WO2021025370A1 - Cathode active material for lithium secondary battery - Google Patents

Cathode active material for lithium secondary battery Download PDF

Info

Publication number
WO2021025370A1
WO2021025370A1 PCT/KR2020/010041 KR2020010041W WO2021025370A1 WO 2021025370 A1 WO2021025370 A1 WO 2021025370A1 KR 2020010041 W KR2020010041 W KR 2020010041W WO 2021025370 A1 WO2021025370 A1 WO 2021025370A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
active material
secondary battery
cathode active
lithium
Prior art date
Application number
PCT/KR2020/010041
Other languages
French (fr)
Korean (ko)
Inventor
김석우
장성균
최창민
정혜윤
박재영
서현범
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2021025370A1 publication Critical patent/WO2021025370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a positive electrode active material for a lithium secondary battery including a plurality of coating layers capable of improving various operating performance and safety such as life characteristics, discharge capacity, cycle characteristics, and output characteristics of a secondary battery by effective removal of residual lithium. About.
  • Lithium secondary batteries are used in various fields such as mobile devices, energy storage systems, and electric vehicles due to their high energy density and voltage, long cycle life, and low self-discharge rate.
  • Ni-based positive electrode active material it is mainly prepared by reacting nickel oxide or nickel carbonate with an excessive amount of lithium oxide, and at this time, various lithium by-products remain in the finally prepared positive electrode active material.
  • recent Ni-based positive electrode active materials are being researched and developed in the direction of increasing the Ni content in order to increase the capacity characteristics.In this case, due to the tendency of Ni to remain as Ni 2 + , the residual amount of lithium by-products on the surface is further increased. There is a problem that it becomes.
  • An object of the present invention is to solve the problems of the prior art and technical problems that have been requested from the past.
  • the inventors of the present application greatly reduced the amount of residual lithium when individual coating layers each capable of reducing residual lithium in the positive electrode active material were added to the core containing lithium transition metal oxide. While it was found that not only life characteristics but also various operating characteristics and safety were significantly improved, the present invention was completed.
  • the cathode active material for a lithium secondary battery of the present invention includes a core including a lithium transition metal oxide and a plurality of coating layers, and the coating layers are a first coating layer formed to reduce different lithium by-products existing near the surface of the core, respectively. And a second coating layer.
  • the residual lithium for example, causes a side reaction at the interface between the lithium transition metal oxide particles capable of storing and discharging lithium and the electrolyte, and has a negative effect on the manufacturing process of the positive electrode plate by raising the pH. It degrades overall operating performance and safety.
  • the cathode active material for a lithium secondary battery according to the present invention includes a plurality of coating layers specialized for each type of residual lithium, thereby maximizing the effect of reducing residual lithium causing various problems as described above.
  • the core may be a lithium transition metal oxide including a transition metal such as lithium and nickel, and may include a composition represented by Formula 1 below.
  • M is one or more transition metal elements that are stable in the 4th or 6th configuration
  • D is one or more elements selected from alkaline earth metal, transition metal, and non-metal as a dopant;
  • Q is one or more anions
  • D is a transition metal
  • the transition metal defined in M may be excluded from these transition metals.
  • lithium transition metal oxides having a high nickel content have a large residual amount of lithium by-products, resulting in problems as described above.
  • lithium transition metal oxides constituting the core contain nickel. It may be a material with a high nickel content having a composition of 80% or more, preferably 90% or more, based on the mole of the transition metal.
  • Li 2 O remaining on the surface of the active material after firing reacts with H 2 O or CO 2 in the atmosphere to form residual lithium (Li 2 CO 3 , LiOH). And, this can lead to various problems.
  • Li 2 CO- 3 remaining on the surface of the positive electrode active material there is a problem in that gas such as CO, CO 2 , and O 2 is generated by reacting with the electrolyte during the charging and discharging process. It may cause problems such as reduced safety.
  • LiOH LiOH
  • the present invention can be particularly preferably applied to a positive electrode active material for a lithium secondary battery having a high nickel content.
  • the average particle diameter (D50) of the core may be, for example, 2 ⁇ m to 20 ⁇ m, but is not particularly limited.
  • the coating layers may be present near the surface of the core, and any one of the first coating layer and the second coating layer is first formed on at least a part of the surface of the core, and then the remaining coating layers are formed, that is, the first coating layer and the first coating layer. 2
  • the coating layer may be sequentially formed, or the second coating layer and the first coating layer may be sequentially formed.
  • the heat treatment temperature for forming the first coating layer may be relatively higher than the heat treatment temperature for forming the second coating layer.
  • a coating layer other than the first coating layer and the second coating layer may be additionally located between the core and the coating layer located outside the core surface, and another coating layer is added between the first coating layer and the second coating layer. It can also be a shape located as.
  • the reason that the coating layer located in the outer region of the core is divided into a plurality of coating layers is to exert a different effect through each of the coating layers for the positive electrode active material for a lithium secondary battery according to the present invention.
  • the first coating layer may be formed to mainly reduce Li 2 CO 3 present in the vicinity of the core, and the second coating layer may be formed to mainly reduce LiOH existing near the core.
  • Li 2 CO 3 remaining on the core surface can be mainly reduced by the first coating layer, and the cathode active material for a lithium secondary battery according to an embodiment of the present invention is a carbon/sulfur analyzer (Carbon/Sulfur Determinator).
  • the content of Li 2 CO 3 measured by may be 0.18% by weight or less based on the total weight of the positive electrode active material, thereby suppressing gas generation and improving performance of the lithium secondary battery to which the positive electrode active material is applied.
  • LiOH remaining on the core surface can be mainly reduced by the second coating layer, and the positive electrode active material for a lithium secondary battery according to an embodiment of the present invention may appear when the surface LiOH is excessively high.
  • the processability of electrode manufacturing can be improved.
  • measuring the content of LiOH remaining on the surface of the active material may have limitations in qualitative and quantitative analysis depending on the resolution of the analytical equipment, so it may be more preferable to measure the content of LiOH by measuring the pH of the active material. have. Therefore, in the present invention, the content of LiOH is determined through the pH of the active material. When the content of LiOH on the surface of the positive electrode active material is high, the -OH group is also increased, making the positive electrode active material basic and increasing the pH. When is high, it can be determined that the content of LiOH is high.
  • the pH of the filtrate obtained by filtering the mixture of the positive electrode active material and reverse osmosis deionized water (RO water) according to an embodiment of the present invention may be 11.65 or less, through which the positive electrode active material is applied.
  • RO water reverse osmosis deionized water
  • the cathode active material for a lithium secondary battery As described above, in the cathode active material for a lithium secondary battery according to the present invention, through the introduction of the first coating layer and the second coating layer, Li 2 CO 3 is reduced to suppress gas generation, and LiOH is reduced to reduce -OH groups. That is, since the pH is lowered, gelation of the electrode slurry is prevented, thereby improving processability. In addition, by reducing the total residual lithium, characteristics such as output characteristics and capacity of the battery can be improved, and the positive electrode active material is prevented from dissolving in the electrolyte by reacting with hydrofluoric acid derived from the electrolyte, thereby improving the cycle characteristics of the battery. .
  • the first coating layer and the second coating layer capable of exerting these effects are composed of different compositions, respectively, W, Ti, P, B, Zr, Mo, Cr, Co, Al, Mg, Ta , Nb, F, Na, S.
  • Bar may include any one or more elements, preferably, the first coating layer may include tungsten (W), the second coating layer may include boron (B).
  • the first coating layer may include at least one selected from the group consisting of, for example, Li 2 WO 4 , Li 4 WO 5 and Li 6 WO 6
  • the second coating layer is LiBO 2 , LiBO 4 , Li 2 B 4 O 7 and Li 2 O-2B 2 O 3 It may include one or more selected from the group consisting of.
  • the content of tungsten (W) included in the first coating layer may be 0.4 to 1.6% by weight relative to the total weight of the positive electrode active material. If the content of W is too small, the reduction of residual lithium due to the formation of the coating layer and The effect of improving battery performance may be insufficient. Conversely, if the content of W is excessive, the unit cost of the positive electrode active material may increase as the content of W, which is relatively expensive among various coating materials, is excessively high. It is not desirable because it cannot be said to be economical in terms of effectiveness.
  • the content of boron (B) contained in the second coating layer may be 0.03% by weight to 0.12% by weight based on the total weight of the positive electrode active material. If the content of B is too small, the reduction of residual lithium due to the formation of the coating layer and The effect of improving battery performance may be insufficient. Conversely, if the content of B is excessive, problems such as an increase in resistance and deterioration of battery performance may occur, which is not preferable.
  • the first coating layer and the second coating layer may be designed not only in consideration of the optimum element content, but also may be designed according to the element content ratio between the coating layers.
  • the content ratio (B/W: molar basis) of B included in the second coating layer and W included in the first coating layer may be 0.075 to 0.3, and if the content ratio (B/W) is too small , Since the content of B is very insufficient, the reduction of LiOH, that is, the effect of reducing the pH of the positive electrode active material, may be small. On the contrary, if the content ratio (B/W) is too large, the content of W is insufficient, so the reduction effect of Li 2 CO 3 Can be less.
  • the coating layers mainly aim to reduce the residual lithium present near the surface of the core, and each of the coating layers may be preferably formed in a region occupying 25 to 100% based on the surface of the core.
  • the thickness of the coating layers may be appropriately set in consideration of the content range and content ratio range as described above.
  • the second coating layer is formed in the outer area of the first coating layer and the outer area of the first coating layer and In addition, it may be formed in contact with the surface area of the core.
  • the first coating layer is formed in contact with a partial area of the core surface
  • the second coating layer is formed in the outer area of the first coating layer and the core This is because it can be formed on a region of the surface where the first coating layer is not formed.
  • the second coating layer is formed on the outer region of the first coating layer should be interpreted as that the second coating layer may be formed on the core surface as well as the outer region of the first coating layer.
  • the heat treatment temperature of the first coating layer is the second coating layer. It may be desirable to be relatively higher than the heat treatment temperature of.
  • each of the first coating layer containing tungsten (W) and the second coating layer containing boron (B) may be formed under different optimal heat treatment conditions.
  • Optimal heat treatment of tungsten (W) for forming a coating layer The temperature (eg, about 400° C.) may be higher than the optimum heat treatment temperature (eg, about 300° C.) of boron (B).
  • the first coating layer may be formed by mixing a lithium transition metal oxide and a tungsten compound as a core and heat treatment in an oxygen atmosphere at a temperature of 300 to 500° C.
  • the second coating layer is the first coating layer It may be formed by mixing the formed lithium transition metal oxide with a boron compound and heat treatment in an oxygen atmosphere at a temperature of 200 to 400° C. for 9 to 12 hours under a condition that satisfies a temperature lower than the above temperature.
  • tungsten compounds for the heat treatment examples include WO 3 , H 2 WO 4 , (NH 4 ) 6 H 2 W 12 O 40 , WCl 4 And the like, and examples of the boron compound include H 3 BO 3 , B 2 O 3 , HBPO 4, and the like, but are not limited thereto. It goes without saying that the optimum heat treatment conditions may vary slightly depending on the types of the tungsten compound and the boron compound used for heat treatment for forming the coating layer.
  • boron (B) is included in the process of forming the first coating layer containing tungsten (W) having a relatively high heat treatment temperature. Since the structure of the second coating layer may be changed or damaged, the desired effect of the coating layers may not be properly exhibited.
  • the coating layers may be in a form in which the first coating layer is first formed on the outer region of the core, and then the second coating layer is subsequently formed, based on the optimum heat treatment temperature of the material contained therein.
  • the present invention also relates to a lithium secondary battery including the positive electrode active material.
  • Li 2 CO 3 is reduced by a plurality of coating layers of a specific composition to suppress the generation of gas in the battery, LiOH is reduced to reduce -OH groups, That is, since the pH is lowered, gelation of the electrode slurry can be prevented, thereby improving processability, and characteristics such as output characteristics and capacity of the battery can be improved by reducing the total residual lithium, and the positive electrode active material reacts with hydrofluoric acid derived from the electrolyte. It is prevented from dissolving in the electrolyte solution, so that the cycle characteristics and safety of the battery can be improved.
  • LiNi 0 . 90 Mn 0 . 06 Co 0 . 04 The lithium transition metal oxide represented by O 2 is mixed with about 0.4% by weight of WO 3 based on the total weight of the lithium transition metal oxide, and heat-treated at about 400° C. for about 10 hours in an oxygen atmosphere to contain a lithium tungsten compound A positive electrode active material having the first coating layer formed thereon was prepared.
  • H 3 BO 3 In the positive electrode active material on which the first coating layer is formed, about 0.12% by weight of H 3 BO 3 is mixed based on the total weight of the lithium transition metal oxide, and heat-treated at about 300° C. for about 10 hours in an oxygen atmosphere to include a lithium boron compound.
  • a positive electrode active material having a second coating layer formed thereon was prepared.
  • a positive active material was prepared in the same manner as in Example 1, except that 07 O 2 was used.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that a coating layer was not formed.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that a coating layer was formed by simultaneously heat-treating WO 3 and H 3 BO 3 at 300 to 400°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first coating layer including the lithium tungsten compound was not formed.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that H 3 BO 3 was first heat-treated to form a first coating layer, and then WO 3 was heat-treated to form a second coating layer.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the coating layer including the lithium boron compound was not formed.
  • a positive electrode active material was prepared in the same manner as in Example 2, except that a coating layer was not formed.
  • a lithium secondary battery was manufactured by using the positive active materials of the Examples and Comparative Examples, respectively.
  • the positive electrode active material of each of the Examples and Comparative Examples, a carbon black conductive material, and a PVDF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:2.5:1.5 to prepare a slurry for forming a positive electrode. Then, it was coated on an aluminum current collector, dried at 80 to 120° C., and then rolled to prepare a positive electrode.
  • An electrode assembly was manufactured by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared as described above, and after placing the electrode assembly in the case, an electrolyte was injected into the case to prepare a lithium secondary battery.
  • the content of Li 2 CO 3 in the positive electrode active material of the Examples and Comparative Examples was measured (using ELTRA's Carbon/Sulfur Determinator), and in a crucible of a certain size, A certain amount of the positive electrode active material was added and the carbon (C) compound obtained by firing in an oxygen atmosphere was analyzed to measure the content of Li 2 CO 3 in the positive electrode active material.
  • a coin half cell (using Li metal negative electrode) manufactured using the positive electrode active material of each of the above Examples and Comparative Examples was charged at 25° C. with a constant current (CC) of 0.1 C until it reached 4.3 V, Thereafter, it was charged with a constant voltage (CV) of 4.3V and charged once until the charging current reached a constant current value of 0.05C. After leaving for 10 minutes, it was discharged with a constant current of 0.1C until it reached 3.0V, and the charge and discharge capacity in one cycle was measured.
  • CC constant current
  • CV constant voltage
  • the pH value increases as the content of residual LiOH on the surface of the positive electrode active material increases. Therefore, a large pH value may mean that the amount of residual LiOH is large on the surface of the positive electrode active material.
  • the content of LiOH in the positive electrode active material is high, the electrode slurry is gelled, causing a problem in the manufacturing process of an electrode for a lithium secondary battery.
  • the positive electrode active material of Example 1 having a composition of 90% Ni was found to have a lower pH than Comparative Examples 1 to 5, and the positive active material of Example 2 having a composition of 82% Ni was also found to have a pH compared to Comparative Example 6. Was found to be low.
  • the positive electrode active material of Example 1 having a composition of 90% Ni was found to have a lower content of Li 2 CO 3 compared to the positive electrode active materials of Comparative Examples 1 to 5, and Example 2 having an 82% Ni composition
  • the positive active material of was also found to have a lower content of Li 2 CO 3 compared to the positive active material of Comparative Example 6.
  • the coin half cell including the positive electrode active material of Example 1 has capacity characteristics compared to the coin half cell including the positive electrode active material of Comparative Examples 1 to 5 , It can be seen that it shows more improved effects in terms of initial efficiency and cycle characteristics.
  • a single plate full cell of a certain size (using a graphite negative electrode) prepared using each of the positive electrode active materials of Example 1 and Comparative Examples 1 to 5 was at 25°C until 4.2V with a constant current (CC) of 0.1C
  • CC constant current
  • CV constant voltage
  • CV constant current
  • CC constant current
  • CV constant voltage
  • the positive electrode to which the positive electrode active material of Example 1 is applied has suppressed gas generation compared to the positive electrode to which the positive electrode active material of Comparative Examples 1 to 5 is applied.
  • Example 1 had the lowest viscosity of the slurry compared to Comparative Examples 1, 4, and 5, but it was confirmed that the viscosity was not gelled and maintained a relatively low viscosity even after storage for 10 days.
  • Comparative Examples 1, 4, and 5 exhibited higher slurry viscosity compared to Example 1, and a gelation phenomenon occurred after storage for 10 days.

Abstract

The present invention provides a cathode active material for a lithium secondary battery, comprising: a core comprising a lithium transition metal oxide; and a plurality of coating layers, wherein the coating layers comprise a first coating layer and a second coating layer which are respectively formed so as to reduce different lithium by-products that exist near the surface of the core. The coating layers can effectively reduce remaining lithium, which can exist on the surface of lithium transition metal oxide particles, through a specific remaining-lithium reducing effect that can be provided by the respective coating layers.

Description

리튬 이차전지용 양극 활물질Positive active material for lithium secondary battery
본 발명은 잔류 리튬의 효과적인 제거에 의해 이차전지의 수명 특성과 방전 용량, 사이클 특성, 출력 특성 등의 다양한 작동 성능과 안전성 등을 개선할 수 있는 복수의 코팅층들을 포함하고 있는 리튬 이차전지용 양극 활물질에 관한 것이다.The present invention provides a positive electrode active material for a lithium secondary battery including a plurality of coating layers capable of improving various operating performance and safety such as life characteristics, discharge capacity, cycle characteristics, and output characteristics of a secondary battery by effective removal of residual lithium. About.
리튬 이차전지는 높은 에너지 밀도와 전압, 긴 사이클 수명, 및 낮은 자가방전율로 인해, 모바일 디바이스, 에너지 저장 시스템, 전기자동차 등 다양한 분야에 사용되고 있다.Lithium secondary batteries are used in various fields such as mobile devices, energy storage systems, and electric vehicles due to their high energy density and voltage, long cycle life, and low self-discharge rate.
이러한 리튬 이차전지의 성능 저하, 안전성 저하 등의 문제점들에 대한 주요 원인들 중의 하나는 양극 활물질의 표면에 존재하는 리튬 부산물, 즉, 잔류 리튬의 존재이다. 이러한 잔류 리튬에서 일부 리튬 화합물은 전지 작동 과정에서 가스 발생을 초래하고, 또 다른 일부 리튬 화합물은 양극 재료의 산도(pH)를 높여 양극 슬러리의 겔화를 초래하는 것으로 확인된다. 극판의 제조 공정에서 전극 혼합물(슬러리)의 겔화 현상이 발생하면, 제조 공정에 불리할 뿐만 아니라 전극 성분들의 균일하지 못한 분포로 인해 작동 성능의 저하가 초래된다.One of the main causes of problems such as deterioration in performance and safety of lithium secondary batteries is the presence of lithium by-products, that is, residual lithium present on the surface of the positive electrode active material. In this residual lithium, some lithium compounds cause gas generation in the battery operation process, and some lithium compounds increase the acidity (pH) of the positive electrode material, thereby causing gelation of the positive electrode slurry. If a gelation phenomenon of the electrode mixture (slurry) occurs in the manufacturing process of the electrode plate, not only is it disadvantageous in the manufacturing process, but also operation performance is deteriorated due to uneven distribution of electrode components.
상기와 같은 문제점들은, 높은 용량에도 불구하고 제조 과정에서 많은 리튬 부산물들로 인해 리튬 이차전지의 현저한 성능 저하가 초래되는 니켈(Ni) 기반의 양극 활물질의 경우에, 특히 심각하다.The above-described problems are particularly serious in the case of a nickel (Ni)-based positive electrode active material, which causes a significant deterioration in performance of a lithium secondary battery due to many lithium by-products in the manufacturing process despite a high capacity.
구체적으로, Ni계 양극 활물질의 경우, 주로 니켈 산화물이나 니켈 탄산염 등을 과량의 리튬 산화물과 반응시켜 제조되는데, 이때 다양한 리튬 부산물들이 최종 제조되는 양극 활물질에 잔류하게 된다. 또한, 최근 Ni계 양극 활물질은 용량 특성을 높이기 위해 Ni 함량이 높아지는 방향으로 연구 및 개발되고 있는 바, 이 경우에 Ni이 Ni2 +로 유지되려는 경향으로 인해, 그 표면에 리튬 부산물 잔류량이 더욱 높아지게 된다는 문제점이 있다.Specifically, in the case of a Ni-based positive electrode active material, it is mainly prepared by reacting nickel oxide or nickel carbonate with an excessive amount of lithium oxide, and at this time, various lithium by-products remain in the finally prepared positive electrode active material. In addition, recent Ni-based positive electrode active materials are being researched and developed in the direction of increasing the Ni content in order to increase the capacity characteristics.In this case, due to the tendency of Ni to remain as Ni 2 + , the residual amount of lithium by-products on the surface is further increased. There is a problem that it becomes.
따라서, 이러한 문제점들을 해결할 수 있는 기술의 개발 필요성이 높은 실정이다.Therefore, there is a high need to develop a technology capable of solving these problems.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.An object of the present invention is to solve the problems of the prior art and technical problems that have been requested from the past.
본 출원의 발명자들은 다양한 실험과 심도 있는 연구를 거듭한 끝에, 양극 활물질에서 잔류 리튬들을 각각 저감할 수 있는 개별적인 코팅층들을 리튬 전이금속 산화물을 포함하는 코어에 부가할 경우, 잔류 리튬들의 양이 크게 줄어들면서 수명 특성뿐만 아니라 다양한 작동 특성들과 안전성 등이 현저히 개선됨을 발견하고, 본 발명을 완성하기에 이르렀다.After repeating various experiments and in-depth research, the inventors of the present application greatly reduced the amount of residual lithium when individual coating layers each capable of reducing residual lithium in the positive electrode active material were added to the core containing lithium transition metal oxide. While it was found that not only life characteristics but also various operating characteristics and safety were significantly improved, the present invention was completed.
따라서, 본 발명의 리튬 이차전지용 양극 활물질은, 리튬 전이금속 산화물을 포함하는 코어와 복수의 코팅층들을 포함하며, 상기 코팅층들은 코어의 표면 부근에 존재하는 서로 다른 리튬 부산물들을 각각 저감하도록 형성된 제 1 코팅층 및 제 2 코팅층을 포함하는 것으로 구성되어 있다.Accordingly, the cathode active material for a lithium secondary battery of the present invention includes a core including a lithium transition metal oxide and a plurality of coating layers, and the coating layers are a first coating layer formed to reduce different lithium by-products existing near the surface of the core, respectively. And a second coating layer.
상기 잔류 리튬은, 예를 들어, 리튬의 흡장 방출이 가능한 리튬 전이금속 산화물 입자와 전해질 사이의 계면에서 부반응을 초래하고, pH를 상승시켜 양극 극판의 제조 공정에 부정적인 영향을 끼치며, 리튬 이차전지의 전반적인 작동 성능과 안전성을 저하시킨다.The residual lithium, for example, causes a side reaction at the interface between the lithium transition metal oxide particles capable of storing and discharging lithium and the electrolyte, and has a negative effect on the manufacturing process of the positive electrode plate by raising the pH. It degrades overall operating performance and safety.
따라서, 본 발명에 따른 리튬 이차전지용 양극 활물질은 잔류 리튬의 종류 별로 특화된 복수의 코팅층들을 포함함으로써, 상기와 같은 다양한 문제점들을 초래하는 잔류 리튬의 저감 효과를 극대화할 수 있다.Accordingly, the cathode active material for a lithium secondary battery according to the present invention includes a plurality of coating layers specialized for each type of residual lithium, thereby maximizing the effect of reducing residual lithium causing various problems as described above.
상기 코어는 리튬과 니켈 등의 전이금속 등을 포함하는 리튬 전이금속 산화물일 수 있으며, 일 예로 하기 화학식 1로 표시되는 조성을 포함할 수 있다.The core may be a lithium transition metal oxide including a transition metal such as lithium and nickel, and may include a composition represented by Formula 1 below.
Li[LixM1-x-yDy]O2-zQz (1)Li[Li x M 1-xy D y ]O 2-z Q z (1)
상기 식에서, In the above formula,
M은 4배위 또는 6배위에서 안정한 1종 이상의 전이금속 원소이며;M is one or more transition metal elements that are stable in the 4th or 6th configuration;
D는 도펀트로서 알칼리 토금속, 전이금속, 비금속 중에서 선택된 1종 이상의 원소이고;D is one or more elements selected from alkaline earth metal, transition metal, and non-metal as a dopant;
Q는 하나 이상의 음이온이며;Q is one or more anions;
0≤x≤0.1, 0≤y≤0.1, 0≤z≤0.2 이다. 0≤x≤0.1, 0≤y≤0.1, 0≤z≤0.2.
참고로, D가 전이금속인 경우, 이러한 전이금속에서 M에 정의된 전이금속은 제외될 수 있다.For reference, when D is a transition metal, the transition metal defined in M may be excluded from these transition metals.
이러한 리튬 전이금속 산화물 중에서도, 특히 니켈 고함량의 리튬 전이금속 산화물은 리튬 부산물의 잔류량이 많아 앞서 설명한 바와 같은 문제점들이 초래되므로, 하나의 구체적인 예에서, 상기 코어를 구성하는 리튬 전이금속 산화물은 니켈 함량이 전이금속의 몰 기준으로 80% 이상, 바람직하게는 90% 이상의 조성을 가진 니켈 고함량의 소재일 수 있다.Among these lithium transition metal oxides, in particular, lithium transition metal oxides having a high nickel content have a large residual amount of lithium by-products, resulting in problems as described above. In one specific example, lithium transition metal oxides constituting the core contain nickel. It may be a material with a high nickel content having a composition of 80% or more, preferably 90% or more, based on the mole of the transition metal.
구체적으로, 양극 활물질 중에서 High nickel계 양극 활물질의 경우, 소성 후 활물질 표면에 남아있는 Li2O가 대기 중의 H2O 또는 CO2와 반응하여 잔류 리튬(Li2CO3, LiOH)을 형성할 수 있으며, 이로 인해 다양한 문제점들을 초래할 수 있다. 양극 활물질의 표면에 잔류하는 Li2CO-3의 경우, 충방전 과정에서 전해액과 반응하여 CO, CO2, O2 등의 가스를 발생시키는 문제점이 있으며, 발생되는 가스로 인해 전지의 성능 저하, 안전성 저하 등의 문제를 야기할 수 있다. LiOH의 경우, 상기 언급된 Li2CO3와 전해액의 부반응에 관여할 뿐만 아니라, 염기성 물질이기 때문에 양극 활물질의 pH를 상승시키고, 이로 인해, 양극 활물질이 양극 제조를 위해 슬러리화 되었을 때 바인더가 Crosslinking을 일으키면서 슬러리를 겔화시켜 전극 제조시 공정성을 저하시킬 수 있다.Specifically, in the case of a high nickel-based positive electrode active material among positive electrode active materials, Li 2 O remaining on the surface of the active material after firing reacts with H 2 O or CO 2 in the atmosphere to form residual lithium (Li 2 CO 3 , LiOH). And, this can lead to various problems. In the case of Li 2 CO- 3 remaining on the surface of the positive electrode active material, there is a problem in that gas such as CO, CO 2 , and O 2 is generated by reacting with the electrolyte during the charging and discharging process. It may cause problems such as reduced safety. In the case of LiOH, it is not only involved in the side reaction between Li 2 CO 3 and the electrolyte solution mentioned above, but also increases the pH of the positive electrode active material because it is a basic material, and thus, when the positive electrode active material is slurried for positive electrode manufacturing, the binder crosslinking The slurry may be gelled while causing a decrease in processability during electrode manufacturing.
따라서, 본 발명은 니켈 고함량의 리튬 이차전지용 양극 활물질에 특히 바람직하게 적용될 수 있다.Accordingly, the present invention can be particularly preferably applied to a positive electrode active material for a lithium secondary battery having a high nickel content.
본 발명의 양극 활물질에서 상기 코어의 평균 입자 직경(D50)은 예를 들어 2 ㎛ 내지 20 ㎛일 수 있지만, 특별히 제한되는 것은 아니다.In the positive active material of the present invention, the average particle diameter (D50) of the core may be, for example, 2 μm to 20 μm, but is not particularly limited.
상기 코팅층들은 코어의 표면 부근에 존재할 수 있는데, 상기 코어의 표면 중 적어도 일부에 제 1 코팅층 및 제 2 코팅층 중 어느 하나의 코팅층이 우선 형성된 뒤, 나머지 코팅층이 형성된 형태, 즉, 제 1 코팅층 및 제 2 코팅층이 순차적으로 형성되거나, 제 2 코팅층 및 제 1 코팅층이 순차적으로 형성된 형태일 수 있다.The coating layers may be present near the surface of the core, and any one of the first coating layer and the second coating layer is first formed on at least a part of the surface of the core, and then the remaining coating layers are formed, that is, the first coating layer and the first coating layer. 2 The coating layer may be sequentially formed, or the second coating layer and the first coating layer may be sequentially formed.
하나의 구체적인 예에서, 코어의 표면에 제 1 코팅층 및 제 2 코팅층이 순차적으로 형성되어 있는 경우, 상기 제 1 코팅층의 형성을 위한 열처리 온도는 제 2 코팅층의 형성을 위한 열처리 온도보다 상대적으로 높을 수 있다. 즉, 열처리를 위한 최적 온도가 상대적으로 높은 제 1 코팅층을 코어의 표면에 먼저 형성함으로써, 제 2 코팅층의 형성을 위한 열처리 온도에서 이미 형성되어 있는 제 1 코팅층이 변질되는 것을 방지할 수 있는 바, 그에 대해서는 이후에 추가적으로 자세히 설명한다.In one specific example, when the first coating layer and the second coating layer are sequentially formed on the surface of the core, the heat treatment temperature for forming the first coating layer may be relatively higher than the heat treatment temperature for forming the second coating layer. have. That is, by first forming the first coating layer having a relatively high optimum temperature for heat treatment on the surface of the core, it is possible to prevent the first coating layer from being deteriorated at the heat treatment temperature for forming the second coating layer, This will be described in more detail later.
경우에 따라서는, 상기 코어 및 코어 표면의 외측에 위치하는 코팅층 간에 제 1 코팅층 및 제 2 코팅층 외에 다른 코팅층이 추가로 위치한 형태일 수 있으며, 상기 제 1 코팅층 및 제 2 코팅층 간에도 또 다른 코팅층이 추가로 위치한 형태일 수도 있다.In some cases, a coating layer other than the first coating layer and the second coating layer may be additionally located between the core and the coating layer located outside the core surface, and another coating layer is added between the first coating layer and the second coating layer. It can also be a shape located as.
상기 코어의 외측 영역에 위치하는 코팅층이 복수의 코팅층들로 구분되는 것은, 본 발명에 따른 리튬 이차전지용 양극 활물질이 각각의 코팅층들을 통해 각기 다른 효과를 발휘하기 위함인 바, 예를 들어, 상기 제 1 코팅층은 코어 부근에 존재하는 Li2CO3를 주로 저감하도록 형성된 것일 수 있으며, 상기 제 2 코팅층은 코어 부근에 존재하는 LiOH를 주로 저감하도록 형성된 것일 수 있다.The reason that the coating layer located in the outer region of the core is divided into a plurality of coating layers is to exert a different effect through each of the coating layers for the positive electrode active material for a lithium secondary battery according to the present invention. The first coating layer may be formed to mainly reduce Li 2 CO 3 present in the vicinity of the core, and the second coating layer may be formed to mainly reduce LiOH existing near the core.
구체적으로, 상기 제 1 코팅층에 의해 코어 표면에 잔류하는 Li2CO3가 주로 저감될 수 있는 바, 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질은 탄소/유황 분석기(Carbon/Sulfur Determinator)에 의해 측정된 Li2CO3의 함량이 상기 양극 활물질의 전체 중량 대비 0.18 중량% 이하일 수 있으며, 이를 통해 양극 활물질이 적용된 리튬 이차전지의 가스 발생을 억제하고 성능을 향상시킬 수 있다.Specifically, Li 2 CO 3 remaining on the core surface can be mainly reduced by the first coating layer, and the cathode active material for a lithium secondary battery according to an embodiment of the present invention is a carbon/sulfur analyzer (Carbon/Sulfur Determinator). The content of Li 2 CO 3 measured by may be 0.18% by weight or less based on the total weight of the positive electrode active material, thereby suppressing gas generation and improving performance of the lithium secondary battery to which the positive electrode active material is applied.
또한, 상기 제 2 코팅층에 의해 코어 표면에 잔류하는 LiOH가 주로 저감될 수 있는 바, 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질은 표면의 LiOH가 과하게 높을 경우에 극판 제조시 나타날 수 있는 슬러리 겔화를 억제함으로써, 전극 제조의 공정성을 향상시킬 수 있다.In addition, LiOH remaining on the core surface can be mainly reduced by the second coating layer, and the positive electrode active material for a lithium secondary battery according to an embodiment of the present invention may appear when the surface LiOH is excessively high. By suppressing slurry gelation, the processability of electrode manufacturing can be improved.
여기서, 활물질 표면에 잔류하는 LiOH의 함량을 측정하는 것은 분석 장비의 분해능에 따라 정성 분석 및 정량 분석에 한계가 있을 수 있으므로, 상기 활물질의 pH를 측정하여 LiOH의 함량을 가늠하는 것이 더욱 바람직할 수 있다. 따라서, 본 발명에서는 활물질의 pH를 통해 LiOH의 함량을 판단하는 바, 양극 활물질의 표면에 LiOH의 함량이 높으면 -OH기 또한 많아져, 양극 활물질이 염기성이 되고 pH가 증가하므로, 양극 활물질의 pH가 높으면 LiOH의 함량이 높다고 판단할 수 있다.Here, measuring the content of LiOH remaining on the surface of the active material may have limitations in qualitative and quantitative analysis depending on the resolution of the analytical equipment, so it may be more preferable to measure the content of LiOH by measuring the pH of the active material. have. Therefore, in the present invention, the content of LiOH is determined through the pH of the active material. When the content of LiOH on the surface of the positive electrode active material is high, the -OH group is also increased, making the positive electrode active material basic and increasing the pH. When is high, it can be determined that the content of LiOH is high.
구체적으로, 본 발명의 일 실시예에 따른 양극 활물질과 역삼투압 탈이온수(RO수)의 혼합액이 필터링된 여과액의 pH는 11.65 이하일 수 있으며, 이를 통해 상기 양극 활물질이 적용된 양극의 제조를 위해 상기 양극 활물질이 슬러리화 되었을 때 낮은 pH로 인해 겔화가 방지될 수 있다.Specifically, the pH of the filtrate obtained by filtering the mixture of the positive electrode active material and reverse osmosis deionized water (RO water) according to an embodiment of the present invention may be 11.65 or less, through which the positive electrode active material is applied. When the cathode active material is slurried, gelation can be prevented due to a low pH.
이와 같이, 본 발명에 따른 리튬 이차전지용 양극 활물질은 상기 제 1 코팅층 및 상기 제 2 코팅층의 도입을 통해, Li2CO3가 저감되어 가스 발생이 억제될 수 있고, LiOH가 저감되어 -OH기가 저감, 즉, pH가 낮아짐으로써 전극 슬러리의 겔화가 방지되어 공정성을 향상시킬 수 있다. 또한, 전체 잔류 리튬을 감소시킴으로써 전지의 출력특성이나 용량 등의 특성이 향상될 수 있고, 전해액 유래 불화수소산과 반응하여 양극 활물질이 전해액 중에 용해되는 것이 방지되어 전지의 사이클 특성 등을 향상시킬 수 있다.As described above, in the cathode active material for a lithium secondary battery according to the present invention, through the introduction of the first coating layer and the second coating layer, Li 2 CO 3 is reduced to suppress gas generation, and LiOH is reduced to reduce -OH groups. That is, since the pH is lowered, gelation of the electrode slurry is prevented, thereby improving processability. In addition, by reducing the total residual lithium, characteristics such as output characteristics and capacity of the battery can be improved, and the positive electrode active material is prevented from dissolving in the electrolyte by reacting with hydrofluoric acid derived from the electrolyte, thereby improving the cycle characteristics of the battery. .
이러한 효과를 발휘할 수 있는 제 1 코팅층과 제 2 코팅층은, 하나의 구체적인 예에서, 서로 상이한 조성으로 구성되며, 각각 W, Ti, P, B, Zr, Mo, Cr, Co, Al, Mg, Ta, Nb, F, Na, S 중 어느 하나 이상의 원소를 포함할 수 있는 바, 바람직하게는, 제 1 코팅층은 텅스텐(W)을 포함하며, 제 2 코팅층은 보론(B)을 포함할 수 있다.The first coating layer and the second coating layer capable of exerting these effects, in one specific example, are composed of different compositions, respectively, W, Ti, P, B, Zr, Mo, Cr, Co, Al, Mg, Ta , Nb, F, Na, S. Bar may include any one or more elements, preferably, the first coating layer may include tungsten (W), the second coating layer may include boron (B).
보다 상세하게는, 제 1 코팅층은 LiaWO(a+b)/ 2 (2≤a≤6, b는 W의 산화수임)로 표시되는 화학식의 조성을 포함할 수 있고, 제 2 코팅층은 LicBdOe (1≤c≤10, 1≤d≤10, e=(c+f)/g, 여기서, f는 B의 산화수의 절대값이고, g는 O의 산화수 절대값임)로 표시되는 화학식의 조성을 포함할 수 있다.More specifically, the first coating layer may include a composition of the formula represented by Li a WO (a+b)/ 2 ( 2 ≦a≦6, b is an oxidation number of W), and the second coating layer is Li c B d O e (1≤c≤10, 1≤d≤10, e=(c+f)/g, where f is the absolute value of the oxidation number of B, and g is the absolute value of oxidation number of O) It may contain the composition of the formula.
그에 따라, 제 1 코팅층은, 예를 들어, Li2WO4, Li4WO5 및 Li6WO6로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있고, 제 2 코팅층은 LiBO2, LiBO4 , Li2B4O7 및 Li2O-2B2O3으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.Accordingly, the first coating layer may include at least one selected from the group consisting of, for example, Li 2 WO 4 , Li 4 WO 5 and Li 6 WO 6 , and the second coating layer is LiBO 2 , LiBO 4 , Li 2 B 4 O 7 and Li 2 O-2B 2 O 3 It may include one or more selected from the group consisting of.
상기 제 1 코팅층에 포함된 텅스텐(W)의 함량은 양극 활물질의 전체 중량 대비 0.4 내지 1.6 중량%일 수 있는 바, W의 함량이 지나치게 적으면, 코팅층의 형성에 따른 잔류 리튬의 저감과 이를 통한 전지 성능의 향상 효과가 미비할 수 있으며, 반대로 W의 함량이 지나치게 많으면, 다양한 코팅물질 중 비교적 고가인 W의 함량이 과하게 높아짐에 따라 양극 활물질의 단가가 높아질 수 있으며, 코팅층 도입에 따른 소요 비용 대비 효과적인 면에서 경제적이라고 할 수 없으므로 바람직하지 않다.The content of tungsten (W) included in the first coating layer may be 0.4 to 1.6% by weight relative to the total weight of the positive electrode active material. If the content of W is too small, the reduction of residual lithium due to the formation of the coating layer and The effect of improving battery performance may be insufficient. Conversely, if the content of W is excessive, the unit cost of the positive electrode active material may increase as the content of W, which is relatively expensive among various coating materials, is excessively high. It is not desirable because it cannot be said to be economical in terms of effectiveness.
상기 제 2 코팅층에 포함된 보론(B)의 함량은 양극 활물질의 전체 중량 대비 0.03 중량% 내지 0.12 중량%일 수 있는 바, B의 함량이 지나치게 적으면, 코팅층 형성에 따른 잔류 리튬의 저감과 이를 통한 전지 성능 향상 효과가 미비할 수 있으며, 반대로 B의 함량이 지나치게 많으면, 저항이 증가되어 오히려 전지의 성능을 열화시키는 등의 문제가 발생될 수 있으므로 바람직하지 않다.The content of boron (B) contained in the second coating layer may be 0.03% by weight to 0.12% by weight based on the total weight of the positive electrode active material.If the content of B is too small, the reduction of residual lithium due to the formation of the coating layer and The effect of improving battery performance may be insufficient. Conversely, if the content of B is excessive, problems such as an increase in resistance and deterioration of battery performance may occur, which is not preferable.
여기서, 제 1 코팅층 및 제 2 코팅층은 각각의 최적 원소 함량을 고려하여 설계될 뿐만 아니라, 코팅층들 간의 원소 함량 비에 따라 설계될 수도 있다. 예를 들어, 제 2 코팅층에 포함된 B와 제 1 코팅층에 포함된 W의 함량비(B/W: 몰 기준)는 0.075 내지 0.3 일 수 있는 바, 함량비(B/W)가 지나치게 작으면, B의 함량이 매우 미비하므로 양극 활물질의 LiOH 감소, 즉, pH 감소 효과가 적을 수 있으며, 반대로 함량비(B/W)가 지나치게 크면, W의 함량이 미비하므로 Li2CO3의 감소 효과가 적을 수 있다.Here, the first coating layer and the second coating layer may be designed not only in consideration of the optimum element content, but also may be designed according to the element content ratio between the coating layers. For example, the content ratio (B/W: molar basis) of B included in the second coating layer and W included in the first coating layer may be 0.075 to 0.3, and if the content ratio (B/W) is too small , Since the content of B is very insufficient, the reduction of LiOH, that is, the effect of reducing the pH of the positive electrode active material, may be small. On the contrary, if the content ratio (B/W) is too large, the content of W is insufficient, so the reduction effect of Li 2 CO 3 Can be less.
상기 코팅층들은 상술한 바와 같이 코어의 표면 부근에 존재하는 잔류 리튬의 저감을 주된 목적으로 하는 바, 각각이 코어 표면부를 기준으로 25 내지 100%를 점유하는 영역에 형성되는 것이 바람직할 수 있다.As described above, the coating layers mainly aim to reduce the residual lithium present near the surface of the core, and each of the coating layers may be preferably formed in a region occupying 25 to 100% based on the surface of the core.
코팅층들의 두께는 상기에서 설명한 바와 같은 함량 범위, 함량비 범위 등을 고려하여 적절히 설정될 수 있다.The thickness of the coating layers may be appropriately set in consideration of the content range and content ratio range as described above.
코어의 외측 영역에 제 1 코팅층이 형성되고, 이어서 제 1 코팅층의 외측 영역에 제 2 코팅층이 형성되도록 구성된 경우, 상기 제 2 코팅층은 제 1 코팅층의 외측 영역에 형성되면서 제 1 코팅층의 외측 영역과 더불어 코어의 표면 영역과 접촉한 상태로 형성될 수도 있는 바, 상기 제 1 코팅층이 코어 표면의 일부 영역과 접촉한 상태로 형성될 경우, 제 2 코팅층이 제 1 코팅층의 외측 영역에 형성되면서 상기 코어 표면의 영역 중 제 1 코팅층이 형성되지 않은 영역상에서도 형성될 수 있기 때문이다.When the first coating layer is formed in the outer area of the core, and then the second coating layer is formed in the outer area of the first coating layer, the second coating layer is formed in the outer area of the first coating layer and the outer area of the first coating layer and In addition, it may be formed in contact with the surface area of the core. When the first coating layer is formed in contact with a partial area of the core surface, the second coating layer is formed in the outer area of the first coating layer and the core This is because it can be formed on a region of the surface where the first coating layer is not formed.
따라서, 본 명세서에서 제 2 코팅층이 제 1 코팅층의 외측 영역에 형성되어 있다는 것은, 상기 제 2 코팅층이 제 1 코팅층 외측 영역과 더불어 코어 표면 상에서도 형성될 수 있는 것으로 해석되어야 한다.Therefore, in the present specification, that the second coating layer is formed on the outer region of the first coating layer should be interpreted as that the second coating layer may be formed on the core surface as well as the outer region of the first coating layer.
앞서 설명한 바와 같이, 코팅층들이 형성된 다양한 형태들 중에서, 코어의 외측 영역에 제 1 코팅층이 우선 형성된 후에 제 1 코팅층의 외측 영역에 제 2 코팅층이 형성된 형태에서, 제 1 코팅층의 열처리 온도가 제 2 코팅층의 열처리 온도보다 상대적으로 높은 것이 바람직할 수 있다.As described above, among the various forms in which the coating layers are formed, in the form in which the first coating layer is first formed in the outer region of the core and the second coating layer is formed in the outer region of the first coating layer, the heat treatment temperature of the first coating layer is the second coating layer. It may be desirable to be relatively higher than the heat treatment temperature of.
구체적인 예에서, 텅스텐(W)을 포함하는 제 1 코팅층과 보론(B)을 포함하는 제 2 코팅층 각각은 서로 상이한 최적의 열처리 조건에서 형성될 수 있는데, 코팅층 형성을 위한 텅스텐(W)의 최적 열처리 온도(예를 들어, 약 400℃)는 보론(B)의 최적 열처리 온도(예를 들어, 약 300℃)보다 높을 수 있다. 예를 들어, 제 1 코팅층은 코어로서 리튬 전이금속 산화물과 텅스텐 화합물을 혼합하고 300 내지 500℃의 온도에서 9 내지 12 시간 동안 산소 분위기에서 열처리함으로써 형성될 수 있고, 제 2 코팅층은 상기 제 1 코팅층이 형성된 리튬 전이금속 산화물을 보론 화합물과 혼합하고 이를 상기 온도보다 낮은 온도를 만족하는 조건 하에 200 내지 400℃의 온도에서 9 내지 12 시간 동안 산소 분위기에서 열처리함으로써 형성될 수 있다.In a specific example, each of the first coating layer containing tungsten (W) and the second coating layer containing boron (B) may be formed under different optimal heat treatment conditions. Optimal heat treatment of tungsten (W) for forming a coating layer The temperature (eg, about 400° C.) may be higher than the optimum heat treatment temperature (eg, about 300° C.) of boron (B). For example, the first coating layer may be formed by mixing a lithium transition metal oxide and a tungsten compound as a core and heat treatment in an oxygen atmosphere at a temperature of 300 to 500° C. for 9 to 12 hours, and the second coating layer is the first coating layer It may be formed by mixing the formed lithium transition metal oxide with a boron compound and heat treatment in an oxygen atmosphere at a temperature of 200 to 400° C. for 9 to 12 hours under a condition that satisfies a temperature lower than the above temperature.
상기 열처리를 위한 텅스텐 화합물의 예로는 WO3, H2WO4, (NH4)6H2W12O40, WCl4 등이 있고, 보론 화합물의 예로는 H3BO3, B2O3 , HBPO4 등이 있지만, 이들만으로 한정되는 것은 아니다. 코팅층의 형성을 위한 열처리에 사용되는 텅스텐 화합물과 보론 화합물의 종류에 따라 최적 열처리 조건이 다소 달라질 수 있음은 물론이다.Examples of tungsten compounds for the heat treatment include WO 3 , H 2 WO 4 , (NH 4 ) 6 H 2 W 12 O 40 , WCl 4 And the like, and examples of the boron compound include H 3 BO 3 , B 2 O 3 , HBPO 4, and the like, but are not limited thereto. It goes without saying that the optimum heat treatment conditions may vary slightly depending on the types of the tungsten compound and the boron compound used for heat treatment for forming the coating layer.
따라서, 상기 제 2 코팅층이 코어의 외측 영역에 먼저 형성된 후에 제 1 코팅층이 형성될 경우, 열처리 온도가 상대적으로 높은 텅스텐(W)이 포함된 제 1 코팅층의 형성 과정 중, 보론(B)이 포함된 제 2 코팅층의 구조가 변경되거나 손상될 수 있으므로, 상기 코팅층들의 목적하는 효과가 제대로 발휘되지 못할 수 있다.Therefore, when the first coating layer is formed after the second coating layer is first formed on the outer region of the core, boron (B) is included in the process of forming the first coating layer containing tungsten (W) having a relatively high heat treatment temperature. Since the structure of the second coating layer may be changed or damaged, the desired effect of the coating layers may not be properly exhibited.
따라서, 상기 코팅층들은 각각이 포함하는 물질의 최적 열처리 온도에 근거하여, 제 1 코팅층이 코어의 외측 영역에 먼저 형성된 후, 제 2 코팅층이 이어서 형성된 형태일 수 있으며, 이를 통해 본 발명이 상기 코팅층들로 목적하는 효과, 즉, 제 1 코팅층을 통한 Li2CO3의 효과적인 저감 및 제 2 코팅층을 통한 LiOH의 효과적인 저감이 가능할 수 있다.Therefore, the coating layers may be in a form in which the first coating layer is first formed on the outer region of the core, and then the second coating layer is subsequently formed, based on the optimum heat treatment temperature of the material contained therein. With the desired effect, that is, effective reduction of Li 2 CO 3 through the first coating layer and effective reduction of LiOH through the second coating layer may be possible.
본 발명은 또한 상기 양극 활물질을 포함하는 리튬 이차전지에 관한 것이다.The present invention also relates to a lithium secondary battery including the positive electrode active material.
리튬 이차전지의 구성 및 그것의 제조방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.Since the configuration of a lithium secondary battery and a method of manufacturing the same are known in the art, detailed descriptions thereof will be omitted in this specification.
이상 설명한 바와 같이, 본 발명에 따른 리튬 이차전지용 양극 활물질은, 특정한 조성의 복수의 코팅층들에 의해, Li2CO3가 저감되어 전지의 가스 발생이 억제되며, LiOH가 저감되어 -OH기가 저감, 즉, pH가 낮아져서 전극 슬러리의 겔화가 방지되어 공정성을 향상시킬 수 있고, 전체 잔류 리튬을 감소시킴으로써 전지의 출력특성이나 용량 등의 특성이 향상될 수 있으며, 전해액 유래 불화수소산과 반응하여 양극 활물질이 전해액 중에 용해되는 것이 방지되어 전지의 사이클 특성, 안전성 등을 향상시킬 수 있다.As described above, in the cathode active material for a lithium secondary battery according to the present invention, Li 2 CO 3 is reduced by a plurality of coating layers of a specific composition to suppress the generation of gas in the battery, LiOH is reduced to reduce -OH groups, That is, since the pH is lowered, gelation of the electrode slurry can be prevented, thereby improving processability, and characteristics such as output characteristics and capacity of the battery can be improved by reducing the total residual lithium, and the positive electrode active material reacts with hydrofluoric acid derived from the electrolyte. It is prevented from dissolving in the electrolyte solution, so that the cycle characteristics and safety of the battery can be improved.
도 1은 실험예 2에서 수행한 가스 발생에 따른 부피 증가율을 보여주는 그래프이다;1 is a graph showing a volume increase rate according to gas generation performed in Experimental Example 2;
도 2는 실험예 3에서 수행한 기간별 점도 측정 결과를 보여주는 표이다.2 is a table showing the viscosity measurement results for each period performed in Experimental Example 3.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the drawings according to an embodiment of the present invention, but the scope of the present invention is not limited thereto.
[실시예 1: 양극 활물질의 제조][Example 1: Preparation of positive electrode active material]
LiNi0 . 90Mn0 . 06Co0 . 04O2로 표시되는 리튬 전이금속 산화물에, WO3를 리튬 전이금속 산화물 전체 중량 기준으로 약 0.4 중량%를 혼합하고, 약 400℃에서 약 10시간 동안 산소분위기 하에 열처리하여, 리튬 텅스텐 화합물을 포함하는 제 1 코팅층이 형성된 양극 활물질을 제조하였다.LiNi 0 . 90 Mn 0 . 06 Co 0 . 04 The lithium transition metal oxide represented by O 2 is mixed with about 0.4% by weight of WO 3 based on the total weight of the lithium transition metal oxide, and heat-treated at about 400° C. for about 10 hours in an oxygen atmosphere to contain a lithium tungsten compound A positive electrode active material having the first coating layer formed thereon was prepared.
상기 제 1 코팅층이 형성된 양극 활물질에, H3BO3를 리튬 전이금속 산화물 전체 중량 기준으로 약 0.12 중량% 혼합하고, 약 300℃에서 약 10시간 동안 산소분위기 하에 열처리하여, 리튬 보론 화합물을 포함하는 제 2 코팅층이 형성된 양극 활물질을 제조하였다.In the positive electrode active material on which the first coating layer is formed, about 0.12% by weight of H 3 BO 3 is mixed based on the total weight of the lithium transition metal oxide, and heat-treated at about 300° C. for about 10 hours in an oxygen atmosphere to include a lithium boron compound. A positive electrode active material having a second coating layer formed thereon was prepared.
[실시예 2: 양극 활물질의 제조][Example 2: Preparation of positive electrode active material]
리튬 전이금속 산화물로서 LiNi0 . 82Mn0 . 11Co0 . 07O2을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.LiNi 0 as a lithium transition metal oxide . 82 Mn 0 . 11 Co 0 . A positive active material was prepared in the same manner as in Example 1, except that 07 O 2 was used.
[비교예 1: 양극 활물질의 제조][Comparative Example 1: Preparation of positive electrode active material]
코팅층을 형성하지 않을 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that a coating layer was not formed.
[비교예 2: 양극 활물질의 제조][Comparative Example 2: Preparation of cathode active material]
300 내지 400℃에서 WO3 및 H3BO3를 동시에 열처리하여 코팅층을 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that a coating layer was formed by simultaneously heat-treating WO 3 and H 3 BO 3 at 300 to 400°C.
[비교예 3: 양극 활물질의 제조][Comparative Example 3: Preparation of cathode active material]
리튬 텅스텐 화합물을 포함하는 제 1 코팅층을 형성하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that the first coating layer including the lithium tungsten compound was not formed.
[비교예 4: 양극 활물질의 제조][Comparative Example 4: Preparation of cathode active material]
H3BO3을 먼저 열처리하여 제 1 코팅층을 형성한 후, WO3을 열처리하여 제 2 코팅층을 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that H 3 BO 3 was first heat-treated to form a first coating layer, and then WO 3 was heat-treated to form a second coating layer.
[비교예 5: 양극 활물질의 제조][Comparative Example 5: Preparation of positive electrode active material]
리튬 보론 화합물을 포함하는 코팅층을 형성하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that the coating layer including the lithium boron compound was not formed.
[비교예 6: 양극 활물질의 제조][Comparative Example 6: Preparation of cathode active material]
코팅층을 형성하지 않을 것을 제외하고는 실시예 2와 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 2, except that a coating layer was not formed.
[제조예 1: 리튬 이차전지의 제조][Production Example 1: Preparation of lithium secondary battery]
상기 실시예들과 비교예들의 양극 활물질을 각각 이용하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured by using the positive active materials of the Examples and Comparative Examples, respectively.
상세하게는, 상기 실시예들과 비교예들 각각의 양극 활물질과, 카본블랙 도전재 및 PVDF 바인더를 N-메틸피롤리돈 용매 중에서 96:2.5:1.5의 중량비로 혼합하여 양극 형성용 슬러리를 제조하고, 이를 알루미늄 집전체에 도포한 후, 80 내지 120℃에서 건조 후, 압연하여 양극을 제조하였다.Specifically, the positive electrode active material of each of the Examples and Comparative Examples, a carbon black conductive material, and a PVDF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:2.5:1.5 to prepare a slurry for forming a positive electrode. Then, it was coated on an aluminum current collector, dried at 80 to 120° C., and then rolled to prepare a positive electrode.
또한, 음극 활물질로서 리튬 금속을 사용하는 음극을 제조하였다. In addition, a negative electrode using lithium metal as a negative electrode active material was prepared.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트 (EC/EMC의 혼합 부피비 = 1/2)로 이루어진 유기 용매에 1.0M 농도의 리튬 헥사플루오로포스페이트(LiPF6)와 전체 전해액의 2 중량%의 비닐렌 카보네이트(Vinylene Carbonate) 용해시켜 제조하였다.An electrode assembly was manufactured by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared as described above, and after placing the electrode assembly in the case, an electrolyte was injected into the case to prepare a lithium secondary battery. At this time, the electrolyte is lithium hexafluorophosphate (LiPF 6 ) having a concentration of 1.0 M in an organic solvent consisting of ethylene carbonate/ethyl methyl carbonate (mixed volume ratio of EC/EMC = 1/2) and vinylene carbonate of 2% by weight of the total electrolyte. (Vinylene Carbonate) was prepared by dissolving.
[실험예 1: 양극 활물질의 물성 분석 및 전지 평가][Experimental Example 1: Analysis of Physical Properties of Positive Active Material and Battery Evaluation]
상기 실시예들 및 비교예들의 양극 활물질과 역삼투압 탈이온수(Ro수)의 일정량 혼합액을 필터링하여 여과액을 얻은 후, 여과액에 대한 pH를 측정(Metrohm사의 827 pH lab 장비를 이용)함으로써, 실시예들 및 비교예들 각각의 양극 활물질의 pH를 분석하였다. After obtaining a filtrate by filtering a mixture of the positive electrode active material and reverse osmosis deionized water (Ro water) of the Examples and Comparative Examples, the pH of the filtrate was measured (using Metrohm's 827 pH lab equipment), The pH of the positive active material of each of Examples and Comparative Examples was analyzed.
또한, 상기 실시예들 및 비교예들의 양극 활물질의 Li2CO3의 함량을 측정(ELTRA사의 탄소/유황 분석기(Carbon/Sulfur Determinator)를 이용) 하였는데, 일정 크기의 도가니에 가연제, 조연제와 일정량의 양극 활물질을 넣고 산소 분위기에서 소성하여 얻어진 탄소(C) 화합물을 분석하여 양극 활물질에 존재하는 Li2CO3의 함량을 측정하였다.In addition, the content of Li 2 CO 3 in the positive electrode active material of the Examples and Comparative Examples was measured (using ELTRA's Carbon/Sulfur Determinator), and in a crucible of a certain size, A certain amount of the positive electrode active material was added and the carbon (C) compound obtained by firing in an oxygen atmosphere was analyzed to measure the content of Li 2 CO 3 in the positive electrode active material.
더불어, 상기 실시예들 및 비교예들 각각의 양극 활물질을 이용하여 제조한 코인 하프 셀(Li 금속의 음극 사용)을 25℃에서 0.1C의 정전류(CC)로 4.3V가 될 때까지 충전하고, 이후 4.3V의 정전압(CV)으로 충전하여 충전 전류가 0.05C의 정전류 값이 될 때까지 1회 충전을 행하였다. 이후 10분간 방치한 다음 0.1C의 정전류로 3.0V가 될 때까지 방전하여 1사이클에서의 충전과 방전 용량을 측정하였다. In addition, a coin half cell (using Li metal negative electrode) manufactured using the positive electrode active material of each of the above Examples and Comparative Examples was charged at 25° C. with a constant current (CC) of 0.1 C until it reached 4.3 V, Thereafter, it was charged with a constant voltage (CV) of 4.3V and charged once until the charging current reached a constant current value of 0.05C. After leaving for 10 minutes, it was discharged with a constant current of 0.1C until it reached 3.0V, and the charge and discharge capacity in one cycle was measured.
이후, 각 셀에 대해 수명 특성을 평가하였다. 상세하게는, 상기 리튬 이차전지에 대해 25℃에서 3.0V 내지 4.3V의 구동전압 범위 내에서 0.5C/1C의 조건으로 충/방전을 50회 실시하였다. 그 결과로서, 상온에서의 충방전 50회 실시 후의 초기용량에 대한 50 사이클에서의 방전용량의 비율인 사이클 용량유지율(capacity retention)을 각각 측정하였다.Thereafter, the life characteristics were evaluated for each cell. Specifically, charging/discharging was performed 50 times for the lithium secondary battery under the condition of 0.5C/1C within a driving voltage range of 3.0V to 4.3V at 25°C. As a result, cycle capacity retention, which is the ratio of the discharge capacity at 50 cycles to the initial capacity after 50 charging and discharging at room temperature, was measured, respectively.
이상의 실험 결과들을 하기 표 1에 나타내었다.The above experimental results are shown in Table 1 below.
Figure PCTKR2020010041-appb-T000001
Figure PCTKR2020010041-appb-T000001
pH는 양극 활물질 표면에 존재하는 잔류 LiOH의 함량이 높을수록 값이 크다. 따라서, pH의 값이 크다는 것은 양극 활물질 표면에 잔류 LiOH의 함량이 많다는 것을 의미할 수 있다. 양극 활물질에 존재하는 LiOH의 함량이 높으면 전극 슬러리의 겔화가 일어나 리튬 이차전지용 전극의 제조 공정에서 문제가 된다.The pH value increases as the content of residual LiOH on the surface of the positive electrode active material increases. Therefore, a large pH value may mean that the amount of residual LiOH is large on the surface of the positive electrode active material. When the content of LiOH in the positive electrode active material is high, the electrode slurry is gelled, causing a problem in the manufacturing process of an electrode for a lithium secondary battery.
상기 표 1에서 보는 바와 같이, Ni 90% 조성인 실시예 1의 양극 활물질은 비교예 1 내지 5 대비 pH가 낮은 것으로 확인되었으며, Ni 82% 조성인 실시예 2의 양극 활물질 또한 비교예 6 대비 pH가 낮은 것으로 확인되었다.As shown in Table 1, the positive electrode active material of Example 1 having a composition of 90% Ni was found to have a lower pH than Comparative Examples 1 to 5, and the positive active material of Example 2 having a composition of 82% Ni was also found to have a pH compared to Comparative Example 6. Was found to be low.
한편, 양극 활물질 표면에 존재하는 잔류 Li2CO3의 함량이 높으면 리튬 이차전지에 주입된 전해액과 반응함으로써 전지 내부에 가스가 발생하여 리튬 이차전지에서 스웰링(swelling) 현상을 발생시킬 수 있으며, 이로 인해, 전지의 성능 및 안전성에 큰 문제를 일으킬 수 있다.On the other hand, if the content of residual Li 2 CO 3 on the surface of the positive electrode active material is high, gas is generated inside the battery by reacting with the electrolyte injected into the lithium secondary battery, which may cause swelling in the lithium secondary battery. For this reason, a major problem may arise in the performance and safety of the battery.
상기 표 1에서 보는 바와 같이, Ni 90% 조성인 실시예 1의 양극 활물질은 비교예 1 내지 5의 양극 활물질 대비 Li2CO3의 함량이 낮은 것으로 나타났으며, Ni 82% 조성인 실시예 2의 양극 활물질도 비교예 6의 양극 활물질 대비 Li2CO3 의 함량이 낮은 것으로 나타났다.As shown in Table 1, the positive electrode active material of Example 1 having a composition of 90% Ni was found to have a lower content of Li 2 CO 3 compared to the positive electrode active materials of Comparative Examples 1 to 5, and Example 2 having an 82% Ni composition The positive active material of was also found to have a lower content of Li 2 CO 3 compared to the positive active material of Comparative Example 6.
또한, 전지의 성능과 관련하여, 상기 표 1에서 보는 바와 같이, 실시예 1의 양극 활물질을 포함하는 코인 하프 셀은, 비교예 1 내지 비교예 5의 양극 활물질을 포함하는 코인 하프 셀 대비 용량특성, 초기효율 및 사이클 특성 면에서 보다 개선된 효과를 나타내는 것을 확인할 수 있다.In addition, with respect to the performance of the battery, as shown in Table 1, the coin half cell including the positive electrode active material of Example 1 has capacity characteristics compared to the coin half cell including the positive electrode active material of Comparative Examples 1 to 5 , It can be seen that it shows more improved effects in terms of initial efficiency and cycle characteristics.
Ni 82% 조성인 실시예 2의 양극 활물질을 적용한 평가에서도 비교예 6 대비 용량특성, 초기효율 및 사이클 특성 면에서 보다 개선된 효과를 나타내는 것을 확인할 수 있다.In the evaluation of applying the positive electrode active material of Example 2 with an 82% Ni composition, it can be seen that more improved effects in terms of capacity characteristics, initial efficiency, and cycle characteristics compared to Comparative Example 6.
[실험예 2: 양극 극판의 가스 발생 평가][Experimental Example 2: Evaluation of gas generation of positive electrode plate]
상기 실시예 1 및 비교예 1 내지 비교예 5 각각의 양극 활물질을 이용하여 제조한 일정 크기의 단판 풀 셀(흑연 음극 사용)을 25℃에서 0.1C의 정전류(CC)로 4.2V가 될 때까지 충전하고, 이후 4.2V의 정전압(CV)으로 충전하여 충전 전류가 0.05C의 정전류 값이 될 때까지 1회 충전을 행하였다. 그 후 0.1C의 정전류(CC)로 3.0V가 될 때까지 방전하였다. 마지막으로 25℃에서 0.1C의 정전류(CC)로 4.2V가 될 때까지 충전하고, 이후 4.2V의 정전압(CV)으로 충전한 상태로 셀을 분해하여 양극을 추출하였다. 추출한 양극을 다시 일정 크기의 알루미늄 파우치에 일정량의 전해액과 함께 동봉하여 60℃의 고온 챔버에 저장하여 날짜별로 증가한 파우치 부피를 측정하였다. 상기 평가에 대한 내용은 도 1에 나타내었다.A single plate full cell of a certain size (using a graphite negative electrode) prepared using each of the positive electrode active materials of Example 1 and Comparative Examples 1 to 5 was at 25°C until 4.2V with a constant current (CC) of 0.1C After charging, it was charged with a constant voltage (CV) of 4.2V, and charged once until the charging current reached a constant current value of 0.05C. Then, it was discharged until it became 3.0V with a constant current (CC) of 0.1C. Finally, the cell was charged with a constant current (CC) of 0.1C at 25°C until it reached 4.2V, and then the cell was disassembled while being charged with a constant voltage (CV) of 4.2V to extract the positive electrode. The extracted positive electrode was again enclosed in an aluminum pouch of a predetermined size with a predetermined amount of electrolyte and stored in a high temperature chamber at 60° C. to measure the increased pouch volume by date. The contents of the evaluation are shown in FIG. 1.
도 1에서 보는 바와 같이, 실시예 1의 양극 활물질이 적용된 양극이 비교예 1 내지 5의 양극 활물질이 적용된 양극 대비 가스 발생이 억제된 것을 확인할 수 있다. As shown in FIG. 1, it can be seen that the positive electrode to which the positive electrode active material of Example 1 is applied has suppressed gas generation compared to the positive electrode to which the positive electrode active material of Comparative Examples 1 to 5 is applied.
표 1 및 도 1을 함께 참조하면, 가스가 가장 많이 발생된 비교예 1, 비교예 3 및 비교예 2의 경우 Li2CO3 함량 또한 높은 것으로 확인되었고, 실시예 1의 경우 Li2CO3 함량이 적어 가스 발생이 억제된 것으로 판단된다.Referring to Table 1 and FIG. 1 together, it was confirmed that the Li 2 CO 3 content was also high in Comparative Example 1, Comparative Example 3 and Comparative Example 2 in which gas was generated the most, and in Example 1, the Li 2 CO 3 content It is judged that gas generation was suppressed due to the small amount.
이와 같은 평가 결과를 바탕으로, Li2CO3의 함량이 가스 발생에 큰 영향을 미치는 것을 확인할 수 있었다.Based on such evaluation results, it was confirmed that the content of Li 2 CO 3 has a great influence on gas generation.
[실험예 3: 양극 슬러리의 점도 평가][Experimental Example 3: Viscosity evaluation of positive electrode slurry]
상기 실험예 2에서 가스가 가장 적게 발생한 실시예 1과, 비교예들 중 비교적 가스가 적게 발생한 비교예 4, 5의 양극 활물질에 대한 양극 슬러리의 점도 평가(Brookfield사의 DV 2T Viscometer 장비 이용)를 진행하였다. 여기서, 실시예 1의 bare 형태인 비교예 1 또한 본 평가 대상에 포함시켰다.In Experimental Example 2, the viscosity evaluation of the positive electrode slurry (using Brookfield's DV 2T Viscometer equipment) for the positive electrode active materials of Example 1, which generated the least gas, and Comparative Examples 4 and 5, which generated relatively little gas, was conducted. I did. Here, Comparative Example 1, which is a bare form of Example 1, was also included in this evaluation object.
실시예 1 및 비교예 1, 4, 5의 양극 활물질과 바인더, 도전제, NMP 혼합 슬러리의 점도를 측정하고 10일 보관 후 다시 슬러리의 점도를 측정하였다. 상기 실험 결과를 도 2에 나타내었다.The viscosity of the mixed slurry of the positive electrode active material of Example 1 and Comparative Examples 1, 4, and 5, the binder, the conductive agent, and the NMP was measured, and after storage for 10 days, the viscosity of the slurry was measured again. The experimental results are shown in FIG. 2.
도 2에서 보는 바와 같이, 실시예 1은 비교예 1, 4, 5 대비 슬러리 점도가 가장 낮은 것으로 확인되었는데, 10일 동안 보관한 뒤에도 겔화되지 않고 비교적 낮은 점도를 유지하는 것을 확인하였다.As shown in FIG. 2, it was confirmed that Example 1 had the lowest viscosity of the slurry compared to Comparative Examples 1, 4, and 5, but it was confirmed that the viscosity was not gelled and maintained a relatively low viscosity even after storage for 10 days.
반면, 비교예 1, 4, 5는 실시예 1 대비 높은 슬러리 점도를 나타내었으며, 10일 동안 보관한 뒤에는 겔화 현상이 발생되었다.On the other hand, Comparative Examples 1, 4, and 5 exhibited higher slurry viscosity compared to Example 1, and a gelation phenomenon occurred after storage for 10 days.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 다양한 변형 및 개량이 가능할 것이며, 이는 모두 본 발명의 범주에 속하는 것으로 해석되어야 한다.Those of ordinary skill in the field to which the present invention belongs will be able to make various modifications and improvements based on the above contents, which should be interpreted as belonging to the scope of the present invention.

Claims (15)

  1. 리튬 전이금속 산화물을 포함하는 코어와 복수의 코팅층들을 포함하며,Including a core comprising a lithium transition metal oxide and a plurality of coating layers,
    상기 코팅층들은 코어의 표면 부근에 존재하는 서로 다른 리튬 부산물들을 각각 저감하도록 형성된 제 1 코팅층 및 제 2 코팅층을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The coating layers include a first coating layer and a second coating layer formed to reduce different lithium by-products existing near the surface of the core, respectively.
  2. 제 1 항에 있어서, 상기 코어의 표면 상에 제 1 코팅층 및 제 2 코팅층이 순차적으로 형성되어 있는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 1, wherein a first coating layer and a second coating layer are sequentially formed on the surface of the core.
  3. 제 2 항에 있어서, 상기 제 1 코팅층의 형성을 위한 열처리 온도는 제 2 코팅층의 형성을 위한 열처리 온도보다 상대적으로 높은 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material of claim 2, wherein a heat treatment temperature for forming the first coating layer is relatively higher than a heat treatment temperature for forming the second coating layer.
  4. 제 1 항에 있어서, 상기 제 1 코팅층은 코어의 표면 부근에 존재하는 Li2CO3를 저감하도록 형성되며, 상기 제 2 코팅층은 코어의 표면 부근에 존재하는 LiOH를 저감하도록 형성된 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The lithium of claim 1, wherein the first coating layer is formed to reduce Li 2 CO 3 present near the surface of the core, and the second coating layer is formed to reduce LiOH present near the surface of the core. Positive active material for secondary batteries.
  5. 제 4 항에 있어서, 상기 양극 활물질은 탄소/유황 분석기(Carbon/Sulfur Determinator)에 의해 측정된 Li2CO3의 함량이 양극 활물질의 전체 중량 대비 0.18 중량% 이하인 것을 특징으로 하는 양극 활물질.The cathode active material according to claim 4, wherein the cathode active material has a Li 2 CO 3 content of 0.18 wt% or less based on the total weight of the cathode active material as measured by a carbon/sulfur determinator.
  6. 제 1 항에 있어서, 상기 양극 활물질과 역삼투압 탈이온수(Ro수)의 혼합액이 필터링된 여과액의 pH가 11.65 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 1, wherein a pH of the filtrate obtained by filtering the mixture of the cathode active material and reverse osmosis deionized water (Ro water) is 11.65 or less.
  7. 제 1 항에 있어서, 상기 제 1 코팅층 및 제 2 코팅층은 서로 상이한 조성으로 구성되며, 각각 W, Ti, P, B, Zr, Mo, Cr, Co, Al, Mg, Ta, Nb, F, Na, S 원소 중 어느 하나 이상의 원소를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The method of claim 1, wherein the first coating layer and the second coating layer are composed of different compositions, respectively, W, Ti, P, B, Zr, Mo, Cr, Co, Al, Mg, Ta, Nb, F, Na , A cathode active material for a lithium secondary battery, characterized in that it contains any one or more elements of the S element.
  8. 제 7 항에 있어서, 상기 제 1 코팅층은 텅스텐(W)를 포함하며, 제 2 코팅층은 보론(B)을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 7, wherein the first coating layer contains tungsten (W) and the second coating layer contains boron (B).
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 코팅층은 LiaWO(a+b)/ 2 (2≤a≤6, b는 W의 산화수임)로 표시되는 화학식의 조성을 포함하며;The first coating layer comprises a composition of the formula represented by Li a WO (a+b)/ 2 ( 2 ≦a≦6, b is an oxidation number of W);
    상기 제 2 코팅층은 LicBdOe (1≤c≤10, 1≤d≤10, e=(c+f)/g, 여기서, f는 B의 산화수의 절대값이고, g는 O의 산화수 절대값임)로 표시되는 화학식의 조성을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The second coating layer is Li c B d O e (1≦ c ≦10, 1≦d≦10, e=(c+f)/g, where f is the absolute value of the oxidation number of B, and g is the A positive electrode active material for a lithium secondary battery, characterized in that it comprises a composition of a chemical formula represented by an absolute value of oxidation number).
  10. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 코팅층은 Li2WO4, Li4WO5 및 Li6WO6로 이루어진 군에서 선택되는 하나 이상을 포함하며;The first coating layer includes at least one selected from the group consisting of Li 2 WO 4 , Li 4 WO 5 and Li 6 WO 6 ;
    상기 제 2 코팅층은 LiBO2, LiBO4 , Li2B4O7 및 Li2O-2B2O3으로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.The second coating layer is characterized in that it comprises at least one selected from the group consisting of LiBO 2 , LiBO 4 , Li 2 B 4 O 7 and Li 2 O-2B 2 O 3 , a cathode active material for a lithium secondary battery.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 코팅층에 포함된 텅스텐(W)의 함량은 양극 활물질의 전체 중량 대비 0.4 내지 1.6 중량%이며,The content of tungsten (W) included in the first coating layer is 0.4 to 1.6% by weight based on the total weight of the positive electrode active material,
    상기 제 2 코팅층에 포함된 보론(B)의 함량은 양극 활물질의 전체 중량 대비 0.03 내지 0.12 중량%인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The content of boron (B) included in the second coating layer is 0.03 to 0.12% by weight based on the total weight of the positive electrode active material.
  12. 제 8 항에 있어서, 상기 제 2 코팅층에 포함된 보론(B) 및 제 1 코팅층에 포함된 텅스텐(W)의 함량비(B/W)는 0.075 내지 0.3인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 8, wherein the content ratio (B/W) of boron (B) included in the second coating layer and tungsten (W) included in the first coating layer is 0.075 to 0.3. .
  13. 제 1 항에 있어서, 상기 제 1 코팅층 및 제 2 코팅층 각각은 코어의 표면부를 기준으로 25 내지 100%를 점유하는 영역에 형성된 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 1, wherein each of the first coating layer and the second coating layer is formed in an area occupying 25 to 100% based on a surface portion of the core.
  14. 제 1 항에 있어서, 상기 리튬 전이금속 산화물은 니켈 함량이 전이금속의 몰 기준으로 80% 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 1, wherein the lithium transition metal oxide has a nickel content of 80% or more based on the mole of the transition metal.
  15. 제 1 내지 제 14 항 중 어느 하나에 따른 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery comprising the positive active material according to any one of claims 1 to 14.
PCT/KR2020/010041 2019-08-06 2020-07-30 Cathode active material for lithium secondary battery WO2021025370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190095311 2019-08-06
KR10-2019-0095311 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021025370A1 true WO2021025370A1 (en) 2021-02-11

Family

ID=74503145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010041 WO2021025370A1 (en) 2019-08-06 2020-07-30 Cathode active material for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR20210018085A (en)
WO (1) WO2021025370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090817A1 (en) * 2021-11-16 2023-05-25 주식회사 엘지화학 Method for analysis of residual lithium compounds in positive electrode active material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230056594A (en) * 2021-10-20 2023-04-27 주식회사 엘 앤 에프 Cathode Active Material for Secondary Battery
KR20230096886A (en) * 2021-12-23 2023-06-30 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery manufactured thereby
KR20230096894A (en) * 2021-12-23 2023-06-30 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparing method of the same
WO2023229354A1 (en) * 2022-05-24 2023-11-30 주식회사 엘지화학 Precursor preparation device and precursor preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050458A (en) * 2013-10-29 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
KR20150074744A (en) * 2013-12-24 2015-07-02 경북대학교 산학협력단 Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
JP2015201388A (en) * 2014-04-09 2015-11-12 日亜化学工業株式会社 Cathode active material for non-aqueous secondary battery and manufacturing method for the same
KR20170063396A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
KR20190078991A (en) * 2017-12-27 2019-07-05 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050458A (en) * 2013-10-29 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
KR20150074744A (en) * 2013-12-24 2015-07-02 경북대학교 산학협력단 Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
JP2015201388A (en) * 2014-04-09 2015-11-12 日亜化学工業株式会社 Cathode active material for non-aqueous secondary battery and manufacturing method for the same
KR20170063396A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
KR20190078991A (en) * 2017-12-27 2019-07-05 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090817A1 (en) * 2021-11-16 2023-05-25 주식회사 엘지화학 Method for analysis of residual lithium compounds in positive electrode active material

Also Published As

Publication number Publication date
KR20210018085A (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2021025370A1 (en) Cathode active material for lithium secondary battery
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2019078690A2 (en) Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
WO2019172661A1 (en) Method for manufacturing negative electrode
WO2015133692A1 (en) Cathode active material, lithium secondary battery having same, and method for preparing same
WO2011059251A2 (en) Negative active material for lithium secondary battery and lithium secondary battery comprising same
WO2018164405A1 (en) Anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2019240496A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2015099233A1 (en) Anode active material, secondary battery comprising same and method for manufacturing anode active material
WO2010143805A1 (en) Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2020111318A1 (en) Cathode active material for lithium secondary battery
WO2018212446A1 (en) Lithium secondary battery
WO2019143135A1 (en) Composite material including selenium, method of fabricating the same, lithium ion and lithium selenium secondary batteries including the same, and lithium ion capacitor including the same
WO2019088345A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2019050216A2 (en) Anode active material, anode comprising same anode active material, and secondary battery comprising same anode
WO2020153701A1 (en) Method for producing positive electrode active material for secondary batteries
WO2020149618A1 (en) Method for preparing negative electrode active material
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery
WO2022014858A1 (en) Positive electrode active material for lithium secondary battery
WO2021246830A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
WO2018004250A1 (en) Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
WO2017034351A1 (en) Negative electrode for secondary battery, and secondary battery comprising same
WO2020256358A1 (en) Positive electrode active material for lithium secondary battery
WO2020055210A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
WO2020076139A1 (en) Negative electrode and rechargeable battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849174

Country of ref document: EP

Kind code of ref document: A1