JP2011049102A - Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material - Google Patents

Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material Download PDF

Info

Publication number
JP2011049102A
JP2011049102A JP2009198466A JP2009198466A JP2011049102A JP 2011049102 A JP2011049102 A JP 2011049102A JP 2009198466 A JP2009198466 A JP 2009198466A JP 2009198466 A JP2009198466 A JP 2009198466A JP 2011049102 A JP2011049102 A JP 2011049102A
Authority
JP
Japan
Prior art keywords
active material
ratio
atoms
moles
livopo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198466A
Other languages
Japanese (ja)
Other versions
JP5375446B2 (en
Inventor
Atsushi Sano
篤史 佐野
Keitaro Otsuki
佳太郎 大槻
Yousuke Miyaki
陽輔 宮木
Takeshi Takahashi
高橋  毅
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009198466A priority Critical patent/JP5375446B2/en
Priority to US12/868,142 priority patent/US20110052995A1/en
Priority to CN201410046646.3A priority patent/CN103762363B/en
Priority to CN201010268650.6A priority patent/CN102005572B/en
Publication of JP2011049102A publication Critical patent/JP2011049102A/en
Application granted granted Critical
Publication of JP5375446B2 publication Critical patent/JP5375446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material capable of producing a large discharge capacity with a high rate characteristic. <P>SOLUTION: A method for manufacturing the active material includes: a hydrothermal synthesis step of heating under pressure a mixture that contains a lithium source, a vanadium source, a phosphoric acid source, water, and an ascorbic acid, the ratio of the mole number of lithium atoms to the mole number of vanadium atoms and the ratio of the mole number of phosphorus atoms to the mole number of vanadium atoms are 0.95-1.2, and the ratio of the mole number of the ascorbic acid to the mole number of the vanadium atoms is 0.05-0.6; and a firing step of heating a material obtained at the hydrothermal synthesis step to obtain LiVOPO<SB>4</SB>having a β-type crystal structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法に関する。   The present invention relates to an active material, an electrode including the active material, a lithium secondary battery including the electrode, and an active material manufacturing method.

構造式LiVOPOで表される結晶においては、Liが可逆的に挿入脱離することが知られている。特許文献1には、固相法によりβ型結晶構造(斜方晶)のLiVOPO及びα型結晶構造(三斜晶)のLiVOPOを作製し、これらを非水電解質二次電池の電極活物質として用いることが開示されている。そして、非水電解質二次電池の放電容量は、α型結晶構造(三斜晶)のLiVOPOに比べ、β型結晶構造のLiVOPOの方が大きいことが記載されている。 In the crystal represented by the structural formula LiVOPO 4 , it is known that Li is reversibly inserted and released. In Patent Document 1, β-type crystal structure (orthorhombic) LiVOPO 4 and α-type crystal structure (triclinic) LiVOPO 4 are prepared by a solid phase method, and these are used as the electrode activity of a non-aqueous electrolyte secondary battery. It is disclosed to be used as a substance. Then, the non-aqueous discharge capacity of electrolyte secondary battery, compared with the LiVOPO 4 of α-type crystal structure (triclinic), towards the LiVOPO 4 of β-type crystal structure is large is described.

非特許文献1には、VOPOとLiCOとを炭素の存在下で加熱し、炭素によりLiCOを還元して、β型結晶構造のLiVOPOを作製する方法(カーボサーマルリダクション法(CTR法))が開示されている。 Non-Patent Document 1 discloses a method for producing LiVOPO 4 having a β-type crystal structure by heating VOPO 4 and Li 2 CO 3 in the presence of carbon and reducing Li 2 CO 3 with carbon (carbothermal reduction). Law (CTR Law)) is disclosed.

特開2004−303527号公報JP 2004-303527 A

J.Baker et al.,J.Electrochem.Soc.,151,A796(2004)J. et al. Baker et al. , J .; Electrochem. Soc. 151, A796 (2004)

しかしながら、特許文献1及び非特許文献1に記載された方法により得られたβ型結晶構造のLiVOPOを含む活物質は、高いレート特性で、かつ、大きな放電容量を得られるものではなかった。 However, the active material containing LiVOPO 4 having a β-type crystal structure obtained by the methods described in Patent Document 1 and Non-Patent Document 1 has high rate characteristics and does not provide a large discharge capacity.

そこで、本発明は、高いレート特性で、かつ、大きな放電容量を得られる活物質を提供することを目的とする。   Therefore, an object of the present invention is to provide an active material having high rate characteristics and a large discharge capacity.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、リチウム源と、バナジウム源と、リン酸源と、水と、アスコルビン酸とを含み、バナジウム原子のモル数に対するリチウム原子のモル数の割合、及び、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2、バナジウム原子のモル数に対するアスコルビン酸のモル数の割合が0.05〜0.6である混合物を加圧下で加熱し、加圧下で加熱した材料を焼成することにより、平均一次粒子径が極めて小さくかつ二次粒子の形状が球に近似する凝集構造を有し、さらに、β型結晶構造の比率が高いLiVOPOを得られることを見出し、上記本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention include a lithium source, a vanadium source, a phosphate source, water, and ascorbic acid, and the amount of lithium atoms relative to the number of moles of vanadium atoms. The ratio of the number of moles, and the ratio of the number of moles of phosphorus atoms to the number of moles of vanadium atoms is 0.95 to 1.2, and the ratio of the number of moles of ascorbic acid to the number of moles of vanadium atoms is 0.05 to 0.6. The mixture is heated under pressure, and the material heated under pressure is fired, so that the average primary particle diameter is extremely small and the shape of the secondary particles approximates a sphere, and β-type It has been found that LiVOPO 4 having a high crystal structure ratio can be obtained, and the present invention has been completed.

すなわち本発明の活物質の製造方法は、リチウム源と、バナジウム源と、リン酸源と、水と、アスコルビン酸とを含み、バナジウム原子のモル数に対するリチウム原子のモル数の割合、及び、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2、バナジウム原子に対するアスコルビン酸のモル数の割合が0.05〜0.6である混合物を、加圧下で加熱する水熱合成工程と、水熱合成工程で得られた材料を加圧下で加熱し、β型結晶構造のLiVOPOを得る焼成工程と、を備える。 That is, the method for producing an active material of the present invention includes a lithium source, a vanadium source, a phosphoric acid source, water, and ascorbic acid, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms, and vanadium. Water in which a mixture in which the ratio of the number of moles of phosphorus atoms to the number of moles of atoms is 0.95 to 1.2 and the ratio of the number of moles of ascorbic acid to vanadium atoms is 0.05 to 0.6 is heated under pressure. A thermal synthesis step, and a firing step of heating the material obtained in the hydrothermal synthesis step under pressure to obtain LiVOPO 4 having a β-type crystal structure.

本発明に係る製造方法によって得られた活物質は、平均一次粒子径が小さくかつ二次粒子の形状が極めて球に近い凝集構造を備え、さらに、β型結晶構造のLiVOPOの比率が高い。このような活物質を用いたリチウムイオン二次電池は、高いレート特性で、かつ、大きな放電容量を得ることができる。この理由は明らかではないが、本発明に係る製造方法よって得られた活物質は、放電容量の大きなβ型結晶構造のLiVOPOを主成分とすることにより放電容量が大きくなり、また、平均一次粒子径が非常に小さくかつ二次粒子の形状が極めて球に近い凝集構造を有することにより、Liイオンが等方的に拡散し易くなり、放電電流密度が高い場合であっても、大きな放電容量を得ることができるためと推測される。 The active material obtained by the production method according to the present invention has an aggregate structure in which the average primary particle size is small and the shape of secondary particles is very close to a sphere, and the ratio of LiVOPO 4 having a β-type crystal structure is high. A lithium ion secondary battery using such an active material has high rate characteristics and a large discharge capacity. The reason for this is not clear, but the active material obtained by the production method according to the present invention has a large discharge capacity and a large discharge capacity due to the main component of LiVOPO 4 having a β-type crystal structure. The particle size is very small and the shape of the secondary particles has an agglomerated structure that is very close to a sphere, so that Li ions easily diffuse isotropically, and even when the discharge current density is high, a large discharge capacity. It is presumed that it can be obtained.

本発明に係る活物質は、平均一次粒子径が100〜350nmであり、かつ、二次粒子の長軸の長さに対する短軸の長さの比が0.80〜1である凝集構造を備え、β型結晶構造のLiVOPOを主成分として含む。 The active material according to the present invention has an aggregate structure in which the average primary particle diameter is 100 to 350 nm, and the ratio of the length of the minor axis to the length of the major axis of the secondary particle is 0.80 to 1. And LiVOPO 4 having a β-type crystal structure as a main component.

β型結晶構造のLiVOPOを主成分として含み、かつ活物質の平均一次粒子径が上記範囲内の値であり、かつ、二次粒子の長軸の長さに対する短軸の長さの比が上記範囲内の値、すなわち、球に近似する形状であることにより、高いレート特性で、かつ、大きな放電容量を得ることができる。このような活物質は上述の方法により容易に製造される。 It contains β-type crystal structure LiVOPO 4 as a main component, the average primary particle diameter of the active material is within the above range, and the ratio of the length of the minor axis to the length of the major axis of the secondary particle is By having a value within the above range, that is, a shape approximating a sphere, a high discharge characteristic and a large discharge capacity can be obtained. Such an active material is easily manufactured by the above-described method.

ここで、本発明に係る活物質は、平均二次粒子径が1500nm〜8000nmであることが好ましい。活物質の平均二次粒子径が上記範囲内の値であると、高いレート特性で、かつ、大きな放電容量を得やすい。   Here, the active material according to the present invention preferably has an average secondary particle diameter of 1500 nm to 8000 nm. When the average secondary particle diameter of the active material is a value within the above range, it is easy to obtain a large discharge capacity with high rate characteristics.

また、本発明に係る電極は、集電体と、上記活物質を含み集電体上に設けられた活物質層と、を備えることが好ましい。これにより、高いレート特性で、かつ、大きな放電容量の電極を得ることができる。   Moreover, it is preferable that the electrode which concerns on this invention is equipped with a collector and the active material layer provided on the collector containing the said active material. Thereby, an electrode having high rate characteristics and a large discharge capacity can be obtained.

また、本発明に係るリチウム二次電池は、上記電極を備えることが好ましい。これにより、高いレート特性で、かつ、大きな放電容量のリチウムイオン二次電池を得やすい。   Moreover, it is preferable that the lithium secondary battery which concerns on this invention is equipped with the said electrode. Thereby, it is easy to obtain a lithium ion secondary battery having high rate characteristics and a large discharge capacity.

本発明によれば、高いレート特性で、かつ、大きな放電容量を得られる活物質を提供することができる。   According to the present invention, it is possible to provide an active material having high rate characteristics and a large discharge capacity.

図1は、本実施形態に係る活物質の模式断面図である。FIG. 1 is a schematic cross-sectional view of an active material according to this embodiment. 図2は、本実施形態に係る活物質を含む活物質層を備えるリチウムイオン二次電池の模式断面図である。FIG. 2 is a schematic cross-sectional view of a lithium ion secondary battery including an active material layer containing an active material according to the present embodiment. 図3は、観察時の設定倍率を30000倍とした時の実施例1で得られた活物質の電子顕微鏡写真である。FIG. 3 is an electron micrograph of the active material obtained in Example 1 when the set magnification at the time of observation is 30000 times. 図4は、観察時の設定倍率を5000倍とした時の実施例1で得られた活物質の電子顕微鏡写真である。FIG. 4 is an electron micrograph of the active material obtained in Example 1 when the set magnification during observation is 5000 times.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the dimension ratio of each drawing does not necessarily correspond with an actual dimension ratio.

<活物質の製造方法>
本発明に係る活物質の製造方法の好適な実施形態について説明する。
[水熱合成工程]
本実施形態に係る水熱合成工程は、リチウム源と、バナジウム源と、リン酸源と、水と、アスコルビン酸とを含み、バナジウム原子のモル数に対するリチウム原子のモル数の割合、及び、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2、バナジウム原子のモル数に対するアスコルビン酸のモル数の割合が0.05〜0.6である混合物を加圧下で加熱する工程である。
<Method for producing active material>
A preferred embodiment of a method for producing an active material according to the present invention will be described.
[Hydrothermal synthesis process]
The hydrothermal synthesis process according to the present embodiment includes a lithium source, a vanadium source, a phosphoric acid source, water, and ascorbic acid, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms, and vanadium. A mixture having a ratio of the number of moles of phosphorus atoms to the number of moles of atoms of 0.95 to 1.2, and a ratio of moles of ascorbic acid to the number of moles of vanadium atoms is heated under pressure. It is a process to do.

(混合物)
リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
バナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
(blend)
Examples of the lithium source include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
Examples of the vanadium source include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
Examples of the phosphoric acid source include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.

リチウム源、リン酸源、及びバナジウム源は、バナジウム原子のモル数に対するリチウム原子のモル数の割合が0.95〜1.2、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2となるように配合する。リチウム原子及びリン原子の少なくとも一方の配合比率が0.95より少ないと、得られる活物質の放電容量は減少する傾向があり、レート特性は低下する傾向がある。リチウム原子及びリン原子の少なくとも一方の配合比率が1.2よりも多いと、得られる活物質の放電容量は減少する傾向がある。   In the lithium source, phosphate source, and vanadium source, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms is 0.95 to 1.2, and the ratio of the number of moles of phosphorus atoms to the number of moles of vanadium atoms is 0.00. It mix | blends so that it may become 95-1.2. When the blending ratio of at least one of lithium atoms and phosphorus atoms is less than 0.95, the discharge capacity of the obtained active material tends to decrease, and the rate characteristics tend to decrease. When the blending ratio of at least one of lithium atoms and phosphorus atoms is more than 1.2, the discharge capacity of the obtained active material tends to decrease.

アスコルビン酸は、バナジウム原子のモル数に対するアスコルビン酸のモル数の割合が0.05〜0.6となるように配合する。アスコルビン酸を配合させることにより、β型結晶構造を有するLiVOPOを主に含む活物質を得ることができ、かつ、平均一次粒子径及び平均二次粒子径を小さくできる傾向がある。アスコルビン酸をバナジウム原子のモル数に対して0.05〜0.6の割合で配合させると、活物質の形状は極めて球に近い形状となり、高いレート特性で、かつ、大きな放電容量を得ることができる。このような知見は従来得られておらず、このような効果は、従来技術と比較して顕著な効果である。 Ascorbic acid is blended so that the ratio of the number of moles of ascorbic acid to the number of moles of vanadium atoms is 0.05 to 0.6. By incorporating ascorbic acid, an active material mainly containing LiVOPO 4 having a β-type crystal structure can be obtained, and the average primary particle size and the average secondary particle size tend to be reduced. When ascorbic acid is blended at a ratio of 0.05 to 0.6 with respect to the number of moles of vanadium atoms, the shape of the active material becomes very close to a sphere, with high rate characteristics and a large discharge capacity. Can do. Such knowledge has not been obtained so far, and such an effect is a remarkable effect as compared with the prior art.

ところで、得られた活物質を用いて電極の活物質含有層を作製する場合、導電性を高めるべく、通常この活物質の表面に炭素材料等の導電材を接触させることが多い。この方法として、活物質の製造後に活物質と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料となる混合物中に、炭素材料を導電材として添加して活物質に炭素を付着させることもできる。   By the way, when an active material-containing layer of an electrode is produced using the obtained active material, a conductive material such as a carbon material is usually brought into contact with the surface of the active material in order to increase conductivity. As this method, the active material and the conductive material may be mixed after the production of the active material to form the active material-containing layer. For example, the carbon material is used as the conductive material in the mixture as a raw material for hydrothermal synthesis. It can also be added to cause carbon to adhere to the active material.

混合物中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を混合物に容易に分散させることができる、活性炭を用いることが好ましい。ただし、導電材は必ずしも水熱合成時に混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に混合物に混合されることが好ましい。これにより、活物質含有層を形成する際のバインダーを低減して容量密度を増加させることができる場合がある。   Examples of the conductive material in the case where a conductive material that is a carbon material is added to the mixture include activated carbon, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon that can easily disperse carbon particles in a mixture during hydrothermal synthesis. However, the conductive material is not necessarily mixed in the mixture at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed in the mixture at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.

水熱合成工程における混合物中の炭素粒子等の上記導電材の含有量は、炭素粒子を構成する炭素原子のモル数C2と、例えばバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C2/Mが、0.04≦C2/M≦4を満たすように調製することが好ましい。導電材の含有量(モル数C2)が少な過ぎる場合、活物質と導電材により構成される電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多過ぎる場合、電極活物質に占める活物質の重量が相対的に減少し、電極活物質の容量密度が減少する傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the conductive material such as carbon particles in the mixture in the hydrothermal synthesis step is the ratio C2 / mol of the number of moles C2 of carbon atoms constituting the carbon particles and the number of moles M of vanadium atoms contained in the vanadium compound, for example. It is preferable to prepare such that M satisfies 0.04 ≦ C2 / M ≦ 4. When there is too little content (molar number C2) of an electrically conductive material, there exists a tendency for the electronic conductivity and capacity density of the electrode active material comprised with an active material and an electrically conductive material to fall. When there is too much content of a electrically conductive material, the weight of the active material which occupies for an electrode active material will reduce relatively, and there exists a tendency for the capacity density of an electrode active material to reduce. By setting the content of the conductive material within the above range, these tendencies can be suppressed.

混合物中における水の量は水熱合成が可能であれば特に限定されないが、混合物中の水以外の物質の割合は35質量%以下となることが好ましい。   The amount of water in the mixture is not particularly limited as long as hydrothermal synthesis is possible, but the ratio of substances other than water in the mixture is preferably 35% by mass or less.

混合物を調整する際の、原料の投入順序は特に制限されない。例えば、上記混合物の原料をまとめて混合してもよく、また、最初に、水とPO含有化合物の混合物に対してバナジウム化合物を添加し、その後、アスコルビン酸を添加し、さらにその後、リチウム化合物を加えてもよい。混合物は十分に混合させ、添加成分を十分に分散させておくことが好ましい。 The order in which the raw materials are charged when adjusting the mixture is not particularly limited. For example, the raw materials of the above mixture may be mixed together, and the vanadium compound is first added to the mixture of water and PO 4 -containing compound, then ascorbic acid is added, and then the lithium compound is added. May be added. It is preferable that the mixture is sufficiently mixed and the additive components are sufficiently dispersed.

水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述した混合物(リチウム化合物、バナジウム化合物、PO含有化合物、水、アスコルビン酸等)を投入する。なお、反応容器内で、混合物を調整してもよい。 In the hydrothermal synthesis step, first, the above-mentioned mixture (lithium compound, vanadium compound, PO 4 -containing compound, water, ascorbic acid, etc.) is placed in a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside. throw into. In addition, you may adjust a mixture within reaction container.

次に、反応容器を密閉して、混合物を加圧しながら加熱することにより、混合物の水熱反応を進行させる。これにより、β型結晶構造のLiVOPOの前駆体を含む物質が水熱合成される。 Next, the reaction vessel is sealed, and the mixture is heated while being pressurized, thereby causing the hydrothermal reaction of the mixture to proceed. Thereby, the substance containing the precursor of LiVOPO 4 having a β-type crystal structure is hydrothermally synthesized.

水熱合成により得られたβ型結晶構造のLiVOPOの前駆体を含む物質は、通常、水熱合成後の液中に固体として沈殿する。この物質に含まれるβ型結晶構造のLiVOPOの前駆体は、水和物の状態であると考えられる。そして、水熱合成後の液を、例えば、ろ過して固体を捕集し、捕集された固体を水やアセトン等で洗浄し、その後乾燥させることによりこの前駆体を高純度に得ることができる。 A substance containing a precursor of LiVOPO 4 having a β-type crystal structure obtained by hydrothermal synthesis usually precipitates as a solid in the liquid after hydrothermal synthesis. The precursor of LiVOPO 4 having a β-type crystal structure contained in this substance is considered to be in a hydrated state. Then, the liquid after hydrothermal synthesis is filtered, for example, to collect solids, and the collected solids are washed with water, acetone or the like and then dried to obtain this precursor with high purity. it can.

水熱合成工程において、混合物に加える圧力は、0.1〜30MPaとすることが好ましい。混合物に加える圧力が低過ぎると、最終的に得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高過ぎると、反応容器に高い耐圧性が求められ、活物質製造コストが増大する傾向がある。混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the pressure applied to the mixture is preferably 0.1 to 30 MPa. When the pressure applied to the mixture is too low, the crystallinity of LiVOPO 4 having a β-type crystal structure finally obtained tends to decrease, and the volume density of the active material tends to decrease. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the active material production cost tends to increase. By setting the pressure applied to the mixture within the above range, these tendencies can be suppressed.

水熱合成工程における混合物の温度は、200〜300℃とすることが好ましく、得られた活物質の放電容量とレート特性を向上させる観点から、210〜250℃とすることがより好ましい。混合物の温度が低過ぎると、最終的に得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物の温度が高過ぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向も抑制できる。 The temperature of the mixture in the hydrothermal synthesis step is preferably 200 to 300 ° C., and more preferably 210 to 250 ° C. from the viewpoint of improving the discharge capacity and rate characteristics of the obtained active material. When the temperature of the mixture is too low, the crystallinity of LiVOPO 4 having a β-type crystal structure finally obtained tends to decrease, and the capacity density of the active material tends to decrease. When the temperature of the mixture is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

[焼成工程]
本実施形態に係る焼成工程は、水熱合成により得られた材料、すなわち、β型結晶構造のLiVOPOの前駆体を加熱し、β型結晶構造のLiVOPOを得る工程である。この工程では、前駆体中に残留した不純物等が除去される現象が起こると共に、β型結晶構造のLiVOPOの前駆体が脱水されて結晶化が起こるものと考えられる。
[Baking process]
The firing step according to this embodiment is a step in which a material obtained by hydrothermal synthesis, that is, a precursor of LiVOPO 4 having a β-type crystal structure is heated to obtain LiVOPO 4 having a β-type crystal structure. In this step, it is considered that the impurities remaining in the precursor are removed, and the precursor of LiVOPO 4 having a β-type crystal structure is dehydrated to cause crystallization.

ここで、焼成工程では、上述の前駆体を400℃〜600℃に加熱することが好ましい。加熱温度が低すぎると、最終的に得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。一方、加熱温度が高すぎると、活物質の粒成長が進み粒径(一次粒子径及び/又は二次粒子径)が増大する結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度が減少する傾向がある。加熱温度を上記の範囲内とすることによって、これらの傾向を抑制できる。加熱時間は特に限定されないが、3〜6時間とすることが好ましい。 Here, in the firing step, it is preferable to heat the above-described precursor to 400 ° C to 600 ° C. If the heating temperature is too low, the crystallinity of the finally obtained β-type crystal structure LiVOPO 4 tends to decrease, and the capacity density of the active material tends to decrease. On the other hand, if the heating temperature is too high, grain growth of the active material proceeds and the particle size (primary particle size and / or secondary particle size) increases, resulting in slow diffusion of lithium in the active material, and capacity density of the active material. Tend to decrease. By setting the heating temperature within the above range, these tendencies can be suppressed. The heating time is not particularly limited, but is preferably 3 to 6 hours.

焼成工程の雰囲気は特に限定されないが、アスコルビン酸の除去を行い易くするためには、大気雰囲気であることが好ましい。一方、アルゴンガス、窒素ガス等の不活性雰囲気中で行うこともできる。   Although the atmosphere of a baking process is not specifically limited, In order to make removal of ascorbic acid easy, it is preferable that it is an air atmosphere. On the other hand, it can also be performed in an inert atmosphere such as argon gas or nitrogen gas.

上述した水熱合成工程及び焼成工程を備える活物質の製造方法によれば、バナジウム原子のモル数に対するリチウム原子のモル数の割合、及び、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2であって、バナジウム原子に対するアスコルビン酸のモル数の割合が0.05〜0.6である混合物を加圧下で加熱し、これにより得られた前駆体を焼成することにより、平均一次粒子径が極めて小さくかつ二次粒子の形状が球に近似した凝集構造を有し、さらに、β型結晶構造の比率が高いLiVOPOを得ることができる。そして、このような活物質を用いたリチウムイオン二次電池は、高いレート特性で、かつ、大きな放電容量を得ることができる。 According to the method for producing an active material including the hydrothermal synthesis step and the firing step described above, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms and the ratio of moles of phosphorus atoms to the number of moles of vanadium atoms are The mixture obtained by heating under pressure a mixture of 0.95 to 1.2 and having a molar ratio of ascorbic acid to vanadium atoms of 0.05 to 0.6 is fired. Thus, LiVOPO 4 having an agglomerated structure in which the average primary particle diameter is extremely small and the shape of the secondary particles approximates a sphere and the ratio of the β-type crystal structure is high can be obtained. And the lithium ion secondary battery using such an active material can obtain a high discharge capacity with a high rate characteristic.

<活物質>
次に、本実施形態に係る活物質について説明する。図1は、本実施形態に係る活物質2の模式断面図である。本実施形態の活物質2は、一次粒子1が凝集して二次粒子を形成したものである。
<Active material>
Next, the active material according to the present embodiment will be described. FIG. 1 is a schematic cross-sectional view of an active material 2 according to this embodiment. The active material 2 of the present embodiment is one in which the primary particles 1 aggregate to form secondary particles.

活物質2は、平均一次粒子径が100〜350nmである。ここで、本発明において規定される「活物質の平均一次粒子径」とは、活物質2の一次粒子1に対して測定した個数基準の粒度分布における、累積率が50%であるD50の値である。活物質2の一次粒子1の個数基準の粒度分布は、例えば、高分解能走査型電子顕微鏡で観察したイメージに基づいた活物質2の一次粒子1の投影面積から投影面積円相当径を測定し、その累積率から算出することができる。なお、投影面積円相当径とは、粒子(活物質2の一次粒子1)の投影面積と同じ投影面積を持つ球を想定し、その球の直径(円相当径)を粒子径(活物質2の一次粒子の粒子径)として表したものである。なお、後述する「活物質の平均二次粒子径」とは、上述の平均一次粒子径と同様に、凝集粒子である活物質2(本発明の活物質の二次粒子に相当)に対して測定した個数基準の粒度分布における、累積率が50%であるD50の値である。   The active material 2 has an average primary particle size of 100 to 350 nm. Here, the “average primary particle diameter of the active material” defined in the present invention is a value of D50 in which the cumulative ratio is 50% in the number-based particle size distribution measured for the primary particles 1 of the active material 2. It is. The number-based particle size distribution of the primary particles 1 of the active material 2 is, for example, a projected area equivalent circle diameter is measured from the projected area of the primary particles 1 of the active material 2 based on an image observed with a high-resolution scanning electron microscope, It can be calculated from the cumulative rate. The projected area equivalent circle diameter assumes a sphere having the same projected area as the projected area of the particles (primary particles 1 of the active material 2), and the diameter of the sphere (equivalent circle diameter) is the particle diameter (active material 2). Particle diameter of primary particles). The “average secondary particle diameter of the active material” to be described later is the same as the average primary particle diameter described above with respect to the active material 2 that is an aggregated particle (corresponding to the secondary particles of the active material of the present invention). This is the value of D50 with a cumulative rate of 50% in the measured particle size distribution based on the number.

活物質2の長軸の長さに対する短軸の長さの比は、0.80〜1である。ここで、本発明において規定される二次粒子の「活物質の長軸の長さ」は、高分解能走査型電子顕微鏡で観察したイメージにおいて、最も長い長さを意味し、「活物質の短軸の長さ」は、長軸の垂直二等分線の線分の長さを意味する。長軸の長さに対する短軸の長さの比が1の時、活物質の形状は球になる。この比が0.80〜1であるということは、得られる活物質の二次粒子の形状は、球または極めて球に近い形状である。中でもこの比が、0.81〜0.93であるものを製造し易い。   The ratio of the length of the short axis to the length of the long axis of the active material 2 is 0.80-1. Here, “the length of the long axis of the active material” of the secondary particles defined in the present invention means the longest length in an image observed with a high-resolution scanning electron microscope. “Axis length” means the length of the vertical bisector of the major axis. When the ratio of the length of the short axis to the length of the long axis is 1, the shape of the active material is a sphere. When this ratio is 0.80 to 1, the shape of the secondary particles of the obtained active material is a sphere or a shape very close to a sphere. Among them, it is easy to produce a product having this ratio of 0.81 to 0.93.

活物質2は、β型結晶構造のLiVOPOを主成分として含む。ここで、「β型結晶構造のLiVOPOを主成分とする」とは、活物質2において、β型結晶構造のLiVOPOをβ型結晶構造のLiVOPOとα型結晶構造のLiVOPOとの総和に対して80質量%以上含むことを意味する。ここで、粒子中におけるβ型結晶構造のLiVOPOやα型結晶構造のLiVOPO等の量は、例えば、X線回折法により測定することができる。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。なお、活物質は、β型結晶構造のLiVOPO及びα型結晶構造のLiVOPO以外にも、未反応の原料成分等を微量含んでもよい。 The active material 2 contains LiVOPO 4 having a β-type crystal structure as a main component. Here, “mainly composed of a β-type crystal structure of LiVOPO 4 ” means that, in the active material 2, the β-type crystal structure of LiVOPO 4 is replaced with a β-type crystal structure of LiVOPO 4 and an α-type crystal structure of LiVOPO 4 . It means that 80 mass% or more is included with respect to the sum total. Here, the amount of LiVOPO 4 having a β-type crystal structure, LiVOPO 4 having an α-type crystal structure, or the like in the particle can be measured by, for example, an X-ray diffraction method. Usually, LiVOPO 4 of β-type crystal structure peaks appear in 2 [Theta] = 27.0 degrees, LiVOPO 4 of α-type crystal structure peaks appear in 2 [Theta] = 27.2 degrees. Note that the active material may contain a small amount of unreacted raw material components in addition to LiVOPO 4 having a β-type crystal structure and LiVOPO 4 having an α-type crystal structure.

このような活物質は、上記製造方法よって容易に製造されるものである。そしてこの活物質は、高いレート特性で、かつ、大きな放電容量を得ることができる。この理由は明らかではないが、放電容量の大きなβ型結晶構造のLiVOPOを主成分とすることにより放電容量が大きくなり、また、平均一次粒子径が非常に小さく二次粒子の形状が極めて球に近い凝集構造を有することにより、Liイオンが等方的に拡散し易くなり、放電電流密度が高い場合であっても、大きな放電容量を得ることができるためと推測される。なお、上述のように、活物質2は、凝集構造、すなわち、多孔体構造であるため、電解液の含浸能が高い。 Such an active material is easily manufactured by the above manufacturing method. This active material has high rate characteristics and can provide a large discharge capacity. Although the reason for this is not clear, the discharge capacity is increased by using LiVOPO 4 having a β-type crystal structure having a large discharge capacity as a main component, and the average primary particle diameter is very small, and the shape of the secondary particles is extremely spherical. This is presumed to be because Li ions easily diffuse isotropically by having an agglomerated structure close to, and a large discharge capacity can be obtained even when the discharge current density is high. As described above, since the active material 2 has an agglomerated structure, that is, a porous structure, the impregnation ability of the electrolytic solution is high.

活物質2の平均粒子径(平均二次粒子径)は、1500nm〜8000nmであることが好ましい。このような活物質は、高いレート特性で、かつ、大きな放電容量を得やすい。   The average particle size (average secondary particle size) of the active material 2 is preferably 1500 nm to 8000 nm. Such an active material has high rate characteristics and easily obtains a large discharge capacity.

<リチウムイオン二次電池>
続いて、上述の活物質を正極活物質として用いたリチウムイオン二次電池について図2を参照して簡単に説明する。
<Lithium ion secondary battery>
Next, a lithium ion secondary battery using the above active material as a positive electrode active material will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of the positive electrode 10 and the negative electrode 20 are opposed to each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

(正極)
正極10は、図2に示すように、板状(膜状)の正極集電体12と、正極集電体12上に形成された正極活物質層14とを有している。
(Positive electrode)
As illustrated in FIG. 2, the positive electrode 10 includes a plate-like (film-like) positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12.

正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。正極活物質層14は、主として、上述の活物質2、及び、結合剤を有している。なお、正極活物質層14は、導電助剤を含んでも良い。   The positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used. The positive electrode active material layer 14 mainly includes the above-described active material 2 and a binder. The positive electrode active material layer 14 may contain a conductive additive.

結合剤は、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。   The binder binds the active materials to each other and binds the active material to the positive electrode current collector 12.

結合剤の材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。   The material of the binder is not limited as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride A fluororesin such as (PVF) is used.

また、上記の他に、結合剤として、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) , Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine It may be used vinylidene fluoride-based fluorine rubbers such as beam (VDF-CTFE-based fluorine rubber).

更に、上記の他に、結合剤として、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。   In addition to the above, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used as the binder. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer may be used.

また、結合剤として電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結合剤が導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also exhibits the function of the conductive auxiliary agent particles, it is not necessary to add the conductive auxiliary agent.

イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、LiBr、Li(CF3SO22N、LiN(C25SO2)2リチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) A crosslinked polymer of a polyether compound, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, etc.) monomers, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of an alkali metal salt mainly composed of lithium. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14に含まれる結合剤の含有率は、活物質層の質量を基準として0.5〜6質量%であることが好ましい。結合剤の含有率が0.5質量%未満となると、結合剤の量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、結合剤の含有率が6質量%を超えると、電気容量に寄与しない結合剤の量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特に結合剤の電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。   It is preferable that the content rate of the binder contained in the positive electrode active material layer 14 is 0.5-6 mass% on the basis of the mass of an active material layer. When the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases. Moreover, when the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electric capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and a tendency that a sufficient electric capacity cannot be obtained increases.

導電助剤としては、例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。   Examples of the conductive assistant include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

(正極の製造方法)
上述の活物質及び結合材と、必要に応じた量の導電助剤とを、溶媒に添加してスラリーを調整する。溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。そして、活物質、結合材等を含むスラリーを、正極集電体12の表面に塗布し、乾燥させればよい。
(Production method of positive electrode)
A slurry is prepared by adding the above-mentioned active material and binder, and a necessary amount of a conductive additive to a solvent. As the solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used. Then, a slurry containing an active material, a binder, and the like may be applied to the surface of the positive electrode current collector 12 and dried.

(負極)
負極20は、板状の負極集電体22と、負極集電体22上に形成された負極活物質層2
4を備える。負極集電体22、結合材、導電助剤は、それぞれ、正極と同様のものを試用できる。また、負極活物質は特に限定されず、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO2、SnO2等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi512)等を含む粒子が挙げられる。
(Negative electrode)
The negative electrode 20 includes a plate-shaped negative electrode current collector 22 and a negative electrode active material layer 2 formed on the negative electrode current collector 22.
4 is provided. The negative electrode current collector 22, the binder, and the conductive additive can each be the same as the positive electrode. Moreover, a negative electrode active material is not specifically limited, A well-known negative electrode active material for batteries can be used. Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate, or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.

(電解液)
電解質溶液は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、LiCF2SO3、LiC(CF3SO23、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiN(CF3CF2CO)2、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
(Electrolyte)
The electrolyte solution is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , LiCF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。   Then, the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

以上、活物質粒子の製造方法、それにより得られた活物質、当該活物質を含む電極、及び当該電極を備えるリチウムイオン二次電池の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although the manufacturing method of active material particle, the active material obtained by it, the electrode containing the said active material, and suitable one Embodiment of the lithium ion secondary battery provided with the said electrode were demonstrated in detail, this invention is The present invention is not limited to the above embodiment.

例えば、活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の複合粒子を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the active material can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metallic lithium secondary battery (which uses an electrode containing the composite particles of the present invention as a cathode and metallic lithium as an anode). And electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
<水熱合成工程>
500mlのマイヤーフラスコに、4.63g(0.04mol)のHPO(ナカライテスク社製、純度85%)、及び、180gの蒸留水(ナカライテスク社製、HPLC用)を入れ、マグネチックスターラーで攪拌した。続いて、3.67g(0.02mol)のV(ナカライテスク社製、純度99%)を加え、約2.5時間攪拌を続けた。
次に、1.77g(0.01mol)のアスコルビン酸を、上記混合物中に加えた。アスコルビン酸を加えた後、約60分間攪拌を継続した。
続いて、1.70g(0.04mol)のLiOH・HO(ナカライテスク社製、純度99%)を約10分かけて加えた。得られたペースト状の物質に、20gの蒸留水を追加した後、フラスコ内の物質210.91gを、0.5Lオートクレーブのガラス製の円筒容器内に移した。容器内の物質のpHを測定したところ、pHは5であった。容器を密閉し、12時間、250℃で保持し、水熱合成を行った。
Example 1
<Hydrothermal synthesis process>
In a 500 ml Meyer flask, 4.63 g (0.04 mol) of H 3 PO 4 (Nacalai Tesque, purity 85%) and 180 g of distilled water (Nacalai Tesque, HPLC) were added, and magnetic. Stir with a stirrer. Subsequently, 3.67 g (0.02 mol) of V 2 O 5 (manufactured by Nacalai Tesque, purity 99%) was added, and stirring was continued for about 2.5 hours.
Next, 1.77 g (0.01 mol) of ascorbic acid was added into the above mixture. After ascorbic acid was added, stirring was continued for about 60 minutes.
Subsequently, 1.70 g (0.04 mol) of LiOH.H 2 O (manufactured by Nacalai Tesque, 99% purity) was added over about 10 minutes. After adding 20 g of distilled water to the obtained pasty substance, 210.91 g of the substance in the flask was transferred into a cylindrical glass container of a 0.5 L autoclave. When the pH of the substance in the container was measured, the pH was 5. The container was sealed and held at 250 ° C. for 12 hours to perform hydrothermal synthesis.

ヒータのスイッチをオフにした後、約7時間かけて放冷を行い、茶褐色沈殿を含む懸濁液を得た。この物質のpHを測定したところ、pHは6であった。上澄みを除去した後、約200mlの蒸留水を加え、攪拌しながら容器内の沈殿物を洗浄した。その後、吸引濾過を行った。水洗を行った後、約200mlのアセトンを加え、水洗と同様にして沈殿物の洗浄を行った。濾過後の物質をシャーレに移し、大気中で乾燥させて、6.51gの褐色固体を得た。収率は、LiVOPO換算で96.7%であった。 After the heater switch was turned off, the mixture was allowed to cool for about 7 hours to obtain a suspension containing a brown precipitate. The pH of this substance was measured and found to be 6. After removing the supernatant, about 200 ml of distilled water was added, and the precipitate in the container was washed while stirring. Thereafter, suction filtration was performed. After washing with water, about 200 ml of acetone was added, and the precipitate was washed in the same manner as the washing with water. The filtered material was transferred to a petri dish and dried in the air to obtain 6.51 g of a brown solid. The yield was 96.7% at LiVOPO 4 terms.

<焼成工程>
水熱合成工程で得られた褐色個体1.00gをアルミナ坩堝に入れ、大気雰囲気中、室温から450℃まで60分かけて昇温し、450℃で4時間熱処理することにより、粉体を得た。
<Baking process>
1.00 g of a brown solid obtained in the hydrothermal synthesis process is placed in an alumina crucible, heated from room temperature to 450 ° C. over 60 minutes in an air atmosphere, and heat treated at 450 ° C. for 4 hours to obtain a powder. It was.

<β比の測定>
実施例1の活物質におけるβ型結晶構造のLiVOPOとα型結晶構造のLiVOPOとの総和に対するβ型結晶構造の割合(β比)を、粉末X線回折(XRD)の結果より求めた。実施例1の活物質におけるβ比は、97%であった。
<Measurement of β ratio>
The proportion of beta-type crystal structure to the sum of the LiVOPO 4 of LiVOPO 4 and α-type crystal structure of the beta-type crystal structure in the active material of Example 1 (beta ratio) was determined from the result of powder X-ray diffraction (XRD) . The β ratio in the active material of Example 1 was 97%.

<平均一次粒子径及び平均二次粒子径の測定>
実施例1の活物質の一次粒子及び二次粒子の粒度分布を、高分解能走査型電子顕微鏡で観察したイメージに基づいた活物質の投影面積(それぞれ、100個)から求められる投影面積円相当径の累積率によりそれぞれ算出した。求めた活物質の個数基準の粒度分布に基づき、活物質の平均一次粒子径(D50)及び平均二次粒子径(D50)を算出した。活物質の平均一次粒子径(D50)は160nmであり、平均二次粒子径(D50)は2200nmであった。なお、実施例1で得られた活物質の二次粒子に対して測定した個数基準の粒度分布における累積率が10%であるD10の値は1150nmであり、累積率が90%であるD90の値は、2730nmであった。
<Measurement of average primary particle size and average secondary particle size>
The projected area circle equivalent diameter obtained from the projected area (100 each) of the active material based on the image observed with the high-resolution scanning electron microscope for the particle size distribution of the primary particles and secondary particles of the active material of Example 1 It calculated by the accumulation rate of each. Based on the obtained particle size distribution based on the number of active materials, the average primary particle size (D50) and the average secondary particle size (D50) of the active material were calculated. The average primary particle diameter (D50) of the active material was 160 nm, and the average secondary particle diameter (D50) was 2200 nm. In addition, the value of D10 having a cumulative ratio of 10% in the number-based particle size distribution measured for the secondary particles of the active material obtained in Example 1 is 1150 nm, and the value of D90 having a cumulative ratio of 90%. The value was 2730 nm.

<二次粒子の短軸長/長軸長の測定>
高分解能走査型電子顕微鏡で観察したイメージから、100個の活物質の二次粒子の短軸長及び長軸長を測定し、長軸長に対する短軸長の比の平均値を算出した。実施例1の活物質の短軸長/長軸長の値は、0.93であった。
<Measurement of minor axis length / major axis length of secondary particles>
From the image observed with a high-resolution scanning electron microscope, the minor axis length and the major axis length of 100 secondary particles of the active material were measured, and the average value of the ratio of the minor axis length to the major axis length was calculated. The value of short axis length / major axis length of the active material of Example 1 was 0.93.

<放電容量の測定>
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
<Measurement of discharge capacity>
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminate pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1の評価用セルを用いて、放電レートを0.01C(25℃で定電流放電を行ったときに100時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。0.01Cでの放電容量は、153mAh/gであった。また、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。0.1Cでの放電容量は、148mAh/gであった。   Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.01 C (current value at which discharge is completed in 100 hours when constant current discharge is performed at 25 ° C.) g) was measured. The discharge capacity at 0.01 C was 153 mAh / g. Moreover, the discharge capacity (unit: mAh / g) was measured when the discharge rate was 0.1 C (current value at which discharge was completed in 10 hours when constant current discharge was performed at 25 ° C.). The discharge capacity at 0.1 C was 148 mAh / g.

<レート特性の評価>
0.01Cでの放電容量に対する、0.1Cでの放電容量の百分率を算出し、レート特性として評価した。実施例1の評価用セルのレート特性は、96.7%であった。
<Evaluation of rate characteristics>
The percentage of the discharge capacity at 0.1 C relative to the discharge capacity at 0.01 C was calculated and evaluated as a rate characteristic. The rate characteristic of the evaluation cell of Example 1 was 96.7%.

(実施例2〜15、比較例1〜11)
水熱合成工程において、混合物中のバナジウム原子のモル数に対するリチウム原子のモル数の割合、バナジウム原子のモル数に対するリン原子のモル数の割合、混合物中に添加するアスコルビン酸の量、還元剤の種類、水熱合成温度、並びに、焼成工程における焼成温度を下記表1、2に示すように変更した以外は、実施例1と同様にして実施例2〜15、比較例1〜11の活物質を得た。得られた活物質におけるβ型結晶構造のLiVOPOとα型結晶構造のLiVOPOとの総和に対するβ型結晶構造の割合(β比)、活物質の平均一次粒子径(D50)、平均二次粒子径(D50)、二次粒子の長軸長に対する短軸長の比、並びに、これらの活物質を用いた評価用セルの放電容量及びレート特性を表3、4に示す。なお、実施例2〜15の二次粒子のD10及びD90のD50に対する比率は、それぞれ実施例1とほぼ同じ程度の値であった。
(Examples 2-15, Comparative Examples 1-11)
In the hydrothermal synthesis step, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms in the mixture, the ratio of the number of moles of phosphorus atoms to the number of moles of vanadium atoms, the amount of ascorbic acid added to the mixture, The active materials of Examples 2 to 15 and Comparative Examples 1 to 11 were the same as Example 1 except that the type, hydrothermal synthesis temperature, and firing temperature in the firing step were changed as shown in Tables 1 and 2 below. Got. The ratio (β ratio) of the β-type crystal structure to the total of LiVOPO 4 having a β-type crystal structure and LiVOPO 4 having an α-type crystal structure in the obtained active material, the average primary particle diameter (D50) of the active material, and the average secondary Tables 3 and 4 show the particle diameter (D50), the ratio of the minor axis length to the major axis length of the secondary particles, and the discharge capacity and rate characteristics of the evaluation cells using these active materials. The ratios of the secondary particles of Examples 2 to 15 to D10 and D90 to D50 were substantially the same values as in Example 1.

表3に示すように実施例1〜15の条件において得られた活物質は、平均一次粒子径が120nm〜340nmであった。また、二次粒子の長軸長に対する短軸長の比が0.81〜0.99であり、二次粒子は極めて球に近い凝集構造であった。さらに、この活物質は、β型結晶構造のLiVOPOを主成分として含んでいた。実施例1〜15の活物質を用いたセルは、高いレート特性で、かつ、大きな放電容量であった。 As shown in Table 3, the active materials obtained under the conditions of Examples 1 to 15 had an average primary particle size of 120 nm to 340 nm. Further, the ratio of the minor axis length to the major axis length of the secondary particles was 0.81 to 0.99, and the secondary particles had an agglomerated structure very close to a sphere. Further, this active material contained LiVOPO 4 having a β-type crystal structure as a main component. The cells using the active materials of Examples 1 to 15 had high rate characteristics and a large discharge capacity.

1…一次粒子、2…活物質(二次粒子)、10,20…電極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、52…金属箔、54…高分子膜、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 1 ... Primary particle, 2 ... Active material (secondary particle) 10, 20 ... Electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode active Material layer 30 ... Laminated body 50 ... Case 52 ... Metal foil 54 ... Polymer film 60,62 ... Lead 100 ... Lithium ion secondary battery

Claims (5)

リチウム源と、バナジウム源と、リン酸源と、水と、アスコルビン酸とを含み、バナジウム原子のモル数に対するリチウム原子のモル数の割合、及び、バナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2、バナジウム原子のモル数に対するアスコルビン酸のモル数の割合が0.05〜0.6である混合物を加圧下で加熱する水熱合成工程と、
前記水熱合成工程で得られた材料を加熱し、β型結晶構造のLiVOPOを得る焼成工程と、
を備える活物質の製造方法。
A lithium source, a vanadium source, a phosphate source, water, and ascorbic acid, the ratio of the number of moles of lithium atoms to the number of moles of vanadium atoms, and the number of moles of phosphorus atoms relative to the number of moles of vanadium atoms A hydrothermal synthesis step of heating a mixture having a ratio of 0.95 to 1.2 and a molar ratio of ascorbic acid to a molar number of vanadium atoms of 0.05 to 0.6 under pressure;
A firing step of heating the material obtained in the hydrothermal synthesis step to obtain LiVOPO 4 having a β-type crystal structure;
A method for producing an active material comprising:
平均一次粒子径が100〜350nmであり、かつ、二次粒子の長軸の長さに対する短軸の長さの比が0.80〜1である凝集構造を備え、β型結晶構造のLiVOPOを主成分として含む活物質。 LiVOPO 4 having an average primary particle diameter of 100 to 350 nm and an aggregated structure in which the ratio of the length of the minor axis to the length of the major axis of the secondary particle is 0.80 to 1, and having a β-type crystal structure An active material containing as a main component. 平均二次粒子径が1500nm〜8000nmである、請求項2記載の活物質。   The active material of Claim 2 whose average secondary particle diameter is 1500 nm-8000 nm. 集電体と、請求項3の活物質を含み前記集電体上に設けられた活物質層と、を備える電極。   An electrode comprising: a current collector; and an active material layer including the active material according to claim 3 and provided on the current collector. 請求項4の電極を備えるリチウム二次電池。   A lithium secondary battery comprising the electrode according to claim 4.
JP2009198466A 2009-08-28 2009-08-28 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material Active JP5375446B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009198466A JP5375446B2 (en) 2009-08-28 2009-08-28 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
US12/868,142 US20110052995A1 (en) 2009-08-28 2010-08-25 Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material
CN201410046646.3A CN103762363B (en) 2009-08-28 2010-08-30 The manufacture method of active material, electrode, lithium secondary battery and active material
CN201010268650.6A CN102005572B (en) 2009-08-28 2010-08-30 Active material, electrode, lithium secondary battery and method for manufacture of active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198466A JP5375446B2 (en) 2009-08-28 2009-08-28 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Publications (2)

Publication Number Publication Date
JP2011049102A true JP2011049102A (en) 2011-03-10
JP5375446B2 JP5375446B2 (en) 2013-12-25

Family

ID=43835230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198466A Active JP5375446B2 (en) 2009-08-28 2009-08-28 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Country Status (1)

Country Link
JP (1) JP5375446B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216377A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, method for producing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
JP2015106472A (en) * 2013-11-29 2015-06-08 Tdk株式会社 Positive electrode active material, positive electrode and lithium ion secondary battery
JP2015185251A (en) * 2014-03-20 2015-10-22 Tdk株式会社 electrode and lithium ion secondary battery using the same
JP2015185252A (en) * 2014-03-20 2015-10-22 Tdk株式会社 electrode and lithium ion secondary battery using the same
CN110890589A (en) * 2018-09-11 2020-03-17 太阳诱电株式会社 All-solid-state battery, method for manufacturing all-solid-state battery, and solid electrolyte paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
JP2009231206A (en) * 2008-03-25 2009-10-08 Gs Yuasa Corporation Nonaqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells
JP2009231206A (en) * 2008-03-25 2009-10-08 Gs Yuasa Corporation Nonaqueous electrolyte battery
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013026149; K.H.Lii, et al.: 'Hydrothermal Synthesis, Structure, and Magnetic Properties of a New Polymorph of Lithium Vanadyl(IV)' JOURNAL OF SOLID STATE CHEMISTRY Vol.95, 1991, pp.352-359 *
JPN6013026150; M.M.Ren, et al.: 'LiVOPO4:A cathode material for 4V lithium ion batteries' Journal of Power Sources Vol.189/No.1, 20090401, pp.786-789 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216377A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, method for producing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
JP2015106472A (en) * 2013-11-29 2015-06-08 Tdk株式会社 Positive electrode active material, positive electrode and lithium ion secondary battery
JP2015185251A (en) * 2014-03-20 2015-10-22 Tdk株式会社 electrode and lithium ion secondary battery using the same
JP2015185252A (en) * 2014-03-20 2015-10-22 Tdk株式会社 electrode and lithium ion secondary battery using the same
CN110890589A (en) * 2018-09-11 2020-03-17 太阳诱电株式会社 All-solid-state battery, method for manufacturing all-solid-state battery, and solid electrolyte paste

Also Published As

Publication number Publication date
JP5375446B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
KR101902071B1 (en) Negative electrode active particle and method for manufacturing the same
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP5396942B2 (en) Manufacturing method of active material, active material, electrode using the active material, and lithium ion secondary battery including the electrode
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
WO2012008423A1 (en) Active material, electrode containing same, lithium secondary battery comprising the electrode, and method for producing active material
US20100233545A1 (en) Active material, method of manufacturing active material, electrode, and lithium-ion secondary battery
KR20150047477A (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries using same, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP5347604B2 (en) Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
CN102005572B (en) Active material, electrode, lithium secondary battery and method for manufacture of active material
JP5609299B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5609300B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP5617744B2 (en) Active material particles, active material, electrode, and lithium ion secondary battery
JP6197609B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP2012212634A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP2017152363A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2013054585A1 (en) Secondary battery and method for producing same
JP2012212635A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP2015069865A (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5709004B2 (en) Secondary battery and manufacturing method thereof
JP2019175634A (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150