WO2011162175A1 - Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same - Google Patents

Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same Download PDF

Info

Publication number
WO2011162175A1
WO2011162175A1 PCT/JP2011/063904 JP2011063904W WO2011162175A1 WO 2011162175 A1 WO2011162175 A1 WO 2011162175A1 JP 2011063904 W JP2011063904 W JP 2011063904W WO 2011162175 A1 WO2011162175 A1 WO 2011162175A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
lithium
strontium
compound
Prior art date
Application number
PCT/JP2011/063904
Other languages
French (fr)
Japanese (ja)
Inventor
徹 川合
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2012521450A priority Critical patent/JPWO2011162175A1/en
Publication of WO2011162175A1 publication Critical patent/WO2011162175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to an electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery including the electrode active material, and more specifically, an electrode active material comprising a lithium titanium composite oxide having a spinel structure and the same
  • the present invention relates to a manufacturing method and a nonaqueous electrolyte secondary battery including the same.
  • secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices.
  • secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with charge exchange.
  • lithium ion secondary batteries having a large energy density are widely used.
  • a lithium-containing transition metal oxide such as lithium cobaltate or lithium manganate is used as the positive electrode active material.
  • a carbon material capable of inserting and extracting lithium ions is used as the negative electrode active material.
  • graphite such as natural graphite and artificial graphite has a discharge voltage as low as 0.2 V with respect to lithium metal, and when graphite is used as a negative electrode active material, a battery having a discharge voltage of 3.6 V is possible.
  • a carbon material is used for the negative electrode, if a short circuit occurs inside the battery, lithium ions may flow from the negative electrode to the positive electrode at once, and the temperature may increase rapidly.
  • Lithium titanium composite oxide is a material that can occlude and release lithium ions without changing the structure and size of the crystal lattice, and is a promising electrode active material for highly reliable nonaqueous electrolyte secondary batteries.
  • Patent Document 1 in International Publication No. 2006/106700 (hereinafter referred to as Patent Document 1), in order to obtain a lithium ion battery excellent in high rate charge / discharge characteristics, a composition formula in which a part of the lithium titanate element is substituted with Al : Li [Li (1-x) / 3 Al x Ti (5-2x) / 3 ] O 4 (0 ⁇ x ⁇ 1) is proposed as an electrode active material for a lithium ion battery.
  • a lithium ion battery used as a negative electrode active material is disclosed.
  • an object of the present invention is to provide an electrode with excellent high-rate discharge characteristics, which contains lithium titanate having a spinel structure as a main component, can improve the discharge capacity during non-aqueous electrolyte secondary battery rapid discharge.
  • An active material, a method for producing the same, and a nonaqueous electrolyte secondary battery including the active material are provided.
  • the present inventor has mixed a strontium compound into at least a lithium compound and a titanium compound as a starting material, and baked to mainly produce lithium titanate having a spinel structure.
  • a strontium compound As a result of intensive studies to solve the problems of the prior art, the present inventor has mixed a strontium compound into at least a lithium compound and a titanium compound as a starting material, and baked to mainly produce lithium titanate having a spinel structure.
  • the electrode active material according to the present invention contains lithium titanate having a spinel structure and a strontium compound, and strontium is contained in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium.
  • the electrode active material according to the present invention includes lithium titanate having a spinel structure and a strontium compound, and strontium is included in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. It is preferable that
  • the method for producing an electrode active material according to the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a strontium compound to obtain a mixture, and a baking step of baking the mixture.
  • the mixing step it is preferable to mix the lithium compound, the titanium compound, and the strontium compound so that strontium is contained in a molar ratio exceeding 0 mol part and less than 10 mol parts with respect to 100 mol parts of lithium.
  • the lithium compound, the titanium compound, and the strontium compound are mixed so that strontium is included in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. It is preferable.
  • the strontium compound is preferably strontium carbonate.
  • the lithium compound is preferably lithium carbonate.
  • the titanium compound is preferably titanium oxide.
  • the non-aqueous electrolyte secondary battery of the present invention uses the above electrode active material as an electrode material.
  • the non-aqueous electrolyte secondary battery of the present invention uses an electrode active material produced by the above production method as an electrode material.
  • an electrode active material containing spinel type lithium titanate as a main component it is possible to improve discharge capacity at the time of rapid discharge of a non-aqueous electrolyte secondary battery, and excellent in high rate discharge characteristics.
  • An electrode active material can be obtained.
  • the electrode active material of the present invention includes a spinel type lithium titanate and a strontium compound, and strontium is contained in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium. Yes.
  • the electrode active material of the present invention includes lithium titanate having a spinel structure and a strontium compound, and in a molar ratio, strontium is 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. included.
  • the electrode active material of the present invention includes a strontium compound separately from lithium titanate, and contains strontium in the molar ratio described above, whereby an electrode active material containing lithium titanate having a spinel structure as a main component.
  • the discharge capacity per unit weight of the electrode active material during high rate charge / discharge can be improved, and an electrode active material excellent in rapid discharge characteristics (or high rate discharge characteristics) can be obtained.
  • the molar ratio is more than 10 mol parts with respect to 100 mol parts of lithium, the discharge capacity per unit weight of the electrode active material decreases.
  • examples of the spinel-type lithium titanate contained in the electrode active material of the present invention include Li 4 Ti 5 O 12 .
  • Lithium titanate may contain elements other than lithium, titanium, and oxygen.
  • the strontium compound that exists separately from lithium titanate may be a compound that acts as an electrode active material or a compound that does not act as an electrode active material.
  • a part of strontium may be included in a substituted form in lithium titanate having a spinel structure.
  • the method for producing an electrode active material according to the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a strontium compound to obtain a mixture, and a baking step of baking the mixture.
  • the mixing step it is preferable to mix the lithium compound, the titanium compound, and the strontium compound so that strontium is contained in a molar ratio exceeding 0 mol part and less than 10 mol parts with respect to 100 mol parts of lithium. More preferably, the lithium compound, the titanium compound, and the strontium compound are mixed so that strontium is contained in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium.
  • the strontium compound is preferably strontium carbonate.
  • the lithium compound is preferably lithium carbonate.
  • the titanium compound is preferably titanium oxide.
  • examples of the lithium compound include lithium oxides, carbonates, inorganic acid salts, organic acid salts, chlorides, and the like. Lithium etc. are mentioned. In particular, it is preferable to use lithium carbonate as the lithium compound.
  • examples of the titanium compound include titanium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides.
  • titanium oxide it is preferable to use titanium oxide as the titanium compound.
  • strontium compound examples include strontium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specific examples include strontium carbonate and strontium oxide. In particular, it is preferable to use strontium carbonate as the strontium compound.
  • the mixing method, mixing conditions in the mixing step, and the baking method and baking conditions in the baking step can be arbitrarily set in consideration of the required characteristics, productivity, and the like of the nonaqueous electrolyte secondary battery.
  • a negative electrode is formed.
  • a negative electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a negative electrode active material slurry, and this negative electrode active material slurry is coated on the electrode current collector by an arbitrary coating method.
  • the negative electrode is formed by drying.
  • a positive electrode is formed.
  • a positive electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a positive electrode active material slurry, and this positive electrode active material slurry is coated on the electrode current collector by an arbitrary coating method.
  • the positive electrode is formed by drying.
  • the positive electrode active material is not particularly limited, for example, lithium compounds such as lithium cobaltate, lithium manganate, and lithium nickelate, lithium transition containing manganese and nickel in some cases in addition to manganese and nickel A metal composite oxide or the like can be used.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
  • the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile, tetrahydrofuran, Nonaqueous solvents such as nitrobenzene and acetone, and protic solvents such as methanol and ethanol can be used.
  • the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the amount of the additive, and the like can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
  • the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal.
  • the positive electrode 14 is placed on the top.
  • the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space.
  • a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior.
  • the electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes.
  • an electrolyte one having an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at room temperature can be used.
  • an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
  • the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.
  • a solid electrolyte for electrolyte.
  • the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride.
  • Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Examples include acrylonitrile-based polymers such as lauric acid copolymers and acrylonitrile-vinyl acetate copolymers, as well as polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates.
  • electrolyte solution contains electrolyte solution and made it gelatinous as electrolyte.
  • a polymer compound containing an electrolyte salt may be used as an electrolyte as it is.
  • an electrolyte Li 2 S-P 2 S 5 based, Li 2 S-B 2 S 3 type, may be used an inorganic solid electrolyte such as sulfide glass represented by Li 2 S-SiS 2 system.
  • the coin-type secondary battery has been described, but it is needless to say that the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Further, the exterior method is not particularly limited, and a metal case, a mold resin, an aluminum laminate film, or the like may be used.
  • the electrode active material of the present invention is used for the negative electrode, but it can also be applied to the positive electrode.
  • the electrode active material is used for a non-aqueous electrolyte secondary battery has been described, but it can also be used for a primary battery.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Examples 1 to 5 and Comparative Examples 1 and 2 of a coin-type nonaqueous electrolyte secondary battery using an electrode active material containing spinel type lithium titanate as a main component and using the electrode active material will be described.
  • An electrode active material composed mainly of lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure was synthesized by the following method.
  • the raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ), and strontium carbonate (SrCO 3 ) have the following molar ratios of lithium (Li), titanium (Ti), and strontium (Sr): These were weighed so as to have the ratios shown in Examples 1 to 5 and Comparative Examples 1 and 2, and wet-mixed using water as a solvent to obtain a slurry. The slurry thus obtained was spray-dried and then fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare each electrode active material.
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: (0.025 mol part (Sr addition amount) is included with respect to 100 mol parts.)
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 0.25 mol part (Sr addition amount) is contained with respect to 100 mol parts.)
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 1.25 mol part (Sr addition amount) is included with respect to 100 mol parts.)
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 2.5 mole parts (addition amount of Sr) is included with respect to 100 mole parts.)
  • the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: (5.0 mol part (Sr addition amount) is included with respect to 100 mol parts.)
  • the electrode active material includes only spinel type lithium titanate (Li 4 Ti 5 O 12 ), and does not include Sr.)
  • the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 10 mol parts (addition amount of Sr) is included with respect to 100 mol parts.)
  • a coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
  • a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12.
  • a positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the nonaqueous materials of Examples 1 to 5 and Comparative Examples 1 and 2 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
  • the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture.
  • This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry.
  • This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 ⁇ m at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm.
  • An electrode sheet was produced by punching into a plate.
  • This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG.
  • the negative electrode 15 a disk made of a metal lithium foil having a diameter of 15.5 mm was used.
  • the negative electrode 15 and the current collector plate 17 were bonded together.
  • the separator 16 a disk-like polyethylene porous film having a diameter of 16 mm was used.
  • the electrolytic solution a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and LiPF 6 was mixed so as to be 1 mol was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
  • the discharge characteristics were evaluated.
  • the current value at which charging or discharging is completed in 1 hour is 1 C
  • charging and discharging is performed for 3.5 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 1.0 to 3.0 V.
  • the battery was discharged to a voltage of 3.0 V at a current value of 5 C, and the discharge capacity (5 C discharge capacity) at a current value of 5 C was measured.
  • the battery After measuring the 5C discharge capacity, the battery is charged to 1.0 V at a current value of 0.2 C, and then charged for 2 hours at a constant voltage of 1.0 V, and then to a voltage of 3.0 V at a current value of 10 C. Discharge was performed, and the discharge capacity (10 C discharge capacity) at a current value of 10 C was measured. Further, the 10C / 5C discharge capacity ratio was calculated by the following formula.
  • the measurement results of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 using the electrode active materials of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1 as “5C discharge capacity”, “10C discharge capacity”, “ 10C / 5C discharge capacity ratio ".
  • “high rate discharge characteristics” were comprehensively evaluated based on the above measurement results.
  • the evaluation results are shown in Table 1 as “ ⁇ ” for “high rate discharge characteristics”, “ ⁇ ” for good, and “x” for poor.
  • Example 5C discharge capacity is as high as 140 mAh / g or more, and the 10C / 5C discharge capacity ratio is also a high value exceeding 85%, which is excellent in the high rate discharge characteristics.
  • Example 5 the 5C discharge capacity is relatively low, but the 10C / 5C discharge capacity ratio is a high value exceeding 85%, and the degree of decrease from the 5C discharge capacity to the 10C discharge capacity is small. It can be seen that the high rate discharge characteristics are good.
  • the electrode active material includes lithium titanate having a spinel structure and a strontium compound, and strontium is included in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium, a high rate discharge An electrode active material having good characteristics can be obtained.
  • strontium is contained in a molar ratio of 0.025 mol part or more and 2.5 mol part or less with respect to 100 mol parts of lithium, the discharge capacity at the time of rapid discharge of the nonaqueous electrolyte secondary battery is improved. It can be seen that an electrode active material excellent in high rate discharge characteristics can be obtained.
  • the electrode active material of the present invention contains a spinel type lithium titanate as a main component and is an electrode active material capable of improving the discharge capacity at the time of rapid discharge of a non-aqueous electrolyte secondary battery. This is useful for manufacturing an electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is an electrode active material that has excellent high rate discharge properties, can increase discharge capacity during rapid discharge of a non-aqueous electrolyte secondary battery, and contains spinel-structured lithium titanate as the primary component. Further disclosed are a method for producing same, and a non-aqueous electrolyte secondary battery provided with same. The electrode active material contains spinel-structured lithium titanate and a strontium compound, and the strontium is contained at a mole ratio that is at greater than 0 moles and less than 10 moles for every 100 moles of lithium.

Description

電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
 本発明は、一般的には電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池に関し、特定的には、スピネル型構造のリチウムチタン複合酸化物からなる電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池に関する。 The present invention generally relates to an electrode active material, a method for producing the same, and a non-aqueous electrolyte secondary battery including the electrode active material, and more specifically, an electrode active material comprising a lithium titanium composite oxide having a spinel structure and the same The present invention relates to a manufacturing method and a nonaqueous electrolyte secondary battery including the same.
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池が待望されている。そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。その中でも、エネルギー密度の大きなリチウムイオン二次電池は広く普及している。 With the expansion of the market for portable electronic devices such as mobile phones, notebook computers, and digital cameras, secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices. In order to meet such demands, secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with charge exchange. Among them, lithium ion secondary batteries having a large energy density are widely used.
 上記のリチウムイオン二次電池では、正極活物質としてコバルト酸リチウム、マンガン酸リチウム等のリチウム含有遷移金属酸化物が使用されている。また、負極活物質として、リチウムイオンを吸蔵・放出可能な炭素材料が使用されている。炭素材料の中でも、天然黒鉛、人造黒鉛等の黒鉛は、放電電圧がリチウム金属に対して0.2Vと低く、黒鉛を負極活物質として用いた場合、放電電圧が3.6Vの電池が可能となる。しかしながら、炭素材料を負極に用いた場合、電池内部で短絡が発生すると、負極から正極に一気にリチウムイオンが流れ、温度が急上昇する恐れがある。 In the above lithium ion secondary battery, a lithium-containing transition metal oxide such as lithium cobaltate or lithium manganate is used as the positive electrode active material. In addition, a carbon material capable of inserting and extracting lithium ions is used as the negative electrode active material. Among carbon materials, graphite such as natural graphite and artificial graphite has a discharge voltage as low as 0.2 V with respect to lithium metal, and when graphite is used as a negative electrode active material, a battery having a discharge voltage of 3.6 V is possible. Become. However, when a carbon material is used for the negative electrode, if a short circuit occurs inside the battery, lithium ions may flow from the negative electrode to the positive electrode at once, and the temperature may increase rapidly.
 そこで、電池内部で短絡が生じても急激に電流が流れないチタン酸リチウム等のリチウムチタン複合酸化物が注目されている。リチウムチタン複合酸化物は、結晶格子の構造、サイズを変化させることなくリチウムイオンを吸蔵・放出できる材料であり、高信頼性の非水電解質二次電池の電極活物質として有力である。 Therefore, lithium-titanium composite oxides such as lithium titanate, in which current does not flow suddenly even when a short circuit occurs inside the battery, are attracting attention. Lithium titanium composite oxide is a material that can occlude and release lithium ions without changing the structure and size of the crystal lattice, and is a promising electrode active material for highly reliable nonaqueous electrolyte secondary batteries.
 たとえば、国際公開第2006/106700号(以下、特許文献1という)では、高率充放電特性に優れたリチウムイオン電池を得るために、チタン酸リチウムの元素の一部をAlで置換した組成式:Li[Li(1-x)/3AlxTi(5-2x)/3]O4(0<x<1)で表わされるリチウムイオン電池用電極活物質が提案され、この電極活物質を負極活物質として用いたリチウムイオン電池が開示されている。 For example, in International Publication No. 2006/106700 (hereinafter referred to as Patent Document 1), in order to obtain a lithium ion battery excellent in high rate charge / discharge characteristics, a composition formula in which a part of the lithium titanate element is substituted with Al : Li [Li (1-x) / 3 Al x Ti (5-2x) / 3 ] O 4 (0 <x <1) is proposed as an electrode active material for a lithium ion battery. A lithium ion battery used as a negative electrode active material is disclosed.
国際公開第2006/106700号International Publication No. 2006/106700
 しかしながら、特許文献1の実施例に記載されているように、Alの置換量x(モル比率)が0.1を超えるリチウムチタン複合酸化物を非水電解質二次電池の負極活物質に用いると、電極活物質の単位重量当たりの充放電容量が低下するという問題がある。 However, as described in the Examples of Patent Document 1, when a lithium titanium composite oxide having an Al substitution amount x (molar ratio) exceeding 0.1 is used as a negative electrode active material of a nonaqueous electrolyte secondary battery. There is a problem that the charge / discharge capacity per unit weight of the electrode active material decreases.
 そこで、本発明の目的は、スピネル型構造のチタン酸リチウムを主成分として含み、非水電解質二次電池の急速放電時における放電容量を向上させることが可能で、高率放電特性に優れた電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池を提供することである。 Therefore, an object of the present invention is to provide an electrode with excellent high-rate discharge characteristics, which contains lithium titanate having a spinel structure as a main component, can improve the discharge capacity during non-aqueous electrolyte secondary battery rapid discharge. An active material, a method for producing the same, and a nonaqueous electrolyte secondary battery including the active material.
 本発明者は、従来技術の問題点を解決するために鋭意研究を重ねた結果、出発原料として少なくともリチウム化合物とチタン化合物にストロンチウム化合物を混合し、焼成してスピネル型構造のチタン酸リチウムを主成分とした電極活物質を合成する際に、チタン酸リチウムとは別にストロンチウム化合物を存在させることにより、上記の目的を達成できることを見出した。この知見に基づいて、本発明に従った電極活物質は、次のような特徴を備えている。 As a result of intensive studies to solve the problems of the prior art, the present inventor has mixed a strontium compound into at least a lithium compound and a titanium compound as a starting material, and baked to mainly produce lithium titanate having a spinel structure. When synthesizing an electrode active material as a component, it was found that the above object can be achieved by the presence of a strontium compound separately from lithium titanate. Based on this knowledge, the electrode active material according to the present invention has the following characteristics.
 本発明に従った電極活物質は、スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれる。 The electrode active material according to the present invention contains lithium titanate having a spinel structure and a strontium compound, and strontium is contained in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium.
 本発明に従った電極活物質は、スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれることが好ましい。 The electrode active material according to the present invention includes lithium titanate having a spinel structure and a strontium compound, and strontium is included in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. It is preferable that
 本発明に従った電極活物質の製造方法は、少なくとも、リチウム化合物とチタン化合物とストロンチウム化合物とを混合して混合物を得る混合工程と、その混合物を焼成する焼成工程とを備える。 The method for producing an electrode active material according to the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a strontium compound to obtain a mixture, and a baking step of baking the mixture.
 上記の混合工程において、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合することが好ましい。 In the mixing step, it is preferable to mix the lithium compound, the titanium compound, and the strontium compound so that strontium is contained in a molar ratio exceeding 0 mol part and less than 10 mol parts with respect to 100 mol parts of lithium.
 また、上記の混合工程において、モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合することが好ましい。 In the mixing step, the lithium compound, the titanium compound, and the strontium compound are mixed so that strontium is included in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. It is preferable.
 さらに、上記のストロンチウム化合物が炭酸ストロンチウムであることが好ましい。上記のリチウム化合物が炭酸リチウムであることが好ましい。上記のチタン化合物が酸化チタンであることが好ましい。 Further, the strontium compound is preferably strontium carbonate. The lithium compound is preferably lithium carbonate. The titanium compound is preferably titanium oxide.
 本発明の非水電解質二次電池は、上記の電極活物質を電極材料に用いたものである。また、本発明の非水電解質二次電池は、上記の製造方法により製造された電極活物質を電極材料に用いたものである。 The non-aqueous electrolyte secondary battery of the present invention uses the above electrode active material as an electrode material. The non-aqueous electrolyte secondary battery of the present invention uses an electrode active material produced by the above production method as an electrode material.
 本発明によれば、スピネル型構造のチタン酸リチウムを主成分として含む電極活物質において、非水電解質二次電池の急速放電時における放電容量を向上させることが可能で、高率放電特性に優れた電極活物質を得ることができる。 According to the present invention, in an electrode active material containing spinel type lithium titanate as a main component, it is possible to improve discharge capacity at the time of rapid discharge of a non-aqueous electrolyte secondary battery, and excellent in high rate discharge characteristics. An electrode active material can be obtained.
本発明の一つの実施の形態としてのコイン型非水電解質二次電池、ならびに本発明の実施例および比較例で作製されたコイン型非水電解質二次電池を示す図である。It is a figure which shows the coin-type nonaqueous electrolyte secondary battery as one embodiment of this invention, and the coin-type nonaqueous electrolyte secondary battery produced by the Example and comparative example of this invention.
 本発明の電極活物質は、スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれることを特徴としている。好ましくは、本発明の電極活物質は、スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれる。本発明の電極活物質は、チタン酸リチウムとは別にストロンチウム化合物を存在させて、上記のモル比率で、ストロンチウムが含まれることにより、スピネル型構造のチタン酸リチウムを主成分として含む電極活物質において、高率充放電時における電極活物質の単位重量当たりの放電容量を向上させることが可能となり、急速放電特性(または高率放電特性)に優れた電極活物質を得ることができる。モル比率でリチウム100モル部に対して10モル部を超えて含まれる場合には、電極活物質の単位重量当たりの放電容量が低下する。 The electrode active material of the present invention includes a spinel type lithium titanate and a strontium compound, and strontium is contained in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium. Yes. Preferably, the electrode active material of the present invention includes lithium titanate having a spinel structure and a strontium compound, and in a molar ratio, strontium is 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. included. The electrode active material of the present invention includes a strontium compound separately from lithium titanate, and contains strontium in the molar ratio described above, whereby an electrode active material containing lithium titanate having a spinel structure as a main component. The discharge capacity per unit weight of the electrode active material during high rate charge / discharge can be improved, and an electrode active material excellent in rapid discharge characteristics (or high rate discharge characteristics) can be obtained. When the molar ratio is more than 10 mol parts with respect to 100 mol parts of lithium, the discharge capacity per unit weight of the electrode active material decreases.
 なお、本発明の電極活物質に含まれるスピネル型構造のチタン酸リチウムとしては、Li4Ti512等を挙げることができる。チタン酸リチウムがリチウム、チタンおよび酸素以外の元素を含んでいてもよい。本発明の電極活物質において、チタン酸リチウムとは別に存在するストロンチウム化合物は、電極活物質として作用する化合物の場合もあり、あるいは、電極活物質として作用しない化合物の場合もある。また、ストロンチウムの一部が、スピネル型構造のチタン酸リチウム中に置換された形態で含まれる場合もある。 Note that examples of the spinel-type lithium titanate contained in the electrode active material of the present invention include Li 4 Ti 5 O 12 . Lithium titanate may contain elements other than lithium, titanium, and oxygen. In the electrode active material of the present invention, the strontium compound that exists separately from lithium titanate may be a compound that acts as an electrode active material or a compound that does not act as an electrode active material. Moreover, a part of strontium may be included in a substituted form in lithium titanate having a spinel structure.
 本発明の電極活物質の製造方法は、少なくとも、リチウム化合物とチタン化合物とストロンチウム化合物とを混合して混合物を得る混合工程と、その混合物を焼成する焼成工程とを備えることを特徴としている。上記の混合工程において、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合することが好ましい。モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合することがより好ましい。上記のストロンチウム化合物が炭酸ストロンチウムであることが好ましい。上記のリチウム化合物が炭酸リチウムであることが好ましい。上記のチタン化合物が酸化チタンであることが好ましい。 The method for producing an electrode active material according to the present invention includes at least a mixing step of mixing a lithium compound, a titanium compound, and a strontium compound to obtain a mixture, and a baking step of baking the mixture. In the mixing step, it is preferable to mix the lithium compound, the titanium compound, and the strontium compound so that strontium is contained in a molar ratio exceeding 0 mol part and less than 10 mol parts with respect to 100 mol parts of lithium. More preferably, the lithium compound, the titanium compound, and the strontium compound are mixed so that strontium is contained in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. The strontium compound is preferably strontium carbonate. The lithium compound is preferably lithium carbonate. The titanium compound is preferably titanium oxide.
 本発明の一実施の形態として、上記のリチウム化合物としては、リチウムの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられるが、具体的には、水酸化リチウム、炭酸リチウム等が挙げられる。特に、上記のリチウム化合物として炭酸リチウムを使用することが好ましい。 As an embodiment of the present invention, examples of the lithium compound include lithium oxides, carbonates, inorganic acid salts, organic acid salts, chlorides, and the like. Lithium etc. are mentioned. In particular, it is preferable to use lithium carbonate as the lithium compound.
 また、上記のチタン化合物としては、チタンの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられる。特に、上記のチタン化合物として酸化チタンを使用することが好ましい。 In addition, examples of the titanium compound include titanium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. In particular, it is preferable to use titanium oxide as the titanium compound.
 さらに、上記のストロンチウム化合物としては、ストロンチウムの酸化物、炭酸塩、無機酸塩、有機酸塩、塩化物等が挙げられる。具体的には、炭酸ストロンチウム、酸化ストロンチウムが挙げられる。特に、上記のストロンチウム化合物として炭酸ストロンチウムを使用することが好ましい。 Furthermore, examples of the strontium compound include strontium oxides, carbonates, inorganic acid salts, organic acid salts, and chlorides. Specific examples include strontium carbonate and strontium oxide. In particular, it is preferable to use strontium carbonate as the strontium compound.
 上記の混合工程における混合方法、混合条件および上記の焼成工程における焼成方法、焼成条件は、非水電解質二次電池の要求特性、生産性等を考慮し、任意に設定することができる。 The mixing method, mixing conditions in the mixing step, and the baking method and baking conditions in the baking step can be arbitrarily set in consideration of the required characteristics, productivity, and the like of the nonaqueous electrolyte secondary battery.
 次に、本発明の電極活物質を負極活物質に用いた場合の非水電解質二次電池の製造方法の一例を以下で詳細に説明する。 Next, an example of a method for producing a nonaqueous electrolyte secondary battery when the electrode active material of the present invention is used as a negative electrode active material will be described in detail below.
 まず、負極を形成する。たとえば、負極活物質を導電剤および結着剤と共に混合し、有機溶剤または水を加えて負極活物質スラリーとし、この負極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより負極を形成する。 First, a negative electrode is formed. For example, a negative electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a negative electrode active material slurry, and this negative electrode active material slurry is coated on the electrode current collector by an arbitrary coating method. The negative electrode is formed by drying.
 次に、正極を形成する。たとえば、正極活物質を導電剤および結着剤と共に混合し、有機溶剤または水を加えて正極活物質スラリーとし、この正極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。 Next, a positive electrode is formed. For example, a positive electrode active material is mixed with a conductive agent and a binder, an organic solvent or water is added to form a positive electrode active material slurry, and this positive electrode active material slurry is coated on the electrode current collector by an arbitrary coating method. The positive electrode is formed by drying.
 本発明において、正極活物質は特に限定されるものではなく、たとえば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等のリチウム化合物、マンガンとニッケルに加えて場合によってはアルミ等を含有するリチウム遷移金属複合酸化物等を使用することができる。 In the present invention, the positive electrode active material is not particularly limited, for example, lithium compounds such as lithium cobaltate, lithium manganate, and lithium nickelate, lithium transition containing manganese and nickel in some cases in addition to manganese and nickel A metal composite oxide or the like can be used.
 本発明において結着剤は特に限定されるものではなく、たとえば、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。 In the present invention, the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
 また、有機溶剤についても、特に限定されるものではなく、たとえば、ジメチルスルホキシド、ジメチルホルムアミド、N‐メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ‐ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性、生産性等を考慮し、任意に設定することができる。 Further, the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile, tetrahydrofuran, Nonaqueous solvents such as nitrobenzene and acetone, and protic solvents such as methanol and ethanol can be used. Moreover, the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the amount of the additive, and the like can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
 次いで、図1に示すように、上記で得られた正極14を電解質に含浸させることにより、この正極14に電解質を染み込ませた後、正極端子を兼ねたケース11の底部中央の正極集電体上に正極14を載置する。その後、電解質を含浸させたセパレータ16を正極14上に積層し、さらに負極15と集電板17を順次積層し、内部空間に電解質を注入する。そして、集電板17上に金属製のばね部材18を載置すると共に、ガスケット13を周縁に配し、かしめ機等で負極端子を兼ねた封口板12をケース11に固着して外装封止することによってコイン型非水電解質二次電池1が作製される。 Next, as shown in FIG. 1, the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal. The positive electrode 14 is placed on the top. Thereafter, the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space. Then, a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior. By doing so, the coin-type non-aqueous electrolyte secondary battery 1 is manufactured.
 なお、電解質は、正極14と対向電極である負極15との間に介在して両電極間の荷電担体輸送を行う。このような電解質としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができる。たとえば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。ここで、電解質塩としては、たとえば、LiPF6、LiClO4、LiBF4、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO23C、Li(C25SO23C等を使用することができる。 The electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes. As such an electrolyte, one having an ionic conductivity of 10 −5 to 10 −1 S / cm at room temperature can be used. For example, an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used. Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.
 上記の有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ‐ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチル‐2‐ピロリドン等を使用することができる。 As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.
 また、電解質には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、たとえば、ポリフッ化ビニリデン、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体、フッ化ビニリデン‐エチレン共重合体、フッ化ビニリデン‐モノフルオロエチレン共重合体、フッ化ビニリデン‐トリフルオロエチレン共重合体、フッ化ビニリデン‐テトラフルオロエチレン共重合体、フッ化ビニリデン‐ヘキサフルオロプロピレン‐テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル‐メチルメタクリレート共重合体、アクリロニトリル‐メチルアクリレート共重合体、アクリロニトリル‐エチルメタクリレート共重合体、アクリロニトリル‐エチルアクリレート共重合体、アクリロニトリル‐メタクリル酸共重合体、アクリロニトリル‐アクリル酸共重合体、アクリロニトリル‐ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド‐プロピレンオキサイド共重合体、および、これらのアクリレート体、メタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質として使用してもよい。あるいは電解質塩を含有させた高分子化合物のみをそのまま電解質に使用してもよい。なお、電解質として、Li2S‐P25系、Li2S‐B23系、Li2S‐SiS2系に代表される硫化物ガラス等の無機固体電解質を用いてもよい。 Moreover, you may use a solid electrolyte for electrolyte. Examples of the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride. Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Examples include acrylonitrile-based polymers such as lauric acid copolymers and acrylonitrile-vinyl acetate copolymers, as well as polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates. Can do. Moreover, you may use what made these polymer compounds contain electrolyte solution and made it gelatinous as electrolyte. Alternatively, only a polymer compound containing an electrolyte salt may be used as an electrolyte as it is. Incidentally, as an electrolyte, Li 2 S-P 2 S 5 based, Li 2 S-B 2 S 3 type, may be used an inorganic solid electrolyte such as sulfide glass represented by Li 2 S-SiS 2 system.
 上記の実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケース、モールド樹脂、アルミニウムラミネートフィルム等を使用してもよい。 In the above embodiment, the coin-type secondary battery has been described, but it is needless to say that the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Further, the exterior method is not particularly limited, and a metal case, a mold resin, an aluminum laminate film, or the like may be used.
 また、上記の実施の形態では、本発明の電極活物質を負極に使用したが、正極にも適用可能である。 In the above embodiment, the electrode active material of the present invention is used for the negative electrode, but it can also be applied to the positive electrode.
 さらに、上記の実施の形態では、電極活物質を非水電解質二次電池に使用した場合について述べたが、一次電池にも使用することが可能である。 Furthermore, in the above embodiment, the case where the electrode active material is used for a non-aqueous electrolyte secondary battery has been described, but it can also be used for a primary battery.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 以下、スピネル型構造のチタン酸リチウムを主成分とする電極活物質を作製し、それを用いたコイン型非水電解質二次電池の実施例1~5と比較例1~2について説明する。 Hereinafter, Examples 1 to 5 and Comparative Examples 1 and 2 of a coin-type nonaqueous electrolyte secondary battery using an electrode active material containing spinel type lithium titanate as a main component and using the electrode active material will be described.
 (電極活物質の合成) (Synthesis of electrode active material)
 スピネル型構造のチタン酸リチウム(Li4Ti512)を主成分とする電極活物質の合成を以下の方法で行った。 An electrode active material composed mainly of lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure was synthesized by the following method.
 まず、原料である炭酸リチウム(Li2CO3)、酸化チタン(TiO2)、炭酸ストロンチウム(SrCO3)を、それぞれ、リチウム(Li)とチタン(Ti)とストロンチウム(Sr)のモル比率が以下の実施例1~5と比較例1~2で示される比率になるように秤量し、溶媒として水を用いて湿式で混合してスラリーを得た。このようにして得られたスラリーを噴霧乾燥した後、大気中で850℃の温度で1時間焼成して各電極活物質を作製した。 First, the raw materials lithium carbonate (Li 2 CO 3 ), titanium oxide (TiO 2 ), and strontium carbonate (SrCO 3 ) have the following molar ratios of lithium (Li), titanium (Ti), and strontium (Sr): These were weighed so as to have the ratios shown in Examples 1 to 5 and Comparative Examples 1 and 2, and wet-mixed using water as a solvent to obtain a slurry. The slurry thus obtained was spray-dried and then fired in the atmosphere at a temperature of 850 ° C. for 1 hour to prepare each electrode active material.
 (実施例1) (Example 1)
 Li:Ti:Sr=4:5:0.001(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して0.025モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.001 (in this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: (0.025 mol part (Sr addition amount) is included with respect to 100 mol parts.)
 (実施例2) (Example 2)
 Li:Ti:Sr=4:5:0.01(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して0.25モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.01 (In this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 0.25 mol part (Sr addition amount) is contained with respect to 100 mol parts.)
 (実施例3) (Example 3)
 Li:Ti:Sr=4:5:0.05(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して1.25モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.05 (In this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 1.25 mol part (Sr addition amount) is included with respect to 100 mol parts.)
 (実施例4) (Example 4)
 Li:Ti:Sr=4:5:0.1(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して2.5モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.1 (In this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 2.5 mole parts (addition amount of Sr) is included with respect to 100 mole parts.)
 (実施例5) (Example 5)
 Li:Ti:Sr=4:5:0.2(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して5.0モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.2 (In this case, the electrode active material contains lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: (5.0 mol part (Sr addition amount) is included with respect to 100 mol parts.)
 (比較例1) (Comparative example 1)
 Li:Ti:Sr=4:5:0(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)のみを含み、Srは含まれていない。) Li: Ti: Sr = 4: 5: 0 (In this case, the electrode active material includes only spinel type lithium titanate (Li 4 Ti 5 O 12 ), and does not include Sr.)
 (比較例2) (Comparative example 2)
 Li:Ti:Sr=4:5:0.4(この場合、電極活物質がスピネル型構造のチタン酸リチウム(Li4Ti512)とストロンチウム化合物とを含み、モル比率でSrがLi:100モル部に対して10モル部(Sr添加量)含まれることになる。) Li: Ti: Sr = 4: 5: 0.4 (In this case, the electrode active material includes lithium titanate (Li 4 Ti 5 O 12 ) having a spinel structure and a strontium compound, and Sr is Li: 10 mol parts (addition amount of Sr) is included with respect to 100 mol parts.)
 得られた各電極活物質を用いて、図1に示すようなコイン型非水電解質二次電池を作製した。 A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the obtained electrode active materials.
 図1に示すように、コイン型非水電解質二次電池1は、正極端子を兼ねたケース11と、負極端子を兼ねた封口板12と、ケース11と封口板12とを絶縁するガスケット13と、正極14と、負極15と、正極14と負極15との間に介在したセパレータ16と、負極15の上に配置された集電板17と、集電板17と封口板12との間に配置されたばね部材18とから構成され、ケース11の内部には電解液が充填されている。 As shown in FIG. 1, a coin-type nonaqueous electrolyte secondary battery 1 includes a case 11 that also serves as a positive electrode terminal, a sealing plate 12 that also serves as a negative electrode terminal, and a gasket 13 that insulates the case 11 and the sealing plate 12. The positive electrode 14, the negative electrode 15, the separator 16 interposed between the positive electrode 14 and the negative electrode 15, the current collector plate 17 disposed on the negative electrode 15, and between the current collector plate 17 and the sealing plate 12. It is comprised from the arrange | positioned spring member 18, and the inside of case 11 is filled with electrolyte solution.
 上記で作製された各電極活物質を用いて、図1に示されたコイン型非水電解質二次電池1の正極14を作製して、実施例1~5と比較例1~2の非水電解質二次電池用電極活物質としての作用効果を検証した。 A positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG. 1 is produced using each of the electrode active materials produced above, and the nonaqueous materials of Examples 1 to 5 and Comparative Examples 1 and 2 are produced. The effect as an electrode active material for electrolyte secondary batteries was verified.
 具体的には、上記で作製された電極活物質とアセチレンブラックとポリフッ化ビニリデンとを88:6:6の質量比率になるように秤量し、混合して電極合材を作製した。この電極合材を溶媒(N‐メチル‐2‐ピロリドン)中に分散させて電極スラリーを作製した。この電極スラリーを厚みが20μmのアルミニウム箔の表面上に6mg/cm2の塗布量で塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスした後に直径12mmの円板に打ち抜くことにより、電極シートを作製した。この電極シートを図1に示されたコイン型非水電解質二次電池1の正極14として用いた。負極15には、直径が15.5mmの金属リチウム箔からなる円板を用いた。この負極15と集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、LiPF6を1モルとなるように混合したものを用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。 Specifically, the electrode active material, acetylene black, and polyvinylidene fluoride prepared above were weighed so as to have a mass ratio of 88: 6: 6 and mixed to prepare an electrode mixture. This electrode mixture was dispersed in a solvent (N-methyl-2-pyrrolidone) to prepare an electrode slurry. This electrode slurry was applied on the surface of an aluminum foil having a thickness of 20 μm at a coating amount of 6 mg / cm 2 , dried at a temperature of 140 ° C., pressed at a pressure of 1 ton / cm 2 , and then circular with a diameter of 12 mm. An electrode sheet was produced by punching into a plate. This electrode sheet was used as the positive electrode 14 of the coin-type nonaqueous electrolyte secondary battery 1 shown in FIG. As the negative electrode 15, a disk made of a metal lithium foil having a diameter of 15.5 mm was used. The negative electrode 15 and the current collector plate 17 were bonded together. As the separator 16, a disk-like polyethylene porous film having a diameter of 16 mm was used. As the electrolytic solution, a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 and LiPF 6 was mixed so as to be 1 mol was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.
 以上のようにして作製されたコイン型非水電解質二次電池1を用いて放電特性を評価した。1時間で充電または放電が終了する電流値を1Cとしたときに、25℃の恒温槽で、0.2Cの電流値、1.0~3.0Vの電圧範囲で3.5サイクル充放電させた後に1.0Vの定電圧で2時間充電してから、5Cの電流値で3.0Vの電圧まで放電を行い、5Cの電流値での放電容量(5C放電容量)を測定した。また、5C放電容量の測定後、0.2Cの電流値で1.0Vまで充電を行った後に1.0Vの定電圧で2時間充電してから、10Cの電流値で3.0Vの電圧まで放電を行い、10Cの電流値での放電容量(10C放電容量)を測定した。さらに、10C/5C放電容量比を以下の式で算出した。 Using the coin-type non-aqueous electrolyte secondary battery 1 produced as described above, the discharge characteristics were evaluated. When the current value at which charging or discharging is completed in 1 hour is 1 C, charging and discharging is performed for 3.5 cycles in a constant temperature bath at 25 ° C. with a current value of 0.2 C and a voltage range of 1.0 to 3.0 V. Then, after charging for 2 hours at a constant voltage of 1.0 V, the battery was discharged to a voltage of 3.0 V at a current value of 5 C, and the discharge capacity (5 C discharge capacity) at a current value of 5 C was measured. After measuring the 5C discharge capacity, the battery is charged to 1.0 V at a current value of 0.2 C, and then charged for 2 hours at a constant voltage of 1.0 V, and then to a voltage of 3.0 V at a current value of 10 C. Discharge was performed, and the discharge capacity (10 C discharge capacity) at a current value of 10 C was measured. Further, the 10C / 5C discharge capacity ratio was calculated by the following formula.
 (10C/5C放電容量比)(%)={(10C放電容量)/(5C放電容量)}×100 (10C / 5C discharge capacity ratio) (%) = {(10C discharge capacity) / (5C discharge capacity)} × 100
 なお、この検証実験では、正極14の電極活物質として用いられた実施例1~5と比較例1~2の各電極活物質へのリチウム挿入によって電位が下降することを充電、各電極活物質からのリチウム脱離によって電位が上昇することを放電と定義する。 In this verification experiment, it was charged that the potential dropped due to the insertion of lithium into each electrode active material of Examples 1 to 5 and Comparative Examples 1 and 2 used as the electrode active material of the positive electrode 14, and each electrode active material An increase in potential due to lithium desorption from is defined as discharge.
 実施例1~5と比較例1~2の電極活物質を用いたコイン型非水電解質二次電池1の電池特性の測定結果を表1に「5C放電容量」、「10C放電容量」、「10C/5C放電容量比」として示す。また、上記の測定結果に基づいて「高率放電特性」を総合的に評価した。その評価結果については、「高率放電特性」が優れているものを「◎」、良好なものを「○」、劣っているものを「×」として表1に示す。 The measurement results of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 using the electrode active materials of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1 as “5C discharge capacity”, “10C discharge capacity”, “ 10C / 5C discharge capacity ratio ". In addition, “high rate discharge characteristics” were comprehensively evaluated based on the above measurement results. The evaluation results are shown in Table 1 as “◎” for “high rate discharge characteristics”, “◯” for good, and “x” for poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~4では、5C放電容量が140mAh/g以上と高く、10C/5C放電容量比も85%を超える高い値であり、高率放電特性に優れていることがわかる。また、実施例5では、5C放電容量が比較的低いが、10C/5C放電容量比が85%を超える高い値であり、5C放電容量から10C放電容量への低下度合いが小さいので、総合的にみれば、高率放電特性が良好であることがわかる。したがって、電極活物質がスピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率でストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれる場合には、高率放電特性が良好な電極活物質を得ることができる。また、特に、モル比率でストロンチウムがリチウム100モル部に対して0.025モル部以上2.5モル部以下、含まれる場合には、非水電解質二次電池の急速放電時における放電容量を向上させることが可能で、高率放電特性に優れた電極活物質を得ることができることがわかる。 From Table 1, it can be seen that in Examples 1 to 4, the 5C discharge capacity is as high as 140 mAh / g or more, and the 10C / 5C discharge capacity ratio is also a high value exceeding 85%, which is excellent in the high rate discharge characteristics. In Example 5, the 5C discharge capacity is relatively low, but the 10C / 5C discharge capacity ratio is a high value exceeding 85%, and the degree of decrease from the 5C discharge capacity to the 10C discharge capacity is small. It can be seen that the high rate discharge characteristics are good. Therefore, when the electrode active material includes lithium titanate having a spinel structure and a strontium compound, and strontium is included in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium, a high rate discharge An electrode active material having good characteristics can be obtained. In particular, when strontium is contained in a molar ratio of 0.025 mol part or more and 2.5 mol part or less with respect to 100 mol parts of lithium, the discharge capacity at the time of rapid discharge of the nonaqueous electrolyte secondary battery is improved. It can be seen that an electrode active material excellent in high rate discharge characteristics can be obtained.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 本発明の電極活物質は、スピネル型構造のチタン酸リチウムを主成分として含み、非水電解質二次電池の急速放電時における放電容量を向上させることが可能な電極活物質であるので、非水電解質二次電池の製造に有用である。 The electrode active material of the present invention contains a spinel type lithium titanate as a main component and is an electrode active material capable of improving the discharge capacity at the time of rapid discharge of a non-aqueous electrolyte secondary battery. This is useful for manufacturing an electrolyte secondary battery.
 1:コイン型非水電解質二次電池、11:ケース、12:封口板、13:ガスケット、14:正極、15:負極、16:セパレータ、17:集電板、18:ばね部材。 1: coin-type non-aqueous electrolyte secondary battery, 11: case, 12: sealing plate, 13: gasket, 14: positive electrode, 15: negative electrode, 16: separator, 17: current collector plate, 18: spring member.

Claims (10)

  1.  スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれる、電極活物質。 An electrode active material comprising a spinel type lithium titanate and a strontium compound, wherein strontium is contained in a molar ratio of more than 0 mol and less than 10 mol with respect to 100 mol of lithium.
  2.  スピネル型構造のチタン酸リチウムとストロンチウム化合物とを含み、モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれる、請求項1に記載の電極活物質。 2. The electrode activity according to claim 1, comprising a spinel type lithium titanate and a strontium compound, wherein strontium is contained in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. material.
  3.  請求項1または請求項2に記載の電極活物質の製造方法であって、
     少なくとも、リチウム化合物とチタン化合物とストロンチウム化合物とを混合して混合物を得る混合工程と、
     前記混合物を焼成する焼成工程とを備えた、電極活物質の製造方法。
    It is a manufacturing method of the electrode active material according to claim 1 or 2,
    At least a mixing step of mixing a lithium compound, a titanium compound and a strontium compound to obtain a mixture;
    The manufacturing method of an electrode active material provided with the baking process which bakes the said mixture.
  4.  前記混合工程において、モル比率で、ストロンチウムがリチウム100モル部に対して0モル部を超え10モル部未満含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合する、請求項3に記載の電極活物質の製造方法。 4. The lithium compound, the titanium compound, and the strontium compound are mixed in the mixing step so that strontium is contained in a molar ratio of more than 0 mol part and less than 10 mol parts with respect to 100 mol parts of lithium. Of producing an electrode active material.
  5.  前記混合工程において、モル比率で、ストロンチウムがリチウム100モル部に対して0.025モル部以上5.0モル部以下含まれるように、リチウム化合物とチタン化合物とストロンチウム化合物とを混合する、請求項4に記載の電極活物質の製造方法。 In the mixing step, the lithium compound, the titanium compound, and the strontium compound are mixed so that strontium is included in a molar ratio of 0.025 mol part or more and 5.0 mol part or less with respect to 100 mol parts of lithium. 4. A method for producing an electrode active material according to 4.
  6.  前記混合工程において混合されるストロンチウム化合物が炭酸ストロンチウムである、請求項3から請求項5までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 3 to 5, wherein the strontium compound mixed in the mixing step is strontium carbonate.
  7.  前記リチウム化合物が炭酸リチウムである、請求項3から請求項5までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 3 to 5, wherein the lithium compound is lithium carbonate.
  8.  前記チタン化合物が酸化チタンである、請求項3から請求項5までのいずれか1項に記載の電極活物質の製造方法。 The method for producing an electrode active material according to any one of claims 3 to 5, wherein the titanium compound is titanium oxide.
  9.  請求項1または請求項2に記載の電極活物質を電極材料に用いた、非水電解質二次電池。 A non-aqueous electrolyte secondary battery using the electrode active material according to claim 1 or 2 as an electrode material.
  10.  請求項3から請求項8までのいずれか1項に記載の製造方法により製造された電極活物質を電極材料に用いた、非水電解質二次電池。 A non-aqueous electrolyte secondary battery using, as an electrode material, an electrode active material produced by the production method according to any one of claims 3 to 8.
PCT/JP2011/063904 2010-06-22 2011-06-17 Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same WO2011162175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521450A JPWO2011162175A1 (en) 2010-06-22 2011-06-17 Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-141266 2010-06-22
JP2010141266 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011162175A1 true WO2011162175A1 (en) 2011-12-29

Family

ID=45371363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063904 WO2011162175A1 (en) 2010-06-22 2011-06-17 Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same

Country Status (2)

Country Link
JP (1) JPWO2011162175A1 (en)
WO (1) WO2011162175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (en) * 1993-03-25 1995-07-04 Ngk Insulators Ltd Lithium ion conductor and cathode material of lithium battery
JP2001126728A (en) * 1999-10-26 2001-05-11 Toyota Motor Corp Negative electrode for lithium ion secondary cell
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (en) * 1993-03-25 1995-07-04 Ngk Insulators Ltd Lithium ion conductor and cathode material of lithium battery
JP2001126728A (en) * 1999-10-26 2001-05-11 Toyota Motor Corp Negative electrode for lithium ion secondary cell
JP2009245929A (en) * 2008-03-13 2009-10-22 Toshiba Corp Active material for battery, non-aqueous electrolyte battery, and battery pack

Also Published As

Publication number Publication date
JPWO2011162175A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
KR101312275B1 (en) Composite, electrode active material for lithium secondary battery including the composite, preparing method thereof, electrode for lithium secondary battery using the same, and lithium secondary battery employing the same
WO2016121322A1 (en) Negative electrode plate for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said negative electrode plate
WO2012002365A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2006344509A (en) Lithium secondary battery
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP2013004234A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2012002364A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2011086464A (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the negative electrode active material for lithium secondary battery
JP2004335223A (en) Nonaqueous electrolyte secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
KR101609244B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5742606B2 (en) Electrode active material, method for producing the same, and secondary battery
WO2012127919A1 (en) Secondary battery electrode active material and secondary battery provided with same
JP5553110B2 (en) Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
WO2011135953A1 (en) Electrode active material and non-aqueous electrolyte secondary battery provided with same
WO2011024353A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
WO2011162175A1 (en) Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
WO2012127920A1 (en) Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2011162176A1 (en) Electrode active material, method for producing same, and non-aqueous electrolyte secondary battery provided with same
JP2012059387A (en) Electrode active material and method of manufacturing the same, and nonaqueous electrolyte secondary battery with the same
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material
JP2002211931A (en) Lithium nickel compound oxide for active material for positive electrode of lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521450

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798059

Country of ref document: EP

Kind code of ref document: A1