JP2014170656A - Method for producing positive electrode active material for nonaqueous secondary battery - Google Patents

Method for producing positive electrode active material for nonaqueous secondary battery Download PDF

Info

Publication number
JP2014170656A
JP2014170656A JP2013041365A JP2013041365A JP2014170656A JP 2014170656 A JP2014170656 A JP 2014170656A JP 2013041365 A JP2013041365 A JP 2013041365A JP 2013041365 A JP2013041365 A JP 2013041365A JP 2014170656 A JP2014170656 A JP 2014170656A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
transition metal
composite oxide
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013041365A
Other languages
Japanese (ja)
Inventor
Hideki Yoshida
秀樹 吉田
Tadashi Maruta
忠 丸田
Takashi Kawada
登士 川田
Kenta Kawai
健太 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013041365A priority Critical patent/JP2014170656A/en
Publication of JP2014170656A publication Critical patent/JP2014170656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To form a uniform coat with a thin film thickness sufficiently preventing a contact with a nonaqueous electrolyte or a solid electrolyte and achieving favorable charge/discharge characteristics, on a surface of a lithium transition metal composite oxide particle.SOLUTION: A coat is formed on a surface of a lithium transition metal composite oxide particle by means of an atomic layer deposition method. In the formation, at least one of a precursor and a co-reactant which are introduced in each cycle of the atomic layer deposition method is made to be smaller than an amount required for forming a coat covering the entire surface of the lithium transition metal composite oxide particle.

Description

本発明は、リチウムイオン二次電池等の非水系二次電池用正極活物質の製造方法に関する。特に出力特性、サイクル特性に優れた正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for a non-aqueous secondary battery such as a lithium ion secondary battery. In particular, the present invention relates to a method for producing a positive electrode active material having excellent output characteristics and cycle characteristics.

近年、VTR、携帯電話、ノートパソコン等の携帯機器の普及及び小型化がすすみ、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、環境意識の高まりとともに、電気自動車等の動力用電源として非水電解液二次電池が注目されている。   In recent years, portable devices such as VTRs, cellular phones, and notebook personal computers have been widely used and miniaturized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for power sources. Furthermore, as environmental awareness increases, non-aqueous electrolyte secondary batteries are attracting attention as power sources for electric vehicles and the like.

リチウムイオン二次電池用の正極活物質としては主に層状構造のコバルト酸リチウム(LiCoO)が実用化されている。こうした二次電池では、4V級の電池電圧と160mAh/g程度の放電容量が実現されている。 As a positive electrode active material for a lithium ion secondary battery, lithium cobaltate (LiCoO 2 ) having a layered structure is mainly put into practical use. In such a secondary battery, a 4V class battery voltage and a discharge capacity of about 160 mAh / g are realized.

コバルト酸リチウムの原料であるコバルトは希少資源であり且つ地理的に偏在しているため、コストがかかる。また、原料供給について不安が生じる。   Cobalt, which is a raw material for lithium cobaltate, is a scarce resource and is unevenly distributed geographically, and therefore costs high. Moreover, anxiety arises about supply of raw materials.

こうした事情に鑑み、コバルト酸リチウムのコバルトをニッケル、マンガン等の元素で置換したニッケルコバルトマンガン酸リチウム(Li(Ni,Co,Mn)O)等の層状構造のリチウム遷移金属複合酸化物、スピネル構造のマンガン酸リチウム(LiMn)、オリビン構造のリン酸鉄リチウム(LiFePO)等も開発されている。これらはそれぞれに長所及び短所があり、目的に応じて使い分けられている。 In view of these circumstances, a lithium transition metal composite oxide having a layer structure such as lithium nickel cobalt manganate (Li (Ni, Co, Mn) O 2 ) in which cobalt of lithium cobalt oxide is substituted with an element such as nickel or manganese, spinel Lithium manganate (LiMn 2 O 4 ) having a structure, lithium iron phosphate having an olivine structure (LiFePO 4 ), and the like have also been developed. Each of these has advantages and disadvantages, and is selected according to the purpose.

種々の非水電解液二次電池用正極活物質において、目的に応じて正極活物質粒子の表面を特定の化合物で被覆する技術が提案されている。   In various positive electrode active materials for non-aqueous electrolyte secondary batteries, techniques for coating the surfaces of positive electrode active material particles with specific compounds according to the purpose have been proposed.

特許文献1では、リチウムコバルト複酸化物粉末の粒子表面に形成される被覆層の均一性を改善し、サイクル特性をより向上するために、流動層を形成したリチウムコバルト複酸化物粉末にアルミナゾル水溶液を噴霧添加し、乾燥して非晶質のアルミナ被覆層を形成する技術が提案されている。   In Patent Document 1, in order to improve the uniformity of the coating layer formed on the particle surface of the lithium cobalt double oxide powder and to further improve the cycle characteristics, an aqueous solution of alumina sol is added to the lithium cobalt double oxide powder having a fluidized bed. A technique for forming an amorphous alumina coating layer by spraying and drying is proposed.

特許文献2では、二次電池のレート特性を向上するために、リチウム遷移金属複合酸化物の粒子表面を酸化アルミニウム等で被覆する技術が提案されている。具体的に開示されている被覆方法は、ベース正極活物質粒子とコーティング材料粒子を混合し、機械的に複合化する、というものである。   In Patent Document 2, in order to improve the rate characteristics of the secondary battery, a technique of coating the particle surface of the lithium transition metal composite oxide with aluminum oxide or the like is proposed. A specifically disclosed coating method is to mix base positive electrode active material particles and coating material particles and mechanically combine them.

一方、原子層堆積(Atomic Layer Deposition:ALD)法あるいは原子層エピタキシー法とよばれる薄膜形成技術があり、さらにこの技術を粉体に適用する提案も存在する。   On the other hand, there is a thin film formation technique called an atomic layer deposition (ALD) method or an atomic layer epitaxy method, and there is also a proposal for applying this technique to powder.

非特許文献1にはコバルト酸リチウムをALD法によって酸化アルミニウムで被覆することでサイクル特性が向上することが記載されている。但し、膜厚が厚すぎる(1nm程度以上)と電子伝導性及び放電容量が低下することも記載されている。   Non-Patent Document 1 describes that cycle characteristics are improved by coating lithium cobalt oxide with aluminum oxide by the ALD method. However, it is also described that if the film thickness is too thick (about 1 nm or more), the electron conductivity and the discharge capacity are lowered.

非特許文献2にはリチウム過剰のニッケルコバルトマンガン酸リチウムを非特許文献1同様に酸化アルミニウムで被覆することでサイクル特性が向上することが記載されている。また、膜厚が厚すぎる(1nm程度以上)と放電容量が低下することも記載されている。   Non-Patent Document 2 describes that the cycle characteristics are improved by coating lithium-excess lithium nickel cobalt manganate with aluminum oxide as in Non-Patent Document 1. It is also described that the discharge capacity decreases when the film thickness is too thick (about 1 nm or more).

非特許文献1及び2に記載のALD法条件では、各サイクルにおいて一分子層を形成するのに必要な量以上のTMA(トリメチルアルミニウム)及び水蒸気が添加されている。その上で1サイクル当たり0.1nm程度の薄膜がリチウム遷移金属複合酸化物粒子の表面に形成されるものとされている。   In the ALD method conditions described in Non-Patent Documents 1 and 2, TMA (trimethylaluminum) and water vapor are added in an amount more than necessary to form a monomolecular layer in each cycle. In addition, a thin film having a thickness of about 0.1 nm per cycle is formed on the surface of the lithium transition metal composite oxide particles.

特開2005−276454号公報JP 2005-276454 A 特開2008−103204号公報JP 2008-103204 A

Journal of The Electrochemical Society,157 (1) A75−A81(2010)Journal of The Electrochemical Society, 157 (1) A75-A81 (2010) Journal of The Electrochemical Society,158 (12) A1298−A1302(2011)Journal of The Electrochemical Society, 158 (12) A1298-A1302 (2011)

特許文献1及び2の被覆方法は、形成される被膜が均一になりにくい、あるいは均一と呼べる程度の被膜を形成するには、被膜の膜厚を厚く(100nm程度以上)せざるを得ない。また、投入原料の被膜形成に寄与する割合(被膜形成効率)が良くない。このため、十分均一な被膜を形成することは、正極活物質全体のリチウムイオン伝導性あるいは電子伝導性を低下させることを意味する。また、こういった被膜は電気化学的には不活性であるため、被膜の割合が多いと正極活物質全体の充放電容量の低下を招く。   According to the coating methods of Patent Documents 1 and 2, in order to form a film that is difficult to form or can be said to be uniform, the film thickness of the film must be increased (about 100 nm or more). Moreover, the ratio (film formation efficiency) which contributes to the film formation of an input raw material is not good. For this reason, to form a sufficiently uniform film means to reduce the lithium ion conductivity or electronic conductivity of the whole positive electrode active material. In addition, since such a coating is electrochemically inactive, a large proportion of the coating causes a reduction in charge / discharge capacity of the entire positive electrode active material.

一方、非特許文献1及び2のようにALD法を用いると、膜厚が薄く(0.2〜0.8nm程度)且つ均一な被膜を形成することができる。しかし、各サイクルで完全な1分子層を粒子表面に形成すると、充放電特性が悪化傾向にある。   On the other hand, when the ALD method is used as in Non-Patent Documents 1 and 2, a thin film (about 0.2 to 0.8 nm) and a uniform film can be formed. However, when a complete monomolecular layer is formed on the particle surface in each cycle, the charge / discharge characteristics tend to deteriorate.

本発明はこれらの事情に鑑みてなされたものである。本発明の目的は、リチウム遷移金属複合酸化物粒子の表面を均一に薄く被覆でき、且つ充放電特性が落ちないような被膜を形成する方法を提供することにある。   The present invention has been made in view of these circumstances. An object of the present invention is to provide a method for forming a coating that can uniformly and thinly coat the surface of lithium transition metal composite oxide particles and that does not deteriorate charge / discharge characteristics.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者らは、ALD法の各サイクルで完全な一分子層が形成されないようにすることで充放電特性の悪化傾向を抑制することを見出した。本発明の製造方法は、リチウム遷移金属複合酸化物粒子表面に原子層堆積法によって被膜を形成する非水系二次電池用正極活物質の製造方法であって、前記原子堆積法の各サイクルにおいて導入される前駆体又は共反応体の少なくとも一方が、前記リチウム遷移金属複合酸化物粒子表面全てを覆う被膜を形成するのに必要な量よりも少ないことを特徴とする。   In order to achieve the above object, the present inventors have conducted intensive studies and have completed the present invention. The present inventors have found that the tendency of deterioration of charge / discharge characteristics is suppressed by preventing a complete monomolecular layer from being formed in each cycle of the ALD method. The production method of the present invention is a method for producing a positive electrode active material for a non-aqueous secondary battery in which a film is formed on the surface of lithium transition metal composite oxide particles by an atomic layer deposition method, which is introduced in each cycle of the atomic deposition method. It is characterized in that at least one of the precursor or the co-reactant to be produced is less than the amount necessary to form a coating covering the entire surface of the lithium transition metal composite oxide particles.

本発明の正極活物質は、本発明の製造方法によって得られることを特徴とする。   The positive electrode active material of the present invention is obtained by the production method of the present invention.

本発明の非水電解液二次電池は、正極、負極、セパレータ及び非水電解液を含み、前記正極には本発明の正極活物質が含まれることを特徴とする。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode includes the positive electrode active material of the present invention.

本発明の固体電解質二次電池は、正極、負極及び固定電解質を含み、前記正極には本発明の正極活物質が含まれることを特徴とする。   The solid electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a fixed electrolyte, and the positive electrode includes the positive electrode active material of the present invention.

本発明の製造方法は上記の特徴を備えているので、リチウム遷移金属複合酸化物粒子の表面に、膜厚が薄く、非水電解液あるいは固体電解質との接触を十分防止でき、且つ充放電特性が良好な被膜を形成することができる。そのため、得られる正極活物質において被膜の占める割合が極めて少なく、正極活物質のリチウムイオン伝導性、電子伝導性及び充放電容量が損なわれることがない。その上で充放電時の非水電解液による劣化を防止できる、あるいは固体電解質との界面抵抗を低減することができる。そのため、本発明の製造方法によって得られる正極活物質を正極に用いた非水電解液二次電池は、サイクル特性及び出力特性に優れたものとなる。また、本発明の本発明の製造方法によって得られる正極活物質を用いた固体電解質二次電池は、その放電電流を大きくすることができる。   Since the production method of the present invention has the above characteristics, the lithium transition metal composite oxide particles have a thin film thickness, can sufficiently prevent contact with a non-aqueous electrolyte or a solid electrolyte, and have charge / discharge characteristics. Can form a good film. Therefore, the proportion of the coating film in the obtained positive electrode active material is extremely small, and the lithium ion conductivity, electronic conductivity, and charge / discharge capacity of the positive electrode active material are not impaired. In addition, the deterioration due to the non-aqueous electrolyte during charging / discharging can be prevented, or the interface resistance with the solid electrolyte can be reduced. Therefore, the nonaqueous electrolyte secondary battery using the positive electrode active material obtained by the production method of the present invention for the positive electrode has excellent cycle characteristics and output characteristics. Moreover, the solid electrolyte secondary battery using the positive electrode active material obtained by the manufacturing method of the present invention can increase the discharge current.

図1は本発明の製造方法を実施した際の、反応容器内の各気体の圧力変化の一例である。FIG. 1 is an example of the pressure change of each gas in the reaction vessel when the production method of the present invention is carried out. 図2は本明細書における評価用二次電池において仮定した等価回路である。FIG. 2 is an equivalent circuit assumed in the secondary battery for evaluation in this specification. 図3は本発明の実施例及び比較例によって得られる正極活物質を用いた非水電解液二次電池について、充放電前のナイキストプロット(Cole−Coleプロット)を比較したものである。FIG. 3 is a comparison of Nyquist plots (Cole-Cole plots) before charging and discharging for non-aqueous electrolyte secondary batteries using positive electrode active materials obtained according to examples and comparative examples of the present invention. 図4は本発明の実施例及び比較例によって得られる正極活物質を用いた非水電解液二次電池について、200サイクル後のナイキストプロットを比較したものである。FIG. 4 is a comparison of Nyquist plots after 200 cycles for a non-aqueous electrolyte secondary battery using a positive electrode active material obtained by Examples and Comparative Examples of the present invention.

以下、本発明の正極活物質の製造方法について詳細に説明する。本発明の製造方法は所謂原子層堆積(Atomic Layer Deposition:ALD)法あるいは原子層エピタキシー法と呼ばれるものである。以下、ALD法等の用語を用いて本発明を説明することもある。   Hereinafter, the manufacturing method of the positive electrode active material of this invention is demonstrated in detail. The production method of the present invention is called a so-called atomic layer deposition (ALD) method or an atomic layer epitaxy method. Hereinafter, the present invention may be described using terms such as the ALD method.

[ALD法のサイクル]
ALD法のサイクルは、下記4つのステップからなる。
1)前駆体(又は共反応体)を反応容器内に導入し、反応容器内の試料に吸着させる。
2)試料に吸着しなかった前駆体(又は共反応体)を反応容器から排出する。
3)共反応体(又は前駆体)を反応容器内に導入し、試料表面に被膜を形成する。
4)被膜形成に関与しなかった共反応体(又は前駆体)を反応容器から排出する。
[Cycle of ALD method]
The ALD method cycle consists of the following four steps.
1) A precursor (or a co-reactant) is introduced into a reaction vessel and adsorbed on a sample in the reaction vessel.
2) The precursor (or co-reactant) not adsorbed on the sample is discharged from the reaction vessel.
3) A co-reactant (or precursor) is introduced into the reaction vessel to form a film on the sample surface.
4) The co-reactant (or precursor) that has not participated in the film formation is discharged from the reaction vessel.

[前駆体又は共反応体の導入量]
前駆体又は共反応体の少なくとも一方は、試料となるリチウム遷移金属複合酸化物粒子表面全てを覆う被膜を形成するのに必要な量よりも少ない量だけ導入する。導入量の調整はどちらか一方のみでも良いし、両方でも良い。被膜形成はより少ない導入量に基づいてなされる。なお、本明細書においては、被膜形成に関わる金属含有原料を前駆体、金属非含有原料を共反応体とする。例えばTMA(トリメチルアルミニウム)と水蒸気の反応によって酸化アルミニウムの被膜が形成される場合、TMAを前駆体、水蒸気を共反応体とする。
[Introduction amount of precursor or co-reactant]
At least one of the precursor and the co-reactant is introduced in an amount smaller than the amount necessary to form a film covering the entire surface of the lithium transition metal composite oxide particles as a sample. Either one or both may be adjusted for the amount of introduction. Film formation is made on the basis of a smaller amount of introduction. In this specification, a metal-containing raw material involved in film formation is a precursor, and a metal-free raw material is a coreactant. For example, when a film of aluminum oxide is formed by a reaction between TMA (trimethylaluminum) and water vapor, TMA is used as a precursor and water vapor is used as a co-reactant.

ALD法においては、前駆体及び共反応体(まとめて前駆体等と呼ぶ)は前駆体等の蒸気圧と反応容器内の圧力との圧力差を利用して導入される。1サイクルで試料表面全体を形成するのに必要な前駆体等の質量mは、下記式(1)で表される。
=(aρmSr)(M/M) (1)
a:被膜を構成する物質1モルを形成するのに必要な
前駆体又は共反応体の物質量
ρ:被膜を構成する物質の密度
M:被膜を構成する物質のモル質量
:前駆体等のモル質量
m:反応容器内のリチウム遷移金属複合酸化物粒子の質量
:リチウム遷移金属複合酸化物粒子の比表面積
r:リチウム遷移金属複合酸化物粒子表面全体を被膜を
構成する物質の単分子膜で覆った時の被膜の膜厚
In the ALD method, a precursor and a co-reactant (collectively referred to as a precursor or the like) are introduced using a pressure difference between a vapor pressure of the precursor or the like and a pressure in a reaction vessel. The mass m 0 of a precursor or the like necessary for forming the entire sample surface in one cycle is represented by the following formula (1).
m 0 = (aρmS p r) (M 1 / M) (1)
a: Necessary for forming 1 mole of the substance constituting the coating
Amount of precursor or co-reactant material
ρ: Density of the material constituting the coating
M: molar mass of the substance constituting the coating
M 1 : molar mass of precursor, etc.
m: mass of lithium transition metal composite oxide particles in the reaction vessel
S p : Specific surface area of lithium transition metal composite oxide particles
r: Lithium transition metal composite oxide particles coated on the entire surface
Film thickness when covered with a monolayer of constituent substances

一方、反応容器に導入される前駆体等の質量mは、下記式(2)で近似できる。
={(PV)/(RT)}M(1−exp[−kt]) (2)
P:前駆体等の飽和蒸気圧
R:気体定数
V:反応容器内の容積
T:反応容器内の温度
t:導入時間
k:比例定数
なお、比例定数kは物質固有の値を持つ。
On the other hand, the mass m 1 of the precursor or the like introduced into the reaction vessel can be approximated by the following formula (2).
m 1 = {(PV) / (RT)} M 1 (1-exp [−kt]) (2)
P: saturated vapor pressure of precursor, etc. R: gas constant V: volume in the reaction vessel T: temperature in the reaction vessel t: introduction time k: proportionality constant The proportionality constant k has a value specific to the substance.

<mであれば良いので、式(1)及び(2)より、下記式(3)が満たされれば良い。
P(1−exp[−kt])<(aρmSr/M)(RT/V) (3)
Since m 1 <m 0 suffices, the following equation (3) may be satisfied from equations (1) and (2).
P (1-exp [-kt] ) <(aρmS p r / M) (RT / V) (3)

上記式(3)を満たすよう前駆体等の蒸気圧及び導入時間を決めれば良いが、m/mが、0.2以上0.8以下となるよう決めると完全に被覆しない状態となるので好ましい。 The vapor pressure and the introduction time of the precursor or the like may be determined so as to satisfy the above formula (3), but when m 1 / m 0 is determined to be 0.2 or more and 0.8 or less, the state is not completely covered. Therefore, it is preferable.

一方、前駆体又は共反応体の少なくとも一方について、飽和蒸気圧が反応容器内の安定圧力(後述)の10倍以上100倍以下とした上で導入時間を決めると前駆体又は共反応体の導入量を制御し易いので好ましい。   On the other hand, when at least one of the precursor and the co-reactant is set to an introduction time after the saturated vapor pressure is 10 to 100 times the stable pressure (described later) in the reaction vessel, the precursor or the co-reactant is introduced. The amount is preferred because it is easy to control.

あるいは、式(3)の右辺をPとした場合に、飽和蒸気圧Pとの比P/Pを2.5以上50以下とした上で導入時間を決めるのでも良い。 Alternatively, when the right side of Equation (3) is P 0 , the introduction time may be determined after setting the ratio P / P 0 to the saturated vapor pressure P to be 2.5 or more and 50 or less.

[安定圧力]
ALD法の各サイクルにおいて反応容器から気体を排出するステップが存在するが、排気によって到達する反応容器内の圧力がほぼ一定となるよう排気と同時に不活性ガスの導入を行っても良い。排気によって到達する圧力を以後安定圧力と称する。前駆体等の飽和蒸気圧が極めて高い時など安定圧力を高く設定すると適切な導入時間を設定し易い。安定圧力は反応容器のコンダクタンス及び排気系(真空ポンプ等)の能力が大凡分かれば不活性ガスのモル流量によって調整可能である。不活性ガスは窒素等反応容器、試料、前駆体等と反応しない物質であれば目的に応じて適宜選択すれば良い。
[Stable pressure]
In each cycle of the ALD method, there is a step of exhausting the gas from the reaction vessel. However, the inert gas may be introduced simultaneously with the exhaust so that the pressure in the reaction vessel reached by the exhaust becomes substantially constant. The pressure reached by exhaust is hereinafter referred to as stable pressure. If the stable pressure is set high, such as when the saturated vapor pressure of the precursor is extremely high, it is easy to set an appropriate introduction time. The stable pressure can be adjusted by the molar flow rate of the inert gas if the conductance of the reaction vessel and the capacity of the exhaust system (such as a vacuum pump) are roughly known. The inert gas may be appropriately selected according to the purpose as long as it is a substance that does not react with a reaction vessel such as nitrogen, a sample, or a precursor.

以下、実施例にてより具体的な例を説明する。   Hereinafter, more specific examples will be described in Examples.

一般式Li1.12Ni0.33Co0.33Mn0.330.005で表され、比表面積(S)が1.47m/gであるリチウム遷移金属複合酸化物粒子(m=)100gを容積(V)が約13Lの反応容器に入れ、密封する。密封後、真空ポンプを用いて反応容器内を10Pa以下まで減圧する。減圧後、窒素を6.82×10−5mol/secで導入し、反応容器内の圧力を70Pa程度で安定させる(安定圧力70Pa)。 Lithium transition metal composite oxide particles represented by the general formula Li 1.12 Ni 0.33 Co 0.33 Mn 0.33 W 0.005 O 2 and having a specific surface area (S p ) of 1.47 m 2 / g (M =) 100 g is put into a reaction vessel having a volume (V) of about 13 L and sealed. After sealing, the inside of the reaction vessel is depressurized to 10 Pa or less using a vacuum pump. After decompression, nitrogen is introduced at 6.82 × 10 −5 mol / sec, and the pressure in the reaction vessel is stabilized at about 70 Pa (stable pressure 70 Pa).

反応容器内の圧力が安定したら反応容器内を200℃に調節する。一方共反応体として水蒸気を、前駆体としてTMAを用意し、これらを格納している容器をそれぞれ30℃に調節する。式(3)における水蒸気のk値は1.5×10−2sec−1、TMAのk値は1.2×10−2sec−1である。また、30℃における水蒸気の飽和蒸気圧は4.2kPa(化学便覧基礎編II(日本化学会編)より)、TMAの飽和蒸気圧は約2kPa(試薬メーカーの添付資料より)である。 When the pressure in the reaction vessel is stabilized, the inside of the reaction vessel is adjusted to 200 ° C. On the other hand, water vapor is prepared as a co-reactant and TMA is prepared as a precursor, and the containers storing these are adjusted to 30 ° C., respectively. In formula (3), the k value of water vapor is 1.5 × 10 −2 sec −1 , and the k value of TMA is 1.2 × 10 −2 sec −1 . Further, the saturated vapor pressure of water vapor at 30 ° C. is 4.2 kPa (from Chemical Handbook Fundamentals II (edited by the Chemical Society of Japan)), and the saturated vapor pressure of TMA is about 2 kPa (from the attached materials of the reagent manufacturer).

TMAと水蒸気の反応は
2Al(CH + 3HO → Al + 3CH
であるので、a=2、a=3である。また、ρ=4g/cm、r=0.1nmである。これらを式(3)に代入すると、Pの値はTMAの場合約350Pa、水蒸気の場合約520Paになる。そのため、TMAの導入時間が約16秒より短い、あるいは水蒸気の導入時間が約9秒より短ければ、各サイクルで粒子表面に完全な1分子層が形成されることが無い。
The reaction between TMA and water vapor is 2Al (CH 3 ) 3 + 3H 2 O → Al 2 O 3 + 3CH 4
Therefore, a p = 2 and a c = 3. In addition, ρ = 4 g / cm 3 and r = 0.1 nm. By substituting these into equation (3), the value of P 0 is about 350 Pa for TMA and about 520 Pa for water vapor. Therefore, if the TMA introduction time is shorter than about 16 seconds or the water vapor introduction time is shorter than about 9 seconds, a complete monomolecular layer is not formed on the particle surface in each cycle.

反応容器並びに前駆体及び共反応体を格納している各容器の温度が安定したのを確認した後、1)水蒸気を反応容器に約2秒導入、2)反応容器内の気体を60秒排出、3)TMAを反応容器に約2秒導入、4)反応容器内の気体を60秒排出、の4ステップを1サイクルとして100サイクル実施する。ステップ1)、3)及びその前後1〜3秒程度は排気を中断する。また、全サイクルにおいて、窒素のモル流量はほぼ一定にする。水蒸気導入、TMA導入及び排気のオン・オフ、並びに反応容器内の圧力変化の一部を図1に示す。   After confirming that the temperature of each vessel containing the reaction vessel and the precursor and the co-reactant was stabilized, 1) water vapor was introduced into the reaction vessel for about 2 seconds, and 2) the gas in the reaction vessel was discharged for 60 seconds. 3) TMA is introduced into the reaction vessel for about 2 seconds, and 4) the gas in the reaction vessel is discharged for 60 seconds. Steps 1), 3) and before and after that for about 1 to 3 seconds interrupt the exhaust. In addition, the molar flow rate of nitrogen is kept constant throughout the entire cycle. FIG. 1 shows a part of changes in pressure in the reaction vessel and introduction of water vapor, TMA, and on / off of exhaust.

100サイクル終了後、反応容器を常温まで放冷し、窒素の導入及び排気を停止し、反応容器から試料を取り出す。こうしてリチウム遷移金属複合酸化物粒子の表面に酸化アルミニウムの被膜が形成された正極活物質を得る。   After 100 cycles, the reaction vessel is allowed to cool to room temperature, nitrogen introduction and exhaust are stopped, and a sample is taken out from the reaction vessel. In this way, a positive electrode active material having an aluminum oxide film formed on the surface of the lithium transition metal composite oxide particles is obtained.

[比較例1]
実施例1におけるリチウム遷移金属複合酸化物を比較用の正極活物質とする。
[Comparative Example 1]
The lithium transition metal composite oxide in Example 1 is used as a comparative positive electrode active material.

[比較例2]
(ゾル添加法)
実施例1におけるリチウム遷移金属複合酸化物100gを反応容器内の試料設置部に設置する。反応容器が外部に開放された状態で流動装置を作動させ、中心粒径30nm、7.2重量%のアルミナゾルを18mL/minで3分間滴下し、リチウム遷移金属複合酸化物粒子の表面に酸化アルミニウムの被膜が形成された正極活物質を得る。得られる正極活物質を500℃で熱処理し、目的の正極活物質を得る。
[Comparative Example 2]
(Sol addition method)
100 g of the lithium transition metal composite oxide in Example 1 is installed in the sample installation part in the reaction vessel. With the reaction vessel open to the outside, the flow apparatus is operated, and alumina sol with a central particle size of 30 nm and 7.2% by weight is dropped at 18 mL / min for 3 minutes, and aluminum oxide is deposited on the surface of the lithium transition metal composite oxide particles. A positive electrode active material on which a coating film is formed is obtained. The obtained positive electrode active material is heat-treated at 500 ° C. to obtain a target positive electrode active material.

一般式Li1.12Ni0.33Co0.33Mn0.33で表され、比表面積(S)が0.44m/gであるリチウム遷移金属複合酸化物100gを試料として用いる以外実施例1と同様にし、目的の正極活物質を得る。 A lithium transition metal composite oxide 100 g represented by the general formula Li 1.12 Ni 0.33 Co 0.33 Mn 0.33 O 2 and having a specific surface area (S p ) of 0.44 m 2 / g is used as a sample. Otherwise, the target positive electrode active material is obtained in the same manner as in Example 1.

実施例2におけるSを式(3)に代入すると、Pの値はTMAの場合約110Pa、水蒸気の場合約160Paになる。そのため、TMAの導入時間が約5秒より短い、あるいは水蒸気の導入時間が約3秒より短ければ、各サイクルで粒子表面に完全な1分子層が形成されることが無い。 When the S p in Example 2 into equation (3), the value of P 0 is about 160Pa cases of about 110 Pa, water vapor TMA. Therefore, if the TMA introduction time is shorter than about 5 seconds or the water vapor introduction time is shorter than about 3 seconds, a complete monomolecular layer is not formed on the particle surface in each cycle.

[比較例3]
実施例2におけるリチウム遷移金属複合酸化物を比較用の正極活物質とする。
[Comparative Example 3]
The lithium transition metal composite oxide in Example 2 is used as a comparative positive electrode active material.

[比較例4]
(ゾル添加法)
一般式Li1.12Ni0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物100gを試料として用いる以外比較例2と同様にし、リチウム遷移金属複合酸化物粒子の表面に酸化アルミニウムの被膜が形成された正極活物質を得る。得られる正極活物質を400℃で熱処理し、目的の正極活物質を得る。
[Comparative Example 4]
(Sol addition method)
Lithium transition metal composite oxide particles in the same manner as in Comparative Example 2 except that 100 g of the lithium transition metal composite oxide represented by the general formula Li 1.12 Ni 0.33 Co 0.33 Mn 0.33 O 2 was used as a sample. A positive electrode active material having an aluminum oxide film formed on the surface is obtained. The obtained positive electrode active material is heat-treated at 400 ° C. to obtain a target positive electrode active material.

[正極活物質の評価]
以下の要領で正極活物質の評価を行う。
(元素分析)
ICP−AESによって正極活物質の元素分析を行い、正極活物質に含まれる元素を求める。
[Evaluation of positive electrode active material]
The positive electrode active material is evaluated as follows.
(Elemental analysis)
Elemental analysis of the positive electrode active material is performed by ICP-AES, and elements contained in the positive electrode active material are obtained.

[二次電池の作製]
以下の要領で評価用二次電池を作製する。
[Production of secondary battery]
A secondary battery for evaluation is produced in the following manner.

<非水電解液二次電池>
以下の手順で非水電解液二次電池を作製する。
<Nonaqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery is produced by the following procedure.

(正極の作製)
正極活物質の粉末85重量部、アセチレンブラック5重量部及びPVDF(ポリフッ化ビニリデン)5重量部をNMP(ノルマルメチル−2−ピロリドン)に分散、溶解させて正極スラリーを調整する。得られる正極スラリーをアルミニウム箔からなる集電体に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得る。
(Preparation of positive electrode)
A positive electrode slurry is prepared by dispersing and dissolving 85 parts by weight of a positive electrode active material powder, 5 parts by weight of acetylene black, and 5 parts by weight of PVDF (polyvinylidene fluoride) in NMP (normal methyl-2-pyrrolidone). The obtained positive electrode slurry is applied to a current collector made of aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a positive electrode.

(負極の作製)
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部及びSBR(スチレンブタジエンゴム)1.0重量部を純水に分散、溶解させて負極スラリーを調整する。得られる負極スラリーを銅箔からなる集電体に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得る。
(Preparation of negative electrode)
A negative electrode slurry is prepared by dispersing and dissolving 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethylcellulose) and 1.0 part by weight of SBR (styrene butadiene rubber) in pure water. The obtained negative electrode slurry is applied to a current collector made of copper foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a negative electrode.

(非水電解液の作製)
EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を体積比3:7で混合し、溶媒とする。得られる混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が1mol/Lとなるよう溶解させ、非水電解液を得る。
(Preparation of non-aqueous electrolyte)
EC (ethylene carbonate) and DEC (diethyl carbonate) are mixed at a volume ratio of 3: 7 to obtain a solvent. Lithium hexafluorophosphate (LiPF 6 ) is dissolved in the obtained mixed solvent so as to have a concentration of 1 mol / L to obtain a nonaqueous electrolytic solution.

(電池の組み立て)
正極及び負極の集電体にそれぞれリード電極を取り付け、120℃で真空乾燥を行う。乾燥後、多孔質ポリエチレンからなるセパレータを正極と負極の間に配し、袋状のラミネートパックにそれらを収納する。収納後60℃で真空乾燥し、各部材に吸着した水分を除去する。乾燥後、ラミネートパックに非水電解液を注入し、ラミネートパックを封止してラミネートタイプの非水電解液二次電池を得る。
(Battery assembly)
A lead electrode is attached to each of the positive and negative electrode current collectors, and vacuum drying is performed at 120 ° C. After drying, a separator made of porous polyethylene is arranged between the positive electrode and the negative electrode, and they are stored in a bag-like laminate pack. After storage, it is vacuum-dried at 60 ° C. to remove moisture adsorbed on each member. After drying, a non-aqueous electrolyte is injected into the laminate pack, and the laminate pack is sealed to obtain a laminate-type non-aqueous electrolyte secondary battery.

<固体電解質二次電池>
以下の手順で固体電解質二次電池を作製する。
<Solid electrolyte secondary battery>
A solid electrolyte secondary battery is produced by the following procedure.

(固体電解質の作製)
硫化リチウム(LiS)及び五硫化りん(P)を、アルゴン雰囲気下でLiS:P=70:30のモル比で秤量する。秤量後これらをメノウ乳鉢で混合し、さらに粉砕混合して硫化物ガラスを得る。得られる硫化物ガラスを固体電解質とする。固体電解質の一部は正極活物質と混合し、後述の正極合材とする。
(Production of solid electrolyte)
Lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) are weighed in a molar ratio of Li 2 S: P 2 S 5 = 70: 30 under an argon atmosphere. After weighing, these are mixed in an agate mortar, and further pulverized and mixed to obtain sulfide glass. Let the obtained sulfide glass be a solid electrolyte. A part of the solid electrolyte is mixed with a positive electrode active material to form a positive electrode mixture described later.

(正極合材の作製)
正極活物質60重量部、前記固体電解質36重量部及びVGCF(気相法炭素繊維)4重量部を混合し、正極合材を得る。
(Preparation of positive electrode mixture)
60 parts by weight of the positive electrode active material, 36 parts by weight of the solid electrolyte, and 4 parts by weight of VGCF (vapor phase grown carbon fiber) are mixed to obtain a positive electrode mixture.

(負極の作製)
厚さ0.05mmのインジウム箔を直径11.00mmの円形にくり抜き、負極とする。
(Preparation of negative electrode)
An indium foil having a thickness of 0.05 mm is cut into a circle having a diameter of 11.00 mm to form a negative electrode.

(電池の組み立て)
内径11.00mmの円筒状外型に外径11.00mmの円柱状下型を、外型下部から挿入する。下型の上端が外型の中間に位置するよう下型を固定する。この状態で外型の上部から下型の上端に固体電解質80mgを投入する。投入後、外径11.00mmの円柱状上型を外型の上部から挿入する。挿入後、上型の上方から90MPaの圧力を固体電解質にかけて成形し、固体電解質層とする。成形後上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入する。投入後、再度上型を挿入し、今度は360MPaの圧力を正極合材にかけて成形し、正極層とする。成形後上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極を投入する。投入後、再度下型を挿入し、下型の下方から150MPaの圧力を負極にかけて成形し、負極層とする。成形後下型を固定し、上型に正極端子、下型に負極端子を取り付け、固体電解質二次電池を得る。
(Battery assembly)
A cylindrical lower mold having an outer diameter of 11.00 mm is inserted into a cylindrical outer mold having an inner diameter of 11.00 mm from the lower part of the outer mold. The lower mold is fixed so that the upper end of the lower mold is positioned in the middle of the outer mold. In this state, 80 mg of solid electrolyte is charged from the upper part of the outer mold to the upper end of the lower mold. After charging, a cylindrical upper mold having an outer diameter of 11.00 mm is inserted from the upper part of the outer mold. After insertion, a pressure of 90 MPa is applied to the solid electrolyte from above the upper mold to form a solid electrolyte layer. After molding, the upper mold is pulled out from the upper part of the outer mold, and 20 mg of the positive electrode mixture is put into the upper part of the solid electrolyte layer from the upper part of the outer mold. After the addition, the upper mold is inserted again, and this time, a pressure of 360 MPa is applied to the positive electrode mixture to form a positive electrode layer. After the molding, the upper die is fixed, the lower die is released and pulled out from the lower part of the outer mold, and the negative electrode is put into the lower part of the solid electrolyte layer from the lower part of the lower mold. After the charging, the lower mold is inserted again, and the negative electrode is formed by applying a pressure of 150 MPa from below the lower mold to form a negative electrode layer. After molding, the lower die is fixed, the positive electrode terminal is attached to the upper die, and the negative electrode terminal is attached to the lower die to obtain a solid electrolyte secondary battery.

[電池特性の評価]
上記の評価用二次電池を用い以下の要領で電池特性の評価を行う。
[Evaluation of battery characteristics]
The battery characteristics are evaluated in the following manner using the evaluation secondary battery.

<非水電解液二次電池>
実施例1及び比較例1、2について、以下DC−IR、サイクル特性、抵抗変化率を測定する。
<Nonaqueous electrolyte secondary battery>
For Example 1 and Comparative Examples 1 and 2, the DC-IR, cycle characteristics, and resistance change rate are measured below.

(DC−IR)
評価用二次電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませる。エージング後、数C程度での定電流放電と、微弱電流での定電流定電圧充電とを繰り返す。10回目の充電における充電容量を電池の全充電容量とする。10回目の放電後、全充電容量の4割まで充電する。充電後、温度設定された恒温槽に電池を入れ、6時間静置する。静置後、電流0.02A、0.04A、0.06Aでそれぞれ10秒ずつ放電し、その時の電圧を測定する。放電電流と測定された電圧をプロットし、その近似直線の傾きの絶対値から電池内の直流抵抗(DC−IR)を求める。DC−IRが低いことは、出力特性が良いことを意味する。なお、温度tにおけるDC−IRをR(t)とする。
(DC-IR)
A weak current is passed through the evaluation secondary battery to perform aging, and the electrolyte is sufficiently blended with the positive electrode and the negative electrode. After aging, constant current discharge at several C and constant current / constant voltage charge at weak current are repeated. The charge capacity in the 10th charge is defined as the total charge capacity of the battery. After the 10th discharge, charge up to 40% of the total charge capacity. After charging, the battery is placed in a temperature-controlled thermostat and left for 6 hours. After standing, the battery is discharged at a current of 0.02 A, 0.04 A, and 0.06 A for 10 seconds each, and the voltage at that time is measured. The discharge current and the measured voltage are plotted, and the direct current resistance (DC-IR) in the battery is obtained from the absolute value of the slope of the approximate line. A low DC-IR means that the output characteristics are good. Note that DC-IR at a temperature t is R (t).

(サイクル特性)
評価用二次電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませる。エージング後、60℃に設定された恒温槽に電池を入れ、6時間静置する。静置後、充電電圧4.2V、充電負荷1.0C(1C≡1時間で放電が終了する電流密度)での定電流定電圧充電と、放電電圧2.75V、放電負荷1.0Cでの定電流放電とを1サイクルとして充放電を繰り返す。200サイクル目の放電容量Q(200)の1サイクル目の放電容量Q(1)に対する比(Q(200)/Q(1))を容量維持率Psqとする。Psqが高いことはサイクル特性が良いことを意味する。
(Cycle characteristics)
A weak current is passed through the evaluation secondary battery to perform aging, and the electrolyte is sufficiently blended with the positive electrode and the negative electrode. After aging, the battery is placed in a thermostat set at 60 ° C. and left for 6 hours. After standing, constant voltage and constant voltage charging at a charging voltage of 4.2 V and a charging load of 1.0 C (current density at which discharging ends in 1 C≡1 hour), a discharging voltage of 2.75 V and a discharging load of 1.0 C Charge / discharge is repeated with one cycle of constant current discharge. 200 th cycle discharge capacity Q d (200) ratio first cycle discharge capacity Q d (1) of the (Q d (200) / Q d (1)) and the capacity retention rate P sq. High P sq means that the cycle characteristics are good.

(抵抗変化率)
サイクル特性評価前後の電池について、交流電源に接続し、交流インピーダンス法による抵抗測定を行う。交流電源の周波数は10kHzから0.1Hzまで対数的に変化させる。等価回路は図2のように仮定し、ナイキストプロット(Cole−Coleプロット)の最も左の半円の直径及び左から二番目の半円の直径の和を電極間の抵抗(正極/電解質界面のインピーダンス22における抵抗成分と、負極/電解質界面のインピーダンス23における抵抗成分との和)とする。半円の一端あるいは両端がインピーダンスの実軸に接していない場合は実軸に外挿する。また、二つの半円がはっきり分離できない場合は直径の重複(と見做される)部分を二重に計算しない。サイクル特性評価後の抵抗Imp(200)の評価前の抵抗Imp(1)に対する比(Imp(200)/Imp(1))を抵抗変化率Psrとする。Psrが低いこともまたサイクル特性が良いことを意味する。
(Resistance change rate)
The battery before and after the cycle characteristic evaluation is connected to an AC power source, and resistance measurement is performed by the AC impedance method. The frequency of the AC power supply is changed logarithmically from 10 kHz to 0.1 Hz. The equivalent circuit is assumed as shown in FIG. 2, and the sum of the diameter of the leftmost semicircle and the diameter of the second semicircle from the left in the Nyquist plot (Cole-Cole plot) is the resistance between the electrodes (at the positive electrode / electrolyte interface). The sum of the resistance component in the impedance 22 and the resistance component in the impedance 23 at the negative electrode / electrolyte interface). If one or both ends of the semicircle is not in contact with the real axis of impedance, extrapolate to the real axis. Also, if the two semicircles cannot be clearly separated, the overlapping part of the diameter (assumed to be) is not calculated twice. The ratio (Imp (200) / Imp (1)) of the resistance Imp (200) after the cycle characteristic evaluation to the resistance Imp (1) before the evaluation is defined as a resistance change rate Psr . Low P sr also means good cycle characteristics.

<固体電解質二次電池>
実施例2及び比較例3、4について、以下の特性を測定する。
<Solid electrolyte secondary battery>
The following characteristics are measured for Example 2 and Comparative Examples 3 and 4.

(初期充放電特性)
電流密度0.185μA/cm、充電電圧4.0Vで定電流定電圧充電を行う。充電後、電流密度0.185μA/cm、放電電圧1.9Vで定電流放電を行い、放電容量Qを測定する。
(Initial charge / discharge characteristics)
Constant current and constant voltage charging is performed at a current density of 0.185 μA / cm 2 and a charging voltage of 4.0 V. After charging, constant current discharge is performed at a current density of 0.185 μA / cm 2 and a discharge voltage of 1.9 V, and the discharge capacity Q d is measured.

実施例1及び比較例1、2について、正極活物質の製造条件及び特性を表1に、非水電解液二次電池の電池特性を表2、図3及び図4にそれぞれ示す(図3の実施例1及び比較例1、2並びに図4の実施例1についてはインピーダンス22及び23に由来する半円が重複している)。   With respect to Example 1 and Comparative Examples 1 and 2, the production conditions and characteristics of the positive electrode active material are shown in Table 1, and the battery characteristics of the nonaqueous electrolyte secondary battery are shown in Table 2, FIG. 3 and FIG. In Example 1 and Comparative Examples 1 and 2 and Example 1 in FIG. 4, semicircles derived from impedances 22 and 23 overlap).

Figure 2014170656
Figure 2014170656

Figure 2014170656
Figure 2014170656

表1、2及び図3、4より、以下のことが分かる。   From Tables 1 and 2 and FIGS.

比較例1と実施例1及び比較例2とを比較すると、酸化アルミニウムの被膜形成により、容量維持率の点でも抵抗変化率の点でもサイクル特性が改善する。しかし、実施例1と比較例2とを比較すると、抵抗変化率の点ではALDによって被膜形成した方が格段に改善する。DC−IRを比較すると、被膜形成によって初期の出力特性がやや低下する傾向にあるが、抵抗変化率を考慮するとALDによって被覆した実施例1は、被覆しない、あるいはゾル添加法によって被覆した比較例1、2に対して出力特性が改善されているといえる。   Comparing Comparative Example 1 with Example 1 and Comparative Example 2, the cycle characteristics are improved in terms of capacity retention rate and resistance change rate by forming the aluminum oxide film. However, when Example 1 and Comparative Example 2 are compared, the film formation by ALD is markedly improved in terms of the resistance change rate. When DC-IR is compared, the initial output characteristics tend to be slightly lowered due to the formation of the film, but considering the rate of change in resistance, Example 1 coated with ALD is not coated or is a comparative example coated with a sol addition method. It can be said that the output characteristics are improved with respect to 1 and 2.

実施例2及び比較例3、4について、正極活物質の製造条件及び特性を表3に、固体電解質二次電池の電池特性を表4にそれぞれ示す。   Regarding Example 2 and Comparative Examples 3 and 4, the production conditions and characteristics of the positive electrode active material are shown in Table 3, and the battery characteristics of the solid electrolyte secondary battery are shown in Table 4, respectively.

Figure 2014170656
Figure 2014170656

Figure 2014170656
Figure 2014170656

表3及び表4より、以下のことが分かる。被膜を形成することで放電容量が増加する。これは正極活物質と固体電解質との界面抵抗が下がり、電池内部での電圧降下が抑えられるためと考えられる。一方、実施例2と比較例3、4とを比較すると、被覆量が同じならALDで被膜を形成した方がゾル添加法で被膜を形成するよりも放電容量が増加することが分かる。これは、ゾル添加法によって形成された被膜は不均一であり、その一部は単に正極活物質の電気化学的活性を下げ、最終的に放電容量の増加を一部相殺したためと考えられる。   Table 3 and Table 4 show the following. The discharge capacity is increased by forming the film. This is presumably because the interface resistance between the positive electrode active material and the solid electrolyte is lowered, and the voltage drop inside the battery is suppressed. On the other hand, when Example 2 and Comparative Examples 3 and 4 are compared, it can be seen that if the coating amount is the same, the discharge capacity increases when the film is formed by ALD than when the film is formed by the sol addition method. This is presumably because the film formed by the sol addition method is non-uniform, and part of it simply decreased the electrochemical activity of the positive electrode active material and finally offset the increase in discharge capacity.

本発明の製造方法によってリチウム遷移金属複合酸化物粒子の表面に均一で、且つ充放電特性が良好な被膜を効率よく形成することができる。こうして得られる正極活物質を正極に用いた非水電解液二次電池は出力特性、サイクル特性及び充放電容量のいずれも良好であるので、電気工具、電気自動車等の動力源として好適に利用可能である。また、本発明の製造方法によって得られる正極活物質を正極に用いた固体電解質二次電池は出力特性と放電容量が両立し、且つ非水電解液を用いないので、発電所の予備電源等、熱的、機械的に過酷な環境で大出力が求められる電気機器の動力源として好適に利用可能である。   By the production method of the present invention, a uniform film having good charge / discharge characteristics can be efficiently formed on the surface of the lithium transition metal composite oxide particles. The non-aqueous electrolyte secondary battery using the positive electrode active material thus obtained for the positive electrode has good output characteristics, cycle characteristics, and charge / discharge capacity, so it can be suitably used as a power source for electric tools, electric vehicles, etc. It is. Moreover, since the solid electrolyte secondary battery using the positive electrode active material obtained by the production method of the present invention for the positive electrode has both output characteristics and discharge capacity and does not use a non-aqueous electrolyte, It can be suitably used as a power source for electrical equipment that requires high output in a severely and thermally severe environment.

2 等価回路
21 回路自体の抵抗
22 正極/電解質界面のインピーダンス
23 負極/電解質界面のインピーダンス
24 電解質のインピーダンス
2 Equivalent circuit 21 Resistance of circuit itself 22 Impedance of positive electrode / electrolyte interface 23 Impedance of negative electrode / electrolyte interface 24 Impedance of electrolyte

Claims (7)

リチウム遷移金属複合酸化物粒子表面に原子層堆積法によって被膜を形成する非水系二次電池用正極活物質の製造方法であって、
前記原子堆積法の各サイクルにおいて導入される前駆体又は共反応体の少なくとも一方が、前記リチウム遷移金属複合酸化物粒子表面全てを覆う被膜を形成するのに必要な量よりも少ない製造方法。
A method for producing a positive electrode active material for a non-aqueous secondary battery, wherein a film is formed on the surface of a lithium transition metal composite oxide particle by an atomic layer deposition method,
A production method in which at least one of a precursor or a co-reactant introduced in each cycle of the atomic deposition method is less than an amount necessary to form a film covering the entire surface of the lithium transition metal composite oxide particles.
前記各サイクルにおいて供給される前駆体又は共反応体の少なくとも一方が、前記リチウム遷移金属複合酸化物粒子表面全てを覆う被膜を形成するのに必要な量の20%以上80%以下である、請求項1に記載の製造方法。   At least one of the precursor or the co-reactant supplied in each cycle is 20% or more and 80% or less of the amount necessary to form a coating covering the entire surface of the lithium transition metal composite oxide particles. Item 2. The manufacturing method according to Item 1. 前記前駆体又は共反応体の少なくとも一方の飽和蒸気圧が、反応容器内の安定圧力の10倍以上100倍以下である、請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the saturated vapor pressure of at least one of the precursor or the co-reactant is 10 times or more and 100 times or less the stable pressure in the reaction vessel. 前記前駆体又は共反応体の飽和蒸気圧をPとした場合に、下記の式(1)を満たす、請求項1乃至3のいずれか一項に記載の製造方法。
2.5≦P/P≦50 (1)
=(aρmSr/M)(RT/V)
R:気体定数
a:被膜を構成する物質1モルを形成するのに必要な
前駆体又は共反応体の物質量
ρ:被膜を構成する物質の密度
M:被膜を構成する物質のモル質量
m:反応容器内のリチウム遷移金属複合酸化物粒子の質量
:リチウム遷移金属複合酸化物粒子の比表面積
r:リチウム遷移金属複合酸化物粒子表面全体を被膜を
構成する物質の単分子膜で覆った時の被膜の膜厚
T:反応容器内の温度
V:反応容器内の容積
The manufacturing method as described in any one of Claims 1 thru | or 3 satisfy | filling following formula (1) when the saturated vapor pressure of the said precursor or a co-reactant is set to P.
2.5 ≦ P / P 0 ≦ 50 (1)
P 0 = (aρmS p r / M) (RT / V)
R: Gas constant
a: Necessary for forming 1 mole of the substance constituting the coating
Amount of precursor or co-reactant material
ρ: Density of the material constituting the coating
M: molar mass of the substance constituting the coating
m: mass of lithium transition metal composite oxide particles in the reaction vessel
S p : Specific surface area of lithium transition metal composite oxide particles
r: Lithium transition metal composite oxide particles coated on the entire surface
Film thickness when covered with a monolayer of constituent substances
T: temperature in the reaction vessel
V: Volume in the reaction vessel
請求項1乃至4のいずれか一項に記載の製造方法によって得られる非水系二次電池用正極活物質。   The positive electrode active material for non-aqueous secondary batteries obtained by the manufacturing method as described in any one of Claims 1 thru | or 4. 正極、負極、セパレータ及び非水電解液を含み、前記正極には、請求項5に記載の正極活物質が含まれる、非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes the positive electrode active material according to claim 5. 正極、負極及び固体電解質を含み、前記正極には請求項6に記載の正極活物質が含まれる、固体電解質二次電池。   A solid electrolyte secondary battery including a positive electrode, a negative electrode, and a solid electrolyte, wherein the positive electrode includes the positive electrode active material according to claim 6.
JP2013041365A 2013-03-04 2013-03-04 Method for producing positive electrode active material for nonaqueous secondary battery Pending JP2014170656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041365A JP2014170656A (en) 2013-03-04 2013-03-04 Method for producing positive electrode active material for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041365A JP2014170656A (en) 2013-03-04 2013-03-04 Method for producing positive electrode active material for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2014170656A true JP2014170656A (en) 2014-09-18

Family

ID=51692903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041365A Pending JP2014170656A (en) 2013-03-04 2013-03-04 Method for producing positive electrode active material for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2014170656A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015011109A1 (en) 2014-08-25 2016-02-25 Mitutoyo Corporation METHOD FOR PRODUCING A THREE-DIMENSIONAL MODEL, SYSTEM 5 FOR GENERATING A THREE-DIMENSIONAL MODEL AND A PROGRAM FOR GENERATING A THREE-DIMENSIONAL MODEL
CN107851840A (en) * 2015-06-01 2018-03-27 气动覆层科技有责任限公司 The manufacture method of battery for the nanometer engineering coating of active material of positive electrode, active material of cathode and solid electrolyte and comprising nanometer engineering coating
JP2018516438A (en) * 2015-06-01 2018-06-21 ニューマティコート テクノロジーズ リミティド ライアビリティ カンパニー Nano-processed coating for anode active material, cathode active material and solid electrolyte and method for producing battery comprising nano-processed coating
JP2019506703A (en) * 2016-01-15 2019-03-07 トダアメリカ・インク Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
US10516159B2 (en) 2014-05-28 2019-12-24 Nichia Corporation Positive electrode active material for nonaqueous secondary battery
KR20200044056A (en) * 2017-08-24 2020-04-28 포지 나노, 인크. Manufacturing processes for the synthesis, functionalization, surface treatment and / or encapsulation of powders, and applications thereof
EP3710616A4 (en) * 2017-11-13 2021-08-25 The Regents of the University of Colorado, a body corporate Thin film coatings on mixed metal oxides
CN114335450A (en) * 2020-10-12 2022-04-12 本田技研工业株式会社 Positive electrode active material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015101A (en) * 1999-06-28 2001-01-19 Matsushita Battery Industrial Co Ltd Nonqueous electrolyte secondary battery, its negative electrode, and negative electrode material
JP2004103566A (en) * 2002-07-16 2004-04-02 Nichia Chem Ind Ltd Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004335335A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
JP2009272355A (en) * 2008-05-01 2009-11-19 Hitachi Kokusai Electric Inc Substrate processing system
US20120077082A1 (en) * 2010-06-14 2012-03-29 Lee Se-Hee Lithium Battery Electrodes with Ultra-thin Alumina Coatings
JP2013505546A (en) * 2009-09-22 2013-02-14 ジー4 シナジェティクス, インコーポレイテッド High performance electrode
JP2014116111A (en) * 2012-12-06 2014-06-26 Sony Corp Positive electrode active material and method for producing the same, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device and power system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015101A (en) * 1999-06-28 2001-01-19 Matsushita Battery Industrial Co Ltd Nonqueous electrolyte secondary battery, its negative electrode, and negative electrode material
JP2004103566A (en) * 2002-07-16 2004-04-02 Nichia Chem Ind Ltd Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004335335A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
JP2009272355A (en) * 2008-05-01 2009-11-19 Hitachi Kokusai Electric Inc Substrate processing system
JP2013505546A (en) * 2009-09-22 2013-02-14 ジー4 シナジェティクス, インコーポレイテッド High performance electrode
US20120077082A1 (en) * 2010-06-14 2012-03-29 Lee Se-Hee Lithium Battery Electrodes with Ultra-thin Alumina Coatings
JP2014116111A (en) * 2012-12-06 2014-06-26 Sony Corp Positive electrode active material and method for producing the same, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device and power system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516159B2 (en) 2014-05-28 2019-12-24 Nichia Corporation Positive electrode active material for nonaqueous secondary battery
DE102015011109A1 (en) 2014-08-25 2016-02-25 Mitutoyo Corporation METHOD FOR PRODUCING A THREE-DIMENSIONAL MODEL, SYSTEM 5 FOR GENERATING A THREE-DIMENSIONAL MODEL AND A PROGRAM FOR GENERATING A THREE-DIMENSIONAL MODEL
CN107851840A (en) * 2015-06-01 2018-03-27 气动覆层科技有责任限公司 The manufacture method of battery for the nanometer engineering coating of active material of positive electrode, active material of cathode and solid electrolyte and comprising nanometer engineering coating
JP2018516438A (en) * 2015-06-01 2018-06-21 ニューマティコート テクノロジーズ リミティド ライアビリティ カンパニー Nano-processed coating for anode active material, cathode active material and solid electrolyte and method for producing battery comprising nano-processed coating
JP2022003648A (en) * 2016-01-15 2022-01-11 トダアメリカ・インク Lithium nickelate positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2019506703A (en) * 2016-01-15 2019-03-07 トダアメリカ・インク Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7427156B2 (en) 2016-01-15 2024-02-05 戸田工業株式会社 Lithium nickelate-based positive electrode active material particles and method for producing the same, and non-aqueous electrolyte secondary battery
US11552292B2 (en) 2016-01-15 2023-01-10 Toda Kogyo Corp. Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2020532658A (en) * 2017-08-24 2020-11-12 フォージ ナノ,インコーポレイティド Manufacturing methods and uses for synthesizing, functionalizing, surface treating and / or encapsulating powders
KR102534238B1 (en) * 2017-08-24 2023-05-19 포지 나노, 인크. Manufacturing processes for synthesis, functionalization, surface treatment and/or encapsulation of powders, and applications thereof
KR20200044056A (en) * 2017-08-24 2020-04-28 포지 나노, 인크. Manufacturing processes for the synthesis, functionalization, surface treatment and / or encapsulation of powders, and applications thereof
EP3710616A4 (en) * 2017-11-13 2021-08-25 The Regents of the University of Colorado, a body corporate Thin film coatings on mixed metal oxides
CN114335450A (en) * 2020-10-12 2022-04-12 本田技研工业株式会社 Positive electrode active material

Similar Documents

Publication Publication Date Title
US9577286B2 (en) Method of producing solid state lithium battery module
KR101987608B1 (en) A pre-solid lithium-sulfur battery and its manufacturing method
JP2014170656A (en) Method for producing positive electrode active material for nonaqueous secondary battery
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
EP2717359B1 (en) Lithium ion secondary cell
JP5099168B2 (en) Lithium ion secondary battery
CN109155413B (en) Positive electrode active material, method for producing same, paste, and secondary battery
JP5172564B2 (en) Nonaqueous electrolyte secondary battery
JP2010262916A (en) Electrode for lithium secondary battery and manufacturing method thereof, and lithium secondary battery including the same electrode
Rao et al. A prelithiation separator for compensating the initial capacity loss of lithium-ion batteries
JP2011146158A (en) Lithium secondary battery
US9209452B2 (en) Non-aqueous electrolyte secondary battery
JP5820219B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
US20200403224A1 (en) Lithium molybdate anode material
JP7245465B2 (en) Electrode slurry for non-aqueous electrolyte secondary batteries
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
CN103682333B (en) Positive electrode active materials, its manufacture method and the nonaqueous electrolyte rechargeable battery containing it
Teranishi et al. Silicon anode for rechargeable aqueous lithium–air batteries
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010251194A (en) Positive electrode for battery and method of manufacturing the same
WO2017168330A1 (en) Lithium-ion cell
CN109962232B (en) Positive electrode active material, preparation method, positive electrode and battery
CN110444734A (en) Silicon sulphur battery prelithiation method
KR102573137B1 (en) Cathode active material for lithium-sulfur secondary battery, method for manufacturing the same, cathode for lithium-sulfur secondary battery and lithium-sulfur secondary battery having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328