JP2001297750A - Power-generating element for lithium secondary battery and lithium secondary battery using same - Google Patents

Power-generating element for lithium secondary battery and lithium secondary battery using same

Info

Publication number
JP2001297750A
JP2001297750A JP2000108784A JP2000108784A JP2001297750A JP 2001297750 A JP2001297750 A JP 2001297750A JP 2000108784 A JP2000108784 A JP 2000108784A JP 2000108784 A JP2000108784 A JP 2000108784A JP 2001297750 A JP2001297750 A JP 2001297750A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
positive electrode
negative electrode
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000108784A
Other languages
Japanese (ja)
Inventor
Ryuji Shiozaki
竜二 塩崎
Kazuya Okabe
一弥 岡部
Toshiaki Kojima
敏明 小島
Shuchiku Ko
修竹 黄
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000108784A priority Critical patent/JP2001297750A/en
Publication of JP2001297750A publication Critical patent/JP2001297750A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power-generating element and a lithium secondary battery using the same, capable of making a lithium secondary battery with high charging/discharging capacity and a superb cycle performance, and also provide a power-generating element for a lithium secondary battery with high productivity and a lithium secondary battery with high productivity. SOLUTION: With the power-generating element for the lithium secondary battery having a positive electrode with positive electrode active substance as a main ingredient, a negative electrode with a negative electrode active substance as a main ingredient, and a separator, water content of the positive electrode is set to be not more than 260 ppm against Ig of the positive electrode active substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用発電要素およびそれを用いたリチウム二次電池に関
し、特に、充放電容量が高く、サイクル性能に優れたリ
チウム二次電池に関するものである。
The present invention relates to a power generating element for a lithium secondary battery and a lithium secondary battery using the same, and more particularly to a lithium secondary battery having a high charge / discharge capacity and excellent cycle performance. .

【0002】[0002]

【従来の技術】近年、リチウム二次電池は、携帯電話,
PHS(簡易携帯電話),小型コンピュータ等の携帯機
器類用電源、電力貯蔵用電源、電気自動車用電源として
注目されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been used in mobile phones,
Attention has been paid to a power supply for portable equipment such as a PHS (simple mobile phone) and a small computer, a power supply for power storage, and a power supply for electric vehicles.

【0003】このようなリチウム二次電池は、一般的
に、固有の電位においてリチウムイオンを放出・吸蔵可
能な正極および負極、正極と負極とを隔壁するセパレー
タ、含フッ素系電解質を含有する非水系電解液から構成
される。特に、正極としては、LiCoO2,LiNi
2,LiMn24等に代表される層状酸化物またはス
ピネル酸化物が知られており、一方、負極としては、炭
素材料が広く一般的に知られている。
[0003] Such a lithium secondary battery generally comprises a positive electrode and a negative electrode capable of releasing and occluding lithium ions at a specific potential, a separator for partitioning the positive electrode and the negative electrode, and a non-aqueous system containing a fluorinated electrolyte. It is composed of an electrolytic solution. Particularly, as the positive electrode, LiCoO 2 , LiNi
Layered oxides or spinel oxides represented by O 2 , LiMn 2 O 4 and the like are known, while carbon materials are widely and generally known as negative electrodes.

【0004】上記例示した構成のリチウム二次電池にお
いて、非水系電解液中に存在する水分は、充放電容量,
サイクル性能,高温放置による自己放電と保存後の容量
の回復特性等の電池諸特性を低下させる要因の一つと考
えられており、リチウム二次電池の電流効率,サイクル
性能等の電池性能の向上を目的として、有機電解液(非
水電解液)に含有される水分量を規定した提案が数多く
知られている。
In the lithium secondary battery having the above-described configuration, the water present in the non-aqueous electrolyte solution has a charge / discharge capacity,
It is considered to be one of the factors that degrade battery characteristics such as cycle performance, self-discharge due to high temperature storage and capacity recovery after storage, and to improve battery performance such as current efficiency and cycle performance of lithium secondary batteries. For the purpose, many proposals have been known in which the amount of water contained in an organic electrolyte (non-aqueous electrolyte) is regulated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年で
は、携帯機器類を筆頭に、電池を電力源とする各種機器
の小型軽量化の要求が高まっているため、電池特性がさ
らに向上したリチウム二次電池が強く求められている。
本発明は、前記問題点に鑑みてなされたものであり、そ
の目的は、充放電容量が高く、サイクル性能に優れたリ
チウム二次電池を作製可能なリチウム二次電池用発電要
素、およびそれを用いたリチウム二次電池を提供するこ
とである。さらに、生産性の高いリチウム二次電池用発
電要素、および生産性の高いリチウム二次電池を提供す
ることである。
However, in recent years, there has been an increasing demand for smaller and lighter devices, such as portable devices, which use a battery as a power source. Batteries are in great demand.
The present invention has been made in view of the above problems, and an object thereof is to provide a power generating element for a lithium secondary battery capable of producing a lithium secondary battery having a high charge / discharge capacity and excellent cycle performance, and An object of the present invention is to provide a used lithium secondary battery. Another object of the present invention is to provide a power generating element for a lithium secondary battery with high productivity and a lithium secondary battery with high productivity.

【0006】[0006]

【課題を解決するための手段】前述した目的を達成する
ために、本発明者らは鋭意検討の結果、リチウム二次電
池用発電要素における“極の水分量”を規定すること
で、驚くべきことに、充放電容量が高く、サイクル性能
に優れたリチウム二次電池が得られることを見出し、本
発明に至った。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have made intensive studies and as a result, have surprisingly determined the "moisture at the pole" in the power generating element for a lithium secondary battery. In particular, they have found that a lithium secondary battery having a high charge / discharge capacity and excellent cycle performance can be obtained, and the present invention has been achieved.

【0007】すなわち、本発明は、請求項1に記載した
ように、正極活物質を主要構成成分とする正極と、負極
活物質を主要構成成分とする負極と、セパレータとを有
するリチウム二次電池用発電要素において、前記正極の
水分量が、前記正極活物質1gに対して260ppm以
下となるように構成されたことを特徴としている。
That is, the present invention provides a lithium secondary battery including a positive electrode having a positive electrode active material as a main component, a negative electrode having a negative electrode active material as a main component, and a separator. In the power generation element for use, the water content of the positive electrode is configured to be 260 ppm or less based on 1 g of the positive electrode active material.

【0008】このように構成されたリチウム二次電池用
発電要素においては、正極の水分量が前記のように規定
されているので、充放電容量が高く、サイクル性能に優
れたリチウム二次電池を作製できる。また、少なくとも
正極の水分量が前記規定を満たせば、正極作製時におけ
る加熱・乾燥等の脱水操作を必要以上に行わなくとも、
前述のようにリチウム二次電池の電池性能を向上可能な
リチウム二次電池用発電要素を作製できるので、前記規
定を正極の製造指標とすることにより、リチウム二次電
池用発電要素の生産性を向上できる。
In the power generating element for a lithium secondary battery configured as described above, since the water content of the positive electrode is specified as described above, a lithium secondary battery having a high charge / discharge capacity and excellent cycle performance is provided. Can be made. Further, if the water content of at least the positive electrode satisfies the above-mentioned specification, without performing dehydration operations such as heating and drying more than necessary during the preparation of the positive electrode,
As described above, a power generating element for a lithium secondary battery capable of improving the battery performance of a lithium secondary battery can be manufactured.By using the above-mentioned specification as a production index of a positive electrode, the productivity of the power generating element for a lithium secondary battery can be improved. Can be improved.

【0009】また、本発明は、請求項2に記載したよう
に、前記リチウム二次電池用発電要素において、前記負
極の水分量が、前記負極活物質1gに対して10ppm
以下となるように構成されたことを特徴としている。こ
のように構成されたリチウム二次電池用発電要素におい
ては、負極の水分量が前記のように規定されているの
で、充放電容量が極めて高く、サイクル性能に極めて優
れたリチウム二次電池を作製できる。また、負極の水分
量が前記規定を満たせば、負極作製時における加熱・乾
燥等の脱水操作を必要以上に行わなくとも、前述のよう
にリチウム二次電池の電池性能をさらに向上可能なリチ
ウム二次電池用発電要素を作製できるので、前記規定を
負極の製造指標とすることにより、リチウム二次電池用
発電要素の生産性を向上できる。
Further, according to the present invention, in the power generating element for a lithium secondary battery, the water content of the negative electrode is 10 ppm with respect to 1 g of the negative electrode active material.
It is characterized in that it is configured as follows. In the power generating element for a lithium secondary battery configured as described above, since the water content of the negative electrode is specified as described above, a charge / discharge capacity is extremely high, and a lithium secondary battery with extremely excellent cycle performance is manufactured. it can. Further, if the water content of the negative electrode satisfies the above-mentioned specification, it is possible to further improve the battery performance of the lithium secondary battery as described above without performing dehydration operations such as heating and drying more than necessary at the time of manufacturing the negative electrode. Since a power generation element for a secondary battery can be manufactured, the productivity of the power generation element for a lithium secondary battery can be improved by using the above-mentioned rule as a production index of a negative electrode.

【0010】さらに、本発明者らは、正極および負極の
構成成分として、前記正極活物質および前記負極活物質
の他に、公知の結着剤および導電剤を使用してリチウム
二次電池用発電要素を構成することで、前記目的を達成
できることを見出した。よって、本発明に係るリチウム
二次電池用発電要素は、請求項3に記載したように、前
記正極および前記負極が、導電剤および結着剤を構成成
分とすることを特徴としている。
Further, the present inventors have developed a power generation for a lithium secondary battery by using a known binder and a conductive agent in addition to the positive electrode active material and the negative electrode active material as constituent components of the positive electrode and the negative electrode. It has been found that the above object can be achieved by configuring the element. Therefore, the power generating element for a lithium secondary battery according to the present invention is characterized in that the positive electrode and the negative electrode include a conductive agent and a binder as constituent components.

【0011】また、本発明に係るリチウム二次電池は、
請求項4に記載したように、本発明に係るリチウム二次
電池用発電要素に、含フッ素系電解質を含有する非水系
電解液が注液されたことを特徴としている。前述のよう
に本発明に係るリチウム二次電池用発電要素は、“極の
水分量”が前記のように規定されているので、請求項4
に記載した構成のリチウム二次電池は、充放電容量が高
く、サイクル性能に優れる。また、前述のように、リチ
ウム二次電池用発電要素の生産性が高いことから、リチ
ウム二次電池の生産性を向上できる。
[0011] The lithium secondary battery according to the present invention comprises:
As described in claim 4, a non-aqueous electrolyte containing a fluorinated electrolyte is injected into the power generating element for a lithium secondary battery according to the present invention. As described above, in the power generating element for a lithium secondary battery according to the present invention, the “moisture content of the pole” is defined as described above.
The lithium secondary battery having the configuration described in (1) has a high charge / discharge capacity and is excellent in cycle performance. Further, as described above, since the productivity of the power generating element for a lithium secondary battery is high, the productivity of the lithium secondary battery can be improved.

【0012】さらに、本発明に係るリチウム二次電池
は、請求項5に記載したように、リチウム二次電池にお
いて、前記非水系電解液の水分量が、前記非水系電解液
の総重量に対して20ppm以下となるように構成され
たことを特徴としている。このような構成のリチウム二
次電池は、リチウム二次電池用発電要素の“極の水分
量”が前記のように規定されているのみならず、前記非
水系電解液の水分量が前記のように規定されているの
で、充放電容量が極めて高く、サイクル性能に極めて優
れる。
Further, in the lithium secondary battery according to the present invention, as set forth in claim 5, in the lithium secondary battery, the water content of the non-aqueous electrolytic solution is based on the total weight of the non-aqueous electrolytic solution. Characterized in that it is not more than 20 ppm. In the lithium secondary battery having such a configuration, not only is the “polar water content” of the power generating element for a lithium secondary battery specified as described above, but also the water content of the non-aqueous electrolyte is as described above. , The charge / discharge capacity is extremely high, and the cycle performance is extremely excellent.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態を例
示するが、本発明は、以下の実施の形態に限定されるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.

【0014】本発明に係るリチウム二次電池用発電要素
は、正極と、負極と、セパレータとを有するものであ
り、正極は、正極活物質を主要構成成分としており、同
様に負極は、負極活物質を主要構成成分としている。
The power generating element for a lithium secondary battery according to the present invention has a positive electrode, a negative electrode, and a separator. The positive electrode has a positive electrode active material as a main component, and the negative electrode has a negative electrode active material. Substances are the main constituent.

【0015】正極の主要構成成分である正極活物質とし
ては、LiCoO2,LiNiO2,LiMn24を挙げ
ることができ、さらに、LiCoO2,LiNiO2,L
iMn24のCo,Ni,Mnの部位を他元素により置
換した酸化物も使用できる。このような他元素として
は、例えば、Be,B,C,Si,P,Sc,Cu,Z
n,Ga,Ge,As,Se,Sr,Mo,Pd,A
g,Cd,In,Sn,Sb,Te,Ba,Ta,W.
Pb,Bi,Co,Fe,Cr,Ni,Ti,Zr,N
b,Y,Al,Na,K,Mg,Ca,Cs,La,C
e,Nd,Sm,Eu,Tb等を挙げられ、特にCo,
Ni,Mn,Cr,Fe,Mg,Al等の遷移金属元素
によりLiCoO2,LiNiO2,LiMn24のC
o,Ni,Mnの部位が置換された酸化物を正極活物質
として好適に使用できる。
Examples of the positive electrode active material, which is a main component of the positive electrode, include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4. Further, LiCoO 2 , LiNiO 2 , L
An oxide in which the Co, Ni, and Mn sites of iMn 2 O 4 are replaced with other elements can also be used. Such other elements include, for example, Be, B, C, Si, P, Sc, Cu, Z
n, Ga, Ge, As, Se, Sr, Mo, Pd, A
g, Cd, In, Sn, Sb, Te, Ba, Ta, W.G.
Pb, Bi, Co, Fe, Cr, Ni, Ti, Zr, N
b, Y, Al, Na, K, Mg, Ca, Cs, La, C
e, Nd, Sm, Eu, Tb and the like.
C of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 by a transition metal element such as Ni, Mn, Cr, Fe, Mg, Al
An oxide in which o, Ni, and Mn sites are substituted can be suitably used as a positive electrode active material.

【0016】前記正極活物質は、例えば、炭酸リチウ
ム,水酸化リチウム等のリチウム酸化物やリチウム塩化
合物と、例えば二酸化マンガン,硝酸マンガン等のマン
ガン酸化物やマンガン塩化合物とを、物理的に混合する
か、常温下もしくは高温下および常圧下もしくは高圧下
で化学的に反応させることにより、ペースト、混合塩、
あるいは沈殿物を生成させ、引き続き、それらを段階的
に焼成することにより好適に作製される。
The positive electrode active material is prepared by physically mixing a lithium oxide or lithium salt compound such as lithium carbonate or lithium hydroxide with a manganese oxide or manganese salt compound such as manganese dioxide or manganese nitrate. Or by chemically reacting at room temperature or high temperature and under normal pressure or high pressure, paste, mixed salt,
Alternatively, they are suitably produced by generating precipitates and subsequently firing them stepwise.

【0017】負極の主要構成成分である負極活物質とし
ては、リチウムを吸蔵、放出可能な炭素材料を挙げるこ
とができ、特にX線回折法より見積もられる面間隔(d
002)が0.3354〜0.3369nmで、c軸方
向の結晶の大きさ(Lc)が20nm以上である炭素粒
子が好ましい。
Examples of the negative electrode active material, which is a main component of the negative electrode, include a carbon material capable of inserting and extracting lithium, and particularly a plane spacing (d) estimated by an X-ray diffraction method.
002) is preferably 0.3354 to 0.3369 nm, and carbon particles having a crystal size (Lc) of 20 nm or more in the c-axis direction are preferred.

【0018】以上、正極活物質および負極活物質につい
て詳述したが、正極および負極は、主要構成成分である
前記活物質の他に、導電剤および結着剤を構成成分とし
て作製されるのが好ましい。
Although the positive electrode active material and the negative electrode active material have been described in detail above, it is preferable that the positive electrode and the negative electrode are formed using a conductive agent and a binder in addition to the above-mentioned active material which is a main component. preferable.

【0019】導電剤としては、電池性能に悪影響を及ぼ
さない電子伝導性材料であれば限定されないが、通常、
天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造
黒鉛、カーボンブラック、アセチレンブラック、ケッチ
ェンブラック、カーボンウイスカー、炭素繊維、金属
(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊
維、導電性セラミックス材料等の導電性材料を1種また
はそれらの混合物として含ませることができる。これら
の中で、導電剤としては、導電性及び塗工性の観点より
アセチレンブラックが望ましい。導電剤の添加量は、正
極または負極の総重量に対して1〜50重量%が好まし
く、特に2重量%〜30重量%が好ましい。これらの混
合方法は、物理的な混合であり、その理想とするところ
は均一混合である。そのため、V型混合機、S型混合
機、擂かい機、ボールミル、遊星ボールミルといったよ
うな粉体混合機を乾式、あるいは湿式で混合することが
可能である。
The conductive agent is not limited as long as it is an electron conductive material which does not adversely affect battery performance.
Natural graphite (flaky graphite, flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, A conductive material such as a metal fiber or a conductive ceramic material can be included as one type or a mixture thereof. Among these, acetylene black is desirable as the conductive agent from the viewpoint of conductivity and coatability. The amount of the conductive agent to be added is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode. These mixing methods are physical mixing, and ideally, uniform mixing. Therefore, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill can be mixed in a dry or wet manner.

【0020】結着剤としては、通常、ポリテトラフルオ
ロエチレン,ポリフッ化ビニリデン,ポリエチレン,ポ
リプロピレン等の熱可塑性樹脂、エチレン−プロピレン
ジエンターポリマー(EPDM),スルホン化EPD
M,スチレンブタジエンゴム(SBR)、フッ素ゴム等
のゴム弾性を有するポリマー、カルボキシメチルセルロ
ース等の多糖類等を1種または2種以上の混合物として
用いることができる。また、多糖類の様にリチウムと反
応する官能基を有する結着剤は、例えばメチル化するな
どしてその官能基を失活させておくことが望ましい。結
着剤の添加量は、正極または負極の総重量に対して1〜
50重量%が好ましく、特に2〜30重量%が好まし
い。
Examples of the binder include thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene and polypropylene, ethylene-propylene diene terpolymer (EPDM), and sulfonated EPD.
M, a polymer having rubber elasticity such as styrene-butadiene rubber (SBR) or fluororubber, or a polysaccharide such as carboxymethylcellulose can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The amount of the binder added is 1 to the total weight of the positive electrode or the negative electrode.
It is preferably 50% by weight, particularly preferably 2 to 30% by weight.

【0021】正極活物質または負極活物質、導電剤およ
び結着剤をトルエン等の有機溶媒下で混練し、電極形状
に成形して乾燥することによって、それぞれ正極および
負極を好適に作製できる。ここで、本発明においては、
正極の作製において、正極の水分量が、前記正極活物質
1gに対して260ppm以下となるように、前記乾燥
が行われる。また、負極の作製においては、負極の水分
量が、前記負極活物質1gに対して10ppm以下とな
るように、前記乾燥が行われるのが好ましい。
A positive electrode and a negative electrode can be suitably manufactured by kneading a positive electrode active material or a negative electrode active material, a conductive agent, and a binder in an organic solvent such as toluene, forming an electrode shape, and drying. Here, in the present invention,
In the preparation of the positive electrode, the drying is performed such that the water content of the positive electrode is 260 ppm or less based on 1 g of the positive electrode active material. In the preparation of the negative electrode, the drying is preferably performed so that the water content of the negative electrode is 10 ppm or less based on 1 g of the negative electrode active material.

【0022】前記乾燥は、例えば、混練物を公知の減圧
乾燥機を使用して減圧乾燥することにより行われ、前記
規定を満たすように温度・時間等の乾燥条件が設定され
る。
The drying is carried out, for example, by drying the kneaded material under reduced pressure using a known vacuum dryer, and drying conditions such as temperature and time are set so as to satisfy the above-mentioned requirements.

【0023】本発明に係るリチウム二次電池用発電要素
のセパレータとしては、イオンの等価性に優れ、加えて
機械的強度のある絶縁性薄膜を用いることができる。耐
有機溶剤性と疎水性からポリプロピレンやポリエチレン
といったオレフィン系のポリマー、ガラス繊維、ポリフ
ッ化ビニリデン、ポリテトラフルオロエチレン等からつ
くられたシート、微孔膜、不織布、布が用いられる。セ
パレータの孔径は、一般に電池に用いられる範囲のもの
であり、例えば0.01〜10μmである。また、その
厚みについても同様で、一般に電池に用いられる範囲の
ものであり、例えば5〜300μmである。
As the separator of the power generating element for a lithium secondary battery according to the present invention, an insulating thin film having excellent ion equivalentity and mechanical strength can be used. Sheets, microporous membranes, nonwoven fabrics and cloths made of olefin polymers such as polypropylene and polyethylene, glass fibers, polyvinylidene fluoride, polytetrafluoroethylene and the like are used because of their resistance to organic solvents and hydrophobicity. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0024】以上に説明したように、正極と、負極と、
セパレータとを有する本発明に係るリチウム二次電池用
発電要素は、正極の水分量が前記正極活物質1gに対し
て260ppm以下となるように構成されるため、この
リチウム二次電池用発電要素を用いることによって、充
放電容量が高く、サイクル性能に優れたリチウム二次電
池を作製できる。また、少なくとも正極の水分量が前記
規定を満たせば、前記正極作製時の脱溶媒工程におい
て、加熱・乾燥等の脱水操作を必要以上に行わなくと
も、前述のようにリチウム二次電池の電池性能を向上可
能なリチウム二次電池用発電要素を作製できるので、前
記規定を正極の製造指標とすることにより、リチウム二
次電池用発電要素の生産性を向上できる。
As described above, the positive electrode, the negative electrode,
The power generating element for a lithium secondary battery according to the present invention having a separator is configured such that the water content of the positive electrode is 260 ppm or less based on 1 g of the positive electrode active material. By using the lithium secondary battery, a lithium secondary battery having high charge / discharge capacity and excellent cycle performance can be manufactured. Further, as long as the water content of the positive electrode satisfies the above-mentioned specification, in the desolvation step at the time of producing the positive electrode, even if the dehydration operation such as heating and drying is not performed more than necessary, the battery performance of the lithium secondary battery can be improved as described above. Since the power generation element for a lithium secondary battery can be manufactured, the productivity of the power generation element for a lithium secondary battery can be improved by using the above-mentioned specification as a production index of the positive electrode.

【0025】さらに、本発明に係るリチウム二次電池用
発電要素は、前述のように、さらに、前記負極の水分量
が、前記負極活物質1gに対して10ppm以下となる
ように構成されるのが好ましく、このリチウム二次電池
用発電要素を用いることによって、充放電容量が極めて
高く、サイクル性能に極めて優れたリチウム二次電池を
作製できる。また、負極の水分量が前記規定を満たせ
ば、前記負極作製時の脱溶媒工程において、加熱・乾燥
等の脱水操作を必要以上に行わなくとも、前述のように
リチウム二次電池の電池性能を向上可能なリチウム二次
電池用発電要素を作製できるので、前記規定を負極の製
造指標とすることにより、リチウム二次電池用発電要素
の生産性を向上できる。
Further, as described above, the power generating element for a lithium secondary battery according to the present invention is configured such that the water content of the negative electrode is 10 ppm or less based on 1 g of the negative electrode active material. By using the power generating element for a lithium secondary battery, a lithium secondary battery having extremely high charge / discharge capacity and extremely excellent cycle performance can be manufactured. Further, if the water content of the negative electrode satisfies the above-mentioned specification, the battery performance of the lithium secondary battery can be improved as described above without performing dehydration operations such as heating and drying more than necessary in the desolvation step in preparing the negative electrode. Since a power generation element for a lithium secondary battery that can be improved can be manufactured, the productivity of the power generation element for a lithium secondary battery can be improved by using the above-mentioned specification as a production index of the negative electrode.

【0026】本発明に係るリチウム二次電池用発電要素
の実施の形態としては、正極と負極とがセパレータを介
して密着した構成を例示できる。また、例えばコイン型
電池を作製する場合のように、正極,負極,セパレータ
が、正極収納部,負極収納部,セパレータ収納部を有す
る電池用パッケージの各収納部にそれぞれ独立して収納
された場合においても、正極,負極,セパレータよりな
る集合体は、本発明に係るリチウム二次電池用発電要素
の一実施の形態である。
As an embodiment of the power generating element for a lithium secondary battery according to the present invention, a configuration in which a positive electrode and a negative electrode are closely adhered via a separator can be exemplified. Further, for example, when a positive electrode, a negative electrode, and a separator are individually stored in respective storage portions of a battery package having a positive electrode storage portion, a negative electrode storage portion, and a separator storage portion, for example, when a coin-type battery is manufactured. In this case, the assembly including the positive electrode, the negative electrode, and the separator is one embodiment of the power generating element for a lithium secondary battery according to the present invention.

【0027】本発明に係るリチウム二次電池は、以上に
詳述した本発明に係るリチウム二次電池用発電要素に、
含フッ素系電解質を含有する非水系電解液が注液される
ことより作製される。
The lithium secondary battery according to the present invention includes the power generating element for a lithium secondary battery according to the present invention described in detail above,
It is produced by injecting a non-aqueous electrolyte containing a fluorinated electrolyte.

【0028】含フッ素系電解質としては、高いリチウム
イオン伝導性を示すLiPF6、LiBF4、LiAsF
6、LiOSO2CF3が好適に使用される。これら含フ
ッ素電解質は、非水電解液中に通常0.1M〜3.0
M、好ましくは0.5M〜2.0Mの濃度となるように
溶解される。
Examples of the fluorinated electrolyte include LiPF 6 , LiBF 4 and LiAsF exhibiting high lithium ion conductivity.
6 , LiOSO 2 CF 3 is preferably used. These fluorinated electrolytes are usually contained in a non-aqueous electrolyte at 0.1 M to 3.0 M.
M, preferably from 0.5M to 2.0M.

【0029】前記含フッ素系電解質は、高誘電率溶媒お
よび低粘度溶媒と組み合わせて非水系電解液とされるの
が好ましい。高誘電率溶媒としては、例えば、エチレン
カーボネート(EC)、プロフピレンカーボネート(P
C)などの環状カーボネート類が好適に挙げられる。こ
れら高誘電率溶媒は単独で使用してもよく、また2種類
以上の組み合わせで使用することもできる。低粘度溶媒
としては、例えば、ジメチルカーボネート(DMC)、
メチルエチルカーボネート(MEC)、ジメチルカーボ
ネート(DMC)等の鎖状カーボネート類、テトラヒド
ロフラン(THF)、2−メチルテトラヒドロフラン、
1,4−ジオキサン、1,2−ジメトキエタン、1,2
−ジエトキシエタン、1,2−ジブトキシエタンなどの
エーテル類、γーブチロラクトンなどのラクトン類、ア
セトニトリルなどのニトリル類、ジメチルホルムアミド
などのアミド類、ギ酸メチル、酢酸メチルなどのエステ
ル類が挙げられる。これら低粘度溶媒は単独で使用して
もよく、また2種類以上で組み合わせて使用することも
できる。
The fluorinated electrolyte is preferably used as a non-aqueous electrolyte in combination with a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (EC) and propylene carbonate (P
Cyclic carbonates such as C) are preferred. These high dielectric constant solvents may be used alone or in combination of two or more. Examples of the low-viscosity solvent include dimethyl carbonate (DMC),
Chain carbonates such as methyl ethyl carbonate (MEC) and dimethyl carbonate (DMC), tetrahydrofuran (THF), 2-methyltetrahydrofuran,
1,4-dioxane, 1,2-dimethoxyethane, 1,2
Ethers such as -diethoxyethane and 1,2-dibutoxyethane, lactones such as γ-butyrolactone, nitriles such as acetonitrile, amides such as dimethylformamide, and esters such as methyl formate and methyl acetate. . These low viscosity solvents may be used alone or in combination of two or more.

【0030】さらに、非水系電解液の水分量は、非水系
電解液の総重量に対して20ppm以下であることが好
ましい。このように、リチウム二次電池用発電要素の
“極の水分量”を前記のように規定するだけでなく、前
記非水系電解液の水分量も規定することにより、充放電
容量が極めて高く、サイクル性能に極めて優れたリチウ
ム二次電池を作製できる。
Further, the water content of the non-aqueous electrolyte is preferably 20 ppm or less based on the total weight of the non-aqueous electrolyte. As described above, not only the "polar water content" of the power generating element for a lithium secondary battery is specified as described above, but also the water content of the non-aqueous electrolyte is specified, so that the charge / discharge capacity is extremely high, A lithium secondary battery having extremely excellent cycle performance can be manufactured.

【0031】本発明に係るリチウム二次電池は、例え
ば、正極と負極とがセパレータを介して密着したリチウ
ム二次電池用発電要素を、電池用パッケージ内に入れ、
次いで電池用パッケージ内に非水系電解液を注液し、最
終的に封止することによって得られる。また、前記した
ように、正極,負極,セパレータを、正極収納部,負極
収納部,セパレータ収納部を有する電池用パッケージの
各収納部にそれぞれ独立して収納し、次いで電池用パッ
ケージ内に非水系電解液を注液し、最終的に封止するこ
とによって得られても良い。
In the lithium secondary battery according to the present invention, for example, a power generating element for a lithium secondary battery in which a positive electrode and a negative electrode are closely adhered via a separator is placed in a battery package.
Next, a non-aqueous electrolytic solution is injected into the battery package, and finally sealed. Further, as described above, the positive electrode, the negative electrode, and the separator are individually stored in the respective storage portions of the battery package having the positive electrode storage portion, the negative electrode storage portion, and the separator storage portion. It may be obtained by injecting an electrolytic solution and finally sealing.

【0032】なお、前記電池用パッケージは、リチウム
二次電池用発電要素が電池用パッケージ内に装填された
場合に、正極と密着できる正極用集電体と負極と密着で
きる負極用集電体とを有しているものが好ましく、例え
ば、正極用集電体としては、アルミニウム、チタン、ス
テンレス鋼、ニッケル、焼成炭素、導電性高分子、導電
性ガラス等の他に、接着性、導電性および耐酸化性向上
の目的で、アルミニウムや銅等の表面をカーボン、ニッ
ケル、チタンや銀等で処理した物を用いることができ
る。負極用集電体としては、銅、ニッケル、鉄、ステン
レス鋼、チタン、アルミニウム、焼成炭素、導電性高分
子、導電性ガラス、Al−Cd合金等の他に、接着性、
導電性、耐酸化性向上の目的で、銅等の表面をカーボ
ン、ニッケル、チタンや銀等で処理した物を用いること
ができる。これらの材料については表面を酸化処理する
ことも可能である。
The battery package includes a current collector for the positive electrode that can be in close contact with the positive electrode and a current collector for the negative electrode that can be in close contact with the negative electrode when the power generating element for a lithium secondary battery is loaded in the battery package. Preferably, for example, as the current collector for the positive electrode, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, and the like, adhesive, conductive and For the purpose of improving oxidation resistance, a material obtained by treating the surface of aluminum, copper, or the like with carbon, nickel, titanium, silver, or the like can be used. As the current collector for the negative electrode, copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc.
For the purpose of improving conductivity and oxidation resistance, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like can be used. These materials can be oxidized on the surface.

【0033】集電体の形状については、フォイル状の
他、フィルム状、シート状、ネット状、パンチ又はエキ
スパンドされた物、ラス体、多孔質体、発砲体、繊維群
の形成体等が用いられる。厚みの限定は特にないが、1
〜500μmのものが用いられる。これらの集電体の中
で、正極用集電体としては、耐酸化性に優れているアル
ミニウム箔が、負極用集電体としては、還元場において
安定であり、且つ導電性に優れ、安価な銅箔、ニッケル
箔、鉄箔、およびそれらの一部を含む合金箔を使用する
ことが好ましい。さらに、粗面表面粗さが0.2μmR
a以上の箔であることが好ましく、これにより正極およ
び負極と集電体との密着性は優れたものとなる。よっ
て、このような粗面を有することから、電解箔を使用す
るのが好ましい。特に、ハナ付き処理を施した電解箔は
最も好ましい。
Regarding the shape of the current collector, in addition to a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. Can be There is no particular limitation on the thickness.
〜500 μm is used. Among these current collectors, as the current collector for the positive electrode, an aluminum foil having excellent oxidation resistance is used, and as the current collector for the negative electrode, the aluminum foil is stable in a reduction field, and has excellent conductivity, and is inexpensive. It is preferable to use a copper foil, a nickel foil, an iron foil, and an alloy foil including a part thereof. Furthermore, the rough surface roughness is 0.2 μmR
It is preferable that the thickness of the foil be equal to or larger than “a”, whereby the adhesion between the positive electrode and the negative electrode and the current collector becomes excellent. Therefore, it is preferable to use an electrolytic foil because of having such a rough surface. In particular, an electrolytic foil subjected to a napping treatment is most preferable.

【0034】以上のようにして作製できる本発明に係る
リチウム二次電池は、リチウム二次電池用発電要素にお
ける“極の水分量”が前記のように規定されているの
で、充放電容量が高く、サイクル性能に優れる。また、
前述のように、リチウム二次電池用発電要素の生産性が
高いことから、リチウム二次電池の生産性も向上でき
る。
The lithium secondary battery according to the present invention, which can be manufactured as described above, has a high charge / discharge capacity because the “polar water content” in the power generating element for a lithium secondary battery is specified as described above. Excellent cycle performance. Also,
As described above, since the productivity of the power generation element for a lithium secondary battery is high, the productivity of the lithium secondary battery can also be improved.

【0035】[0035]

【実施例】以下に、実施例ならびに比較例を挙げて本発
明を詳細に説明するが、これらは本発明を何ら限定する
ものではない。 (実施例1) 「正極活物質の調製」酢酸リチウム二水和物と酢酸マン
ガン(II)四水和物とを、リチウムとマンガンの元素
比が1.10:1.90になるように混合し、この混合
物を酢酸に溶解した。熱を加えながら撹拌し、完全に溶
解した溶液から酢酸を蒸発させ、混合塩を得た。この混
合塩を500℃で12時間仮焼成し、続いて空気中85
0℃で24時間本焼成した。得られた焼成物を粉砕し、
粉砕物のX線回折測定(XRD測定)を行った結果、ス
ピネル構造を有するマンガン酸リチウムの生成を確認し
た。
The present invention will be described in detail below with reference to examples and comparative examples, but these are not intended to limit the present invention. (Example 1) "Preparation of positive electrode active material" Lithium acetate dihydrate and manganese (II) acetate tetrahydrate were mixed such that the element ratio of lithium and manganese was 1.10: 1.90. This mixture was dissolved in acetic acid. The mixture was stirred while applying heat, and acetic acid was evaporated from the completely dissolved solution to obtain a mixed salt. This mixed salt is temporarily calcined at 500 ° C. for 12 hours,
The main baking was performed at 0 ° C. for 24 hours. The obtained fired product is crushed,
X-ray diffraction measurement (XRD measurement) of the pulverized product confirmed the formation of lithium manganate having a spinel structure.

【0036】「正極の作製」前記のようにして調製した
正極活物質であるマンガン酸リチウムと、導電剤である
アセチレンブラックと、結着剤であるポリテトラフルオ
ロエチレン粉末とを重量比85:10:5で混合し、ト
ルエンを加えて十分混練した。これをローラープレスに
より厚み0.8mmのシート状に成形した。次にこれを
直径16mmの円形に打ち抜き、26.7Paの減圧
下、150℃で10時間乾燥した。
[Preparation of Positive Electrode] Lithium manganate as the positive electrode active material prepared as described above, acetylene black as a conductive agent, and polytetrafluoroethylene powder as a binder were mixed at a weight ratio of 85:10. : 5, and kneaded with toluene. This was formed into a 0.8 mm thick sheet by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried at 150 ° C. for 10 hours under a reduced pressure of 26.7 Pa.

【0037】「水分量の測定方法」電極の水分量測定に
は三菱化成株式会社製電量滴定式水分測定装置CA−0
6型を用いた。気相法により、窒素雰囲気下、220℃
の条件で発生する水分量をカールフィシャー法により求
めた。その結果、正極の水分量は、正極活物質1gに対
して256ppmと算出された。
[Method of Measuring Moisture Content] To measure the moisture content of the electrode, a coulometric titration moisture meter CA-0 manufactured by Mitsubishi Kasei Corporation was used.
Type 6 was used. 220 ° C under nitrogen atmosphere by gas phase method
Was determined by the Karl Fischer method. As a result, the water content of the positive electrode was calculated to be 256 ppm based on 1 g of the positive electrode active material.

【0038】「負極の作製」負極活物質である人造黒鉛
(平均粒径6μm、X線回折法による面間隔(d00 2
が0.337nmで、C軸方向の結晶の大きさ(Lc)
が55nm)とポリテトラフルオロエチレン粉末とを重
量比95:5で混合し、トルエンを加えて十分混練し
た。これをローラープレスにより厚み0.1mmのシー
ト状に成形した。次にこれを直径16mmの円形に打ち
抜き、26.7Paの減圧下、150℃で15時間乾燥
した。上記“水分量の測定方法”に従い、負極の水分量
は、負極活物質1gに対して10ppmと算出された。
[Preparation of Negative Electrode] Artificial graphite as an active material for negative electrode (average particle size: 6 μm, plane spacing (d 00 2 ) by X-ray diffraction method)
Is 0.337 nm, and the crystal size in the C-axis direction (Lc)
Was 55 nm) and polytetrafluoroethylene powder in a weight ratio of 95: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm, and dried at 150 ° C. for 15 hours under a reduced pressure of 26.7 Pa. According to the above "method of measuring water content", the water content of the negative electrode was calculated to be 10 ppm based on 1 g of the negative electrode active material.

【0039】「含フッ素系電解質を含有する非水系電解
液の調製」エチレンカーボネートとジエチルカーボネー
トの体積比1:1の混合溶剤に含フッ素系電解質である
LiPF6を1mol/lとなるように溶解させて電解
液を作成した。なお非水系電解液の水分量が多い場合、
水とLiPF6とが反応することにより遊離フッ化水素
(HF)が発生しやすく、前記フッ化水素の濃度が経時
的に変動して充放電容量・サイクル性能等の電池特性を
悪化させるおそれがあることから、本実施例はすべて2
0ppm以下の液を使用した。
"Preparation of non-aqueous electrolyte containing fluorinated electrolyte" LiPF 6 as a fluorinated electrolyte was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 so as to be 1 mol / l. Thus, an electrolytic solution was prepared. If the water content of the non-aqueous electrolyte is large,
The reaction between water and LiPF 6 tends to generate free hydrogen fluoride (HF), and the concentration of the hydrogen fluoride may fluctuate over time, thereby deteriorating battery characteristics such as charge / discharge capacity and cycle performance. Therefore, all of the examples are 2
A liquid of 0 ppm or less was used.

【0040】「リチウム二次電池用発電要素およびそれ
を用いたリチウム二次電池の作製」露点が−50℃以下
の乾燥雰囲気内において、正極集電体としてアルミニウ
ム箔を具備する正極缶(正極収納部)と、負極集電体と
して銅箔を具備する負極缶(負極収納部)とを有するコ
イン型電池用パッケージの各極缶に、前記方法により作
製した正極と負極とをそれぞれ圧着して収納し、さら
に、正極と負極との密着を防止するようにセパレータ
(ポリオレフィン系多孔質フィルム)を、コイン型電池
用パッケージに収納することによって、リチウム二次電
池用発電要素を作製した。引き続き、前記方法によって
調製された非水系電解液を、コイン型電池用パッケージ
の中に注液することによって、直径20mm、厚さ1.
6mmのコイン形状を有する実施例1のリチウム二次電
池を作製した。
[Preparation of power generating element for lithium secondary battery and lithium secondary battery using the same] In a dry atmosphere having a dew point of −50 ° C. or less, a positive electrode can having an aluminum foil as a positive electrode current collector (a positive electrode housing) Part) and a negative electrode can (anode storage part) having a copper foil as a negative electrode current collector. Further, a separator (polyolefin-based porous film) was housed in a coin-type battery package so as to prevent the close contact between the positive electrode and the negative electrode, thereby producing a power generating element for a lithium secondary battery. Subsequently, the non-aqueous electrolyte prepared by the above method was poured into a coin-type battery package to have a diameter of 20 mm and a thickness of 1.
A lithium secondary battery of Example 1 having a coin shape of 6 mm was produced.

【0041】「充放電試験」充電終止電圧を4.2V、
放電終止電圧を3.0Vとし、充放電電流1mA,試験
温度25℃の条件で定電流充放電を行った。1サイクル
目の充電および放電容量は、正極活物質換算でそれぞれ
112.8mAh/g、96.2mAh/gとなった。
また、サイクル性能として放電容量が初期の60%に低
下した時点のサイクル数を測定したところ110サイク
ルとなった。
"Charging / discharging test" The end-of-charge voltage was set to 4.2 V,
A constant current charge / discharge was performed under the conditions of a discharge end voltage of 3.0 V, a charge / discharge current of 1 mA, and a test temperature of 25 ° C. The charge and discharge capacities in the first cycle were 112.8 mAh / g and 96.2 mAh / g, respectively, in terms of the positive electrode active material.
When the number of cycles at the time when the discharge capacity was reduced to 60% of the initial value was measured as the cycle performance, it was 110 cycles.

【0042】(実施例2)正極を26.7Pa,170
℃,10時間の条件で減圧乾燥して製造した以外は、実
施例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ負極、非水系電解液およびセパレータを用
いることにより、実施例2のリチウム二次電池を作製し
た。リチウム二次電地の極群における正極の水分量は、
正極活物質1gに対して45ppmであった。実施例1
と同様に充放電試験を行ったところ、初回充電量及び初
回放電量は、それぞれ113.0mAh/g、96.1
mAh/gとなった。またサイクル性能は181となっ
た。
Example 2 The positive electrode was 26.7 Pa, 170
A negative electrode, a non-aqueous electrolytic solution and a separator were used, which were the same as those used in the lithium secondary electric field of Example 1 except that they were manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Example 2 was produced. The water content of the positive electrode in the electrode group of the lithium secondary electric field is
It was 45 ppm based on 1 g of the positive electrode active material. Example 1
When the charge / discharge test was performed in the same manner as in the above, the initial charge amount and the initial discharge amount were 113.0 mAh / g and 96.1, respectively.
mAh / g. The cycle performance was 181.

【0043】(実施例3)正極を26.7Pa,190
℃,10時間の条件で減圧乾燥して製造した以外は、実
施例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ負極、非水系電解液およびセパレータを用
いることにより、実施例3のリチウム二次電池を作製し
た。リチウム二次電地の極群における正極の水分量は、
正極活物質1gに対して45ppmであった。実施例1
と同様に充放電試験を行ったところ、初回充電量及び初
回放電量は、それぞれ112.9mAh/g、96.1
mAh/gとなった。またサイクル性能は179となっ
た。
Example 3 The positive electrode was 26.7 Pa, 190
A negative electrode, a non-aqueous electrolytic solution and a separator were used, which were the same as those used in the lithium secondary electric field of Example 1 except that they were manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Example 3 was produced. The water content of the positive electrode in the electrode group of the lithium secondary electric field is
It was 45 ppm based on 1 g of the positive electrode active material. Example 1
When the charge / discharge test was performed in the same manner as in the above, the initial charge amount and the initial discharge amount were 112.9 mAh / g and 96.1, respectively.
mAh / g. The cycle performance was 179.

【0044】(比較例1)正極を26.7Pa,120
℃,10時間の条件で減圧乾燥して製造した以外は、比
較例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ正極、非水系電解液およびセパレータを用
いることにより、比較例1のリチウム二次電池を作製し
た。リチウム二次電地の極群における正極の水分量は、
正極活物質1gに対して509ppmであった。実施例
1と同様に充放電試験を行ったところ、初回充電量及び
初回放電量は、それぞれ103.9mAh/g、88.
3mAh/gとなった。またサイクル性能は120とな
った。
(Comparative Example 1) A positive electrode of 26.7 Pa, 120
The same positive electrode, non-aqueous electrolyte and separator as used in the lithium secondary electric field electrode group used in the lithium secondary electric field of Comparative Example 1 were used except that they were manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Comparative Example 1 was produced. The water content of the positive electrode in the electrode group of the lithium secondary electric field is
It was 509 ppm with respect to 1 g of the positive electrode active material. When a charge / discharge test was performed in the same manner as in Example 1, the initial charge amount and the initial discharge amount were 103.9 mAh / g and 88.
It became 3 mAh / g. The cycle performance was 120.

【0045】(比較例2)正極を26.7Pa,100
℃,10時間の条件で減圧乾燥して製造した以外は、比
較例2のリチウム二次電地に使用したリチウム二次電地
の極群と同じ正極、非水系電解液およびセパレータを用
いることにより、比較例2のリチウム二次電池を作製し
た。リチウム二次電地の極群における正極の水分量は、
正極活物質1gに対して687ppmであった。実施例
1と同様に充放電試験を行ったところ、初回充電量及び
初回放電量は、それぞれ102.6mAh/g、87.
2mAh/gとなった。またサイクル性能は150とな
った。
(Comparative Example 2) A positive electrode was used at 26.7 Pa, 100
By using the same positive electrode, non-aqueous electrolyte and separator as in the electrode group of the lithium secondary electric field used for the lithium secondary electric field of Comparative Example 2 except that the electrode was dried under reduced pressure at 10 ° C. for 10 hours. A lithium secondary battery of Comparative Example 2 was produced. The water content of the positive electrode in the electrode group of the lithium secondary electric field is
It was 687 ppm based on 1 g of the positive electrode active material. When a charge / discharge test was performed in the same manner as in Example 1, the initial charge amount and the initial discharge amount were 102.6 mAh / g and 87.
It became 2 mAh / g. The cycle performance was 150.

【0046】以上の充放電試験の結果をまとめたものを
表1に示す。
Table 1 summarizes the results of the above charge / discharge test.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1〜3、比較例1および2のリチウ
ム電池の評価結果から確認できるように、正極製造時の
乾燥温度条件が100℃、120℃、150℃、170
℃と上昇するにつれて、正極の水分量は低下し、それ以
上の乾燥温度では一定(45ppm/g−活物質)とな
る傾向となった。また、正極の水分量が正極活物質1g
に対して260ppm付近まで低下するにつれて、初回
充電容量,初回放電容量,サイクル性能を示す値は上昇
し、正極の水分量が260ppm以下では、それぞれ1
13mAh/g付近,96mAh/g付近,180の高
い値で安定する傾向を示した。このように正極の水分量
が260ppmとなる付近に電池特性(初回充電容量,
初回放電容量,サイクル性能)の境界が存在することが
以上の実施例および比較例により明らかとなった。
As can be seen from the evaluation results of the lithium batteries of Examples 1 to 3 and Comparative Examples 1 and 2, the drying temperature conditions at the time of manufacturing the positive electrode were 100 ° C., 120 ° C., 150 ° C., 170 ° C.
As the temperature rose to ° C., the water content of the positive electrode decreased, and tended to be constant (45 ppm / g-active material) at higher drying temperatures. The amount of water in the positive electrode was 1 g of the positive electrode active material.
, The values indicating the initial charge capacity, the initial discharge capacity, and the cycle performance increase, and when the water content of the positive electrode is 260 ppm or less, 1
The values tended to be stabilized at high values of around 180 mAh / g around 13 mAh / g and around 96 mAh / g. Thus, the battery characteristics (initial charge capacity,
It was clarified from the above Examples and Comparative Examples that the boundary of the first discharge capacity and the cycle performance) existed.

【0049】(実施例4)負極を26.7Pa,170
℃,10時間の条件で減圧乾燥して製造した以外は、実
施例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ正極、非水系電解液およびセパレータを用
いることにより、実施例4のリチウム二次電池を作製し
た。リチウム二次電地の極群における負極の水分量は、
負極活物質1gに対して7ppmであった。実施例1と
同様に充放電試験を行ったところ、初回充電量及び初回
放電量は、それぞれ112.8mAh/g、96.2m
Ah/gとなった。またサイクル性能は180となっ
た。
Example 4 The negative electrode was 26.7 Pa, 170
By using the same positive electrode, non-aqueous electrolyte solution and separator as in the electrode group of the lithium secondary electric field used in Example 1 except that it was manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Example 4 was produced. The water content of the negative electrode in the electrode group of the lithium secondary electric field is
It was 7 ppm with respect to 1 g of the negative electrode active material. When a charge / discharge test was performed in the same manner as in Example 1, the initial charge amount and the initial discharge amount were 112.8 mAh / g and 96.2 m, respectively.
Ah / g. The cycle performance was 180.

【0050】(実施例5)負極を26.7Pa,120
℃,10時間の条件で減圧乾燥して製造した以外は、実
施例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ正極、非水系電解液およびセパレータを用
いることにより、実施例5のリチウム二次電池を作製し
た。リチウム二次電地の極群における負極の水分量は、
負極活物質1gに対して28ppmであった。実施例1
と同様に充放電試験を行ったところ、初回充電量及び初
回放電量は、それぞれ103.4mAh/g、87.9
mAh/gとなった。またサイクル性能は160となっ
た。
(Example 5) A negative electrode of 26.7 Pa, 120
By using the same positive electrode, non-aqueous electrolyte solution and separator as in the electrode group of the lithium secondary electric field used in Example 1 except that it was manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Example 5 was produced. The water content of the negative electrode in the electrode group of the lithium secondary electric field is
It was 28 ppm with respect to 1 g of the negative electrode active material. Example 1
When the charge / discharge test was performed in the same manner as in the above, the initial charge amount and the initial discharge amount were 103.4 mAh / g and 87.9, respectively.
mAh / g. The cycle performance was 160.

【0051】(実施例6)負極を26.7Pa,100
℃,10時間の条件で減圧乾燥して製造した以外は、実
施例1のリチウム二次電地に使用したリチウム二次電地
の極群と同じ正極、非水系電解液およびセパレータを用
いることにより、実施例6のリチウム二次電池を作製し
た。リチウム二次電地の極群における負極の水分量は、
負極活物質1gに対して38ppmであった。実施例1
と同様に充放電試験を行ったところ、初回充電量及び初
回放電量は、それぞれ103.9mAh/g、88.3
mAh/gとなった。またサイクル性能は160となっ
た。
Example 6 A negative electrode was used at 26.7 Pa, 100
By using the same positive electrode, non-aqueous electrolyte solution and separator as in the electrode group of the lithium secondary electric field used in Example 1 except that it was manufactured by drying under reduced pressure at 10 ° C. for 10 hours. Then, a lithium secondary battery of Example 6 was produced. The water content of the negative electrode in the electrode group of the lithium secondary electric field is
It was 38 ppm with respect to 1 g of the negative electrode active material. Example 1
When the charge / discharge test was performed in the same manner as in the above, the initial charge amount and the initial discharge amount were 103.9 mAh / g and 88.3, respectively.
mAh / g. The cycle performance was 160.

【0052】実施例4〜6のリチウム二次電池の充放電
試験の結果をまとめたものを表2に示す。
Table 2 summarizes the results of the charge / discharge tests of the lithium secondary batteries of Examples 4 to 6.

【0053】[0053]

【表2】 [Table 2]

【0054】実施例1,4〜6のリチウム電池の評価結
果から確認できるように、負極の水分量が負極活物質1
gに対して10ppm付近まで低下するにつれて、初回
充電容量,初回放電容量,サイクル性能を示す値は上昇
し、負極の水分量が10ppm以下では、それぞれ11
3mAh/g付近,96mAh/g付近,180の高い
値で安定する傾向を示した。このように負極の水分量が
10ppmとなる付近に電池特性(初回充電容量,初回
放電容量,サイクル性能)の境界が存在することが以上
の実施例より明らかとなった。すなわち、正極の水分量
が正極活物質1gに対して260ppm以下であること
に加え、負極活物質の水分量が負極活物質1gに対して
10ppm以下となるによって、リチウム二次電池の電
池特性(初回充電容量,初回放電容量,サイクル性能)
が極めて高くなることが確認された。負極の水分量の上
昇に伴い、初回充電容量および初回放電容量が低下する
のは、負極上に生成する不導体被膜が厚くなることによ
って、電極界面において抵抗が増大し、IR降下を起こ
していることに起因し、また、サイクル性能が低下する
のは、電解液に徐々に溶けだした水分が負極上で被膜と
して次第に蓄積していくことに起因しているものと推定
される。
As can be confirmed from the evaluation results of the lithium batteries of Examples 1 and 4 to 6, the water content of the negative electrode was
g, the values indicating the initial charge capacity, the initial discharge capacity, and the cycle performance increase, and when the water content of the negative electrode is 10 ppm or less, each of the values increases to 11 ppm.
There was a tendency to stabilize at a high value of 180 around 3 mAh / g, around 96 mAh / g. As described above, it is clear from the above Examples that the boundary of the battery characteristics (initial charge capacity, initial discharge capacity, cycle performance) exists near the water content of the negative electrode of 10 ppm. That is, in addition to the fact that the water content of the positive electrode is 260 ppm or less based on 1 g of the positive electrode active material and the water content of the negative electrode active material is 10 ppm or less based on 1 g of the negative electrode active material, the battery characteristics of the lithium secondary battery ( Initial charge capacity, initial discharge capacity, cycle performance)
Was confirmed to be extremely high. The decrease in the initial charge capacity and the initial discharge capacity with the increase in the water content of the negative electrode is due to the fact that the thickness of the nonconductive film generated on the negative electrode increases the resistance at the electrode interface, causing an IR drop. It is presumed that the decrease in cycle performance is caused by the fact that the water gradually dissolved in the electrolyte gradually accumulates as a film on the negative electrode.

【0055】さらに、以上の結果より、“極の水分量”
が前記規定を満たすように極を製造すれば、脱溶媒の工
程において、加熱・乾燥等の脱水操作を必要以上に行わ
なくとも、前述のようにリチウム二次電池の電池性能を
向上可能なリチウム二次電池用発電要素を作製できるの
で、前記規定を極の製造指標とすることにより、リチウ
ム二次電池用発電要素およびそれを用いたリチウム二次
電池の生産性を向上できることも確認された。
Further, from the above results, the "moisture content of the poles"
If the electrode is manufactured so as to satisfy the above-mentioned rules, in the step of desolvation, lithium can be used to improve the battery performance of the lithium secondary battery as described above without performing dehydration operations such as heating and drying more than necessary. Since a power generation element for a secondary battery can be manufactured, it has also been confirmed that the productivity can be improved for the power generation element for a lithium secondary battery and a lithium secondary battery using the same by using the above-mentioned rules as extreme production indexes.

【0056】[0056]

【発明の効果】本発明に係るリチウム二次電池用発電要
素によれば、請求項1に記載したように、リチウム二次
電池用発電要素において、正極の水分量が、正極活物質
1gに対して260ppm以下となるように構成されて
いるので、充放電容量が高く、サイクル性能に優れたリ
チウム二次電池を作製可能なリチウム二次電池用発電要
素を提供できる。また、少なくとも正極の水分量が前記
規定を満たせば、正極作製時における加熱・乾燥等の脱
水操作を必要以上に行わなくとも、リチウム二次電池の
電池性能を向上できるので、前記規定を正極の製造指標
とすることにより、生産性の高いリチウム二次電池用発
電要素を提供できる。
According to the power generating element for a lithium secondary battery according to the present invention, as set forth in claim 1, in the power generating element for a lithium secondary battery, the water content of the positive electrode is 1 g of the positive electrode active material. Therefore, it is possible to provide a power generating element for a lithium secondary battery capable of producing a lithium secondary battery having high charge / discharge capacity and excellent cycle performance. Further, if the water content of at least the positive electrode satisfies the above-mentioned specification, the battery performance of the lithium secondary battery can be improved without performing dehydration operations such as heating and drying more than necessary at the time of manufacturing the positive electrode. By using the production index, a power generating element for a lithium secondary battery with high productivity can be provided.

【0057】また、本発明に係るリチウム二次電池用発
電要素によれば、請求項2に記載したように、前記リチ
ウム二次電池用発電要素において、負極の水分量が、前
記負極活物質1gに対して10ppm以下となるように
構成されているので、充放電容量が極めて高く、サイク
ル性能に極めて優れたリチウム二次電池を作製可能なリ
チウム二次電池用発電要素を提供できる。また、負極の
水分量が前記規定を満たせば、負極作製時における加熱
・乾燥等の脱水操作を必要以上に行わなくとも、リチウ
ム二次電池の電池性能をさらに向上できるので、前記規
定を負極の製造指標とすることにより、生産性の高いリ
チウム二次電池用発電要素を提供できる。
According to the power generation element for a lithium secondary battery according to the present invention, as set forth in claim 2, in the power generation element for a lithium secondary battery, the water content of the negative electrode is 1 g of the negative electrode active material. Therefore, it is possible to provide a power generation element for a lithium secondary battery capable of producing a lithium secondary battery having extremely high charge / discharge capacity and extremely excellent cycle performance. Further, if the water content of the negative electrode satisfies the above-mentioned specification, the battery performance of the lithium secondary battery can be further improved without performing unnecessary dehydration operations such as heating and drying at the time of manufacturing the negative electrode. By using the production index, a power generating element for a lithium secondary battery with high productivity can be provided.

【0058】また、本発明に係るリチウム二次電池用発
電要素によれば、請求項3に記載したように、正極およ
び負極の構成成分として、公知の結着剤および集電体を
使用できるリチウム二次電池用発電要素を提供できる。
According to the power generating element for a lithium secondary battery according to the present invention, as described in claim 3, as a constituent of the positive electrode and the negative electrode, a known binder and a current collector can be used. A power generation element for a secondary battery can be provided.

【0059】また、本発明に係るリチウム二次電池によ
れば、請求項4に記載したように、本発明に係るリチウ
ム二次電池用発電要素に、含フッ素系電解質を含有する
非水系電解液が注液されており、リチウム二次電池用発
電要素の“極の水分量”が前記のように規定されている
ので、充放電容量が高く、サイクル性能に優れたリチウ
ム二次電池を提供できる。また、リチウム二次電池用発
電要素の生産性が高いことから、生産性の高いリチウム
二次電池を提供できる。
According to the lithium secondary battery of the present invention, as described in claim 4, the non-aqueous electrolytic solution containing a fluorinated electrolyte in the power generating element for a lithium secondary battery according to the present invention. And the “polar water content” of the power generating element for a lithium secondary battery is specified as described above, so that a lithium secondary battery having high charge / discharge capacity and excellent cycle performance can be provided. . Further, since the productivity of the power generation element for a lithium secondary battery is high, a lithium secondary battery with high productivity can be provided.

【0060】さらに、本発明に係るリチウム二次電池に
よれば、請求項6に記載したように、リチウム二次電池
において、前記非水系電解液の水分量が、前記非水系電
解液の総重量に対して20ppm以下となるように構成
されているので、充放電容量が極めて高く、サイクル性
能に極めて優れたリチウム二次電池を提供できる。
Further, according to the lithium secondary battery of the present invention, as set forth in claim 6, in the lithium secondary battery, the water content of the non-aqueous electrolyte is reduced by the total weight of the non-aqueous electrolyte. Therefore, a lithium secondary battery having extremely high charge / discharge capacity and extremely excellent cycle performance can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黄 修竹 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM06 AM07 BJ03 DJ07 DJ08 5H050 AA07 AA08 BA17 CA08 CA09 CB07 DA10 DA11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shutake Huang 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Inside Yuasa Corporation Co., Ltd. (72) Hiroshi Yufu, 2-3-3 Kosobe-cho, Takatsuki-shi, Osaka No. 21 F-term in Yuasa Corporation (reference) 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM06 AM07 BJ03 DJ07 DJ08 5H050 AA07 AA08 BA17 CA08 CA09 CB07 DA10 DA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を主要構成成分とする正極
と、負極活物質を主要構成成分とする負極と、セパレー
タとを有するリチウム二次電池用発電要素において、 前記正極の水分量が、前記正極活物質1gに対して26
0ppm以下となるように構成されたことを特徴とする
リチウム二次電池用発電要素。
1. A power generation element for a lithium secondary battery having a positive electrode having a positive electrode active material as a main component, a negative electrode having a negative electrode active material as a main component, and a separator, wherein the water content of the positive electrode is 26 for 1 g of positive electrode active material
A power generation element for a lithium secondary battery, wherein the power generation element is configured to be 0 ppm or less.
【請求項2】 前記負極の水分量が、前記負極活物質1
gに対して10ppm以下となるように構成されたこと
を特徴とする請求項1に記載のリチウム二次電池用発電
要素。
2. The method according to claim 1, wherein the water content of the negative electrode is less than the negative electrode active material.
The power generation element for a lithium secondary battery according to claim 1, wherein the power generation element is configured to be 10 ppm or less with respect to g.
【請求項3】 前記正極および/または前記負極が、導
電剤および結着剤を構成成分とすることを特徴とする請
求項1または2に記載のリチウム二次電池用発電要素。
3. The power generating element for a lithium secondary battery according to claim 1, wherein the positive electrode and / or the negative electrode include a conductive agent and a binder as constituent components.
【請求項4】 請求項1〜3のいずれかに記載のリチウ
ム二次電池用発電要素に、含フッ素系電解質を含有する
非水系電解液が注液されたことを特徴とするリチウム二
次電池。
4. A lithium secondary battery, wherein a non-aqueous electrolyte containing a fluorinated electrolyte is injected into the power generating element for a lithium secondary battery according to claim 1. .
【請求項5】 前記非水系電解液の水分量が、前記非水
系電解液の総重量に対して20ppm以下となるように
構成されたことを特徴とする請求項4に記載のリチウム
二次電池。
5. The lithium secondary battery according to claim 4, wherein the non-aqueous electrolyte has a water content of 20 ppm or less based on the total weight of the non-aqueous electrolyte. .
JP2000108784A 2000-04-11 2000-04-11 Power-generating element for lithium secondary battery and lithium secondary battery using same Pending JP2001297750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108784A JP2001297750A (en) 2000-04-11 2000-04-11 Power-generating element for lithium secondary battery and lithium secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108784A JP2001297750A (en) 2000-04-11 2000-04-11 Power-generating element for lithium secondary battery and lithium secondary battery using same

Publications (1)

Publication Number Publication Date
JP2001297750A true JP2001297750A (en) 2001-10-26

Family

ID=18621568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108784A Pending JP2001297750A (en) 2000-04-11 2000-04-11 Power-generating element for lithium secondary battery and lithium secondary battery using same

Country Status (1)

Country Link
JP (1) JP2001297750A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220337A (en) * 2006-02-14 2007-08-30 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolyte secondary battery
JP2008153118A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
US20100190054A1 (en) * 2009-01-29 2010-07-29 Sony Corporation Battery
JP2010238387A (en) * 2009-03-30 2010-10-21 Tdk Corp Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
JP2016072071A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, fluid dispersion used in producing the same, and production method thereof
JP2016072072A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery
US20180331389A1 (en) * 2015-11-20 2018-11-15 GM Global Technology Operations LLC Lithium ion battery
CN112005415A (en) * 2018-06-11 2020-11-27 阿莫绿色技术有限公司 Flexible battery, preparation method thereof and auxiliary battery comprising same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220337A (en) * 2006-02-14 2007-08-30 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolyte secondary battery
JP2008153118A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
US20100190054A1 (en) * 2009-01-29 2010-07-29 Sony Corporation Battery
US9209480B2 (en) * 2009-01-29 2015-12-08 Sony Corporation Secondary battery containing a nonaqueous electrolyte with a sulfonic anhydride and an aromatic compound
JP2010238387A (en) * 2009-03-30 2010-10-21 Tdk Corp Active material, electrode containing the same, electrochemical device including electrolyte solution containing electrode and lithium salt, and method of manufacturing active material
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
JP2016072071A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, fluid dispersion used in producing the same, and production method thereof
JP2016072072A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery
US20180331389A1 (en) * 2015-11-20 2018-11-15 GM Global Technology Operations LLC Lithium ion battery
CN112005415A (en) * 2018-06-11 2020-11-27 阿莫绿色技术有限公司 Flexible battery, preparation method thereof and auxiliary battery comprising same

Similar Documents

Publication Publication Date Title
KR101982790B1 (en) Positive Electrode Active Material Comprising Layered Lithium Metal Oxides and Positive Electrode having the Same
US9406931B2 (en) Positive active material and positive electrode and lithium battery including positive active material
US8795891B2 (en) Positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP4662089B2 (en) Nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
WO2012002364A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP3972577B2 (en) Lithium secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2000348722A (en) Nonaqueous electrolyte battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JPH11345614A (en) Nonaqueous electrolyte battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP4697504B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
KR101545717B1 (en) Manufacturing method of zinc manganese oxide
EP3982460A1 (en) Manufacturing method of lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125