JP2010238387A - Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material - Google Patents

Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material Download PDF

Info

Publication number
JP2010238387A
JP2010238387A JP2009082283A JP2009082283A JP2010238387A JP 2010238387 A JP2010238387 A JP 2010238387A JP 2009082283 A JP2009082283 A JP 2009082283A JP 2009082283 A JP2009082283 A JP 2009082283A JP 2010238387 A JP2010238387 A JP 2010238387A
Authority
JP
Japan
Prior art keywords
active material
electrode
electrolyte solution
lithium
lithium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009082283A
Other languages
Japanese (ja)
Other versions
JP5487676B2 (en
Inventor
Keitaro Otsuki
佳太郎 大槻
Atsushi Sano
篤史 佐野
Takeru Suzuki
長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009082283A priority Critical patent/JP5487676B2/en
Publication of JP2010238387A publication Critical patent/JP2010238387A/en
Application granted granted Critical
Publication of JP5487676B2 publication Critical patent/JP5487676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material having a high discharge capacity and mainly containing a lithium compound oxide including nickel, to provide an electrode including the active material, to provide an electrochemical device including an electrolyte solution including the electrode and lithium salt, and to provide a method of manufacturing the active material. <P>SOLUTION: The active material mainly contains a compound oxide expressed with a following formula (1) and the moisture content thereof is 200-350 mass ppm. The formula (1): LiNi<SB>x</SB>M<SB>1-x</SB>O<SB>2</SB>. In the formula (1), x satisfies 0.5≤x≤1, and M is one or more optional metal elements. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活物質、これを含む電極、当該電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス、並びに活物質の製造方法に関する。   The present invention relates to an active material, an electrode including the same, an electrochemical device including an electrolyte solution including the electrode and a lithium salt, and a method for producing the active material.

リチウムイオン二次電池の正極材料であるLiCoOの代替材料として、LiNiO、LiNiOのNiを他の金属元素で置換した複合酸化物等が注目されている。しかし、LiNiO、LiNiOのNiを他の金属元素で置換した複合酸化物といったLiNiO系材料は、吸湿性が高いことが知られている。 As a substitute material for LiCoO 2 which is a positive electrode material of a lithium ion secondary battery, LiNiO 2 , a composite oxide obtained by substituting Ni of LiNiO 2 with another metal element, and the like have attracted attention. However, LiNiO 2 based materials such composite oxides obtained by substituting Ni of LiNiO 2, LiNiO 2 with other metal elements are known to be highly hygroscopic.

特許文献1には、LiNiO、LiNiOのNiを他の金属元素で置換した複合酸化物等のLiNiO系材料の製造方法が開示され、特に、LiNiO系材料の水分量を800ppm以下とすることにより使用時のガス発生を抑制できることが記載されている。この理由として、特許文献1によれば、LiNiO系材料の水分量が多いと、LiNiO系材料の表面に吸着する水が多くなり、この水の少なくとも一部が充電時に電気分解されてガスを発生させることが開示されている。 Patent Document 1, a manufacturing method of LiNiO 2 based materials such as LiNiO 2, composite oxides of Ni LiNiO 2 was replaced by another metal element is disclosed, and in particular, below 800ppm the water content of LiNiO 2 materials It is described that gas generation during use can be suppressed by doing so. As a reason for this, according to Patent Document 1, when the amount of water in the LiNiO 2 -based material is large, the amount of water adsorbed on the surface of the LiNiO 2 -based material increases, and at least a part of this water is electrolyzed during charging and gas Is disclosed.

特開2003−17054号公報JP 2003-17054 A

しかしながら、LiNiO系材料の放電容量については、未だ改善の余地があった。 However, there is still room for improvement in the discharge capacity of the LiNiO 2 -based material.

そこで本発明は、放電容量の高い、ニッケルを含むリチウム複合酸化物を主成分とする活物質、これを含む電極、当該電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス、並びに活物質の製造方法を提供することを目的とする。   Therefore, the present invention provides an active material having a high discharge capacity, the main component of which is a lithium composite oxide containing nickel, an electrode containing the same, an electrochemical device including the electrode and an electrolyte solution containing a lithium salt, and production of the active material It aims to provide a method.

本発明に係る活物質は、下記式(1)で表される複合酸化物を主成分とし、含水量が200〜350質量ppmである。
LiNi1−x…(1)
式(1)中、xは0.5≦x<1を満たし、Mは、1種以上の任意の金属元素である。
The active material according to the present invention is mainly composed of a composite oxide represented by the following formula (1), and has a water content of 200 to 350 mass ppm.
LiNi x M 1-x O 2 (1)
In formula (1), x satisfies 0.5 ≦ x <1, and M is one or more arbitrary metal elements.

また、本発明に係る電極は、集電体と、上記活物質を含み集電体上に設けられた活物質層と、を備える。   The electrode according to the present invention includes a current collector and an active material layer including the active material and provided on the current collector.

また、本発明に係る電気化学デバイスは、上記電極及びリチウム塩を含む電解質溶液を備える。   Moreover, the electrochemical device according to the present invention includes an electrolyte solution containing the electrode and a lithium salt.

本発明者らは、式(1)で表される複合酸化物を主成分とする活物質に含まれる水分量(含水量)が200〜350質量ppmの範囲内の値であると、この活物質を含む電極及びリチウム塩を含む電解質溶液を備える電気化学デバイスの放電容量が著しく向上することを見出した。理由は必ずしも明らかではないが、上記式(1)で表わされる複合酸化物を主成分とする活物質は、上記特定量の水分子の大部分を、結晶格子内に保持すると考えられる。充放電時における活物質へのLiイオンのインターカレート/デインターカレートは、活物質の結晶格子に対して膨張収縮をもたらすが、結晶格子中に水分子が存在することにより、結晶格子の膨張収縮にともなう活物質の変形が抑制され、Liイオンのインターカレート/デインターカレートが行われ易くなるものと考えられる。そして、水分量が多すぎる場合には、活物質の表面に吸着する水分子の量が増加し、水分と有機電解液との副反応(例えば、有機電解液の分解反応)等が増加することとなり、水分量が少なすぎる場合には、結晶格子内に保持される水分子が減少することとなり、いずれも放電容量を十分に向上させ難くなると考えられる。   When the water content (water content) contained in the active material containing the composite oxide represented by the formula (1) as a main component is a value within the range of 200 to 350 ppm by mass, It has been found that the discharge capacity of an electrochemical device comprising an electrode containing a substance and an electrolyte solution containing a lithium salt is significantly improved. The reason is not necessarily clear, but the active material mainly composed of the composite oxide represented by the above formula (1) is considered to hold most of the specific amount of water molecules in the crystal lattice. Intercalation / deintercalation of Li ions into the active material during charging / discharging causes expansion and contraction to the crystal lattice of the active material, but the presence of water molecules in the crystal lattice It is considered that deformation of the active material accompanying expansion and contraction is suppressed, and Li ion intercalation / deintercalation is easily performed. If the amount of water is too large, the amount of water molecules adsorbed on the surface of the active material increases, and side reactions between the water and the organic electrolyte (for example, decomposition reaction of the organic electrolyte) increase. Thus, if the amount of water is too small, the number of water molecules held in the crystal lattice will decrease, and it will be difficult to sufficiently improve the discharge capacity.

ここで、本発明に係る活物質は、含水量が230〜300質量ppmであることが好ましい。   Here, the active material according to the present invention preferably has a water content of 230 to 300 ppm by mass.

また、本発明に係るリチウムイオン二次電池の製造方法は、下記式(1)で表される複合酸化物を主成分とする活物質の含水量を200〜450ppmとする水分調節工程を備える。
LiNi1−x…(1)
式(1)中、xは0.5≦x<1を満たし、Mは、任意の金属元素である。
Moreover, the manufacturing method of the lithium ion secondary battery which concerns on this invention is equipped with the water | moisture-content adjustment process which makes the water content of the active material which has a complex oxide represented by following formula (1) a main component 200-450 ppm.
LiNi x M 1-x O 2 (1)
In formula (1), x satisfies 0.5 ≦ x <1, and M is an arbitrary metal element.

これにより、上述した本発明に係る活物質を得ることができる。   Thereby, the active material which concerns on this invention mentioned above can be obtained.

発明によれば、放電容量の高い、ニッケルを含むリチウム複合酸化物を主成分とする活物質、これを含む電極、当該電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス、並びに活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to invention, the active material which has a high discharge capacity which has lithium complex oxide containing nickel as a main component, the electrode containing this, the electrochemical device provided with the electrolyte solution containing the said electrode and lithium salt, and manufacture of an active material A method can be provided.

図1は、本実施形態に係るリチウムイオン二次電池の模式断面図である。FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to this embodiment. 図2は、実施例1〜10及び比較例1〜4において、横軸を活物質の水分含有量(ppm)、縦軸を評価セルの放電容量(mAh/g)としてプロットしたグラフである。FIG. 2 is a graph plotting the horizontal axis as the water content (ppm) of the active material and the vertical axis as the discharge capacity (mAh / g) of the evaluation cell in Examples 1 to 10 and Comparative Examples 1 to 4.

以下、本発明の好適な実施形態について詳細に説明する。なお、参照する図面の寸法比率は、必ずしも実際の寸法比率とは一致するとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. Note that the dimensional ratios of the drawings to be referred to do not necessarily match the actual dimensional ratios.

<活物質>
本実施形態に係る活物質は、含水量が200〜350質量ppmであり、下記式(1)で表される複合酸化物を主成分とする。
LiNi1−x…(1)
式(1)中、xは0.5≦x<1を満たし、Mは、1種以上の任意の金属元素である。
<Active material>
The active material according to the present embodiment has a water content of 200 to 350 mass ppm and contains a composite oxide represented by the following formula (1) as a main component.
LiNi x M 1-x O 2 (1)
In formula (1), x satisfies 0.5 ≦ x <1, and M is one or more arbitrary metal elements.

式(1)中、放電容量をより向上させる観点から、xは0.7〜0.9であることが好ましい。   In the formula (1), x is preferably 0.7 to 0.9 from the viewpoint of further improving the discharge capacity.

式(1)中、Mは、Co,Mn,Alからなる群より選ばれる1種以上の金属元素であることが好ましい。また、Mが1種である場合、Mは、Coであることが好ましく、2種である場合、CoとAlとの組み合わせ(モル比3:1)、CoとMnとの組み合わせ(モル比1:1)、であることが好ましい。   In formula (1), M is preferably one or more metal elements selected from the group consisting of Co, Mn, and Al. Moreover, when M is 1 type, it is preferable that M is Co, and when it is 2 types, the combination of Co and Al (molar ratio 3: 1), the combination of Co and Mn (molar ratio 1). 1).

本発明において、「式(1)で表される複合酸化物を主成分とする」とは、活物質における式(1)で表される複合酸化物の量が、質量基準で90%以上、好ましくは95%以上であることを意味する。   In the present invention, “having the composite oxide represented by formula (1) as a main component” means that the amount of the composite oxide represented by formula (1) in the active material is 90% or more on a mass basis, Preferably it means 95% or more.

活物質に含まれる水分量(含水量)は、200〜350質量ppmであり、放電容量を著しく向上させる観点から、230〜300質量ppmであることが好ましい。含水量は、カールフィッシャー法によって測定することができる。   The water content (water content) contained in the active material is 200 to 350 ppm by mass, and preferably 230 to 300 ppm by mass from the viewpoint of significantly improving the discharge capacity. The water content can be measured by the Karl Fischer method.

活物質の形状は特に制限されないが、電極を作製する際に、活物質と混合する導電材及び、バインダーとの親和性、並びに、上記混合物の集電体への良好な塗布性の観点から、粒子状であることが好ましい。また、電解液との接触面積を向上させる観点から、累積率が10%である一次粒子径(D10)が1〜10μm、累積率が50%である一次粒子径(D50)が11〜20μm、累積率が90%である一次粒子径(D90)が21〜30μmであることが好ましく、D10が5〜8μm、D50が12〜16μm、D90が22〜26μmであることがさらに好ましい。なお、D10、D50及びD90は、公知のレーザー回折/散乱式粒度分布測定装置により、活物質に対して得られた体積基準の粒度分布に基づいて求めることができる。   The shape of the active material is not particularly limited, but when producing an electrode, from the viewpoint of the conductive material mixed with the active material, the affinity with the binder, and the good applicability of the mixture to the current collector, It is preferably in the form of particles. From the viewpoint of improving the contact area with the electrolytic solution, the primary particle diameter (D10) with a cumulative ratio of 10% is 1 to 10 μm, the primary particle diameter (D50) with a cumulative ratio of 50% is 11 to 20 μm, The primary particle diameter (D90) having a cumulative ratio of 90% is preferably 21 to 30 μm, more preferably D10 is 5 to 8 μm, D50 is 12 to 16 μm, and D90 is 22 to 26 μm. D10, D50, and D90 can be obtained based on the volume-based particle size distribution obtained for the active material by a known laser diffraction / scattering particle size distribution measuring apparatus.

<活物質の製造方法>
式(1)で表わされる複合酸化物の原料化合物としては、以下の化合物が挙げられる。
リチウム源、すなわち、リチウム元素を含有する化合物としては、各種のリチウム化合物、例えば、LiCO、LiNO、LiOH、LiOH・HO、アルキルリチウム、酢酸リチウム等の有機リチウム化合物、LiCl、LiI等のリチウムハロゲン化物等の各種のリチウム化合物が挙げられる。
ニッケル源、すなわち、ニッケル元素を含有する化合物としては、Ni(OH)、NiO、NiOOH、NiCO・2Ni(OH)・4HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、シュウ酸ニッケル等の有機ニッケル化合物、及びニッケルハロゲン化物等の各種のニッケル化合物が挙げられる。
M(金属元素)源、すなわち、M(金属元素)を含有する化合物としては、以下の化合物が挙げられる。
Mがマンガンである場合、マンガン源としては、Mn、Mn、MnO、MnOOH、MnCO、Mn(NO、MnSO、有機マンガン化合物、マンガン水酸化物、及びマンガンハロゲン化物等の各種のマンガン化合物が挙げられる。
Mがコバルトである場合、コバルト源としては、Co(OH)、CoO、Co、Co、酢酸コバルト等の有機コバルト化合物、CoCl、Co(NO・6HO、及びCo(SO)・7HO等の各種のコバルト化合物等が挙げられる。
Mがアルミニウムである場合、アルミニウム源としては、AlOOH、Al、Al(OH)、AlCl、Al(NO・9HO、有機アルミニウム化合物及びAl(SO等の各種のアルミニウム化合物が挙げられる。
<Method for producing active material>
Examples of the raw material compound of the composite oxide represented by the formula (1) include the following compounds.
As the lithium source, that is, the compound containing lithium element, various lithium compounds such as Li 2 CO 3 , LiNO 3 , LiOH, LiOH · H 2 O, organolithium compounds such as alkyl lithium and lithium acetate, LiCl, Various lithium compounds such as lithium halides such as LiI can be mentioned.
Examples of the nickel source, that is, the compound containing nickel element include Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, Ni (NO 3 ) 2 .6H 2 O, NiSO 4. , NiSO 4 .6H 2 O, organic nickel compounds such as fatty acid nickel and nickel oxalate, and various nickel compounds such as nickel halides.
Examples of the compound containing M (metal element), that is, a compound containing M (metal element) include the following compounds.
When M is manganese, manganese sources include Mn 3 O 4 , Mn 2 O 3 , MnO 2 , MnOOH, MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , an organic manganese compound, manganese hydroxide, and Various manganese compounds such as manganese halides can be mentioned.
When M is cobalt, cobalt sources include Co (OH) 2 , CoO, Co 2 O 3 , Co 3 O 4 , organic cobalt compounds such as cobalt acetate, CoCl 2 , Co (NO 3 ) 2 .6H 2. Examples include various cobalt compounds such as O and Co (SO 4 ) · 7H 2 O.
When M is aluminum, the aluminum source, AlOOH, Al 2 O 3, Al (OH) 3, AlCl 3, Al (NO 3) 3 · 9H 2 O, the organic aluminum compound and Al 2 (SO 4) 3 And various aluminum compounds.

そして、これらの原料化合物を、例えばボールミルで混合し、混合物を焼成することにより所望の組成の複合酸化物を得ることができる。ここで、混合物の焼成条件は特に制限されないが、例えば、酸素含有ガス雰囲気下、700〜1050℃の温度で、0.5〜50時間焼成すればよい。焼成装置としては常用のものを用いればよく、例えば箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。   These raw material compounds are mixed with, for example, a ball mill, and the mixture is fired to obtain a composite oxide having a desired composition. Here, the firing conditions of the mixture are not particularly limited. For example, the firing may be performed in an oxygen-containing gas atmosphere at a temperature of 700 to 1050 ° C. for 0.5 to 50 hours. As the baking apparatus, a conventional apparatus may be used. For example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, or the like can be used.

次に、焼成後の複合酸化物から不純物を除去するために、得られた複合酸化物を水等の洗浄液で洗浄する。例えば、得られた複合酸化物と蒸留水とを容器中で十分に攪拌し、その後、ろ過等により複合酸化物を回収すればよい。洗浄条件も特に限定されない。ここで不純物とは、例えば、複合酸化物の生成に寄与しなかった原料化合物のことである。   Next, in order to remove impurities from the fired composite oxide, the obtained composite oxide is washed with a cleaning liquid such as water. For example, the obtained composite oxide and distilled water may be sufficiently stirred in a container, and then the composite oxide may be recovered by filtration or the like. The cleaning conditions are not particularly limited. Here, the impurities are, for example, raw material compounds that have not contributed to the formation of the composite oxide.

次に、洗浄後に洗浄液から回収された複合酸化物を乾燥し、この際に、活物質に含まれる水分量(含水量)を、200〜350質量ppmとする。乾燥方法は特に限定されず、加熱、真空排気、所定の水分含有量の雰囲気中への放置等があげられる。乾燥条件も特に限定されず、乾燥前の活物質に含まれる水分量、及び、適用する乾燥方法に応じて、適宜設定できる。例えば、加熱と真空排気とを組み合わせた乾燥は、比較的短時間で水分量の調整が可能となるため好ましい。乾燥方法として具体的には、例えば、まず、水により複合酸化物を洗浄、又は、複合酸化物へ水を添加し、次に、70〜100℃程度の大気雰囲気とされた恒温槽内で予備乾燥を行う。その後、真空排気しながら70〜100℃程度で本乾燥を行う方法が挙げられる。予備乾燥の温度及び時間と、本乾燥の温度及び時間とを適宜調整することによって、乾燥後の活物質に含まれる水分量を200〜350質量ppmの範囲とすることができる。なお、予備乾燥の前に、エチルアルコール又はイソプロピルアルコール等による置換乾燥を行ってもよい。また、予備乾燥は、窒素等の不活性ガス雰囲気下で行ってもよい。   Next, the composite oxide recovered from the cleaning liquid after the cleaning is dried. At this time, the water content (water content) contained in the active material is set to 200 to 350 mass ppm. The drying method is not particularly limited, and examples include heating, evacuation, and leaving in an atmosphere having a predetermined moisture content. The drying conditions are not particularly limited, and can be appropriately set according to the amount of water contained in the active material before drying and the drying method to be applied. For example, drying combined with heating and evacuation is preferable because the amount of moisture can be adjusted in a relatively short time. Specifically, as the drying method, for example, first, the composite oxide is washed with water, or water is added to the composite oxide, and then preliminary in a constant temperature bath having an air atmosphere of about 70 to 100 ° C. Dry. Then, the method of performing this drying at about 70-100 degreeC, evacuating is mentioned. By appropriately adjusting the temperature and time of the preliminary drying and the temperature and time of the main drying, the amount of water contained in the active material after drying can be in the range of 200 to 350 ppm by mass. In addition, substitution drying with ethyl alcohol or isopropyl alcohol may be performed before the preliminary drying. The preliminary drying may be performed in an inert gas atmosphere such as nitrogen.

また、水以外の洗浄液を使用する場合等、洗浄方法によっては、水分調節前の活物質の含水量が200〜350質量ppm未満となる場合も有るが、この場合には、所定の水分を含有する雰囲気中に放置する等により活物質に対して加湿処理を行い、含水量を上記の範囲に調節すればよい。   Also, depending on the cleaning method, such as when using a cleaning liquid other than water, the water content of the active material before moisture adjustment may be less than 200 to 350 ppm by mass. The moisture content may be adjusted to the above range by humidifying the active material, for example, by leaving it in an atmosphere.

<正極(電極)>
続いて、本実施形態に係る正極(電極)10について図1を参照して説明する。
<Positive electrode (electrode)>
Next, the positive electrode (electrode) 10 according to the present embodiment will be described with reference to FIG.

本実施形態に係る正極10は、集電体12と、上述のように水分量が調節された活物質を含み集電体12上に設けられた正極活物質層14と、を備える。   The positive electrode 10 according to the present embodiment includes a current collector 12 and a positive electrode active material layer 14 that is provided on the current collector 12 including the active material whose water content is adjusted as described above.

正極10の集電体12としては、例えば、アルミニウム箔等の金属箔を使用できる。集電体12上に設けられる正極活物質層14は、上述の活物質、バインダー、及び、必要に応じた量の導電材を含む層である。   As the current collector 12 of the positive electrode 10, for example, a metal foil such as an aluminum foil can be used. The positive electrode active material layer 14 provided on the current collector 12 is a layer containing the above-described active material, binder, and a conductive material in an amount necessary.

バインダーは、上記の活物質と導電材とを集電体に結着することができれば特に限定されず、公知のバインダーを使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。このバインダーは、活物質や導電材等の構成材料同士を結着するのみならず、それらの構成材料と集電体との結着にも寄与している。更に、上記の他に、バインダーとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1、2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。また、導電性高分子を用いてもよい。   The binder is not particularly limited as long as the active material and the conductive material can be bound to the current collector, and a known binder can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluorine such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene copolymer Resin. This binder not only binds constituent materials such as active materials and conductive materials, but also contributes to binding between the constituent materials and the current collector. In addition to the above, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used as the binder. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer and the like may be used. Further, a conductive polymer may be used.

導電材は、特に限定されず、公知の導電材を使用できる。例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。   The conductive material is not particularly limited, and a known conductive material can be used. Examples thereof include carbon blacks, carbon materials, metal powders such as copper, nickel, stainless steel, and iron, mixtures of carbon materials and metal powders, and conductive oxides such as ITO.

<正極の製造方法>
上述した正極10は、例えば、上述の活物質、バインダー、及び、必要に応じた量の導電材を、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加してスラリーを作成し、このスラリーを集電体12の表面に塗布し、乾燥させることにより製造できる。
<Method for producing positive electrode>
The above-described positive electrode 10 includes, for example, the above-described active material, binder, and a necessary amount of conductive material, a solvent corresponding to the type thereof, for example, N-methyl-2-pyrrolidone in the case of PVDF, N, A slurry can be prepared by adding to a solvent such as N-dimethylformamide, and the slurry can be applied to the surface of the current collector 12 and dried.

上記工程は、活物質の含水量を200〜350質量ppmに維持するために、露点が−40℃以下のドライルームで行うことが好ましい。   The above step is preferably performed in a dry room having a dew point of −40 ° C. or lower in order to maintain the water content of the active material at 200 to 350 mass ppm.

<リチウムイオン二次電池>
続いて、上述した活物質を含む電極を備えるリチウムイオン二次電池について図1を参照して簡単に説明する。
<Lithium ion secondary battery>
Next, a lithium ion secondary battery including the electrode including the active material described above will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容する外装体50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a stacked body 30, an exterior body 50 that accommodates the stacked body 30 in a sealed state, and a pair of leads 60 and 62 connected to the stacked body 30.

積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、上述のとおりである。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部は外装体50の外部にまで延びている。   The laminated body 30 is configured such that a pair of the positive electrode 10 and the negative electrode 20 are opposed to each other with the separator 18 interposed therebetween. The positive electrode 10 is as described above. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the exterior body 50.

負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、バインダー、及び、必要に応じた量の導電材を含むものを使用できる。バインダー及び導電材については、正極で例示したものを利用できる。   As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a binder, and the quantity of electrically conductive material as needed can be used. As the binder and the conductive material, those exemplified for the positive electrode can be used.

負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO2、SnO2等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi512)等を含む粒子が挙げられる。 Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して集電体に塗布すればよい。   The manufacturing method of the negative electrode 20 should just adjust slurry and apply | coat to a collector like the manufacturing method of the positive electrode 10. FIG.

電解質溶液は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、CF2SO3、LiC(CF3SO23、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiN(CF3CF2CO)2、LiBOB(リチウムビス(オキサラート)ボレート)等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte solution is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , Salts such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB (lithium bis (oxalate) borate) Can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

また、セパレータ18も、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 may also be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose. And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.

外装体50は、その内部に積層体30及び電解液を密封するものである。外装体50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、外装体50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。   The exterior body 50 seals the laminated body 30 and the electrolytic solution therein. The outer package 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, as the outer package 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

<リチウムイオン二次電池の製造方法>
続いて、本実施形態に係るリチウムイオン二次電池の製造方法について説明する。本実施形態に係るリチウムイオン二次電池の製造方法は、上述した活物質を含む正極10と、負極20と、正極と負極との間に介在するセパレータ18と、リチウム塩を含む非水電解質溶液と、を外装体50内に封入する工程を備える。
<Method for producing lithium ion secondary battery>
Then, the manufacturing method of the lithium ion secondary battery which concerns on this embodiment is demonstrated. The method for manufacturing a lithium ion secondary battery according to the present embodiment includes a positive electrode 10 containing the active material, a negative electrode 20, a separator 18 interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte solution containing a lithium salt. And a step of enclosing the outer package 50 in the exterior body 50.

例えば、上述した活物質を含む正極10と、上記負極20と、上記セパレータ18とを積層し、正極10及び負極20を、積層方向に対して垂直な方向から、プレス器具で加熱加圧し、正極10、セパレータ18、及び負極20を密着させる。そして、例えば、予め作製した袋状の外装体50に、上記積層体30を入れ、上記リチウム塩を含む非水電解質溶液を注入することにより、リチウムイオン二次電池を作製することができる。なお、外装体に上記リチウム塩を含む非水電解質溶液を注入するのではなく、積層体30を予め上記リチウム塩を含む非水電解質溶液に含浸させてもよい。   For example, the positive electrode 10 containing the active material described above, the negative electrode 20 and the separator 18 are stacked, and the positive electrode 10 and the negative electrode 20 are heated and pressed with a press tool from a direction perpendicular to the stacking direction. 10, the separator 18 and the negative electrode 20 are brought into close contact with each other. Then, for example, a lithium ion secondary battery can be manufactured by placing the laminate 30 in a bag-shaped outer package 50 prepared in advance and injecting a non-aqueous electrolyte solution containing the lithium salt. Instead of injecting the non-aqueous electrolyte solution containing the lithium salt into the outer package, the laminate 30 may be impregnated in advance with the non-aqueous electrolyte solution containing the lithium salt.

上記工程は、正極10中の活物質の含水量を200〜350質量ppmに維持するために、露点−40℃以下のドライルームで行うことが好ましい。   The above step is preferably performed in a dry room having a dew point of −40 ° C. or lower in order to maintain the water content of the active material in the positive electrode 10 at 200 to 350 mass ppm.

本実施形態によれば、正極10の活物質の含水量が200〜350質量ppmであり、さらにこの活物質は式(1)で表される複合酸化物を主成分とする。このような活物質を含むリチウムイオン二次電池は、放電容量が従来に比して極めて高くなる。理由は必ずしも明らかではないが、式(1)で表わされる複合酸化物を主成分とする活物質は、上記特定量の水分子の大部分を結晶格子内に保持すると考えられる。そして、この水分子の存在により、放電時におけるLiイオンの活物質へのインターカレートは行われ易くなるものと考えられる。そして、活物質に含まれる水分量が多すぎる場合には、活物質の表面に吸着する水分子の量が増加し、水分と有機電解液との反応が増加することとなり、水分量が少なすぎる場合には、結晶格子内に保持される水分子が減少することとなり、いずれも放電容量を十分に向上させることができないと考えられる。また、このような活物質は、LiCoOのようにCoを多く含まないため、従来よりも、安価にリチウムイオン二次電池を得ることができる。 According to this embodiment, the water content of the active material of the positive electrode 10 is 200 to 350 mass ppm, and this active material is mainly composed of the composite oxide represented by the formula (1). A lithium ion secondary battery containing such an active material has an extremely high discharge capacity compared to the conventional one. The reason is not necessarily clear, but the active material mainly composed of the composite oxide represented by the formula (1) is considered to hold most of the specific amount of water molecules in the crystal lattice. And it is thought that the intercalation of Li ions into the active material during discharge is facilitated due to the presence of water molecules. If the amount of water contained in the active material is too large, the amount of water molecules adsorbed on the surface of the active material will increase, and the reaction between the water and the organic electrolyte will increase, and the amount of water will be too small. In this case, water molecules held in the crystal lattice are reduced, and it is considered that none of them can sufficiently improve the discharge capacity. Moreover, since such an active material does not contain much Co like LiCoO 2 , a lithium ion secondary battery can be obtained at a lower cost than in the past.

以上、活物質、これを含む電極、当該電極を備えるリチウムイオン二次電池、並びに当該電極を備えるリチウムイオン二次電池の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As described above, the preferred embodiment of the active material, the electrode including the active material, the lithium ion secondary battery including the electrode, and the method of manufacturing the lithium ion secondary battery including the electrode has been described in detail. It is not limited to the embodiment.

例えば、本実施形態に係る活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の活物質を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウム塩を含む電解質溶液を備えるリチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the active material according to the present embodiment can be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metallic lithium secondary battery (using the electrode containing the active material of the present invention for the cathode and metallic lithium for the anode). And an electrochemical capacitor such as a lithium capacitor provided with an electrolyte solution containing a lithium salt. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
<活物質の作製>
LiOH・HO、Ni(OH)、Co(OH)、AlOOHを、Li:Ni:Co:Al=1.05:0.8:0.15:0.05(原子比)となるように配合し、ボールミルで混合した。この混合物を、大気雰囲気中、850℃で10時間焼成して、LiNi0.8Co0.15Al0.05の焼成物を得た。そして、焼成終了後、得られた複合酸化物を粉砕した。
Example 1
<Production of active material>
LiOH.H 2 O, Ni (OH) 2 , Co (OH) 2 , and AlOOH become Li: Ni: Co: Al = 1.05: 0.8: 0.15: 0.05 (atomic ratio). And mixed with a ball mill. This mixture was fired at 850 ° C. for 10 hours in an air atmosphere to obtain a fired product of LiNi 0.8 Co 0.15 Al 0.05 O 2 . And after completion | finish of baking, the obtained complex oxide was grind | pulverized.

(複合酸化物の洗浄工程)
その後、1000mlのビーカー中に、得られた複合酸化物70gと蒸留水600mlとを入れ、攪拌器で15分間攪拌後、吸引濾過器に移し、60分で脱水し、複合酸化物の洗浄を行った。
(Composite oxide cleaning process)
Thereafter, 70 g of the obtained composite oxide and 600 ml of distilled water were placed in a 1,000 ml beaker, stirred for 15 minutes with a stirrer, transferred to a suction filter, dehydrated in 60 minutes, and the composite oxide was washed. It was.

(複合酸化物の乾燥工程)
次に、濾紙上に残った複合酸化物を90℃に保った恒温槽に入れ、24時間の予備乾燥を行い、その後恒温槽内を真空排気しながら(排気開始後の定常圧力:13.33kPa)、80℃で48時間の本乾燥を行い、実施例1の活物質を得た。この活物質に残留した水分の量(含水量)を、カールフィッシャー法のうち、電量滴定法により測定すると、309質量ppmであった。
(Drying process of complex oxide)
Next, the composite oxide remaining on the filter paper is placed in a thermostat kept at 90 ° C., preliminarily dried for 24 hours, and then evacuated in the thermostat (steady pressure after start of evacuation: 13.33 kPa). ), This drying was performed at 80 ° C. for 48 hours to obtain an active material of Example 1. When the amount of water (water content) remaining in the active material was measured by a coulometric titration method in the Karl Fischer method, it was 309 mass ppm.

<放電容量の測定>
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が90:5:5となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
<Measurement of discharge capacity>
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 90: 5: 5 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1の評価用セルを用いて、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。0.1Cでの放電容量は、196mAh/gであった。   Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.1 C (current value at which discharge is completed in 10 hours when constant current discharge is performed at 25 ° C.) g) was measured. The discharge capacity at 0.1 C was 196 mAh / g.

(実施例2〜10、比較例1〜4)
恒温槽内での乾燥について、予備乾燥条件及び本乾燥条件を、下記表1に示すように変更した以外は、実施例1と同様にして実施例2〜10、比較例1〜4の活物質を得た。この活物質に残留した水分の量(含水量)及び、これらの活物質を用いた評価用セルの放電容量を表1に示す。
(Examples 2 to 10, Comparative Examples 1 to 4)
About the drying in a thermostat, the active material of Examples 2-10 and Comparative Examples 1-4 was carried out similarly to Example 1 except having changed the preliminary drying conditions and this drying conditions as shown in Table 1 below. Got. Table 1 shows the amount of moisture remaining in the active material (water content) and the discharge capacity of the evaluation cell using these active materials.

Figure 2010238387
Figure 2010238387

図2は、横軸を活物質の含水量(ppm)、縦軸を評価用セルの放電容量(mAh/g)としてプロットしたグラフである。活物質の含水量が200〜350ppmの範囲内である実施例1〜10の活物質は、いずれも放電容量が190mA/g(閾値A)より大きかった。また、活物質の含水量が230〜300ppmの範囲内である実施例2,3,4,6,8の活物質は、いずれも放電容量が200mA/g(閾値B)より大きく、極めて高い放電容量が得られた。   FIG. 2 is a graph in which the horizontal axis represents the water content (ppm) of the active material and the vertical axis represents the discharge capacity (mAh / g) of the evaluation cell. Each of the active materials of Examples 1 to 10 in which the water content of the active material was in the range of 200 to 350 ppm had a discharge capacity larger than 190 mA / g (threshold A). In addition, the active materials of Examples 2, 3, 4, 6, and 8 in which the water content of the active material is within the range of 230 to 300 ppm are all discharge capacities larger than 200 mA / g (threshold B), and extremely high discharge Capacity was obtained.

以上より、本発明の活物質を含む電極を備えたリチウムイオン二次電池によれば、高い放電容量を得ることができる。   As mentioned above, according to the lithium ion secondary battery provided with the electrode containing the active material of this invention, a high discharge capacity can be obtained.

Claims (5)

下記式(1)で表される複合酸化物を主成分とし、含水量が200〜350質量ppmである活物質。
LiNi1−x…(1)
[式(1)中、xは0.5≦x<1を満たし、Mは、1種以上の任意の金属元素である。]
An active material having a composite oxide represented by the following formula (1) as a main component and a water content of 200 to 350 mass ppm.
LiNi x M 1-x O 2 (1)
[In the formula (1), x satisfies 0.5 ≦ x <1, and M is one or more arbitrary metal elements. ]
前記含水量が230〜300質量ppmである、請求項1記載の活物質。   The active material according to claim 1, wherein the water content is 230 to 300 ppm by mass. 集電体と、請求項1又は2に記載の活物質を含み前記集電体上に設けられた活物質層と、を備える電極。   An electrode comprising: a current collector; and an active material layer comprising the active material according to claim 1 or 2 and provided on the current collector. 請求項3に記載の電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス。   An electrochemical device comprising an electrolyte solution comprising the electrode according to claim 3 and a lithium salt. 下記式(1)で表される複合酸化物を主成分とする活物質の含水量を200〜450ppmとする水分調節工程を備える、活物質の製造方法。
LiNi1−x…(1)
[式(1)中、xは0.5≦x<1を満たし、Mは、任意の金属元素である。]
The manufacturing method of an active material provided with the water | moisture-content adjustment process which makes the water content of the active material which has complex oxide represented by following formula (1) a main component 200-450 ppm.
LiNi x M 1-x O 2 (1)
[In the formula (1), x satisfies 0.5 ≦ x <1, and M is an arbitrary metal element. ]
JP2009082283A 2009-03-30 2009-03-30 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt Active JP5487676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082283A JP5487676B2 (en) 2009-03-30 2009-03-30 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082283A JP5487676B2 (en) 2009-03-30 2009-03-30 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt

Publications (2)

Publication Number Publication Date
JP2010238387A true JP2010238387A (en) 2010-10-21
JP5487676B2 JP5487676B2 (en) 2014-05-07

Family

ID=43092554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082283A Active JP5487676B2 (en) 2009-03-30 2009-03-30 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt

Country Status (1)

Country Link
JP (1) JP5487676B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111547A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery and method for producing same
WO2012111545A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery
WO2012117023A1 (en) * 2011-03-01 2012-09-07 Süd-Chemie AG Lithium-titanium mixed oxide
JP2013045757A (en) * 2011-08-26 2013-03-04 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2013045759A (en) * 2011-08-26 2013-03-04 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacturing method of the same
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2014194868A (en) * 2013-03-28 2014-10-09 Jx Nippon Mining & Metals Corp Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2016177901A (en) * 2015-03-18 2016-10-06 株式会社東芝 Positive electrode active material for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2017016880A (en) * 2015-06-30 2017-01-19 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP2017041457A (en) * 2016-11-30 2017-02-23 Jx金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2018014322A (en) * 2016-07-12 2018-01-25 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2018125314A (en) * 2018-05-21 2018-08-09 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2021241418A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Positive electrode active material, positive electrode material, battery and method for producing positive electrode active material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982325A (en) * 1995-09-08 1997-03-28 Sony Corp Manufacture of positive active material
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2001297750A (en) * 2000-04-11 2001-10-26 Yuasa Corp Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2001332259A (en) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method for oxide electrode material using nickel and cell therewith
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2004214187A (en) * 2002-12-20 2004-07-29 Sumitomo Metal Mining Co Ltd Active material for positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof, nonaqueous electrolyte secondary battery using the active material and manufacturing method of the same
JP2008108462A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2009129747A (en) * 2007-11-26 2009-06-11 Nec Corp Secondary battery
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982325A (en) * 1995-09-08 1997-03-28 Sony Corp Manufacture of positive active material
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2001297750A (en) * 2000-04-11 2001-10-26 Yuasa Corp Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2001332259A (en) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method for oxide electrode material using nickel and cell therewith
JP2003017054A (en) * 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
JP2004214187A (en) * 2002-12-20 2004-07-29 Sumitomo Metal Mining Co Ltd Active material for positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof, nonaqueous electrolyte secondary battery using the active material and manufacturing method of the same
JP2008108462A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2009140909A (en) * 2007-11-13 2009-06-25 Sanyo Electric Co Ltd Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2009129747A (en) * 2007-11-26 2009-06-11 Nec Corp Secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
US9923192B2 (en) 2011-02-18 2018-03-20 Kabushiki Kaihsa Toshiba Non-aqueous electrolyte secondary battery and production method thereof
JP2012174416A (en) * 2011-02-18 2012-09-10 Toshiba Corp Nonaqueous electrolyte secondary battery
USRE49306E1 (en) 2011-02-18 2022-11-22 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
US11139465B2 (en) 2011-02-18 2021-10-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
US9509013B2 (en) 2011-02-18 2016-11-29 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
CN103210529A (en) * 2011-02-18 2013-07-17 株式会社东芝 Non-aqueous electrolyte secondary battery and method for producing same
CN103210528A (en) * 2011-02-18 2013-07-17 株式会社东芝 Non-aqueous electrolyte secondary battery
EP2677571A1 (en) * 2011-02-18 2013-12-25 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and method for producing same
EP3373365A1 (en) * 2011-02-18 2018-09-12 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolyte secondary battery
WO2012111545A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery
WO2012111547A1 (en) * 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery and method for producing same
EP2677571A4 (en) * 2011-02-18 2014-08-13 Toshiba Kk Non-aqueous electrolyte secondary battery and method for producing same
WO2012117023A1 (en) * 2011-03-01 2012-09-07 Süd-Chemie AG Lithium-titanium mixed oxide
JP2013045759A (en) * 2011-08-26 2013-03-04 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacturing method of the same
WO2013031253A1 (en) * 2011-08-26 2013-03-07 株式会社 東芝 Nonaqueous electrolyte secondary cell and method for producing same
US9331361B2 (en) 2011-08-26 2016-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and production method thereof
JP2013045757A (en) * 2011-08-26 2013-03-04 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacturing method of the same
CN103620853A (en) * 2011-08-26 2014-03-05 株式会社东芝 Nonaqueous electrolyte secondary cell and method for producing same
JP2014194868A (en) * 2013-03-28 2014-10-09 Jx Nippon Mining & Metals Corp Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2016177901A (en) * 2015-03-18 2016-10-06 株式会社東芝 Positive electrode active material for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2017016880A (en) * 2015-06-30 2017-01-19 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
US10276889B2 (en) 2015-06-30 2019-04-30 Automotive Energy Supply Corporation Lithium ion secondary battery
JP2018014322A (en) * 2016-07-12 2018-01-25 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017041457A (en) * 2016-11-30 2017-02-23 Jx金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2018073800A (en) * 2017-03-13 2018-05-10 Basf戸田バッテリーマテリアルズ合同会社 Nonaqueous electrolyte secondary battery cathode active material production method and nonaqueous electrolyte secondary battery production method
JP2018125314A (en) * 2018-05-21 2018-08-09 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2021241418A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Positive electrode active material, positive electrode material, battery and method for producing positive electrode active material

Also Published As

Publication number Publication date
JP5487676B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
US11569492B2 (en) Positive-electrode active material and battery
JP5223281B2 (en) Lithium ion secondary battery or composite particle for positive electrode of lithium secondary battery, and lithium ion secondary battery or lithium secondary battery
JP5157216B2 (en) Method for producing active material and active material
JP5811269B2 (en) Non-aqueous electrolyte secondary battery
WO2016103657A1 (en) Nonaqueous electrolyte secondary cell
WO2009096255A1 (en) Positive electrode active material, positive electrode, and nonaqueous rechargeable battery
JP2010086778A (en) Active material material, positive electrode using the same, and lithium-ion secondary battery
EP2840639A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP6353310B2 (en) Nonaqueous electrolyte secondary battery
KR101629489B1 (en) Surface Treated Positive Active Material For Lithium Secondary Battery With Fluoropolymer and Method For Manufacturing The Same
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP7321932B2 (en) Battery modules for starting power equipment
JP6697377B2 (en) Lithium ion secondary battery
KR101511022B1 (en) Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
KR101572074B1 (en) Anode Active Material Having High Capacity and Lithium Secondary Battery Comprising The Same
JP2011049102A (en) Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material
JP2010021113A (en) Method for manufacturing lithium-ion secondary battery
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
CN108695513A (en) Positive electrode active material for lithium ion secondary battery, anode and lithium rechargeable battery
JP2019160576A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014007016A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018116903A (en) Cathode active material, cathode using the same and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5487676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150