described above, the wound electrode body 80 composed of the positive electrode sheet 50, the negative electrode sheet 10, and the separator sheet 60 is accommodated in the case main body 22 from the upper end opening portion of the case main body 22 and appropriately supported. An electrolyte containing salt is placed (injected) in the case body 22.

電解液は、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、N,N−ジメチルホルムアミド(DMF)、エチルメチルカーボネート(EMC)等の1種または2種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、支持塩の濃度は、従来のリチウムイオン二次電池で使用される非水電解液と同様でよく特に限定されないが、例えば上記支持塩を0.1mol/L〜5mol/L程度の濃度で含有させた電解液を好適に使用することができる。 As the electrolytic solution, the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without particular limitation. Such an electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), N, N-dimethylformamide (DMF), ethyl methyl carbonate (EMC), and the like. 1 type (s) or 2 or more types can be used. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type or 2 types or more of lithium compounds (lithium salt), such as LiI, can be used. The concentration of the supporting salt is not particularly limited and may be the same as that of the non-aqueous electrolyte used in the conventional lithium ion secondary battery. The contained electrolytic solution can be preferably used.

上記電解液を注液した後、上記開口部分を蓋体23との溶接等により封止することで、本実施形態に係るリチウムイオン二次電池100が構築される。ケース21の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。   The lithium ion secondary battery 100 according to the present embodiment is constructed by injecting the electrolytic solution and sealing the opening by welding or the like with the lid body 23. The sealing process of the case 21 and the placement (injection) process of the electrolytic solution may be the same as the method used in the manufacture of the conventional lithium ion secondary battery, and do not characterize the present invention.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.

<例1〜例24>
(1)負極シートの作製
負極活物質としての天然黒鉛(電子顕微鏡(SEM)観察に基づく平均粒子径D50が11μmのもの)を非晶質炭素で被覆し、炭素材料の比表面積を3.0m/gとした炭素材料を得た。この炭素材料と、結着材としての変性スチレンブタジエンゴムと、増粘材としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98:1:1となるように秤量し、これらの材料をイオン交換水と混合して、ペースト状の負極合材層形成用組成物を調製した。この組成物を、長尺状銅箔から構成される負極集電体(厚さ10μm)の両面に合計塗布量が7.5mg/cm(固形分基準)となるように塗布した。塗布後、120℃で20秒間乾燥させ、該塗布物にプレス処理を行い、負極集電体上に負極合材層を形成した。この負極集電体とその上に形成された負極合材層とからなる負極合材層形成物を複数用意し、これらの負極合材層形成物を、それぞれ温度25℃、35℃、45℃、60℃で、かつ、各温度にて相対湿度20%、30%、40%、50%、60%、70%、80%の条件下に2時間保持した。このようにして例1〜例24に係るシート状の負極(負極シート)を作製した。
<Example 1 to Example 24>
(1) Natural graphite (electron microscopy (SEM) Mean particle diameter D 50 based on the observation those 11 [mu] m) as prepared negative active material of the negative electrode sheet were coated with amorphous carbon, 3 a specific surface area of the carbon material. A carbon material of 0 m 2 / g was obtained. The carbon material, the modified styrene butadiene rubber as a binder, and carboxymethyl cellulose (CMC) as a thickener are weighed so that the mass ratio of these materials is 98: 1: 1. The material was mixed with ion-exchanged water to prepare a paste-like composition for forming a negative electrode mixture layer. This composition was applied to both surfaces of a negative electrode current collector (thickness 10 μm) composed of a long copper foil so that the total coating amount was 7.5 mg / cm 2 (solid content basis). After coating, the coating was dried at 120 ° C. for 20 seconds, and the coated product was subjected to press treatment to form a negative electrode mixture layer on the negative electrode current collector. A plurality of negative electrode mixture layer formations composed of the negative electrode current collector and the negative electrode mixture layer formed thereon are prepared, and these negative electrode mixture layer formations are respectively heated to temperatures of 25 ° C., 35 ° C., and 45 ° C. , 60 ° C. and at each temperature under a relative humidity of 20%, 30%, 40%, 50%, 60%, 70%, and 80% for 2 hours. In this manner, sheet-like negative electrodes (negative electrode sheets) according to Examples 1 to 24 were produced.

(2)正極シートの作製
正極活物質としてのニッケルマンガンコバルト酸リチウム(Li[Ni1/3Mn1/3Co1/3)粉末と、導電剤としてのアセチレンブラックと、結着材としてのCMCとを、これらの材料の質量比が90:5:5となるようにイオン交換水中で混合して、ペースト状の正極合材層形成用組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(正極集電体;厚み15μm)の両面に合計塗布量が17mg/cm(固形分基準)となるように塗布して乾燥させた後、プレス処理を行い、シート状の正極(正極シート)を作製した。
(2) Production of positive electrode sheet Lithium nickel manganese cobaltate (Li [Ni 1/3 Mn 1/3 Co 1/3 O 2 ) powder as a positive electrode active material, acetylene black as a conductive agent, and binder Were mixed in ion-exchanged water so that the mass ratio of these materials was 90: 5: 5 to prepare a paste-like composition for forming a positive electrode mixture layer. This composition was applied to both sides of a long sheet-like aluminum foil (positive electrode current collector; thickness 15 μm) so that the total application amount was 17 mg / cm 2 (solid content basis), dried, and then pressed. It processed and produced the sheet-like positive electrode (positive electrode sheet).

(3)リチウムイオン二次電池の構築
作製した負極シートと正極シートとを二枚の長尺状ポリオレフィン系セパレータ(ここでは厚みが25μmの多孔質ポリエチレンシートを用いた。)とともに積層し、その積層シートを長尺方向に捲回して捲回電極体を作製した。この捲回電極体を電解液とともに円筒型の容器に収容することにより、例1〜例24に係る18650型のリチウムイオン二次電池(理論容量223mAh、4.1V充電〜3V放電)を構築した。電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(質量比)混合溶媒に支持塩として約1mol/LのLiPFを溶解させたものを用いた。
(3) Construction of lithium ion secondary battery The produced negative electrode sheet and positive electrode sheet were laminated together with two long polyolefin separators (here, a porous polyethylene sheet having a thickness of 25 μm was used), and the lamination was performed. The sheet was wound in the longitudinal direction to produce a wound electrode body. By housing the wound electrode body together with the electrolyte in a cylindrical container, an 18650 type lithium ion secondary battery (theoretical capacity 223 mAh, 4.1 V charge to 3 V discharge) according to Examples 1 to 24 was constructed. . As an electrolytic solution, about 1 mol / L LiPF 6 was dissolved as a supporting salt in a 3: 3: 4 (mass ratio) mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). Used.

<例25〜例27>
負極合材層の乾燥後であってプレス処理の前に、各負極合材層形成物を温度35℃、45℃、60℃で相対湿度50%の条件下に保持した他は、例1と同様にしてリチウムイオン二次電池を構築した。
<Example 25 to Example 27>
Example 1 is the same as Example 1 except that each negative electrode mixture layer formed product was kept at 35 ° C., 45 ° C., 60 ° C. and 50% relative humidity after drying of the negative electrode mixture layer and before pressing. Similarly, a lithium ion secondary battery was constructed.

[反応抵抗測定]
上記のように作製した各リチウムイオン二次電池に対して、25℃の温度条件下において適当なコンディショニング処理(0.2Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、0.2Cの放電レートで3.0Vまで定電流定電圧放電させる操作を3回繰り返す初期充放電処理)を行った後、SOC40%の充電状態に調整した。そして、各リチウムイオン二次電池に対して−30℃の温度条件下において周波数10mHz〜1MHzにて交流インピーダンス法により反応抵抗を測定した。負極合材層のプレス処理後に温度25℃および相対湿度50%の条件下で保持した例4に係るリチウムイオン二次電池の反応抵抗を100(基準)として、各例に係るリチウムイオン二次電池の反応抵抗を反応抵抗変化率として指数で表した。この指数表記では、反応抵抗変化率の値が小さいほど反応抵抗が小さく、値が大きいほど反応抵抗が大きいことを表す。その結果を表1および図3に示す。なお、表1には、各例における負極合材層の保持条件(保持時期、温度および湿度)も示した。なお、表中T×Hは、T(温度(K))×H(相対湿度(%)×10−2)を示したものである。また、例4,例9および例11に係るリチウムイオン二次電池の−30℃におけるインピーダンスを図4に示し、例4,例25,例26および例27に係るリチウムイオン二次電池の−30℃におけるインピーダンスを図5に示す。
[Reaction resistance measurement]
Each lithium ion secondary battery produced as described above was subjected to an appropriate conditioning treatment under a temperature condition of 25 ° C. (an operation of charging at a constant current and a constant voltage up to 4.1 V at a charge rate of 0.2 C, and 0 After the initial charge / discharge treatment in which the operation of discharging at a constant current and constant voltage to 3.0 V at a discharge rate of 2 C was repeated three times, the state of charge was adjusted to 40% SOC. And reaction resistance was measured with the alternating current impedance method at the frequency of 10 mHz-1MHz on the temperature conditions of -30 degreeC with respect to each lithium ion secondary battery. The reaction resistance of the lithium ion secondary battery according to Example 4 held under conditions of a temperature of 25 ° C. and a relative humidity of 50% after the negative electrode mixture layer is pressed is 100 (reference), and the lithium ion secondary battery according to each example The reaction resistance was expressed as an index of change in reaction resistance. In this index notation, the smaller the value of the reaction resistance change rate, the smaller the reaction resistance, and the larger the value, the greater the reaction resistance. The results are shown in Table 1 and FIG. Table 1 also shows the holding conditions (holding time, temperature, and humidity) of the negative electrode mixture layer in each example. In the table, T × H represents T (temperature (K)) × H (relative humidity (%) × 10 −2 ). Further, FIG. 4 shows impedances at −30 ° C. of the lithium ion secondary batteries according to Examples 4, 9 and 11, and −30 of the lithium ion secondary batteries according to Examples 4, 25, 26 and 27. FIG. 5 shows the impedance at ° C.

Figure 2013084399
Figure 2013084399

表1および図3に示されるように、負極合材層を保持する条件として、温度35℃以上70℃以下および相対湿度30%以上75%以下、かつ、式:T×H≦220(Tは温度(K)であり、Hは相対湿度(%)/100である。)を満たす例7〜例11,例14〜例17,例20〜例23に係るリチウムイオン二次電池は、−30℃における反応抵抗が、上記保持を温度25℃、相対湿度50%で行った例4に係るリチウムイオン二次電池と比べて低かったことがわかる。同様の傾向は、図4からも見てとれる。
一方、上記保持を、温度が35℃未満か70℃を超え、もしくは相対湿度が30%未満か75%を超え、または式:T×Hが220より大きい条件下で行った例1〜例3,例5,例6,例12,例13,例18,例19,例24に係るリチウムイオン二次電池は、−30℃における反応抵抗が、実質的に保持を行っていない例4と同程度であった。
このように、負極合材層を所定の温度および湿度条件下に保持することにより、該負極合材層が形成された負極を備えるリチウムイオン二次電池の低温時における反応抵抗の増大が抑制されたことを判る。
As shown in Table 1 and FIG. 3, the conditions for holding the negative electrode composite material layer include a temperature of 35 ° C. or more and 70 ° C. or less, a relative humidity of 30% or more and 75% or less, and a formula: T × H ≦ 220 (T is The lithium ion secondary batteries according to Example 7 to Example 11, Example 14 to Example 17, and Example 20 to Example 23 that satisfy the temperature (K) and H is relative humidity (%) / 100. It can be seen that the reaction resistance at 0 ° C. was lower than that of the lithium ion secondary battery according to Example 4 in which the above holding was performed at a temperature of 25 ° C. and a relative humidity of 50%. A similar trend can be seen from FIG.
On the other hand, the above-mentioned holding was performed under conditions where the temperature was less than 35 ° C. or more than 70 ° C., the relative humidity was less than 30% or more than 75%, or the formula: T × H was greater than 220. The lithium ion secondary batteries according to Example 5, Example 6, Example 12, Example 13, Example 18, Example 19, and Example 24 have the same reaction resistance at −30 ° C. as that of Example 4 that does not substantially hold. It was about.
In this way, by maintaining the negative electrode mixture layer under a predetermined temperature and humidity condition, an increase in reaction resistance at a low temperature of a lithium ion secondary battery including the negative electrode on which the negative electrode mixture layer is formed is suppressed. I understand that.

また、上記保持を、プレス処理前に行った例25〜例27のリチウムイオン二次電池も、−30℃における反応抵抗が、実質的に保持を行っていない例4に係るリチウムイオン二次電池と比べて低かったことがわかる。
このように、上記保持を、プレス処理の前後のいずれのタイミングで行っても、リチウムイオン二次電池の低温時における反応抵抗の増大が抑制されたことを判る。
In addition, the lithium ion secondary batteries of Examples 25 to 27 in which the above holding was performed before the press treatment were also performed in the lithium ion secondary battery according to Example 4 in which the reaction resistance at −30 ° C. was not substantially held. It is clear that it was lower than
Thus, it can be seen that the increase in the reaction resistance at the low temperature of the lithium ion secondary battery is suppressed regardless of the timing of the holding before and after the press treatment.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

1 負極集電体
2 負極合材層
10 負極(負極シート)
11 負極側はみ出し部分(負極合材層非形成部分)
21 ケース
22 ケース本体
23 蓋体
25 正極端子
26 正極リード端子
27 負極端子
28 負極リード端子
50 正極(正極シート)
51 正極側はみ出し部分(正極合材層非形成部分)
60 セパレータ(シート)
80 捲回電極体
82 捲回コア部分
100 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode compound layer 10 Negative electrode (negative electrode sheet)
11 Negative electrode protruding portion (negative electrode mixture layer non-formed portion)
21 Case 22 Case body 23 Cover body 25 Positive electrode terminal 26 Positive electrode lead terminal 27 Negative electrode terminal 28 Negative electrode lead terminal 50 Positive electrode (positive electrode sheet)
51 Positive electrode protruding part (positive electrode mixture layer non-formed part)
60 Separator (sheet)
80 wound electrode body 82 wound core portion 100 lithium ion secondary battery

Claims (7)

リチウムを挿入/脱離可能な炭素材料からなる負極活物質を主成分とし、結着材と水溶性増粘材と水系溶媒とを含む負極合材層形成用組成物を負極集電体上に塗布して該負極集電体上に負極合材層を形成すること、および
前記形成した負極合材層を、温度35℃以上70℃以下および相対湿度30%以上75%以下、かつ、式:
T×H≦220
(Tは温度(K)であり、Hは相対湿度(%)/100である。)
を満たす条件下に保持すること、
を包含する、リチウムイオン二次電池用負極の製造方法。
A composition for forming a negative electrode mixture layer comprising a negative electrode active material composed of a carbon material capable of inserting / extracting lithium as a main component and comprising a binder, a water-soluble thickener, and an aqueous solvent is formed on a negative electrode current collector. Applying to form a negative electrode mixture layer on the negative electrode current collector, and forming the negative electrode mixture layer at a temperature of 35 ° C. to 70 ° C. and a relative humidity of 30% to 75%, and a formula:
T × H ≦ 220
(T is temperature (K) and H is relative humidity (%) / 100.)
Holding under conditions that satisfy
A method for producing a negative electrode for a lithium ion secondary battery.
前記保持を、少なくとも1時間またはそれ以上行う、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the holding is performed for at least one hour or more. 前記保持を、前記負極をリール状に巻いた状態で行う、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the holding is performed in a state where the negative electrode is wound in a reel shape. 前記形成した負極合材層にプレス処理を行い、その後、前記条件下で保持を行う、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the formed negative electrode mixture layer is subjected to a press treatment and then held under the conditions. 前記保持を、温度40℃以上65℃以下および相対湿度35%以上55%以下の条件下で行う、請求項1から4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the holding is performed under conditions of a temperature of 40 ° C to 65 ° C and a relative humidity of 35% to 55%. 前記水溶性増粘材がセルロース誘導体である、請求項1から5のいずれかに記載の製造方法。   The manufacturing method in any one of Claim 1 to 5 whose said water-soluble thickener is a cellulose derivative. リチウムを挿入/脱離可能な正極活物質を主成分として形成された正極合材層を正極集電体上に備えた正極を構築すること、
リチウムを挿入/脱離可能な炭素材料からなる負極活物質を主成分として形成された負極合材層を負極集電体上に備えた負極を構築すること、および
前記正極および前記負極を用いてリチウムイオン二次電池を構築すること、
を包含し、
ここで、前記負極として、請求項1から6のいずれかに記載の製造方法によって得られた負極を用いることを特徴とする、リチウムイオン二次電池の製造方法。
Constructing a positive electrode comprising a positive electrode mixture layer formed on the positive electrode current collector, the main component of which is a positive electrode active material capable of inserting / extracting lithium;
Constructing a negative electrode provided with a negative electrode mixture layer formed mainly on a negative electrode active material composed of a carbon material capable of inserting / extracting lithium on a negative electrode current collector, and using the positive electrode and the negative electrode Building a lithium ion secondary battery,
Including
Here, the negative electrode obtained by the manufacturing method in any one of Claim 1 to 6 is used as said negative electrode, The manufacturing method of a lithium ion secondary battery characterized by the above-mentioned.
JP2011222339A 2011-10-06 2011-10-06 Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery Active JP5679206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222339A JP5679206B2 (en) 2011-10-06 2011-10-06 Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222339A JP5679206B2 (en) 2011-10-06 2011-10-06 Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013084399A true JP2013084399A (en) 2013-05-09
JP5679206B2 JP5679206B2 (en) 2015-03-04

Family

ID=48529420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222339A Active JP5679206B2 (en) 2011-10-06 2011-10-06 Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5679206B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143633A (en) * 2014-07-31 2014-11-12 深圳市振华新材料股份有限公司 Anode material made through element microemulsion coating method, manufacturing method and application
CN107768721A (en) * 2016-08-22 2018-03-06 万向二三股份公司 A kind of lithium-ion-power cell is efficiently melted into and method for separating
JP2018067465A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method for manufacturing negative electrode
CN109923697A (en) * 2016-10-11 2019-06-21 皓智环球有限公司 Anode slurry for lithium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181967A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery and dryer of coated electrode plate for nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181967A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery and dryer of coated electrode plate for nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143633A (en) * 2014-07-31 2014-11-12 深圳市振华新材料股份有限公司 Anode material made through element microemulsion coating method, manufacturing method and application
CN107768721A (en) * 2016-08-22 2018-03-06 万向二三股份公司 A kind of lithium-ion-power cell is efficiently melted into and method for separating
CN109923697A (en) * 2016-10-11 2019-06-21 皓智环球有限公司 Anode slurry for lithium ion battery
JP2018067465A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method for manufacturing negative electrode
JP7048205B2 (en) 2016-10-19 2022-04-05 トヨタ自動車株式会社 Negative electrode manufacturing method

Also Published As

Publication number Publication date
JP5679206B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
CN105390671B (en) The manufacturing method and positive electrode active material for lithium ion battery layer of positive electrode active material for lithium ion battery layer
WO2011036759A1 (en) Lithium secondary battery and process for producing same
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
JP7337049B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7056642B2 (en) Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
KR20140105794A (en) Lithium secondary battery and method for manufacturing same
KR102468252B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
CN105474449B (en) Lithium secondary battery
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JPWO2018016528A1 (en) Lithium-ion battery electrode and lithium-ion battery
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
KR101115390B1 (en) Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5704401B2 (en) Secondary battery electrode and manufacturing method thereof
JP2017103137A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R151 Written notification of patent or utility model registration

Ref document number: 5679206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250