WO2012002364A1 - Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same - Google Patents

Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same Download PDF

Info

Publication number
WO2012002364A1
WO2012002364A1 PCT/JP2011/064762 JP2011064762W WO2012002364A1 WO 2012002364 A1 WO2012002364 A1 WO 2012002364A1 JP 2011064762 W JP2011064762 W JP 2011064762W WO 2012002364 A1 WO2012002364 A1 WO 2012002364A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
lithium
compound
bati
Prior art date
Application number
PCT/JP2011/064762
Other languages
French (fr)
Japanese (ja)
Inventor
徹 川合
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2012522633A priority Critical patent/JPWO2012002364A1/en
Publication of WO2012002364A1 publication Critical patent/WO2012002364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to an electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery including the same, and more specifically, an electrode active material containing a lithium titanium composite oxide having a spinel structure as a main component.
  • the present invention relates to a substance, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery including the same.
  • secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices.
  • secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with the charge exchange.
  • lithium ion secondary batteries having a large energy density are widely used.
  • a lithium-containing transition metal oxide such as lithium cobaltate or lithium manganate is used as the positive electrode active material.
  • a carbon material capable of inserting and extracting lithium ions is used as the negative electrode active material.
  • graphite such as natural graphite and artificial graphite has a discharge voltage as low as 0.2 V with respect to lithium metal, and when graphite is used as a negative electrode active material, a battery having a discharge voltage of 3.6 V is possible.
  • a carbon material is used for the negative electrode, if a short circuit occurs inside the battery, lithium ions may flow from the negative electrode to the positive electrode at once, and the temperature may increase rapidly.
  • Lithium titanium composite oxide is a material that can occlude and release lithium ions without changing the structure and size of the crystal lattice, and is a promising electrode active material for highly reliable nonaqueous electrolyte secondary batteries.
  • Patent Document 1 in International Publication No. 2006/106700 (hereinafter referred to as Patent Document 1), in order to obtain a lithium ion battery excellent in high rate charge / discharge characteristics, a composition formula in which a part of the lithium titanate element is substituted with Al. : Li [Li (1-x) / 3 Al x Ti (5-2x) / 3 ] O 4 (0 ⁇ x ⁇ 1) is proposed as an electrode active material for a lithium ion battery. A lithium ion battery used as a negative electrode active material is disclosed.
  • Patent Document 2 Japanese Patent No. 3502118 (hereinafter referred to as Patent Document 2), the negative electrode is represented by the general formula Li x Ti y O 4 (0.8 ⁇ x ⁇ 1.4, 1.6 ⁇ y ⁇ 2.2).
  • a lithium secondary battery made of lithium titanate is disclosed.
  • Patent Document 3 discloses a compound represented by the general formula MLi 2 Ti 6 O 14 (M is Ba or Sr) as a negative electrode material for a non-aqueous lithium ion battery. Has been.
  • the non-aqueous electrolyte secondary battery has good cycle characteristics. There is a problem that the rapid charge / discharge characteristics are low. Further, according to the knowledge of the present inventor, when the compound described in Patent Document 3 is used for the negative electrode active material of a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery is only inferior in cycle characteristics. However, there is a problem that the charge / discharge capacity obtained at the time of rapid charge / discharge is small.
  • an object of the present invention is to provide an electrode active material containing spinel type lithium titanate as a main component and capable of improving the charge / discharge characteristics of a nonaqueous electrolyte secondary battery, a method for producing the same, and the It is providing the nonaqueous electrolyte secondary battery provided with.
  • Another object of the present invention is to provide an electrode active material capable of improving the charge / discharge capacity at the time of rapid charge / discharge while having at least good cycle characteristics of the nonaqueous electrolyte secondary battery, and a method for producing the same, and A non-aqueous electrolyte secondary battery including the same is provided.
  • the present inventor has mixed a barium compound into at least a lithium compound and a titanium compound as a starting material, and baked to mainly produce lithium titanate having a spinel structure.
  • synthesizing an electrode active material as a component it was found that the above-mentioned one object can be achieved by making a barium compound separate from lithium titanate and limiting the ratio of lithium to titanium to a specific range. .
  • the electrode active material according to one aspect of the present invention has the following characteristics.
  • the electrode active material according to one aspect of the present invention includes a spinel-type lithium titanate and a barium compound, and the molar ratio of lithium to titanium is less than 0.80.
  • the charge / discharge characteristics of the nonaqueous electrolyte secondary battery are improved by limiting the molar ratio of lithium to titanium to less than 0.80.
  • An electrode active material that can be obtained can be obtained.
  • the electrode active material according to one aspect of the present invention contains 0.14 mass% or more and 4.0 mass% or less of barium, and the molar ratio of lithium to titanium is more than 0.71 and less than 0.80. preferable.
  • the high rate charge / discharge characteristics of the nonaqueous electrolyte secondary battery can be improved compared to the case where no barium is contained. Can be obtained.
  • the method for producing an electrode active material according to one aspect of the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a barium compound to obtain a mixture, and a firing step of firing the mixture.
  • the mixing step it is preferable to mix the lithium compound, the titanium compound, and the barium compound so that the molar ratio of lithium to titanium is less than 0.80.
  • the barium compound mixed in the mixing step is barium carbonate.
  • the lithium compound mixed in the mixing step is preferably lithium carbonate.
  • the titanium compound mixed in the mixing step is preferably titanium oxide.
  • a nonaqueous electrolyte secondary battery according to one aspect of the present invention uses the above electrode active material as an electrode material. Moreover, the non-aqueous electrolyte secondary battery according to one aspect of the present invention uses an electrode active material manufactured by the above manufacturing method as an electrode material.
  • the present inventor has produced an electrode active material by mixing spinel type lithium titanate and Li 2 BaTi 6 O 14.
  • the electrode active material according to another aspect of the present invention has the following characteristics.
  • An electrode active material according to another aspect of the present invention includes spinel type lithium titanate and Li 2 BaTi 6 O 14 .
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 55.0: 45 in terms of mass ratio. It is preferable to be within a range up to 0.0.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 75.0 in terms of mass ratio. : It is preferable to be within the range up to 25.0.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 93.0: 7.0 to 87.0 in mass ratio. It is preferable to be within a range up to 13.0.
  • the method for producing an electrode active material according to another aspect of the present invention includes the following steps.
  • the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is in the range of 99.9: 0.1 to 55.0: 45.0 in terms of mass ratio. Furthermore, it is preferable to mix lithium titanate having a spinel structure with Li 2 BaTi 6 O 14 .
  • the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is within the range of 99.9: 0.1 to 75.0: 25.0 in terms of mass ratio.
  • the mixing ratio of the lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is within the range of 93.0: 7.0 to 87.0: 13.0 in terms of mass ratio.
  • the lithium compound is preferably lithium carbonate.
  • the titanium compound is preferably titanium oxide.
  • the barium compound is preferably barium carbonate.
  • a nonaqueous electrolyte secondary battery according to another aspect of the present invention uses the above electrode active material as an electrode material.
  • a nonaqueous electrolyte secondary battery according to another aspect of the present invention uses an electrode active material manufactured by the above manufacturing method as an electrode material.
  • an electrode active material containing spinel type lithium titanate as a main component an electrode active material capable of improving the charge / discharge characteristics of a non-aqueous electrolyte secondary battery is obtained. Can do.
  • the electrode active material includes spinel type lithium titanate and Li 2 BaTi 6 O 14 , at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 compared to a conventional electrode active material made only of lithium titanate having a spinel structure, Li 2 BaTi 6 Compared with a conventional electrode active material composed only of O 14 , the charge / discharge capacity during rapid charge / discharge can be improved.
  • An electrode active material includes a lithium titanate having a spinel structure and a barium compound, and a molar ratio of lithium to titanium is less than 0.80.
  • the electrode active material according to one aspect of the present invention includes a barium compound separately from lithium titanate, and limits the molar ratio of lithium to titanium within the above range, whereby spinel-type titanate.
  • the charge / discharge capacity per unit weight of the electrode active material can be improved, and the electrode active material having excellent charge / discharge characteristics Can be obtained.
  • the electrode active material according to one aspect of the present invention contains barium in an amount of 0.14% by mass to 4.0% by mass, and the molar ratio of lithium to titanium is more than 0.71 and less than 0.80. Can suppress the generation of a heterogeneous phase such as Li 2 TiO 3, so that the charge / discharge capacity per unit weight of the electrode active material at the time of high rate charge / discharge can be improved as compared with the case where no barium is contained. Thus, an electrode active material having excellent rapid charge / discharge characteristics can be obtained. Moreover, the electrode active material according to one aspect of the present invention contains 0.5% to 3.5% by weight of barium, and the molar ratio of lithium to titanium is 0.73 to 0.79. Is preferred.
  • the electrode active material according to one aspect of the present invention contains 1.0% by mass to 3.0% by mass of barium, and the molar ratio of lithium to titanium is 0.74 to 0.78. Is preferred. In this case, an electrode active material having further excellent rapid charge / discharge characteristics can be obtained.
  • examples of the spinel-type lithium titanate contained in the electrode active material according to one aspect of the present invention include Li 4 Ti 5 O 12 .
  • Lithium titanate may contain elements other than lithium, titanium, and oxygen.
  • the barium compound present separately from lithium titanate may be a compound that acts as an electrode active material, or may be a compound that does not act as an electrode active material. is there.
  • a part of barium may be contained as a compound substituted in spinel type lithium titanate.
  • the method for producing an electrode active material according to one aspect of the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a barium compound to obtain a mixture, and a baking step of baking the mixture. It is characterized by.
  • the mixing step it is preferable to mix the lithium compound, the titanium compound, and the barium compound so that the molar ratio of lithium to titanium is less than 0.80.
  • the barium compound is preferably barium carbonate.
  • the lithium compound is preferably lithium carbonate.
  • the titanium compound is preferably titanium oxide.
  • An electrode active material according to another aspect of the present invention is characterized by containing spinel type lithium titanate and Li 2 BaTi 6 O 14 . Due to this feature, the electrode active material according to another aspect of the present invention has at least good cycle characteristics of the nonaqueous electrolyte secondary battery, and has a spinel type lithium titanate, Li 2 BaTi 6 O 14 and Compared with the conventional electrode active material consisting only of spinel type lithium titanate and by adjusting the mixing ratio, rapid charge / discharge compared with the conventional electrode active material consisting only of Li 2 BaTi 6 O 14 The charge / discharge capacity at the time can be improved.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 55.0: 45 in terms of mass ratio. It is preferable to be within a range up to 0.0.
  • lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 are mixed within the above mass ratio range, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and rapid charge / discharge The charge / discharge capacity at the time can be improved.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 75.0 in terms of mass ratio. : More preferably, it is within the range of up to 25.0. In this case, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and the charge / discharge capacity during rapid charge / discharge can be further improved.
  • the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 93.0: 7.0 to 87.0 in mass ratio. More preferably, it is within the range of up to 13.0. In this case, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and the charge / discharge capacity during rapid charge / discharge can be further improved.
  • An example of the spinel-type lithium titanate contained in the electrode active material according to another aspect of the present invention includes Li 4 Ti 5 O 12 .
  • Lithium titanate may contain elements other than lithium, titanium, and oxygen.
  • elements other than lithium, titanium, and oxygen may be included in a substituted form in lithium titanate having a spinel structure.
  • a lithium titanate having a spinel structure is obtained by firing a mixture obtained by mixing a lithium compound and a titanium compound.
  • a mixture obtained by mixing the lithium compound and the titanium compound and the barium compound to obtain a Li 2 BaTi 6 O 14.
  • the obtained spinel type lithium titanate and Li 2 BaTi 6 O 14 are mixed.
  • the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is in the range of 99.9: 0.1 to 55.0: 45.0 in terms of mass ratio.
  • the mixing ratio is more preferably in the range of 99.9: 0.1 to 75.0: 25.0 by mass ratio.
  • the mixing ratio is more preferably in the range of 93.0: 7.0 to 87.0: 13.0 by mass ratio.
  • examples of the lithium compound include lithium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. And lithium carbonate. In particular, it is preferable to use lithium carbonate as the lithium compound.
  • examples of the titanium compound include titanium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides.
  • titanium oxide it is preferable to use titanium oxide as the titanium compound.
  • examples of the barium compound include barium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specific examples include barium carbonate and barium oxide. In particular, it is preferable to use barium carbonate as the barium compound.
  • the mixing method, mixing conditions in the mixing step, and the baking method and baking conditions in the baking step can be arbitrarily set in consideration of the required characteristics, productivity, and the like of the nonaqueous electrolyte secondary battery.
  • a negative electrode is formed.
  • a negative electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a negative electrode active material slurry, and this negative electrode active material slurry is coated on the electrode current collector by an arbitrary coating method.
  • the negative electrode is formed by drying.
  • a positive electrode is formed.
  • a positive electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a positive electrode active material slurry, and this positive electrode active material slurry is coated on the electrode current collector by an arbitrary coating method.
  • the positive electrode is formed by drying.
  • the positive electrode active material is not particularly limited, and a lithium transition metal composite containing lithium compounds such as lithium cobaltate, lithium manganate, and lithium nickelate, and optionally aluminum in addition to manganese and nickel.
  • a lithium transition metal composite containing lithium compounds such as lithium cobaltate, lithium manganate, and lithium nickelate, and optionally aluminum in addition to manganese and nickel.
  • An oxide or the like can be used.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, and carboxymethylcellulose can be used.
  • the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile.
  • basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile.
  • Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, and protic solvents such as methanol and ethanol can be used.
  • the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the amount of the additive, and the like can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
  • the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal.
  • the positive electrode 14 is placed on the top.
  • the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space.
  • a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • the electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes.
  • an electrolyte one having an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at room temperature can be used.
  • an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
  • the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.
  • a solid electrolyte for electrolyte.
  • the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride.
  • Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Examples include acrylonitrile-based polymers such as lauric acid copolymers and acrylonitrile-vinyl acetate copolymers, as well as polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates.
  • electrolyte solution contains electrolyte solution and made it gelatinous as electrolyte.
  • a polymer compound containing an electrolyte salt may be used as an electrolyte as it is.
  • an electrolyte Li 2 S-P 2 S 5 based, Li 2 S-B 2 S 3 type, may be used an inorganic solid electrolyte such as sulfide glass represented by Li 2 S-SiS 2 system.
  • the coin-type secondary battery has been described, but it is needless to say that the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Further, the exterior method is not particularly limited, and a metal case, a mold resin, an aluminum laminate film, or the like may be used.
  • the electrode active material of the present invention is used for the negative electrode, but it can also be applied to the positive electrode.
  • the electrode active material is used for a non-aqueous electrolyte secondary battery has been described, but it can also be used for a primary battery.
  • Example shown below is an example and this invention is not limited to the following Example.
  • An electrode active material mainly composed of lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure was prepared by the following method.
  • the raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ), and barium carbonate (BaCO 3 ) have the following molar ratios of lithium (Li), titanium (Ti), and barium (Ba):
  • the slurry was weighed so as to have the ratios shown in Examples 1 to 8 and Comparative Examples 1 to 6 and mixed in a wet manner using water as a solvent by a ball mill using alumina balls having a diameter of 5 mm. It was. After the slurry thus obtained was spray-dried, the dried powder was fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare each electrode active material.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 0.143% by mass.
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis in the obtained electrode active material was 0.291% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis in the obtained electrode active material was 1.37% by mass.
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 2.57% by mass.
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 3% by mass.
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 3.5% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 4% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 4.58% by mass.
  • Li: Ti: Ba 4.0: 5.0: 0 (in this case, the electrode active material contains only spinel-type lithium titanate (Li 4 Ti 5 O 12 ), and the molar ratio of lithium to titanium (Li / Ti ratio) becomes 0.80.) Ba was not detected by ICP analysis in the obtained electrode active material.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis in the obtained electrode active material was 0.144% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis in the obtained electrode active material was 0.294% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 1.44% by mass.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis was 2.85% by mass.
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium.
  • the Ba content by ICP analysis in the obtained electrode active material was 5.52% by mass.
  • a coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
  • a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12.
  • a positive electrode 14 of the coin-type non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the non-aqueous materials of Examples 1 to 8 and Comparative Examples 1 to 6 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
  • the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture.
  • This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry.
  • This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 ⁇ m at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm.
  • An electrode sheet was produced by punching into a plate.
  • This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG.
  • the negative electrode 15 a disk made of a metal lithium foil having a diameter of 15.5 mm was used.
  • a current collector plate 17 was bonded to the negative electrode 15.
  • the separator 16 a disk-like polyethylene porous film having a diameter of 16 mm was used.
  • the electrolytic solution a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and lithium hexafluorophosphate (LiPF 6 ) was mixed so as to be 1 mol was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
  • the charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above. After charging and discharging for 3 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 1.0 to 3.0 V, assuming that the current value at which charging or discharging ends in 1 hour is 1 C. The battery was discharged for 2 hours at a constant voltage of 3.0 V, charged to 1.0 V at a current value of 0.2 C, and the charge capacity (0.2 C charge capacity) at a current value of 0.2 C was measured. .
  • the Li / Ti ratio was made smaller than 0.80, so that it was 0 as compared with any of Comparative Examples 1 to 6 in which the Ba content was about the same amount. .2C charge capacity, 0.2C discharge capacity, 10C charge capacity, and 10C discharge capacity are high values, and the charge / discharge capacity per unit weight of the electrode active material can be improved, and the electrode has excellent charge / discharge characteristics. It can be seen that an active material can be obtained.
  • the Ba content is 0.14% by mass or more and 4.0% by mass or less, and the Li / Ti ratio is greater than 0.71 and less than 0.80, so that Ba is not included.
  • the 10C charge capacity and 10C discharge capacity are high values, and it is possible to improve the charge / discharge capacity per unit weight of the electrode active material during high rate charge / discharge, and the electrode has excellent rapid charge / discharge characteristics It can be seen that an active material can be obtained.
  • the spinel type lithium titanate (Li 4 Ti 5 O 12 ) was synthesized by the following method.
  • the raw materials lithium carbonate (Li 2 CO 3 ) and titanium oxide (TiO 2 ) were weighed so that the molar ratio of lithium (Li) and titanium (Ti) was 4: 5, respectively, and alumina having a diameter of 5 mm.
  • a ball mill using balls water was used as a solvent and mixed in a wet manner to obtain a slurry.
  • the dried powder obtained by spray drying this slurry was put in a sheath containing alumina as a main component and fired in the atmosphere at a temperature of 850 ° C. for 1 hour to produce Li 4 Ti 5 O 12 .
  • Li 2 BaTi 6 O 14 was synthesized by the following method.
  • the raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ) and barium carbonate (BaCO 3 ) are in a molar ratio of 2: 6 for lithium (Li), titanium (Ti) and barium (Ba), respectively.
  • the dried powder obtained by spray drying this slurry was put in a sheath containing alumina as a main component and fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare Li 2 BaTi 6 O 14 .
  • Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 As the mixing ratio of the obtained Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 is the ratio shown in Table 2 below at a mass ratio, Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 Were mixed to prepare electrode active materials of Examples 11 to 18 and Comparative Examples 11 to 12.
  • a coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
  • a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12.
  • a positive electrode 14 of the coin-type non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the non-aqueous materials of Examples 11 to 18 and Comparative Examples 11 to 12 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
  • the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture.
  • This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry.
  • This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 ⁇ m at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm.
  • An electrode sheet was produced by punching into a plate.
  • This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG.
  • the negative electrode 15 a disk made of a metal lithium foil having a diameter of 15.5 mm was used.
  • a current collector plate 17 was bonded to the negative electrode 15.
  • the separator 16 a disk-like polyethylene porous film having a diameter of 16 mm was used.
  • the electrolytic solution a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and 1 mole of lithium hexafluorophosphate (LiPF 6 ) was mixed per liter of the solvent was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
  • the charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above. After charging and discharging for 3 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 0.5 to 3.0 V, assuming that the current value at which charging or discharging ends in 1 hour is 1 C. The battery was discharged at a constant voltage of 3.0 V for 2 hours and then charged to 0.5 V at a current value of 10 C, and the charge capacity (10 C charge capacity) at a current value of 10 C was measured.
  • the battery is charged to 0.5 V with a current value of 0.2 C, charged for 2 hours with a constant voltage of 0.5 V, and then 3.0 V with a current value of 10 C. Then, the battery was discharged to a voltage of 10 C, and the discharge capacity (10 C discharge capacity) at a current value of 10 C was measured.
  • cycle characteristics were evaluated using the produced coin-type non-aqueous electrolyte secondary battery 1. Specifically, assuming that the current value at which charging or discharging ends in 1 hour is 1 C, charging and discharging is performed 100 cycles in a constant temperature bath at 25 ° C. with a current value of 1 C and a voltage range of 0.5 to 3.0 V. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle was calculated as the capacity retention rate after 100 cycles, and the cycle characteristics were evaluated.
  • the measurement results of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 using the electrode active materials of Examples 11 to 18 and Comparative Examples 11 to 12 are shown in Table 2 as “10C charge capacity”, “10C discharge capacity” and “ It is shown as “capacity maintenance rate after 100 cycles”.
  • the capacity retention rate after at least 100 cycles is good by limiting to the inside, and compared with the case of using an electrode active material (Comparative Example 11) made only of Li 4 Ti 5 O 12 , Li 2 BaTi 6 in comparison with the case of using the O 14 consists of only the electrode active material (Comparative example 12), as charge-discharge capacity at the time of rapid charging and discharging, it is understood that it is possible to improve the 10C charge capacity and 10C discharge capacity. Further, as in Examples 14 to 15, the mixing ratio of Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 ranges from 93.0: 7.0 to 87.0: 13.0 in terms of mass ratio.
  • the capacity retention rate after at least 100 cycles is good by limiting to the inside, and compared with the case of using an electrode active material (Comparative Example 11) made only of Li 4 Ti 5 O 12 , Li 2 BaTi 6 in comparison with the case of using the O 14 consists of only the electrode active material (Comparative example 12), as charge-discharge capacity at the time of rapid charging and discharging, it is understood that it is possible to further improve the 10C charge capacity and 10C discharge capacity.
  • the electrode active material according to one aspect of the present invention is an electrode active material that contains spinel-type lithium titanate as a main component and can improve the charge / discharge characteristics of the nonaqueous electrolyte secondary battery. It is useful for manufacturing non-aqueous electrolyte secondary batteries.
  • the electrode active material according to another aspect of the present invention it is possible to improve both the cycle characteristics of the nonaqueous electrolyte secondary battery and the charge / discharge capacity at the time of rapid charge / discharge.
  • the electrode active material according to another aspect of is useful for the production of a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed are: an electrode active material which contains lithium titanate having a spinel structure as a main component and is capable of improving charge/discharge characteristics of a nonaqueous electrolyte secondary battery; a method for producing the electrode active material; and a nonaqueous electrolyte secondary battery which comprises the electrode active material. The electrode active material contains lithium titanate having a spinel structure and a barium compound, and the molar ratio of lithium to titanium is less than 0.80.

Description

電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
 本発明は、一般的には電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池に関し、特定的には、スピネル型構造のリチウムチタン複合酸化物を主成分として含む電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池に関する。 The present invention generally relates to an electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery including the same, and more specifically, an electrode active material containing a lithium titanium composite oxide having a spinel structure as a main component. The present invention relates to a substance, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery including the same.
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池が待望されている。そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。その中でも、エネルギー密度の大きなリチウムイオン二次電池は広く普及している。 With the expansion of the market for portable electronic devices such as mobile phones, notebook computers, and digital cameras, secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices. In response to such demands, secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with the charge exchange. Among them, lithium ion secondary batteries having a large energy density are widely used.
 上記のリチウムイオン二次電池では、正極活物質としてコバルト酸リチウム、マンガン酸リチウム等のリチウム含有遷移金属酸化物が使用されている。また、負極活物質として、リチウムイオンを吸蔵・放出可能な炭素材料が使用されている。炭素材料の中でも、天然黒鉛、人造黒鉛等の黒鉛は、放電電圧がリチウム金属に対して0.2Vと低く、黒鉛を負極活物質として用いた場合、放電電圧が3.6Vの電池が可能となる。しかしながら、炭素材料を負極に用いた場合、電池内部で短絡が発生すると、負極から正極に一気にリチウムイオンが流れ、温度が急上昇する恐れがある。 In the above lithium ion secondary battery, a lithium-containing transition metal oxide such as lithium cobaltate or lithium manganate is used as the positive electrode active material. In addition, a carbon material capable of inserting and extracting lithium ions is used as the negative electrode active material. Among carbon materials, graphite such as natural graphite and artificial graphite has a discharge voltage as low as 0.2 V with respect to lithium metal, and when graphite is used as a negative electrode active material, a battery having a discharge voltage of 3.6 V is possible. Become. However, when a carbon material is used for the negative electrode, if a short circuit occurs inside the battery, lithium ions may flow from the negative electrode to the positive electrode at once, and the temperature may increase rapidly.
 そこで、電池内部で短絡が生じても急激に電流が流れないチタン酸リチウム等のリチウムチタン複合酸化物が注目されている。リチウムチタン複合酸化物は、結晶格子の構造、サイズを変化させることなくリチウムイオンを吸蔵・放出できる材料であり、高信頼性の非水電解質二次電池の電極活物質として有力である。 Therefore, lithium-titanium composite oxides such as lithium titanate, in which current does not flow suddenly even if a short circuit occurs inside the battery, are attracting attention. Lithium titanium composite oxide is a material that can occlude and release lithium ions without changing the structure and size of the crystal lattice, and is a promising electrode active material for highly reliable nonaqueous electrolyte secondary batteries.
 たとえば、国際公開第2006/106700号(以下、特許文献1という)では、高率充放電特性に優れたリチウムイオン電池を得るために、チタン酸リチウムの元素の一部をAlで置換した組成式:Li[Li(1-x)/3AlxTi(5-2x)/3]O4(0<x<1)で表わされるリチウムイオン電池用電極活物質が提案され、この電極活物質を負極活物質として用いたリチウムイオン電池が開示されている。 For example, in International Publication No. 2006/106700 (hereinafter referred to as Patent Document 1), in order to obtain a lithium ion battery excellent in high rate charge / discharge characteristics, a composition formula in which a part of the lithium titanate element is substituted with Al. : Li [Li (1-x) / 3 Al x Ti (5-2x) / 3 ] O 4 (0 <x <1) is proposed as an electrode active material for a lithium ion battery. A lithium ion battery used as a negative electrode active material is disclosed.
 また、特許第3502118号公報(以下、特許文献2という)では、負極が一般式LixTiy4(0.8≦x≦1.4、1.6≦y≦2.2)で表されるチタン酸リチウムからなるリチウム二次電池が開示されている。 In Japanese Patent No. 3502118 (hereinafter referred to as Patent Document 2), the negative electrode is represented by the general formula Li x Ti y O 4 (0.8 ≦ x ≦ 1.4, 1.6 ≦ y ≦ 2.2). A lithium secondary battery made of lithium titanate is disclosed.
 さらに、米国特許第7390594号明細書(以下、特許文献3という)では、非水リチウムイオン電池の負極材料として一般式MLi2Ti614(MはBaまたはSr)で表される化合物が開示されている。 Further, US Pat. No. 7,390,594 (hereinafter referred to as Patent Document 3) discloses a compound represented by the general formula MLi 2 Ti 6 O 14 (M is Ba or Sr) as a negative electrode material for a non-aqueous lithium ion battery. Has been.
国際公開第2006/106700号International Publication No. 2006/106700 特許第3502118号公報Japanese Patent No. 3502118 米国特許第7390594号明細書US Pat. No. 7,390,594
 しかしながら、特許文献1の実施例に記載されているように、Alの置換量x(モル比率)が0.1を超えるリチウムチタン複合酸化物を非水電解質二次電池の負極活物質に用いると、電極活物質の単位重量当たりの充放電容量が低下するという問題がある。 However, as described in the Examples of Patent Document 1, when a lithium titanium composite oxide having an Al substitution amount x (molar ratio) exceeding 0.1 is used as a negative electrode active material of a nonaqueous electrolyte secondary battery. There is a problem that the charge / discharge capacity per unit weight of the electrode active material decreases.
 本発明者の知見によれば、特許文献2に記載されたチタン酸リチウムを非水電解質二次電池の負極活物質に用いると、その非水電解質二次電池は、サイクル特性が良好であるが、急速充放電特性が低いという問題がある。また、本発明者の知見によれば、特許文献3に記載された化合物を非水電解質二次電池の負極活物質に用いると、その非水電解質二次電池は、サイクル特性に劣っているだけでなく、急速充放電時に得られる充放電容量が小さいという問題がある。 According to the knowledge of the present inventor, when lithium titanate described in Patent Document 2 is used as a negative electrode active material of a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery has good cycle characteristics. There is a problem that the rapid charge / discharge characteristics are low. Further, according to the knowledge of the present inventor, when the compound described in Patent Document 3 is used for the negative electrode active material of a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery is only inferior in cycle characteristics. However, there is a problem that the charge / discharge capacity obtained at the time of rapid charge / discharge is small.
 そこで、本発明の一つの目的は、スピネル型構造のチタン酸リチウムを主成分として含み、非水電解質二次電池の充放電特性を向上させることが可能な電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池を提供することである。 Accordingly, an object of the present invention is to provide an electrode active material containing spinel type lithium titanate as a main component and capable of improving the charge / discharge characteristics of a nonaqueous electrolyte secondary battery, a method for producing the same, and the It is providing the nonaqueous electrolyte secondary battery provided with.
 また、本発明のもう一つの目的は、非水電解質二次電池の少なくともサイクル特性が良好であるとともに急速充放電時における充放電容量を向上させることが可能な電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池を提供することである。 Another object of the present invention is to provide an electrode active material capable of improving the charge / discharge capacity at the time of rapid charge / discharge while having at least good cycle characteristics of the nonaqueous electrolyte secondary battery, and a method for producing the same, and A non-aqueous electrolyte secondary battery including the same is provided.
 本発明者は、従来技術の問題点を解決するために鋭意研究を重ねた結果、出発原料として少なくともリチウム化合物とチタン化合物にバリウム化合物を混合し、焼成してスピネル型構造のチタン酸リチウムを主成分とした電極活物質を合成する際に、チタン酸リチウムとは別にバリウム化合物を存在させるとともにチタンに対するリチウムの比率を特定の範囲に限定することにより、上記の一つの目的を達成できることを見出した。この知見に基づいて、本発明の一つの局面に従った電極活物質は、次のような特徴を備えている。 As a result of intensive studies to solve the problems of the prior art, the present inventor has mixed a barium compound into at least a lithium compound and a titanium compound as a starting material, and baked to mainly produce lithium titanate having a spinel structure. When synthesizing an electrode active material as a component, it was found that the above-mentioned one object can be achieved by making a barium compound separate from lithium titanate and limiting the ratio of lithium to titanium to a specific range. . Based on this knowledge, the electrode active material according to one aspect of the present invention has the following characteristics.
 本発明の一つの局面に従った電極活物質は、スピネル型構造のチタン酸リチウムとバリウム化合物とを含み、チタンに対するリチウムのモル比率が0.80未満である。 The electrode active material according to one aspect of the present invention includes a spinel-type lithium titanate and a barium compound, and the molar ratio of lithium to titanium is less than 0.80.
 本発明の一つの局面によれば、バリウム含有量が同量程度の場合にチタンに対するリチウムのモル比率を0.80未満に限定することにより、非水電解質二次電池の充放電特性を向上させることが可能な電極活物質を得ることができる。 According to one aspect of the present invention, when the barium content is about the same amount, the charge / discharge characteristics of the nonaqueous electrolyte secondary battery are improved by limiting the molar ratio of lithium to titanium to less than 0.80. An electrode active material that can be obtained can be obtained.
 本発明の一つの局面に従った電極活物質は、バリウムを0.14質量%以上4.0質量%以下含み、チタンに対するリチウムのモル比率が0.71を超え0.80未満であることが好ましい。 The electrode active material according to one aspect of the present invention contains 0.14 mass% or more and 4.0 mass% or less of barium, and the molar ratio of lithium to titanium is more than 0.71 and less than 0.80. preferable.
 このように、バリウム含有量とチタンに対するリチウムのモル比率とを特定の範囲に限定することにより、バリウムを含まない場合に比べて、非水電解質二次電池の高率充放電特性を向上させることが可能な電極活物質を得ることができる。 Thus, by limiting the barium content and the molar ratio of lithium to titanium to a specific range, the high rate charge / discharge characteristics of the nonaqueous electrolyte secondary battery can be improved compared to the case where no barium is contained. Can be obtained.
 本発明の一つの局面に従った電極活物質の製造方法は、少なくとも、リチウム化合物とチタン化合物とバリウム化合物とを混合して混合物を得る混合工程と、その混合物を焼成する焼成工程とを備える。 The method for producing an electrode active material according to one aspect of the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a barium compound to obtain a mixture, and a firing step of firing the mixture.
 上記の混合工程において、チタンに対するリチウムのモル比率が0.80未満であるように、リチウム化合物とチタン化合物とバリウム化合物とを混合することが好ましい。 In the mixing step, it is preferable to mix the lithium compound, the titanium compound, and the barium compound so that the molar ratio of lithium to titanium is less than 0.80.
 さらに、上記の混合工程において混合される上記のバリウム化合物が炭酸バリウムであることが好ましい。上記の混合工程において混合される上記のリチウム化合物が炭酸リチウムであることが好ましい。上記の混合工程において混合される上記のチタン化合物が酸化チタンであることが好ましい。 Furthermore, it is preferable that the barium compound mixed in the mixing step is barium carbonate. The lithium compound mixed in the mixing step is preferably lithium carbonate. The titanium compound mixed in the mixing step is preferably titanium oxide.
 本発明の一つの局面に従った非水電解質二次電池は、上記の電極活物質を電極材料に用いたものである。また、本発明の一つの局面に従った非水電解質二次電池は、上記の製造方法により製造された電極活物質を電極材料に用いたものである。 A nonaqueous electrolyte secondary battery according to one aspect of the present invention uses the above electrode active material as an electrode material. Moreover, the non-aqueous electrolyte secondary battery according to one aspect of the present invention uses an electrode active material manufactured by the above manufacturing method as an electrode material.
 また、本発明者は、従来技術の問題点を解決するために鋭意研究を重ねた結果、スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合して電極活物質を作製することにより、上記のもう一つの目的を達成できることを見出した。この知見に基づいて、本発明のもう一つの局面に従った電極活物質は、次のような特徴を備えている。 In addition, as a result of intensive studies to solve the problems of the prior art, the present inventor has produced an electrode active material by mixing spinel type lithium titanate and Li 2 BaTi 6 O 14. Thus, it was found that the above-mentioned another purpose can be achieved. Based on this finding, the electrode active material according to another aspect of the present invention has the following characteristics.
 本発明のもう一つの局面に従った電極活物質は、スピネル型構造のチタン酸リチウムとLi2BaTi614とを含む。 An electrode active material according to another aspect of the present invention includes spinel type lithium titanate and Li 2 BaTi 6 O 14 .
 本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内であることが好ましい。 In the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 55.0: 45 in terms of mass ratio. It is preferable to be within a range up to 0.0.
 また、本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から75.0:25.0までの範囲内であることが好ましい。 Moreover, in the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 75.0 in terms of mass ratio. : It is preferable to be within the range up to 25.0.
 さらに、本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で93.0:7.0から87.0:13.0までの範囲内であることが好ましい。 Furthermore, in the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 93.0: 7.0 to 87.0 in mass ratio. It is preferable to be within a range up to 13.0.
 本発明のもう一つの局面に従った電極活物質の製造方法は、以下の工程を備える。 The method for producing an electrode active material according to another aspect of the present invention includes the following steps.
 (a)リチウム化合物とチタン化合物とを混合して得られた混合物を焼成することにより、スピネル型構造のチタン酸リチウムを得る第1の合成工程 (A) First synthesis step of obtaining lithium titanate having a spinel structure by firing a mixture obtained by mixing a lithium compound and a titanium compound
 (b)リチウム化合物とチタン化合物とバリウム化合物とを混合して得られた混合物を焼成することにより、Li2BaTi614を得る第2の合成工程 (B) Second synthesis step for obtaining Li 2 BaTi 6 O 14 by firing a mixture obtained by mixing a lithium compound, a titanium compound and a barium compound.
 (c)スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合する混合工程 (C) Mixing step of mixing spinel type lithium titanate and Li 2 BaTi 6 O 14
 上記の混合工程において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内になるように、スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合することが好ましい。 In the mixing step, the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is in the range of 99.9: 0.1 to 55.0: 45.0 in terms of mass ratio. Furthermore, it is preferable to mix lithium titanate having a spinel structure with Li 2 BaTi 6 O 14 .
 また、上記の混合工程において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から75.0:25.0までの範囲内になるように、スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合することが好ましい。 In the mixing step, the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is within the range of 99.9: 0.1 to 75.0: 25.0 in terms of mass ratio. Thus, it is preferable to mix a spinel type lithium titanate and Li 2 BaTi 6 O 14 .
 さらに、上記の混合工程において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で93.0:7.0から87.0:13.0までの範囲内になるように、スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合することが好ましい。 Furthermore, in the above mixing step, the mixing ratio of the lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is within the range of 93.0: 7.0 to 87.0: 13.0 in terms of mass ratio. Thus, it is preferable to mix a spinel type lithium titanate and Li 2 BaTi 6 O 14 .
 さらに、上記のリチウム化合物が炭酸リチウムであることが好ましい。上記のチタン化合物が酸化チタンであることが好ましい。上記のバリウム化合物が炭酸バリウムであることが好ましい。 Furthermore, the lithium compound is preferably lithium carbonate. The titanium compound is preferably titanium oxide. The barium compound is preferably barium carbonate.
 本発明のもう一つの局面に従った非水電解質二次電池は、上記の電極活物質を電極材料に用いたものである。また、本発明のもう一つの局面に従った非水電解質二次電池は、上記の製造方法により製造された電極活物質を電極材料に用いたものである。 A nonaqueous electrolyte secondary battery according to another aspect of the present invention uses the above electrode active material as an electrode material. A nonaqueous electrolyte secondary battery according to another aspect of the present invention uses an electrode active material manufactured by the above manufacturing method as an electrode material.
 本発明の一つの局面によれば、スピネル型構造のチタン酸リチウムを主成分として含む電極活物質において、非水電解質二次電池の充放電特性を向上させることが可能な電極活物質を得ることができる。 According to one aspect of the present invention, in an electrode active material containing spinel type lithium titanate as a main component, an electrode active material capable of improving the charge / discharge characteristics of a non-aqueous electrolyte secondary battery is obtained. Can do.
 また、本発明のもう一つの局面によれば、電極活物質がスピネル型構造のチタン酸リチウムとLi2BaTi614とを含むので、非水電解質二次電池の少なくともサイクル特性が良好であるとともに、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率を調整することにより、スピネル型構造のチタン酸リチウムのみからなる従来の電極活物質に比べて、またLi2BaTi614のみからなる従来の電極活物質に比べて、急速充放電時における充放電容量を向上させることが可能となる。 According to another aspect of the present invention, since the electrode active material includes spinel type lithium titanate and Li 2 BaTi 6 O 14 , at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good. At the same time, by adjusting the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 , compared to a conventional electrode active material made only of lithium titanate having a spinel structure, Li 2 BaTi 6 Compared with a conventional electrode active material composed only of O 14 , the charge / discharge capacity during rapid charge / discharge can be improved.
本発明の一つの実施の形態としてのコイン型非水電解質二次電池、ならびに本発明の実施例および比較例で作製されたコイン型非水電解質二次電池を示す図である。It is a figure which shows the coin-type nonaqueous electrolyte secondary battery as one embodiment of this invention, and the coin-type nonaqueous electrolyte secondary battery produced by the Example and comparative example of this invention.
 本発明の一つの局面に従った電極活物質は、スピネル型構造のチタン酸リチウムとバリウム化合物とを含み、チタンに対するリチウムのモル比率が0.80未満であることを特徴としている。本発明の一つの局面に従った電極活物質は、チタン酸リチウムとは別にバリウム化合物を存在させて、チタンに対するリチウムのモル比率を上記の範囲内に限定することにより、スピネル型構造のチタン酸リチウムを主成分として含む電極活物質において、バリウム含有量が同量程度の場合に、電極活物質の単位重量当たりの充放電容量を向上させることが可能となり、充放電特性に優れた電極活物質を得ることができる。 An electrode active material according to one aspect of the present invention includes a lithium titanate having a spinel structure and a barium compound, and a molar ratio of lithium to titanium is less than 0.80. The electrode active material according to one aspect of the present invention includes a barium compound separately from lithium titanate, and limits the molar ratio of lithium to titanium within the above range, whereby spinel-type titanate. In an electrode active material containing lithium as a main component, when the barium content is about the same amount, the charge / discharge capacity per unit weight of the electrode active material can be improved, and the electrode active material having excellent charge / discharge characteristics Can be obtained.
 本発明の一つの局面に従った電極活物質は、バリウムを0.14質量%以上4.0質量%以下含み、チタンに対するリチウムのモル比率が0.71を超え0.80未満である場合には、Li2TiO3等の異相の生成を抑制することができるので、バリウムを含まない場合に比べて、高率充放電時における電極活物質の単位重量当たりの充放電容量を向上させることが可能となり、急速充放電特性に優れた電極活物質を得ることができる。また、本発明の一つの局面に従った電極活物質は、バリウムを0.5質量%以上3.5質量%以下含み、チタンに対するリチウムのモル比率が0.73以上0.79以下であることが好ましい。この場合、急速充放電特性により優れた電極活物質を得ることができる。さらに、本発明の一つの局面に従った電極活物質は、バリウムを1.0質量%以上3.0質量%以下含み、チタンに対するリチウムのモル比率が0.74以上0.78以下であることが好ましい。この場合、さらに急速充放電特性に優れた電極活物質を得ることができる。 The electrode active material according to one aspect of the present invention contains barium in an amount of 0.14% by mass to 4.0% by mass, and the molar ratio of lithium to titanium is more than 0.71 and less than 0.80. Can suppress the generation of a heterogeneous phase such as Li 2 TiO 3, so that the charge / discharge capacity per unit weight of the electrode active material at the time of high rate charge / discharge can be improved as compared with the case where no barium is contained. Thus, an electrode active material having excellent rapid charge / discharge characteristics can be obtained. Moreover, the electrode active material according to one aspect of the present invention contains 0.5% to 3.5% by weight of barium, and the molar ratio of lithium to titanium is 0.73 to 0.79. Is preferred. In this case, an electrode active material superior in rapid charge / discharge characteristics can be obtained. Furthermore, the electrode active material according to one aspect of the present invention contains 1.0% by mass to 3.0% by mass of barium, and the molar ratio of lithium to titanium is 0.74 to 0.78. Is preferred. In this case, an electrode active material having further excellent rapid charge / discharge characteristics can be obtained.
 なお、本発明の一つの局面に従った電極活物質に含まれるスピネル型構造のチタン酸リチウムとしては、Li4Ti512等を挙げることができる。チタン酸リチウムがリチウム、チタンおよび酸素以外の元素を含んでいてもよい。本発明の一つの局面に従った電極活物質において、チタン酸リチウムとは別に存在するバリウム化合物は、電極活物質として作用する化合物の場合もあり、あるいは、電極活物質として作用しない化合物の場合もある。また、バリウムの一部が、スピネル型構造のチタン酸リチウム中に置換された化合物として含まれる場合もある。 Note that examples of the spinel-type lithium titanate contained in the electrode active material according to one aspect of the present invention include Li 4 Ti 5 O 12 . Lithium titanate may contain elements other than lithium, titanium, and oxygen. In the electrode active material according to one aspect of the present invention, the barium compound present separately from lithium titanate may be a compound that acts as an electrode active material, or may be a compound that does not act as an electrode active material. is there. Moreover, a part of barium may be contained as a compound substituted in spinel type lithium titanate.
 本発明の一つの局面に従った電極活物質の製造方法は、少なくとも、リチウム化合物とチタン化合物とバリウム化合物とを混合して混合物を得る混合工程と、その混合物を焼成する焼成工程とを備えることを特徴としている。上記の混合工程において、チタンに対するリチウムのモル比率が0.80未満であるように、リチウム化合物とチタン化合物とバリウム化合物とを混合することが好ましい。上記のバリウム化合物が炭酸バリウムであることが好ましい。上記のリチウム化合物が炭酸リチウムであることが好ましい。上記のチタン化合物が酸化チタンであることが好ましい。 The method for producing an electrode active material according to one aspect of the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a barium compound to obtain a mixture, and a baking step of baking the mixture. It is characterized by. In the mixing step, it is preferable to mix the lithium compound, the titanium compound, and the barium compound so that the molar ratio of lithium to titanium is less than 0.80. The barium compound is preferably barium carbonate. The lithium compound is preferably lithium carbonate. The titanium compound is preferably titanium oxide.
 本発明のもう一つの局面に従った電極活物質は、スピネル型構造のチタン酸リチウムとLi2BaTi614とを含むことを特徴としている。この特徴により、本発明のもう一つの局面に従った電極活物質は、非水電解質二次電池の少なくともサイクル特性が良好であるとともに、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率を調整することにより、スピネル型構造のチタン酸リチウムのみからなる従来の電極活物質に比べて、またLi2BaTi614のみからなる従来の電極活物質に比べて、急速充放電時における充放電容量を向上させることが可能となる。 An electrode active material according to another aspect of the present invention is characterized by containing spinel type lithium titanate and Li 2 BaTi 6 O 14 . Due to this feature, the electrode active material according to another aspect of the present invention has at least good cycle characteristics of the nonaqueous electrolyte secondary battery, and has a spinel type lithium titanate, Li 2 BaTi 6 O 14 and Compared with the conventional electrode active material consisting only of spinel type lithium titanate and by adjusting the mixing ratio, rapid charge / discharge compared with the conventional electrode active material consisting only of Li 2 BaTi 6 O 14 The charge / discharge capacity at the time can be improved.
 本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内であることが好ましい。上記の質量比率の範囲内でスピネル型構造のチタン酸リチウムとLi2BaTi614とが混合される場合には、非水電解質二次電池の少なくともサイクル特性が良好であるとともに、急速充放電時における充放電容量を向上させることが可能となる。 In the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 55.0: 45 in terms of mass ratio. It is preferable to be within a range up to 0.0. When lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 are mixed within the above mass ratio range, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and rapid charge / discharge The charge / discharge capacity at the time can be improved.
 また、本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から75.0:25.0までの範囲内であることがさらに好ましい。この場合、非水電解質二次電池の少なくともサイクル特性が良好であるとともに、急速充放電時における充放電容量をさらに向上させることが可能となる。 Moreover, in the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 99.9: 0.1 to 75.0 in terms of mass ratio. : More preferably, it is within the range of up to 25.0. In this case, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and the charge / discharge capacity during rapid charge / discharge can be further improved.
 さらに、本発明のもう一つの局面に従った電極活物質において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で93.0:7.0から87.0:13.0までの範囲内であることがより好ましい。この場合、非水電解質二次電池の少なくともサイクル特性が良好であるとともに、急速充放電時における充放電容量をさらに向上させることが可能となる。 Furthermore, in the electrode active material according to another aspect of the present invention, the mixing ratio of lithium titanate having a spinel structure and Li 2 BaTi 6 O 14 is 93.0: 7.0 to 87.0 in mass ratio. More preferably, it is within the range of up to 13.0. In this case, at least the cycle characteristics of the nonaqueous electrolyte secondary battery are good, and the charge / discharge capacity during rapid charge / discharge can be further improved.
 なお、本発明のもう一つの局面に従った電極活物質に含まれるスピネル型構造のチタン酸リチウムとしては、Li4Ti512等を挙げることができる。チタン酸リチウムがリチウム、チタンおよび酸素以外の元素を含んでいてもよい。また、リチウム、チタンおよび酸素以外の元素が、スピネル型構造のチタン酸リチウム中に置換された形態で含まれる場合もある。 An example of the spinel-type lithium titanate contained in the electrode active material according to another aspect of the present invention includes Li 4 Ti 5 O 12 . Lithium titanate may contain elements other than lithium, titanium, and oxygen. In addition, elements other than lithium, titanium, and oxygen may be included in a substituted form in lithium titanate having a spinel structure.
 本発明のもう一つの局面に従った電極活物質の製造方法では、リチウム化合物とチタン化合物とを混合して得られた混合物を焼成することにより、スピネル型構造のチタン酸リチウムを得る。一方、リチウム化合物とチタン化合物とバリウム化合物とを混合して得られた混合物を焼成することにより、Li2BaTi614を得る。得られたスピネル型構造のチタン酸リチウムとLi2BaTi614とを混合する。上記の混合工程において、スピネル型構造のチタン酸リチウムとLi2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内になるように、スピネル型構造のチタン酸リチウムとLi2BaTi614とを混合することが好ましい。また、上記の混合比率は質量比率で99.9:0.1から75.0:25.0までの範囲内であることがさらに好ましい。さらに、上記の混合比率は質量比率で93.0:7.0から87.0:13.0までの範囲内であることがより好ましい。 In the method for producing an electrode active material according to another aspect of the present invention, a lithium titanate having a spinel structure is obtained by firing a mixture obtained by mixing a lithium compound and a titanium compound. On the other hand, by firing a mixture obtained by mixing the lithium compound and the titanium compound and the barium compound to obtain a Li 2 BaTi 6 O 14. The obtained spinel type lithium titanate and Li 2 BaTi 6 O 14 are mixed. In the mixing step, the mixing ratio of the spinel type lithium titanate and Li 2 BaTi 6 O 14 is in the range of 99.9: 0.1 to 55.0: 45.0 in terms of mass ratio. Furthermore, it is preferable to mix lithium titanate having a spinel structure with Li 2 BaTi 6 O 14 . The mixing ratio is more preferably in the range of 99.9: 0.1 to 75.0: 25.0 by mass ratio. Furthermore, the mixing ratio is more preferably in the range of 93.0: 7.0 to 87.0: 13.0 by mass ratio.
 本発明の電極活物質の製造方法では、上記のリチウム化合物としては、リチウムの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられるが、具体的には、水酸化リチウム、炭酸リチウム等が挙げられる。特に、上記のリチウム化合物として炭酸リチウムを使用することが好ましい。 In the method for producing an electrode active material of the present invention, examples of the lithium compound include lithium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. And lithium carbonate. In particular, it is preferable to use lithium carbonate as the lithium compound.
 また、上記のチタン化合物としては、チタンの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられる。特に、上記のチタン化合物として酸化チタンを使用することが好ましい。 In addition, examples of the titanium compound include titanium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. In particular, it is preferable to use titanium oxide as the titanium compound.
 さらに、上記のバリウム化合物としては、バリウムの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられる。具体的には、炭酸バリウム、酸化バリウムが挙げられる。特に、上記のバリウム化合物として炭酸バリウムを使用することが好ましい。 Furthermore, examples of the barium compound include barium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specific examples include barium carbonate and barium oxide. In particular, it is preferable to use barium carbonate as the barium compound.
 上記の混合工程における混合方法、混合条件および上記の焼成工程における焼成方法、焼成条件は、非水電解質二次電池の要求特性、生産性等を考慮し、任意に設定することができる。 The mixing method, mixing conditions in the mixing step, and the baking method and baking conditions in the baking step can be arbitrarily set in consideration of the required characteristics, productivity, and the like of the nonaqueous electrolyte secondary battery.
 次に、本発明の非水電解質二次電池の製造方法の一例を以下で詳細に説明する。 Next, an example of a method for producing the nonaqueous electrolyte secondary battery of the present invention will be described in detail below.
 まず、負極を形成する。たとえば、負極活物質を導電剤および結着剤と共に混合し、有機溶剤または水を加えて負極活物質スラリーとし、この負極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより負極を形成する。 First, a negative electrode is formed. For example, a negative electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a negative electrode active material slurry, and this negative electrode active material slurry is coated on the electrode current collector by an arbitrary coating method. The negative electrode is formed by drying.
 次に、正極を形成する。たとえば、正極活物質を導電剤および結着剤と共に混合し、有機溶剤または水を加えて正極活物質スラリーとし、この正極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。 Next, a positive electrode is formed. For example, a positive electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a positive electrode active material slurry, and this positive electrode active material slurry is coated on the electrode current collector by an arbitrary coating method. The positive electrode is formed by drying.
 本発明において、正極活物質は特に限定されるものではなく、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等のリチウム化合物、マンガンとニッケルに加えて場合によってはアルミニウム等を含有するリチウム遷移金属複合酸化物等を使用することができる。 In the present invention, the positive electrode active material is not particularly limited, and a lithium transition metal composite containing lithium compounds such as lithium cobaltate, lithium manganate, and lithium nickelate, and optionally aluminum in addition to manganese and nickel. An oxide or the like can be used.
 本発明において結着剤は特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。 In the present invention, the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, and carboxymethylcellulose can be used.
 また、有機溶剤についても、特に限定されるものではなく、たとえば、ジメチルスルホキシド、ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ‐ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性、生産性等を考慮し、任意に設定することができる。 Further, the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile. Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, and protic solvents such as methanol and ethanol can be used. Moreover, the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the amount of the additive, and the like can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
 次いで、図1に示すように、上記で得られた正極14を電解質に含浸させることにより、この正極14に電解質を染み込ませた後、正極端子を兼ねたケース11の底部中央の正極集電体上に正極14を載置する。その後、電解質を含浸させたセパレータ16を正極14上に積層し、さらに負極15と集電板17を順次積層し、内部空間に電解質を注入する。そして、集電板17上に金属製のばね部材18を載置すると共に、ガスケット13を周縁に配し、かしめ機等で負極端子を兼ねた封口板12をケース11に固着して外装封止することによってコイン型非水電解質二次電池1が作製される。 Next, as shown in FIG. 1, the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal. The positive electrode 14 is placed on the top. Thereafter, the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space. Then, a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior. By doing so, the coin-type non-aqueous electrolyte secondary battery 1 is manufactured.
 なお、電解質は、正極14と対向電極である負極15との間に介在して両電極間の荷電担体輸送を行う。このような電解質としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができる。たとえば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。ここで、電解質塩としては、たとえば、LiPF6、LiClO4、LiBF4、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO23C、Li(C25SO23C等を使用することができる。 The electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes. As such an electrolyte, one having an ionic conductivity of 10 −5 to 10 −1 S / cm at room temperature can be used. For example, an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used. Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.
 上記の有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ‐ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチル‐2‐ピロリドン等を使用することができる。 As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.
 また、電解質には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、たとえば、ポリフッ化ビニリデン、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体、フッ化ビニリデン‐エチレン共重合体、フッ化ビニリデン‐モノフルオロエチレン共重合体、フッ化ビニリデン‐トリフルオロエチレン共重合体、フッ化ビニリデン‐テトラフルオロエチレン共重合体、フッ化ビニリデン‐ヘキサフルオロプロピレン‐テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル‐メチルメタクリレート共重合体、アクリロニトリル‐メチルアクリレート共重合体、アクリロニトリル‐エチルメタクリレート共重合体、アクリロニトリル‐エチルアクリレート共重合体、アクリロニトリル‐メタクリル酸共重合体、アクリロニトリル‐アクリル酸共重合体、アクリロニトリル‐ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド‐プロピレンオキサイド共重合体、および、これらのアクリレート体、メタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質として使用してもよい。あるいは電解質塩を含有させた高分子化合物のみをそのまま電解質に使用してもよい。なお、電解質として、Li2S‐P25系、Li2S‐B23系、Li2S‐SiS2系に代表される硫化物ガラス等の無機固体電解質を用いてもよい。 Moreover, you may use a solid electrolyte for electrolyte. Examples of the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride. Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Examples include acrylonitrile-based polymers such as lauric acid copolymers and acrylonitrile-vinyl acetate copolymers, as well as polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates. Can do. Moreover, you may use what made these polymer compounds contain electrolyte solution and made it gelatinous as electrolyte. Alternatively, only a polymer compound containing an electrolyte salt may be used as an electrolyte as it is. Incidentally, as an electrolyte, Li 2 S-P 2 S 5 based, Li 2 S-B 2 S 3 type, may be used an inorganic solid electrolyte such as sulfide glass represented by Li 2 S-SiS 2 system.
 上記の実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケース、モールド樹脂、アルミニウムラミネートフィルム等を使用してもよい。 In the above embodiment, the coin-type secondary battery has been described, but it is needless to say that the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Further, the exterior method is not particularly limited, and a metal case, a mold resin, an aluminum laminate film, or the like may be used.
 また、上記の実施の形態では、本発明の電極活物質を負極に使用したが、正極にも適用可能である。 In the above embodiment, the electrode active material of the present invention is used for the negative electrode, but it can also be applied to the positive electrode.
 さらに、上記の実施の形態では、電極活物質を非水電解質二次電池に使用した場合について述べたが、一次電池にも使用することが可能である。 Furthermore, in the above embodiment, the case where the electrode active material is used for a non-aqueous electrolyte secondary battery has been described, but it can also be used for a primary battery.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 [実施例A] [Example A]
 以下、スピネル型構造のチタン酸リチウムを主成分とする電極活物質を作製し、それを用いたコイン型非水電解質二次電池の実施例1~8と比較例1~6について説明する。 Hereinafter, Examples 1 to 8 and Comparative Examples 1 to 6 of a coin-type nonaqueous electrolyte secondary battery using an electrode active material mainly composed of lithium titanate having a spinel structure will be described.
 (電極活物質の合成) (Synthesis of electrode active material)
 スピネル型構造のチタン酸リチウム(Li4Ti512)を主成分とする電極活物質の作製を以下の方法で行った。 An electrode active material mainly composed of lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure was prepared by the following method.
 まず、原料である炭酸リチウム(Li2CO3)、酸化チタン(TiO2)、炭酸バリウム(BaCO3)を、それぞれ、リチウム(Li)とチタン(Ti)とバリウム(Ba)のモル比率が以下の実施例1~8と比較例1~6で示される比率になるように秤量し、直径が5mmのアルミナボールを用いたボールミルによって、溶媒として水を用いて湿式で、混合してスラリーを得た。このようにして得られたスラリーを噴霧乾燥した後、乾燥粉を大気中で850℃の温度で1時間焼成して各電極活物質を作製した。 First, the raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ), and barium carbonate (BaCO 3 ) have the following molar ratios of lithium (Li), titanium (Ti), and barium (Ba): The slurry was weighed so as to have the ratios shown in Examples 1 to 8 and Comparative Examples 1 to 6 and mixed in a wet manner using water as a solvent by a ball mill using alumina balls having a diameter of 5 mm. It was. After the slurry thus obtained was spray-dried, the dried powder was fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare each electrode active material.
 (実施例1) (Example 1)
 Li:Ti:Ba=4.01:5.03:0.005(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.79になる。)得られた電極活物質においてICP分析によるBa含有量は0.143質量%であった。 Li: Ti: Ba = 4.01: 5.03: 0.005 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 0.143% by mass.
 (実施例2) (Example 2)
 Li:Ti:Ba=4.02:5.06:0.01(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.79になる。)得られた電極活物質においてICP分析によるBa含有量は0.291質量%であった。 Li: Ti: Ba = 4.02: 5.06: 0.01 (in this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. The Ba content by ICP analysis in the obtained electrode active material was 0.291% by mass.
 (実施例3) (Example 3)
 Li:Ti:Ba=4.1:5.3:0.05(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.77になる。)得られた電極活物質においてICP分析によるBa含有量は1.37質量%であった。 Li: Ti: Ba = 4.1: 5.3: 0.05 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. The Ba content by ICP analysis in the obtained electrode active material was 1.37% by mass.
 (実施例4) (Example 4)
 Li:Ti:Ba=4.2:5.6:0.10(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.75になる。)得られた電極活物質においてICP分析によるBa含有量は2.57質量%であった。 Li: Ti: Ba = 4.2: 5.6: 0.10 (in this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 2.57% by mass.
 (実施例5) (Example 5)
 Li:Ti:Ba=4.24:5.72:0.12(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.74になる。)得られた電極活物質においてICP分析によるBa含有量は3質量%であった。 Li: Ti: Ba = 4.24: 5.72: 0.12 (in this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 3% by mass.
 (実施例6) (Example 6)
 Li:Ti:Ba=4.28:5.84:0.14(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.73になる。)得られた電極活物質においてICP分析によるBa含有量は3.5質量%であった。 Li: Ti: Ba = 4.28: 5.84: 0.14 (in this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 3.5% by mass.
 (実施例7) (Example 7)
 Li:Ti:Ba=4.32:5.96:0.16(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.72になる。)得られた電極活物質においてICP分析によるBa含有量は4質量%であった。 Li: Ti: Ba = 4.32: 5.96: 0.16 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 4% by mass.
 (実施例8) (Example 8)
 Li:Ti:Ba=4.4:6.2:0.20(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.71になる。)得られた電極活物質においてICP分析によるBa含有量は4.58質量%であった。 Li: Ti: Ba = 4.4: 6.2: 0.20 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 4.58% by mass.
 (比較例1) (Comparative example 1)
 Li:Ti:Ba=4.0:5.0:0(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)のみを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によってBaは検出されなかった。 Li: Ti: Ba = 4.0: 5.0: 0 (in this case, the electrode active material contains only spinel-type lithium titanate (Li 4 Ti 5 O 12 ), and the molar ratio of lithium to titanium (Li / Ti ratio) becomes 0.80.) Ba was not detected by ICP analysis in the obtained electrode active material.
 (比較例2) (Comparative example 2)
 Li:Ti:Ba=4.0:5.0:0.005(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によるBa含有量は0.144質量%であった。 Li: Ti: Ba = 4.0: 5.0: 0.005 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. The Ba content by ICP analysis in the obtained electrode active material was 0.144% by mass.
 (比較例3) (Comparative example 3)
 Li:Ti:Ba=4.0:5.0:0.01(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によるBa含有量は0.294質量%であった。 Li: Ti: Ba = 4.0: 5.0: 0.01 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. The Ba content by ICP analysis in the obtained electrode active material was 0.294% by mass.
 (比較例4) (Comparative example 4)
 Li:Ti:Ba=4.0:5.0:0.05(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によるBa含有量は1.44質量%であった。 Li: Ti: Ba = 4.0: 5.0: 0.05 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 1.44% by mass.
 (比較例5) (Comparative example 5)
 Li:Ti:Ba=4.0:5.0:0.10(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によるBa含有量は2.85質量%であった。 Li: Ti: Ba = 4.0: 5.0: 0.10 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. In the obtained electrode active material, the Ba content by ICP analysis was 2.85% by mass.
 (比較例6) (Comparative Example 6)
 Li:Ti:Ba=4.0:5.0:0.20(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とバリウム化合物とを含み、チタンに対するリチウムのモル比率(Li/Ti比)が0.80になる。)得られた電極活物質においてICP分析によるBa含有量は5.52質量%であった。 Li: Ti: Ba = 4.0: 5.0: 0.20 (in this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a barium compound, and lithium with respect to titanium. The Ba content by ICP analysis in the obtained electrode active material was 5.52% by mass.
 得られた各電極活物質を用いて、図1に示すようなコイン型非水電解質二次電池を作製した。 A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
 図1に示すように、コイン型非水電解質二次電池1は、正極端子を兼ねたケース11と、負極端子を兼ねた封口板12と、ケース11と封口板12とを絶縁するガスケット13と、正極14と、負極15と、正極14と負極15との間に介在したセパレータ16と、負極15の上に配置された集電板17と、集電板17と封口板12との間に配置されたばね部材18とから構成され、ケース11の内部には電解液が充填されている。 As shown in FIG. 1, a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12. The positive electrode 14, the negative electrode 15, the separator 16 interposed between the positive electrode 14 and the negative electrode 15, the current collector plate 17 disposed on the negative electrode 15, and between the current collector plate 17 and the sealing plate 12. It is comprised from the arrange | positioned spring member 18, and the inside of case 11 is filled with electrolyte solution.
 上記で作製された各電極活物質を用いて、図1に示されたコイン型非水電解質二次電池1の正極14を作製して、実施例1~8と比較例1~6の非水電解質二次電池用電極活物質としての作用効果を検証した。 A positive electrode 14 of the coin-type non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the non-aqueous materials of Examples 1 to 8 and Comparative Examples 1 to 6 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
 具体的には、上記で作製された電極活物質とアセチレンブラックとポリフッ化ビニリデンとを88:6:6の質量比率になるように秤量し、混合して電極合材を作製した。この電極合材を溶媒(N‐メチル‐2‐ピロリドン)中に分散させて電極スラリーを作製した。この電極スラリーを厚みが20μmのアルミニウム箔の表面上に6mg/cm2の塗布量で塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスした後に直径12mmの円板に打ち抜くことにより、電極シートを作製した。この電極シートを図1に示されたコイン型非水電解質二次電池1の正極14として用いた。負極15には、直径が15.5mmの金属リチウム箔からなる円板を用いた。この負極15に集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、六フッ化リン酸リチウム(LiPF6)を1モルとなるように混合したものを用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。 Specifically, the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture. This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry. This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 μm at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm. An electrode sheet was produced by punching into a plate. This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG. As the negative electrode 15, a disk made of a metal lithium foil having a diameter of 15.5 mm was used. A current collector plate 17 was bonded to the negative electrode 15. As the separator 16, a disk-like polyethylene porous film having a diameter of 16 mm was used. As the electrolytic solution, a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and lithium hexafluorophosphate (LiPF 6 ) was mixed so as to be 1 mol was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
 以上のようにして作製されたコイン型非水電解質二次電池1を用いて充放電特性を評価した。1時間で充電または放電が終了する電流値を1Cとしたときに、25℃の恒温槽で、0.2Cの電流値、1.0~3.0Vの電圧範囲で3サイクル充放電させた後に、3.0Vの定電圧で2時間放電してから、0.2Cの電流値で1.0Vまで充電を行い、0.2Cの電流値での充電容量(0.2C充電容量)を測定した。その後、1.0Vの定電圧で2時間充電してから、0.2Cの電流値で3.0Vの電圧まで放電を行い、0.2Cの電流値での放電容量(0.2C放電容量)を測定した。 The charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above. After charging and discharging for 3 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 1.0 to 3.0 V, assuming that the current value at which charging or discharging ends in 1 hour is 1 C. The battery was discharged for 2 hours at a constant voltage of 3.0 V, charged to 1.0 V at a current value of 0.2 C, and the charge capacity (0.2 C charge capacity) at a current value of 0.2 C was measured. . Then, after charging for 2 hours at a constant voltage of 1.0 V, discharging is performed to a voltage of 3.0 V at a current value of 0.2 C, and a discharge capacity at a current value of 0.2 C (0.2 C discharge capacity) Was measured.
 また、25℃の恒温槽で、0.2Cの電流値、1.0~3.0Vの電圧範囲で3サイクル充放電させた後に、3.0Vの定電圧で2時間放電してから、10Cの電流値で1.0Vまで充電を行い、10Cの電流値での充電容量(10C充電容量)を測定した。また、充電終了後、10分間経過した後に、0.2Cの電流値で1.0Vまで充電を行った後に1.0Vの定電圧で2時間充電してから、10Cの電流値で3.0Vの電圧まで放電を行い、10Cの電流値での放電容量(10C放電容量)を測定した。 In addition, after charging and discharging for 3 cycles at a current value of 0.2 C and a voltage range of 1.0 to 3.0 V in a constant temperature bath at 25 ° C., the battery was discharged at a constant voltage of 3.0 V for 2 hours, and then 10 C The battery was charged to 1.0 V at a current value of 10 C, and the charge capacity (10 C charge capacity) at a current value of 10 C was measured. In addition, after 10 minutes have elapsed after charging, after charging to 1.0 V at a current value of 0.2 C, charging was performed for 2 hours at a constant voltage of 1.0 V, and then 3.0 V at a current value of 10 C. Then, the battery was discharged to a voltage of 10 C, and the discharge capacity (10 C discharge capacity) at a current value of 10 C was measured.
 なお、この検証実験では、正極14の電極活物質として用いられた実施例1~8と比較例1~6の各電極活物質へのリチウム挿入によって電位が下降することを充電、各電極活物質からのリチウム脱離によって電位が上昇することを放電と定義する。 In this verification experiment, it was confirmed that the potential dropped due to the insertion of lithium into each electrode active material of Examples 1 to 8 and Comparative Examples 1 to 6 used as the electrode active material of the positive electrode 14. An increase in potential due to lithium desorption from is defined as discharge.
 実施例1~8と比較例1~6の電極活物質を用いたコイン型非水電解質二次電池1の電池特性の測定結果を表1に、「0.2C充電容量」、「0.2C放電容量」、「10C充電容量」および「10C放電容量」として示す。 The measurement results of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 using the electrode active materials of Examples 1 to 8 and Comparative Examples 1 to 6 are shown in Table 1, “0.2 C charge capacity”, “0.2 C It is shown as “discharge capacity”, “10C charge capacity” and “10C discharge capacity”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~8のそれぞれでは、Li/Ti比を0.80よりも小さくすることにより、Ba含有量が同量程度の場合の比較例1~6のいずれかと比べて、0.2C充電容量、0.2C放電容量、10C充電容量および10C放電容量が高い値であり、電極活物質の単位重量当たりの充放電容量を向上させることが可能となり、充放電特性に優れた電極活物質を得ることができることがわかる。また、実施例1~7では、Ba含有量を0.14質量%以上4.0質量%以下、Li/Ti比を0.71より大きく0.80未満にすることにより、Baを含まない場合と比べて、10C充電容量と10C放電容量が高い値であり、高率充放電時における電極活物質の単位重量当たりの充放電容量を向上させることが可能となり、急速充放電特性に優れた電極活物質を得ることができることがわかる。 From Table 1, in each of Examples 1 to 8, the Li / Ti ratio was made smaller than 0.80, so that it was 0 as compared with any of Comparative Examples 1 to 6 in which the Ba content was about the same amount. .2C charge capacity, 0.2C discharge capacity, 10C charge capacity, and 10C discharge capacity are high values, and the charge / discharge capacity per unit weight of the electrode active material can be improved, and the electrode has excellent charge / discharge characteristics. It can be seen that an active material can be obtained. In Examples 1 to 7, the Ba content is 0.14% by mass or more and 4.0% by mass or less, and the Li / Ti ratio is greater than 0.71 and less than 0.80, so that Ba is not included. Compared to the above, the 10C charge capacity and 10C discharge capacity are high values, and it is possible to improve the charge / discharge capacity per unit weight of the electrode active material during high rate charge / discharge, and the electrode has excellent rapid charge / discharge characteristics It can be seen that an active material can be obtained.
 [実施例B] [Example B]
 以下、スピネル型構造のチタン酸リチウムとLi2BaTi614とを含む電極活物質を作製し、それを用いたコイン型非水電解質二次電池の実施例11~18と比較例11~12について説明する。 Hereinafter, an electrode active material containing spinel type lithium titanate and Li 2 BaTi 6 O 14 was prepared, and coin-type non-aqueous electrolyte secondary batteries using the same were used as Examples 11 to 18 and Comparative Examples 11 to 12. Will be described.
 (チタン酸リチウムの合成) (Synthesis of lithium titanate)
 スピネル型構造のチタン酸リチウム(Li4Ti512)の合成を以下の方法で行った。 The spinel type lithium titanate (Li 4 Ti 5 O 12 ) was synthesized by the following method.
 原料である炭酸リチウム(Li2CO3)と酸化チタン(TiO2)を、それぞれ、リチウム(Li)とチタン(Ti)のモル比率が4:5になるように秤量し、直径が5mmのアルミナボールを用いたボールミルによって、溶媒として水を用いて湿式で、混合してスラリーを得た。このスラリーを噴霧乾燥することにより得られた乾燥粉を、アルミナを主成分とするサヤに入れ、大気中で850℃の温度で1時間焼成してLi4Ti512を作製した。 The raw materials lithium carbonate (Li 2 CO 3 ) and titanium oxide (TiO 2 ) were weighed so that the molar ratio of lithium (Li) and titanium (Ti) was 4: 5, respectively, and alumina having a diameter of 5 mm. By a ball mill using balls, water was used as a solvent and mixed in a wet manner to obtain a slurry. The dried powder obtained by spray drying this slurry was put in a sheath containing alumina as a main component and fired in the atmosphere at a temperature of 850 ° C. for 1 hour to produce Li 4 Ti 5 O 12 .
 (Li2BaTi614の合成) (Synthesis of Li 2 BaTi 6 O 14 )
 Li2BaTi614の合成を以下の方法で行った。 Li 2 BaTi 6 O 14 was synthesized by the following method.
 原料である炭酸リチウム(Li2CO3)と酸化チタン(TiO2)と炭酸バリウム(BaCO3)を、それぞれ、リチウム(Li)とチタン(Ti)とバリウム(Ba)のモル比率が2:6:1になるように秤量し、直径が5mmのアルミナボールを用いたボールミルによって、溶媒として水を用いて湿式で、混合してスラリーを得た。このスラリーを噴霧乾燥することにより得られた乾燥粉を、アルミナを主成分とするサヤに入れ、大気中で850℃の温度で1時間焼成してLi2BaTi614を作製した。 The raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ) and barium carbonate (BaCO 3 ) are in a molar ratio of 2: 6 for lithium (Li), titanium (Ti) and barium (Ba), respectively. Was weighed to 1 and mixed with a ball mill using alumina balls having a diameter of 5 mm in a wet manner using water as a solvent to obtain a slurry. The dried powder obtained by spray drying this slurry was put in a sheath containing alumina as a main component and fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare Li 2 BaTi 6 O 14 .
 (混合) (mixture)
 得られたLi4Ti512とLi2BaTi614との混合比率が質量比率で以下の表2で示される比率になるように、Li4Ti512とLi2BaTi614とを混合することにより、実施例11~18と比較例11~12の電極活物質を作製した。 As the mixing ratio of the obtained Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 is the ratio shown in Table 2 below at a mass ratio, Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 Were mixed to prepare electrode active materials of Examples 11 to 18 and Comparative Examples 11 to 12.
 得られた各電極活物質を用いて、図1に示すようなコイン型非水電解質二次電池を作製した。 A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
 図1に示すように、コイン型非水電解質二次電池1は、正極端子を兼ねたケース11と、負極端子を兼ねた封口板12と、ケース11と封口板12とを絶縁するガスケット13と、正極14と、負極15と、正極14と負極15との間に介在したセパレータ16と、負極15の上に配置された集電板17と、集電板17と封口板12との間に配置されたばね部材18とから構成され、ケース11の内部には電解液が充填されている。 As shown in FIG. 1, a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12. The positive electrode 14, the negative electrode 15, the separator 16 interposed between the positive electrode 14 and the negative electrode 15, the current collector plate 17 disposed on the negative electrode 15, and between the current collector plate 17 and the sealing plate 12. It is comprised from the arrange | positioned spring member 18, and the inside of case 11 is filled with electrolyte solution.
 上記で作製された各電極活物質を用いて、図1に示されたコイン型非水電解質二次電池1の正極14を作製して、実施例11~18と比較例11~12の非水電解質二次電池用電極活物質としての作用効果を検証した。 A positive electrode 14 of the coin-type non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the non-aqueous materials of Examples 11 to 18 and Comparative Examples 11 to 12 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
 具体的には、上記で作製された電極活物質とアセチレンブラックとポリフッ化ビニリデンとを88:6:6の質量比率になるように秤量し、混合して電極合材を作製した。この電極合材を溶媒(N‐メチル‐2‐ピロリドン)中に分散させて電極スラリーを作製した。この電極スラリーを厚みが20μmのアルミニウム箔の表面上に6mg/cm2の塗布量で塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスした後に直径12mmの円板に打ち抜くことにより、電極シートを作製した。この電極シートを図1に示されたコイン型非水電解質二次電池1の正極14として用いた。負極15には、直径が15.5mmの金属リチウム箔からなる円板を用いた。この負極15に集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、溶媒1リットル当たり1モルの六フッ化リン酸リチウム(LiPF6)を混合したものを用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。 Specifically, the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture. This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry. This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 μm at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm. An electrode sheet was produced by punching into a plate. This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG. As the negative electrode 15, a disk made of a metal lithium foil having a diameter of 15.5 mm was used. A current collector plate 17 was bonded to the negative electrode 15. As the separator 16, a disk-like polyethylene porous film having a diameter of 16 mm was used. As the electrolytic solution, a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and 1 mole of lithium hexafluorophosphate (LiPF 6 ) was mixed per liter of the solvent was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
 以上のようにして作製されたコイン型非水電解質二次電池1を用いて充放電特性を評価した。1時間で充電または放電が終了する電流値を1Cとしたときに、25℃の恒温槽で、0.2Cの電流値、0.5~3.0Vの電圧範囲で3サイクル充放電させた後に、3.0Vの定電圧で2時間放電してから、10Cの電流値で0.5Vまで充電を行い、10Cの電流値での充電容量(10C充電容量)を測定した。また、充電終了後、10分間経過した後に、0.2Cの電流値で0.5Vまで充電を行った後に0.5Vの定電圧で2時間充電してから、10Cの電流値で3.0Vの電圧まで放電を行い、10Cの電流値での放電容量(10C放電容量)を測定した。 The charge / discharge characteristics were evaluated using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above. After charging and discharging for 3 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 0.5 to 3.0 V, assuming that the current value at which charging or discharging ends in 1 hour is 1 C. The battery was discharged at a constant voltage of 3.0 V for 2 hours and then charged to 0.5 V at a current value of 10 C, and the charge capacity (10 C charge capacity) at a current value of 10 C was measured. In addition, after 10 minutes have elapsed after charging, the battery is charged to 0.5 V with a current value of 0.2 C, charged for 2 hours with a constant voltage of 0.5 V, and then 3.0 V with a current value of 10 C. Then, the battery was discharged to a voltage of 10 C, and the discharge capacity (10 C discharge capacity) at a current value of 10 C was measured.
 また、作製されたコイン型非水電解質二次電池1を用いてサイクル特性を評価した。具体的には、1時間で充電または放電が終了する電流値を1Cとしたときに、25℃の恒温槽で、1Cの電流値、0.5~3.0Vの電圧範囲で100サイクル充放電を行い、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を、100サイクル後の容量維持率として算出してサイクル特性を評価した。 In addition, cycle characteristics were evaluated using the produced coin-type non-aqueous electrolyte secondary battery 1. Specifically, assuming that the current value at which charging or discharging ends in 1 hour is 1 C, charging and discharging is performed 100 cycles in a constant temperature bath at 25 ° C. with a current value of 1 C and a voltage range of 0.5 to 3.0 V. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle was calculated as the capacity retention rate after 100 cycles, and the cycle characteristics were evaluated.
 なお、この検証実験では、正極14の電極活物質として用いられた実施例11~18と比較例11~12の各電極活物質へのリチウム挿入によって電位が下降することを充電、各電極活物質からのリチウム脱離によって電位が上昇することを放電と定義する。 Note that in this verification experiment, charging was carried out to show that the potential dropped due to insertion of lithium into each electrode active material of Examples 11 to 18 and Comparative Examples 11 to 12 used as the electrode active material of the positive electrode 14, and each electrode active material An increase in potential due to lithium desorption from is defined as discharge.
 実施例11~18と比較例11~12の電極活物質を用いたコイン型非水電解質二次電池1の電池特性の測定結果を表2に「10C充電容量」、「10C放電容量」および「100サイクル後の容量維持率」として示す。 The measurement results of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 using the electrode active materials of Examples 11 to 18 and Comparative Examples 11 to 12 are shown in Table 2 as “10C charge capacity”, “10C discharge capacity” and “ It is shown as “capacity maintenance rate after 100 cycles”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例11~18では、Li4Ti512のみからなる電極活物質(比較例11)やLi2BaTi614のみからなる電極活物質(比較例12)を用いる場合に比べて、少なくとも100サイクル後の容量維持率が同等以上であることがわかる。特に、実施例11~16のように、Li4Ti512とLi2BaTi614との混合比率を質量比率で99.9:0.1から75.0:25.0までの範囲内に限定することにより、少なくとも100サイクル後の容量維持率が良好であるとともに、Li4Ti512のみからなる電極活物質(比較例11)を用いる場合に比べて、またLi2BaTi614のみからなる電極活物質(比較例12)を用いる場合に比べて、急速充放電時における充放電容量として、10C充電容量と10C放電容量を向上させることができることがわかる。また、実施例14~15のように、Li4Ti512とLi2BaTi614との混合比率を質量比率で93.0:7.0から87.0:13.0までの範囲内に限定することにより、少なくとも100サイクル後の容量維持率が良好であるとともに、Li4Ti512のみからなる電極活物質(比較例11)を用いる場合に比べて、またLi2BaTi614のみからなる電極活物質(比較例12)を用いる場合に比べて、急速充放電時における充放電容量として、10C充電容量と10C放電容量をさらに向上させることができることがわかる。 From Table 2, in Examples 11 to 18, when an electrode active material consisting only of Li 4 Ti 5 O 12 (Comparative Example 11) or an electrode active material consisting only of Li 2 BaTi 6 O 14 (Comparative Example 12) is used. In comparison, it can be seen that the capacity retention rate after at least 100 cycles is equivalent or higher. In particular, as in Examples 11 to 16, the mixing ratio of Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 ranges from 99.9: 0.1 to 75.0: 25.0 in terms of mass ratio. The capacity retention rate after at least 100 cycles is good by limiting to the inside, and compared with the case of using an electrode active material (Comparative Example 11) made only of Li 4 Ti 5 O 12 , Li 2 BaTi 6 in comparison with the case of using the O 14 consists of only the electrode active material (Comparative example 12), as charge-discharge capacity at the time of rapid charging and discharging, it is understood that it is possible to improve the 10C charge capacity and 10C discharge capacity. Further, as in Examples 14 to 15, the mixing ratio of Li 4 Ti 5 O 12 and Li 2 BaTi 6 O 14 ranges from 93.0: 7.0 to 87.0: 13.0 in terms of mass ratio. The capacity retention rate after at least 100 cycles is good by limiting to the inside, and compared with the case of using an electrode active material (Comparative Example 11) made only of Li 4 Ti 5 O 12 , Li 2 BaTi 6 in comparison with the case of using the O 14 consists of only the electrode active material (Comparative example 12), as charge-discharge capacity at the time of rapid charging and discharging, it is understood that it is possible to further improve the 10C charge capacity and 10C discharge capacity.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 本発明の一つの局面に従った電極活物質は、スピネル型構造のチタン酸リチウムを主成分として含み、非水電解質二次電池の充放電特性を向上させることが可能な電極活物質であるので、非水電解質二次電池の製造に有用である。 Since the electrode active material according to one aspect of the present invention is an electrode active material that contains spinel-type lithium titanate as a main component and can improve the charge / discharge characteristics of the nonaqueous electrolyte secondary battery. It is useful for manufacturing non-aqueous electrolyte secondary batteries.
 また、本発明のもう一つの局面に従った電極活物質を用いることにより、非水電解質二次電池のサイクル特性と急速充放電時における充放電容量とをともに向上させることができるので、本発明のもう一つの局面に従った電極活物質は非水電解質二次電池の製造に有用である。 Further, by using the electrode active material according to another aspect of the present invention, it is possible to improve both the cycle characteristics of the nonaqueous electrolyte secondary battery and the charge / discharge capacity at the time of rapid charge / discharge. The electrode active material according to another aspect of is useful for the production of a non-aqueous electrolyte secondary battery.
 1:コイン型非水電解質二次電池、11:ケース、12:封口板、13:ガスケット、14:正極、15:負極、16:セパレータ、17:集電板、18:ばね部材。 1: coin-type non-aqueous electrolyte secondary battery, 11: case, 12: sealing plate, 13: gasket, 14: positive electrode, 15: negative electrode, 16: separator, 17: current collector plate, 18: spring member.

Claims (21)

  1.  スピネル型構造のチタン酸リチウムとバリウム化合物とを含み、チタンに対するリチウムのモル比率が0.80未満である、電極活物質。 An electrode active material comprising a spinel type lithium titanate and a barium compound, wherein the molar ratio of lithium to titanium is less than 0.80.
  2.  バリウムを0.14質量%以上4.0質量%以下含み、チタンに対するリチウムのモル比率が0.71を超え0.80未満である、請求項1に記載の電極活物質。 The electrode active material according to claim 1, comprising 0.14% by mass or more and 4.0% by mass or less of barium, wherein the molar ratio of lithium to titanium is more than 0.71 and less than 0.80.
  3.  請求項1または請求項2に記載の電極活物質の製造方法であって、
     少なくとも、リチウム化合物とチタン化合物とバリウム化合物とを混合して混合物を得る混合工程と、
     前記混合物を焼成する焼成工程とを備えた、電極活物質の製造方法。
    It is a manufacturing method of the electrode active material according to claim 1 or 2,
    At least a mixing step of mixing a lithium compound, a titanium compound and a barium compound to obtain a mixture;
    The manufacturing method of an electrode active material provided with the baking process which bakes the said mixture.
  4.  前記混合工程において、チタンに対するリチウムのモル比率が0.80未満であるように、リチウム化合物とチタン化合物とバリウム化合物とを混合する、請求項3に記載の電極活物質の製造方法。 The method for producing an electrode active material according to claim 3, wherein in the mixing step, the lithium compound, the titanium compound, and the barium compound are mixed so that the molar ratio of lithium to titanium is less than 0.80.
  5.  前記混合工程において混合される前記バリウム化合物が炭酸バリウムである、請求項3または請求項4に記載の電極活物質の製造方法。 The method for producing an electrode active material according to claim 3 or 4, wherein the barium compound mixed in the mixing step is barium carbonate.
  6.  前記混合工程において混合される前記リチウム化合物が炭酸リチウムである、請求項3から請求項5までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 3 to 5, wherein the lithium compound mixed in the mixing step is lithium carbonate.
  7.  前記混合工程において混合される前記チタン化合物が酸化チタンである、請求項3から請求項6までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 3 to 6, wherein the titanium compound mixed in the mixing step is titanium oxide.
  8.  請求項1または請求項2に記載の電極活物質を電極材料に用いた、非水電解質二次電池。 A non-aqueous electrolyte secondary battery using the electrode active material according to claim 1 or 2 as an electrode material.
  9.  請求項3から請求項7までのいずれか1項に記載の製造方法により製造された電極活物質を電極材料に用いた、非水電解質二次電池。 A non-aqueous electrolyte secondary battery using, as an electrode material, an electrode active material produced by the production method according to any one of claims 3 to 7.
  10.  スピネル型構造のチタン酸リチウムとLi2BaTi614とを含む、電極活物質。 An electrode active material containing spinel type lithium titanate and Li 2 BaTi 6 O 14 .
  11.  前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内である、請求項10に記載の電極活物質。 The mixture ratio of the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 is in a range of 99.9: 0.1 to 55.0: 45.0 in mass ratio. The electrode active material as described.
  12.  前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で99.9:0.1から75.0:25.0までの範囲内である、請求項10に記載の電極活物質。 The mixture ratio of the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 is in a range of 99.9: 0.1 to 75.0: 25.0 in mass ratio. The electrode active material as described.
  13.  前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で93.0:7.0から87.0:13.0までの範囲内である、請求項10に記載の電極活物質。 The mixture ratio of the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 is in a range of 93.0: 7.0 to 87.0: 13.0 in mass ratio. The electrode active material as described.
  14.  請求項10から請求項13までのいずれか1項に記載の電極活物質の製造方法であって、
     リチウム化合物とチタン化合物とを混合して得られた混合物を焼成することにより、スピネル型構造のチタン酸リチウムを得る第1の合成工程と、
     リチウム化合物とチタン化合物とバリウム化合物とを混合して得られた混合物を焼成することにより、Li2BaTi614を得る第2の合成工程と、
     前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614とを混合する混合工程とを備えた、電極活物質の製造方法。
    A method for producing an electrode active material according to any one of claims 10 to 13,
    A first synthesis step for obtaining a spinel type lithium titanate by firing a mixture obtained by mixing a lithium compound and a titanium compound;
    A second synthesis step for obtaining Li 2 BaTi 6 O 14 by firing a mixture obtained by mixing a lithium compound, a titanium compound and a barium compound;
    And a mixing step of mixing the lithium titanate of the spinel structure Li 2 BaTi 6 O 14, a manufacturing method of the electrode active material.
  15.  前記混合工程において、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で99.9:0.1から55.0:45.0までの範囲内になるように、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614とを混合する、請求項14に記載の電極活物質の製造方法。 In the mixing step, the mixing ratio of the spinel type lithium titanate and the Li 2 BaTi 6 O 14 is in the range of 99.9: 0.1 to 55.0: 45.0 in terms of mass ratio. The method of manufacturing an electrode active material according to claim 14, wherein the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 are mixed.
  16.  前記混合工程において、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で99.9:0.1から75.0:25.0までの範囲内になるように、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614とを混合する、請求項14に記載の電極活物質の製造方法。 In the mixing step, the mixing ratio of the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 is within a range of 99.9: 0.1 to 75.0: 25.0 in terms of mass ratio. The method of manufacturing an electrode active material according to claim 14, wherein the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 are mixed.
  17.  前記混合工程において、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614との混合比率が質量比率で93.0:7.0から87.0:13.0までの範囲内になるように、前記スピネル型構造のチタン酸リチウムと前記Li2BaTi614とを混合する、請求項14に記載の電極活物質の製造方法。 In the mixing step, the mixing ratio of the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 is in the range of 93.0: 7.0 to 87.0: 13.0 in terms of mass ratio. The method of manufacturing an electrode active material according to claim 14, wherein the lithium titanate having the spinel structure and the Li 2 BaTi 6 O 14 are mixed.
  18.  前記リチウム化合物が炭酸リチウムである、請求項14から請求項17までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 14 to 17, wherein the lithium compound is lithium carbonate.
  19.  前記チタン化合物が酸化チタンである、請求項14から請求項18までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 14 to 18, wherein the titanium compound is titanium oxide.
  20.  前記バリウム化合物が炭酸バリウムである、請求項14から請求項19までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 14 to 19, wherein the barium compound is barium carbonate.
  21.  請求項10から請求項13までのいずれか1項に記載の電極活物質を電極材料に用いた、非水電解質二次電池。 A nonaqueous electrolyte secondary battery using the electrode active material according to any one of claims 10 to 13 as an electrode material.
PCT/JP2011/064762 2010-06-30 2011-06-28 Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same WO2012002364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522633A JPWO2012002364A1 (en) 2010-06-30 2011-06-28 Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-149292 2010-06-30
JP2010149292 2010-06-30
JP2010154490 2010-07-07
JP2010-154490 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012002364A1 true WO2012002364A1 (en) 2012-01-05

Family

ID=45402071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064762 WO2012002364A1 (en) 2010-06-30 2011-06-28 Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same

Country Status (2)

Country Link
JP (1) JPWO2012002364A1 (en)
WO (1) WO2012002364A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088193A1 (en) * 2014-12-02 2016-06-09 株式会社 東芝 Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2016171011A (en) * 2015-03-13 2016-09-23 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, assembled battery, battery pack, and automobile
JP2017126585A (en) * 2017-04-25 2017-07-20 株式会社東芝 Negative electrode
US10505186B2 (en) 2015-01-30 2019-12-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10511014B2 (en) 2015-01-30 2019-12-17 Kabushiki Kaisha Toshiba Battery module and battery pack
US10516163B2 (en) 2015-03-13 2019-12-24 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (en) * 1993-03-25 1995-07-04 Ngk Insulators Ltd Lithium ion conductor and cathode material of lithium battery
JP2001126728A (en) * 1999-10-26 2001-05-11 Toyota Motor Corp Negative electrode for lithium ion secondary cell
JP2005267940A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte battery
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063394A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (en) * 1993-03-25 1995-07-04 Ngk Insulators Ltd Lithium ion conductor and cathode material of lithium battery
JP2001126728A (en) * 1999-10-26 2001-05-11 Toyota Motor Corp Negative electrode for lithium ion secondary cell
JP2005267940A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte battery
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088193A1 (en) * 2014-12-02 2016-06-09 株式会社 東芝 Negative electrode active material, nonaqueous electrolyte battery and battery pack
JPWO2016088193A1 (en) * 2014-12-02 2017-04-27 株式会社東芝 Negative electrode active material, non-aqueous electrolyte battery, battery pack and vehicle
US10553868B2 (en) 2014-12-02 2020-02-04 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
US10505186B2 (en) 2015-01-30 2019-12-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10511014B2 (en) 2015-01-30 2019-12-17 Kabushiki Kaisha Toshiba Battery module and battery pack
JP2016171011A (en) * 2015-03-13 2016-09-23 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, assembled battery, battery pack, and automobile
US9812704B2 (en) 2015-03-13 2017-11-07 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
US10516163B2 (en) 2015-03-13 2019-12-24 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
JP2017126585A (en) * 2017-04-25 2017-07-20 株式会社東芝 Negative electrode

Also Published As

Publication number Publication date
JPWO2012002364A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP4853608B2 (en) Lithium secondary battery
WO2012002365A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2013004234A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2012002364A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2004335223A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2004362934A (en) Positive electrode material and battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2020087638A (en) Lithium manganese composite oxide, lithium secondary battery, and manufacturing method of lithium manganese composite oxide
JP5742606B2 (en) Electrode active material, method for producing the same, and secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
WO2012127919A1 (en) Secondary battery electrode active material and secondary battery provided with same
KR101609244B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5553110B2 (en) Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
WO2011135953A1 (en) Electrode active material and non-aqueous electrolyte secondary battery provided with same
CN109983601B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2012127920A1 (en) Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2011024353A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
WO2011162176A1 (en) Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same
WO2011162175A1 (en) Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material
JP2012059387A (en) Electrode active material and method of manufacturing the same, and nonaqueous electrolyte secondary battery with the same
JP3695365B2 (en) Cathode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522633

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800828

Country of ref document: EP

Kind code of ref document: A1