JP5609300B2 - Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material - Google Patents

Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material Download PDF

Info

Publication number
JP5609300B2
JP5609300B2 JP2010139834A JP2010139834A JP5609300B2 JP 5609300 B2 JP5609300 B2 JP 5609300B2 JP 2010139834 A JP2010139834 A JP 2010139834A JP 2010139834 A JP2010139834 A JP 2010139834A JP 5609300 B2 JP5609300 B2 JP 5609300B2
Authority
JP
Japan
Prior art keywords
active material
electrode
plane
secondary battery
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010139834A
Other languages
Japanese (ja)
Other versions
JP2012004044A (en
Inventor
佐野 篤史
篤史 佐野
佳太郎 大槻
佳太郎 大槻
浩司 時田
浩司 時田
友彦 加藤
友彦 加藤
樋口 章二
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010139834A priority Critical patent/JP5609300B2/en
Priority to US13/160,968 priority patent/US8734987B2/en
Priority to CN2011101703797A priority patent/CN102363523A/en
Priority to CN201310689040.7A priority patent/CN103771386B/en
Publication of JP2012004044A publication Critical patent/JP2012004044A/en
Application granted granted Critical
Publication of JP5609300B2 publication Critical patent/JP5609300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法に関する。   The present invention relates to an active material, an electrode including the active material, a lithium secondary battery including the electrode, and an active material manufacturing method.

構造式LiVOPOで表される結晶においては、リチウムイオンが可逆的に挿入脱離することが知られている。特許文献1には、Vを用いて、固相法によりβ型結晶構造(斜方晶)のLiVOPO及びα型結晶構造(三斜晶)のLiVOPOを作製し、これらを非水電解質二次電池の電極活物質として用いることが開示されている。そして、非水電解質二次電池の放電容量は、α型結晶構造(三斜晶)のLiVOPOに比べ、β型結晶構造のLiVOPOの方が大きいことが記載されている。 In the crystal represented by the structural formula LiVOPO 4 , it is known that lithium ions are reversibly inserted and desorbed. Patent Document 1, using a V 2 O 5, to prepare a LiVOPO 4 of LiVOPO 4 and α-type crystal structure of the solid-phase method by β-type crystal structure (orthorhombic) (triclinic), these non The use as an electrode active material of a water electrolyte secondary battery is disclosed. Then, the non-aqueous discharge capacity of electrolyte secondary battery, compared with the LiVOPO 4 of α-type crystal structure (triclinic), towards the LiVOPO 4 of β-type crystal structure is large is described.

非特許文献1には、VOPOとLiCOとを炭素の存在下で加熱し、炭素によりVOPOを還元して、β型結晶構造のLiVOPOを作製する方法(カーボサーマルリダクション法(CTR法))が開示されている。非特許文献2には、4価のバナジウムを用いることにより、β型結晶構造のLiVOPOを作製する方法が開示されている。 Non-Patent Document 1 discloses a method for producing LiVOPO 4 having a β-type crystal structure by heating VOPO 4 and Li 2 CO 3 in the presence of carbon and reducing VOPO 4 with carbon (a carbothermal reduction method). CTR method)) is disclosed. Non-Patent Document 2 discloses a method for producing LiVOPO 4 having a β-type crystal structure by using tetravalent vanadium.

特開2004−303527号公報JP 2004-303527 A

J.Baker et al.,J.Electrochem.Soc.,151,A796(2004)J. et al. Baker et al. , J .; Electrochem. Soc. 151, A796 (2004) J.Solid State Chem.,95,352(1991)J. et al. Solid State Chem. , 95, 352 (1991)

しかしながら、特許文献1及び非特許文献1、2に記載された方法により得られたβ型結晶構造のLiVOPOを含む活物質は、十分な放電容量を得られるものではなかった。 However, the active material containing LiVOPO 4 having a β-type crystal structure obtained by the methods described in Patent Document 1 and Non-Patent Documents 1 and 2 cannot obtain a sufficient discharge capacity.

そこで、本発明は、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the active material which can obtain sufficient discharge capacity, the electrode containing this, a lithium secondary battery provided with the said electrode, and the manufacturing method of an active material.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、リチウム源と、5価のバナジウム源と、リン酸源と、水と、クエン酸とを含む混合物を、加圧下で200℃以上に加熱することにより、LiVOPO結晶の配向性が高度に制御された活物質を製造でき、この活物質によれば、十分な放電容量が得られることを見出した。 As a result of intensive studies to achieve the above object, the inventors of the present invention have developed a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and citric acid under pressure. It has been found that an active material in which the orientation of the LiVOPO 4 crystal is highly controlled can be produced by heating to a temperature of not lower than 0 ° C., and according to this active material, a sufficient discharge capacity can be obtained.

ここで、本発明の活物質の製造方法は、水熱合成工程で得られたβ型結晶構造のLiVOPOを加熱する工程をさらに備えることが好ましい。 Here, it is preferable that the method for producing an active material of the present invention further includes a step of heating LiVOPO 4 having a β-type crystal structure obtained in the hydrothermal synthesis step.

また、上記混合物は、リチウム源、5価のバナジウム源、及びリン酸源の少なくとも一部が水に溶解していない懸濁液であることが好ましい。このような混合物を用いると、本発明の活物質を確実に得ることができる。   The mixture is preferably a suspension in which at least a part of the lithium source, the pentavalent vanadium source, and the phosphoric acid source is not dissolved in water. When such a mixture is used, the active material of the present invention can be reliably obtained.

また、本発明は、β型結晶構造のLiVOPOを主成分として含有し、X線回折測定により得られる、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.9以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上4.0以下であり、粒子形状が多面体である活物質を提供する。 In addition, the present invention contains LiVOPO 4 having a β-type crystal structure as a main component, and the peak intensity attributed to the (102) plane relative to the peak intensity attributed to the (020) plane obtained by X-ray diffraction measurement. The ratio is 0.6 or more and 1.9 or less, and the ratio of the peak intensity attributed to the (201) plane to the peak intensity attributed to the (020) plane is 1.8 or more and 4.0 or less, Provided is an active material having a polyhedral particle shape.

本発明の活物質によれば、十分な放電容量が得られる。その理由は明らかではないが、従来の活物質と比べ、(102)面への配向性が低く、(201)面への配向性が高いため、リチウムイオンが拡散し易くなるからであると推測される。   According to the active material of the present invention, a sufficient discharge capacity can be obtained. The reason is not clear, but it is presumed that lithium ions easily diffuse because the orientation to the (102) plane is low and the orientation to the (201) plane is high compared to the conventional active material. Is done.

また本発明の活物質は、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.0以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上3.0以下であることが好ましい。(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比、及び、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が、上記特定の範囲内の値であることにより、特に大きな放電容量を得ることができる。   In the active material of the present invention, the ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane is 0.6 or more and 1.0 or less, and the (020) plane is The ratio of the peak intensity attributed to the (201) plane to the attributed peak intensity is preferably 1.8 or more and 3.0 or less. The ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane and the ratio of the peak intensity attributed to the (201) plane to the peak intensity attributed to the (020) plane are When the value is within the above specific range, a particularly large discharge capacity can be obtained.

また、本発明は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極を提供する。これにより、十分な放電容量の電極が得られる。   The present invention also provides an electrode comprising a current collector and an active material layer including the active material and provided on the current collector. Thereby, an electrode having a sufficient discharge capacity can be obtained.

また、本発明は、上記電極を備えるリチウム二次電池を提供する。これにより、十分な放電容量のリチウム二次電池を得られる。   Moreover, this invention provides a lithium secondary battery provided with the said electrode. Thereby, a lithium secondary battery having a sufficient discharge capacity can be obtained.

本発明によれば、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the active material which can obtain sufficient discharge capacity, the electrode containing this, a lithium secondary battery provided with the said electrode, and the manufacturing method of an active material can be provided.

活物質が複数集合してなる活物質群の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the active material group formed by a plurality of active materials. 本実施形態に係る活物質を模式的に示す斜視図である。It is a perspective view which shows typically the active material which concerns on this embodiment. 本実施形態に係る活物質群のX線回折チャートである。3 is an X-ray diffraction chart of an active material group according to the present embodiment. 本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery according to the present embodiment.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

<活物質>
まず、本実施形態に係る活物質について説明する。図1は、本実施形態に係る活物質が、複数集合してなる活物質群の一例を示す電子顕微鏡写真である。図2は、図1に示された活物質群を構成する一つの活物質1を模式的に示した斜視図である。本実施形態に係る活物質の粒子形状は、主に六角形の面と五角形の面で囲まれて成る、角柱状の多面体である。
図3は、本実施形態に係る活物質群のX線回折チャートである。活物質1は、β型結晶構造のLiVOPOを主成分として含有し、X線回折測定により得られる、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.9以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上4.0以下である活物質である。
<Active material>
First, the active material according to the present embodiment will be described. FIG. 1 is an electron micrograph showing an example of an active material group in which a plurality of active materials according to the present embodiment are assembled. FIG. 2 is a perspective view schematically showing one active material 1 constituting the active material group shown in FIG. The particle shape of the active material according to the present embodiment is a prismatic polyhedron that is mainly surrounded by a hexagonal surface and a pentagonal surface.
FIG. 3 is an X-ray diffraction chart of the active material group according to the present embodiment. The active material 1 contains LiVOPO 4 having a β-type crystal structure as a main component, and the ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane obtained by X-ray diffraction measurement Active material in which the ratio of the peak intensity attributed to the (201) plane to the peak intensity attributed to the (020) plane is 1.8 to 4.0 It is.

ここで、「β型結晶構造のLiVOPOを主成分とする」とは、活物質1において、β型結晶構造のLiVOPOを、β型結晶構造のLiVOPOとα型結晶構造のLiVOPOとの総和に対して80質量%以上含むことを意味する。ここで、活物質におけるβ型結晶構造のLiVOPOやα型結晶構造のLiVOPO等の量は、例えば、X線回折法により測定することができる。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。なお、活物質1は、β型結晶構造のLiVOPO及びα型結晶構造のLiVOPO以外にも、未反応の原料成分等を微量含んでもよい。 Here, "mainly composed of LiVOPO 4 of β-type crystal structure", the active material 1, the LiVOPO 4 of β-type crystal structure, and LiVOPO 4 of LiVOPO 4 and α-type crystal structure of the β-type crystal structure It means that 80 mass% or more is included with respect to the sum total. Here, the amount of LiVOPO 4 having a β-type crystal structure or LiVOPO 4 having an α-type crystal structure in the active material can be measured by, for example, an X-ray diffraction method. Usually, LiVOPO 4 of β-type crystal structure peaks appear in 2 [Theta] = 27.0 degrees, LiVOPO 4 of α-type crystal structure peaks appear in 2 [Theta] = 27.2 degrees. The active material 1 may contain a small amount of unreacted raw material components in addition to the β-type crystal structure LiVOPO 4 and the α-type crystal structure LiVOPO 4 .

また、より大きな放電容量を得る観点から、活物質1は、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.0以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上3.0以下であることが好ましい。   From the viewpoint of obtaining a larger discharge capacity, the active material 1 has a ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane is 0.6 or more and 1.0 or less. The ratio of the peak intensity attributed to the (201) plane to the peak intensity attributed to the (020) plane is preferably 1.8 or more and 3.0 or less.

活物質1が、β型結晶構造のLiVOPOを主成分として含有する多面体であって、従来の活物質と比べ、(102)面への配向性が低く、(201)面への配向性が高く、これらの比が上記特定の範囲内の値であることにより、0.1Cでの放電においても、十分な放電容量を得ることができる。 The active material 1 is a polyhedron containing LiVOPO 4 having a β-type crystal structure as a main component, and has lower orientation to the (102) plane and lower orientation to the (201) plane than the conventional active material. Since these ratios are values within the above specific range, a sufficient discharge capacity can be obtained even at a discharge of 0.1 C.

また、活物質1の粒子形状は、図2に示すように、柱状の多面体である。活物質1は、多面体の軸に沿う面S1,S2が、{110}面から構成されていると推測される。ここで、{110}面は、(110)、(1−10)、(−110)及び(−1−10)で表わされる面を含む面である。
本実施形態において、柱状の多面体である活物質1の軸方向の径は、軸方向の最大移動距離、すなわち、投影図の平行外接線間の長さ(いわゆるFeret径)で表され、径の長さは、1μm〜10μmであることが好ましい。この径は、例えばSEM画像から測定することができる。また、この径に直交する径は、0.3μm〜5μmであることが好ましい。
The particle shape of the active material 1 is a columnar polyhedron as shown in FIG. In the active material 1, the surfaces S1 and S2 along the polyhedron axis are presumed to be composed of {110} planes. Here, the {110} plane is a plane including planes represented by (110), (1-10), (−110), and (−1-10).
In the present embodiment, the diameter in the axial direction of the active material 1 that is a columnar polyhedron is expressed by the maximum axial movement distance, that is, the length between parallel tangents in a projection view (so-called Feret diameter). The length is preferably 1 μm to 10 μm. This diameter can be measured from an SEM image, for example. Moreover, it is preferable that the diameter orthogonal to this diameter is 0.3 micrometer-5 micrometers.

<活物質の製造方法>
本実施形態に係る活物質の製造方法について説明する。本実施形態に係る活物質の製造方法は、下記の水熱合成工程を備える。
[水熱合成工程]
水熱合成工程は、リチウム源と、5価のバナジウム源と、リン酸源と、水と、クエン酸とを含む混合物を加圧下で200℃以上に加熱する工程である。
<Method for producing active material>
A method for producing an active material according to this embodiment will be described. The manufacturing method of the active material which concerns on this embodiment is equipped with the following hydrothermal synthesis process.
[Hydrothermal synthesis process]
The hydrothermal synthesis step is a step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and citric acid to 200 ° C. or higher under pressure.

(混合物)
リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
5価のバナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
(blend)
Examples of the lithium source include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
Examples of the pentavalent vanadium source include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
Examples of the phosphoric acid source include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.

リチウム源は、5価のバナジウム原子のモル数に対するリチウム原子のモル数の割合が0.95〜1.2となるように配合することが好ましい。また、リン酸源は、5価のバナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2となるように配合することが好ましい。リチウム原子及びリン原子の少なくとも一方の配合比率が0.95より少ないと、得られる活物質の放電容量は減少する傾向があり、レート特性は低下する傾向がある。リチウム原子及びリン原子の少なくとも一方の配合比率が1.2よりも多いと、得られる活物質の放電容量は減少する傾向がある。   The lithium source is preferably blended so that the ratio of the number of moles of lithium atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2. Moreover, it is preferable to mix | blend a phosphoric acid source so that the ratio of the number of moles of a phosphorus atom with respect to the number of moles of a pentavalent vanadium atom may be 0.95-1.2. When the blending ratio of at least one of lithium atoms and phosphorus atoms is less than 0.95, the discharge capacity of the obtained active material tends to decrease, and the rate characteristics tend to decrease. When the blending ratio of at least one of lithium atoms and phosphorus atoms is more than 1.2, the discharge capacity of the obtained active material tends to decrease.

クエン酸の配合量は、5価のバナジウム原子のモル数に対してクエン酸のモル数の割合が10〜100mol%であることが好ましい。クエン酸をバナジウム原子のモル数に対して上記の割合で配合させると、より確実に本実施形態に係る活物質を得ることができる。また、クエン酸は、混合物全量を基準として、0.1〜1.0mol/Lであることが好ましい。
ところで、得られた活物質を用いて電極の活物質含有層を作製する場合、導電性を高めるべく、通常この活物質の表面に炭素材料等の導電材を接触させることが多い。この方法として、活物質の製造後に活物質と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料となる混合物中に、炭素材料を導電材として添加して活物質に炭素を付着させることもできる。
As for the compounding quantity of a citric acid, it is preferable that the ratio of the number of moles of citric acid is 10-100 mol% with respect to the number of moles of pentavalent vanadium atoms. When citric acid is blended in the above ratio with respect to the number of moles of vanadium atoms, the active material according to the present embodiment can be obtained more reliably. Moreover, it is preferable that a citric acid is 0.1-1.0 mol / L on the basis of the mixture whole quantity.
By the way, when an active material-containing layer of an electrode is produced using the obtained active material, a conductive material such as a carbon material is usually brought into contact with the surface of the active material in order to increase conductivity. As this method, the active material and the conductive material may be mixed after the production of the active material to form the active material-containing layer. For example, the carbon material is used as the conductive material in the mixture as a raw material for hydrothermal synthesis. It can also be added to cause carbon to adhere to the active material.

混合物中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を混合物に容易に分散させることができる、活性炭を用いることが好ましい。ただし、導電材は必ずしも水熱合成時に混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に混合物に混合されることが好ましい。これにより、活物質含有層を形成する際の結合剤を低減して容量密度を増加させることができる場合がある。   Examples of the conductive material in the case where a conductive material that is a carbon material is added to the mixture include activated carbon, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon that can easily disperse carbon particles in a mixture during hydrothermal synthesis. However, the conductive material is not necessarily mixed in the mixture at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed in the mixture at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.

水熱合成工程における混合物中の炭素粒子等の上記導電材の含有量は、炭素粒子を構成する炭素原子のモル数Cと、例えば5価のバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C/Mが、0.04≦C/M≦4を満たすように調製することが好ましい。導電材の含有量(モル数C)が少なすぎる場合、活物質と導電材により構成される電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多すぎる場合、電極活物質に占める活物質の重量が相対的に減少し、電極活物質の容量密度が減少する傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the conductive material such as carbon particles in the mixture in the hydrothermal synthesis step is as follows: the number of moles C of carbon atoms constituting the carbon particles and the number of moles M of vanadium atoms contained in a pentavalent vanadium compound, for example. It is preferable to prepare such that the ratio C / M satisfies 0.04 ≦ C / M ≦ 4. When there is too little content (mole number C) of an electrically conductive material, there exists a tendency for the electronic conductivity and capacity density of the electrode active material comprised with an active material and an electrically conductive material to fall. When there is too much content of a electrically conductive material, the weight of the active material which occupies for an electrode active material will reduce relatively, and there exists a tendency for the capacity density of an electrode active material to reduce. By setting the content of the conductive material within the above range, these tendencies can be suppressed.

混合物中における水の量は水熱合成が可能であれば特に限定されないが、混合物中の水以外の物質の割合は35質量%以下となることが好ましい。   The amount of water in the mixture is not particularly limited as long as hydrothermal synthesis is possible, but the ratio of substances other than water in the mixture is preferably 35% by mass or less.

混合物を調整する際の、原料の投入順序は特に制限されない。例えば、上記混合物の原料をまとめて混合してもよく、また、最初に、水とPO含有化合物の混合物に対して5価のバナジウム化合物を添加し、その後、クエン酸を添加し、さらにその後、リチウム化合物を加えてもよい。混合物は十分に混合させ、添加成分を十分に分散させておくことが好ましく、リチウム化合物、5価のバナジウム化合物、及びPO含有化合物の少なくとも一部は、水に溶解しておらず、混合物は懸濁液であることが特に好ましい。 The order in which the raw materials are charged when adjusting the mixture is not particularly limited. For example, the raw materials of the above mixture may be mixed together, and first, a pentavalent vanadium compound is added to the mixture of water and PO 4 -containing compound, then citric acid is added, and then A lithium compound may be added. It is preferable that the mixture is sufficiently mixed and the additional components are sufficiently dispersed. At least a part of the lithium compound, the pentavalent vanadium compound, and the PO 4 -containing compound is not dissolved in water. A suspension is particularly preferred.

水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述した混合物(リチウム化合物、5価のバナジウム化合物、PO含有化合物、水、クエン酸等)を投入する。なお、反応容器内で、混合物を調整してもよい。 In the hydrothermal synthesis step, first, in a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside, the above mixture (lithium compound, pentavalent vanadium compound, PO 4 -containing compound, water, citric acid) Etc.). In addition, you may adjust a mixture within reaction container.

次に、反応容器を密閉して、混合物を加圧しながら200℃以上に加熱することにより、混合物の水熱反応を進行させる。これにより、本実施形態に係るβ型結晶構造のLiVOPOを主成分として含有し、粒子形状が多面体である物質が水熱合成される。 Next, the reaction vessel is sealed, and the mixture is heated to 200 ° C. or higher while being pressurized, thereby causing the hydrothermal reaction of the mixture to proceed. As a result, the hydrothermal synthesis of the substance having the β-type crystal structure of LiVOPO 4 according to the present embodiment as a main component and having a polyhedral particle shape is performed.

水熱合成により得られたβ型結晶構造のLiVOPOを主成分として含有し、粒子形状が多面体である物質は、通常、水熱合成後の液中に固体として沈殿する。そして、水熱合成後の液を、例えば、ろ過して固体を捕集し、捕集された固体を水やアセトン等で洗浄し、その後乾燥させることによりβ型結晶構造のLiVOPOを高純度に得ることができる。 A substance containing, as a main component, LiVOPO 4 having a β-type crystal structure obtained by hydrothermal synthesis and having a polyhedral particle shape usually precipitates as a solid in the liquid after hydrothermal synthesis. Then, the liquid after hydrothermal synthesis is filtered, for example, to collect solids, and the collected solids are washed with water, acetone, or the like, and then dried to obtain a high purity of LiVOPO 4 having a β-type crystal structure. Can get to.

水熱合成工程において、混合物に加える圧力は、0.1〜30MPaとすることが好ましい。混合物に加える圧力が低すぎると、得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高すぎると、反応容器に高い耐圧性が求められ、活物質製造コストが増大する傾向がある。混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the pressure applied to the mixture is preferably 0.1 to 30 MPa. When the pressure applied to the mixture is too low, the crystallinity of the obtained LiVOPO 4 having a β-type crystal structure is lowered, and the capacity density of the active material tends to be reduced. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the active material production cost tends to increase. By setting the pressure applied to the mixture within the above range, these tendencies can be suppressed.

水熱合成工程における混合物の温度は、200〜300℃とすることが好ましく、得られた活物質の放電容量を向上させる観点から、220〜280℃とすることがより好ましい。混合物の温度が低すぎると、得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物の温度が高すぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向も抑制できる。 The temperature of the mixture in the hydrothermal synthesis step is preferably 200 to 300 ° C, and more preferably 220 to 280 ° C from the viewpoint of improving the discharge capacity of the obtained active material. When the temperature of the mixture is too low, the crystallinity of the obtained LiVOPO 4 having a β-type crystal structure is lowered, and the capacity density of the active material tends to be reduced. When the temperature of the mixture is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

[焼成工程]
本実施形態に係る活物質の製造方法は、水熱合成により得られた材料、すなわち、β型結晶構造のLiVOPOを主成分として含有し、粒子形状が多面体である物質を加熱する工程をさらに備えていてもよい(以下、「焼成工程」という場合がある。)。この工程においては、水熱合成工程を経て得られた活物質に残留した不純物等が除去される現象が起こるものと考えられる。
[Baking process]
The method for producing an active material according to the present embodiment further includes a step of heating a material obtained by hydrothermal synthesis, that is, a material containing β-type crystal structure LiVOPO 4 as a main component and having a polyhedral shape. It may be provided (hereinafter may be referred to as “firing step”). In this step, it is considered that a phenomenon occurs in which impurities remaining in the active material obtained through the hydrothermal synthesis step are removed.

ここで、焼成工程では、上述のβ型結晶構造のLiVOPOを400℃〜600℃に加熱すればよい。加熱温度が高すぎると、活物質の粒成長が進み粒径(一次粒子径)が増大する結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度が減少する傾向がある。一方、加熱温度が低すぎると、焼成の効果が得られない。加熱温度を上記の範囲内とすることによって、これらの傾向を抑制できる。加熱時間は特に限定されないが、3〜8時間とすることが好ましい。 Here, in the firing step, LiVOPO 4 having the above β-type crystal structure may be heated to 400 ° C. to 600 ° C. If the heating temperature is too high, grain growth of the active material proceeds and the particle size (primary particle size) increases, so that lithium diffusion in the active material is slowed and the capacity density of the active material tends to decrease. On the other hand, if the heating temperature is too low, the firing effect cannot be obtained. By setting the heating temperature within the above range, these tendencies can be suppressed. The heating time is not particularly limited, but is preferably 3 to 8 hours.

焼成工程の雰囲気は特に限定されないが、クエン酸の除去を行い易くするためには、大気雰囲気であることが好ましい。一方、アルゴンガス、窒素ガス等の不活性雰囲気中で行うこともできる。   The atmosphere of the firing step is not particularly limited, but is preferably an air atmosphere in order to facilitate the removal of citric acid. On the other hand, it can also be performed in an inert atmosphere such as argon gas or nitrogen gas.

本実施形態に係る活物質の製造方法によれば、β型結晶構造のLiVOPOを主成分として含有し、X線回折測定により得られる、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.9以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上4.0以下であり、粒子形状が多面体である活物質を得ることができる。そして、このような活物質を用いた電極、及び当該電極を用いたリチウム二次電池は、大きな放電容量を得ることができる。このような知見は従来得られておらず、このような効果は、従来技術と比較して顕著な効果である。 According to the method for producing an active material according to the present embodiment, (102) with respect to the peak intensity attributed to the (020) plane, which is obtained by X-ray diffraction measurement, containing LiVOPO 4 having a β-type crystal structure as a main component. The ratio of the peak intensity attributed to the plane is 0.6 or more and 1.9 or less, and the ratio of the peak intensity attributed to the (201) plane to the peak intensity attributed to the (020) plane is 1.8. An active material having a particle shape of 4.0 or less and a polyhedron shape can be obtained. And the electrode using such an active material and the lithium secondary battery using the said electrode can obtain big discharge capacity. Such knowledge has not been obtained so far, and such an effect is a remarkable effect as compared with the prior art.

<電極及び当該電極を用いたリチウム二次電池>
次に、本実施形態に係る活物質を用いた電極、及び当該電極を用いたリチウムイオン二次電池について説明する。本実施形態に係る電極は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極である。図4は、当該電極を用いた本実施形態に係るリチウムイオン二次電池100の模式断面図である。
<Electrode and lithium secondary battery using the electrode>
Next, an electrode using the active material according to the present embodiment and a lithium ion secondary battery using the electrode will be described. The electrode which concerns on this embodiment is an electrode provided with a collector and the active material layer provided on the said collector containing the said active material. FIG. 4 is a schematic cross-sectional view of a lithium ion secondary battery 100 according to this embodiment using the electrode.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of the positive electrode 10 and the negative electrode 20 are opposed to each other with the separator 18 interposed therebetween. The positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12. The negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24という。   Hereinafter, the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode The active material layers 24 are collectively referred to as active material layers 14 and 24.

まず、電極10、20について具体的に説明する。
(正極10)
正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
正極活物質層14は、本実施形態に係る活物質、結合剤、必要に応じた量の導電材を含むものである。
First, the electrodes 10 and 20 will be specifically described.
(Positive electrode 10)
The positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The positive electrode active material layer 14 includes an active material according to the present embodiment, a binder, and a conductive material in an amount as necessary.

結合剤は、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。   The binder binds the active materials to each other and binds the active material to the positive electrode current collector 12.

結合剤の材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。   The binder may be made of any material as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride A fluororesin such as (PVF) is used.

また、上記の他に、結合剤として、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene fluorine rubber (VDF-HFP fluorine rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) , Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine It may be used vinylidene fluoride-based fluorine rubbers such as beam (VDF-CTFE-based fluorine rubber).

更に、上記の他に、結合剤として、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。   In addition to the above, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber and the like may be used as the binder. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer may be used.

また、結合剤として電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結合剤が導電材の機能も発揮するので導電材を添加しなくてもよい。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder exhibits the function of the conductive material, it is not necessary to add the conductive material.

イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、Li(CFSON、LiN(CSOリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) A crosslinked polymer of a polyether compound, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, etc.) monomers, and LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of alkali metal salt mainly composed of lithium. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14に含まれる結合剤の含有率は、活物質層の質量を基準として0.5〜6質量%であることが好ましい。結合剤の含有率が0.5質量%未満となると、結合剤の量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、結合剤の含有率が6質量%を超えると、電気容量に寄与しない結合剤の量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特に結合剤の電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。   It is preferable that the content rate of the binder contained in the positive electrode active material layer 14 is 0.5-6 mass% on the basis of the mass of an active material layer. When the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases. Moreover, when the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electric capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and a tendency that a sufficient electric capacity cannot be obtained increases.

導電材としては、例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。   Examples of the conductive material include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

(負極20)
負極集電体22は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
負極活物質は特に限定されず、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
結合材、導電材は、それぞれ、正極と同様のものを使用できる。
(Negative electrode 20)
The negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The negative electrode active material is not particularly limited, and a known negative electrode active material for a battery can be used. Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate, or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si, and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.
As the binder and the conductive material, the same materials as those for the positive electrode can be used.

次に、本実施形態に係る電極10,20の製造方法について説明する。
(電極10,20の製造方法)
本実施形態に係る電極10,20の製造方法は、電極活物質層14,24の原料である塗料を、集体上に塗布する工程(以下、「塗布工程」ということがある。)と、集電体上に塗布された塗料中の溶媒を除去する工程(以下、「溶媒除去工程」ということがある。)と、を備える。
Next, a method for manufacturing the electrodes 10 and 20 according to this embodiment will be described.
(Method for manufacturing electrodes 10 and 20)
The manufacturing method of the electrodes 10 and 20 according to the present embodiment includes a step of applying a coating material, which is a raw material of the electrode active material layers 14 and 24, onto the aggregate (hereinafter, also referred to as “application step”), and a collector. And a step of removing the solvent in the paint applied on the electric body (hereinafter, also referred to as “solvent removal step”).

(塗布工程)
塗料を集電体12、22に塗布する塗布工程について説明する。塗料は、上記活物質、結合剤、及び溶媒を含む。塗料には、これらの成分の他に、例えば、活物質の導電性を高めるための導電材が含まれていてもよい。溶媒としては、溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。
(Coating process)
An application process for applying the paint to the current collectors 12 and 22 will be described. The paint contains the active material, the binder, and the solvent. In addition to these components, the coating material may contain, for example, a conductive material for increasing the conductivity of the active material. As the solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.

活物質、結合剤、溶媒、導電材等の塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。例えば、まず、活物質、導電材及び結合剤を混合し、得られた混合物に、N−メチル−2−ピロリドンを加えて混合し、塗料を調整する。   The mixing method of the components constituting the paint such as the active material, the binder, the solvent, and the conductive material is not particularly limited, and the mixing order is not particularly limited. For example, first, an active material, a conductive material, and a binder are mixed, and N-methyl-2-pyrrolidone is added to the obtained mixture and mixed to prepare a paint.

上記塗料を、集電体12、22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   The paint is applied to the current collectors 12 and 22. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

(溶媒除去工程)
続いて、集電体12、22上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体12、22を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。
(Solvent removal step)
Subsequently, the solvent in the paint applied on the current collectors 12 and 22 is removed. The removal method is not particularly limited, and the current collectors 12 and 22 to which the paint is applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10〜50kgf/cmとすることができる。   Then, the electrodes on which the active material layers 14 and 24 are formed in this way may then be pressed by a roll press device or the like as necessary. The linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.

以上の工程を経て、本実施形態に係る電極を作製することができる。   The electrode according to this embodiment can be manufactured through the above steps.

本実施形態に係る電極によれば、正極活物質として本実施形態に係る活物質を用いるため、十分な放電容量の電極が得られる。   According to the electrode according to this embodiment, since the active material according to this embodiment is used as the positive electrode active material, an electrode having a sufficient discharge capacity can be obtained.

ここで、上述のように作製した電極を用いたリチウムイオン二次電池100の他の構成要素を説明する。   Here, another component of the lithium ion secondary battery 100 using the electrode manufactured as described above will be described.

電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and, for example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN Salts such as (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.

ケース50は、その内部に積層体30及び電解質溶液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図4に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。   The case 50 seals the laminate 30 and the electrolyte solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 4, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). preferable.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。   Then, the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

以上、本発明の活物質、それを用いた電極、当該電極を備えるリチウムイオン二次電池、及び、それらの製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As described above, the preferred embodiment of the active material of the present invention, the electrode using the same, the lithium ion secondary battery including the electrode, and the manufacturing method thereof has been described in detail. It is not limited.

例えば、本発明の活物質を用いた電極は、リチウムイオン二次電池以外の電気化学素子にも用いることができる。電気化学素子としては、金属リチウム二次電池(カソードとして本発明の活物質を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the electrode using the active material of the present invention can be used for an electrochemical element other than a lithium ion secondary battery. Electrochemical elements include secondary batteries other than lithium ion secondary batteries such as metal lithium secondary batteries (those using the active material of the present invention as the cathode and metal lithium as the anode), and electric batteries such as lithium capacitors. Examples include chemical capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
[水熱合成工程]
500mlのマイヤーフラスコに、23.06g(0.20mol)のHPO(ナカライテスク社製、純度85%)、及び、180gの蒸留水(ナカライテスク社製、HPLC用)を入れ、マグネチックスターラーで攪拌した。続いて、18.37g(0.10mol)のV(ナカライテスク社製、純度99%)を加え、約2.5時間攪拌したところ、黄橙色の懸濁液が得られた。攪拌の回転数を上げた後、攪拌を続けながら、10.56g(0.05mol)のクエン酸一水和物を上記混合物中に加えた。クエン酸を加えた後、約60分間攪拌を継続したところ、流動性のあるペースト状の物質が得られた。
得られたペースト状の物質に、8.48g(0.20mol)のLiOH・HO(ナカライテスク社製、純度99%)、20gの蒸留水をこの順に加えた後、フラスコ内の物質258.70gを、0.5Lオートクレーブのガラス製の円筒容器内に移した。水熱合成前の原料混合物は懸濁液であった。容器を密閉し、12時間、250℃で保持し、水熱合成を行った。
Example 1
[Hydrothermal synthesis process]
A 500 ml Meyer flask was charged with 23.06 g (0.20 mol) of H 3 PO 4 (Nacalai Tesque, purity 85%) and 180 g of distilled water (Nacalai Tesque, HPLC). Stir with a stirrer. Subsequently, 18.37 g (0.10 mol) of V 2 O 5 (manufactured by Nacalai Tesque, 99% purity) was added and stirred for about 2.5 hours to obtain a yellow-orange suspension. After increasing the number of rotations of stirring, 10.56 g (0.05 mol) of citric acid monohydrate was added to the mixture while stirring was continued. When citric acid was added and stirring was continued for about 60 minutes, a fluid pasty substance was obtained.
After adding 8.48 g (0.20 mol) of LiOH.H 2 O (manufactured by Nacalai Tesque, purity 99%) and 20 g of distilled water in this order to the obtained paste-like substance, the substance 258 in the flask was added. .70 g was transferred into a 0.5 L autoclave glass cylinder. The raw material mixture before hydrothermal synthesis was a suspension. The container was sealed and held at 250 ° C. for 12 hours to perform hydrothermal synthesis.

ヒータのスイッチをオフにした後、容器内の温度が23℃になるまで放冷し、茶色の沈殿を含む褐色溶液を得た。この物質のpHを測定したところ、pHは3であった。上澄みを除去した後、約300mlの蒸留水を加え、攪拌しながら容器内の沈殿物を洗浄した。その後、吸引濾過を行った(水洗)。この操作を2回繰り返した後、約800mlのアセトンを加え、上記水洗と同様にして沈殿物の洗浄を行った。濾過後の物質を、ふるい(網目を構成する孔径:52μm)に通した。この物質をシャーレに移し、大気中で乾燥させて、30.83gの茶色の固体を得た。収率は、LiVOPO換算で91.9%であった。 After the heater was turned off, the container was allowed to cool until the temperature in the container reached 23 ° C. to obtain a brown solution containing a brown precipitate. The pH of this substance was measured and found to be 3. After removing the supernatant, about 300 ml of distilled water was added, and the precipitate in the container was washed while stirring. Thereafter, suction filtration was performed (washing with water). After repeating this operation twice, about 800 ml of acetone was added, and the precipitate was washed in the same manner as the above water washing. The material after filtration was passed through a sieve (pore diameter constituting the mesh: 52 μm). This material was transferred to a petri dish and dried in air to give 30.83 g of a brown solid. The yield was 91.9% in terms of LiVOPO 4 .

[焼成工程]
上記アセトンを用いて洗浄した後の物質のうち3.00gをアルミナ坩堝に入れ、大気雰囲気中、室温から450℃まで45分かけて昇温し、450℃で4時間熱処理することにより、2.97gの粉体を得た。
[Baking process]
1. 3.0 g of the substance after washing with acetone is put in an alumina crucible, heated from room temperature to 450 ° C. over 45 minutes in an air atmosphere, and heat treated at 450 ° C. for 4 hours. 97 g of powder was obtained.

[結晶構造の確認]
実施例1の活物質に対して、X線回折測定を行った。複数のピークのうち、2θ=26.966°、27.582°、28.309°において、強度が相対的に高いピークが得られ、活物質は主にβ型結晶構造のLiVOPOから構成されることが確認された。
[Confirmation of crystal structure]
X-ray diffraction measurement was performed on the active material of Example 1. Among the plurality of peaks, relatively high peaks are obtained at 2θ = 26.966 °, 27.582 °, and 28.309 °, and the active material is mainly composed of LiVOPO 4 having a β-type crystal structure. It was confirmed that

[X線回折測定による活物質のピーク強度比(I(102)/(020)及びI(201)/(020))の算出]
2θ=26.966°におけるピークは(201)、2θ=27.582°におけるピークは(102)、2θ=28.309°におけるピークは(020)に帰属された。2θ=27.582°におけるピークと、2θ=28.309°におけるピークとのピーク強度比(I(102)/(020))及び、2θ=26.966°におけるピークと、2θ=28.309°におけるピークとのピーク強度比(I(201)/(020))を表1に示す。
[Calculation of peak intensity ratio of active material (I (102) / (020) and I (201) / (020) ) by X-ray diffraction measurement]
The peak at 2θ = 26.966 ° was assigned to (201), the peak at 2θ = 27.582 ° was assigned to (102), and the peak at 2θ = 28.309 ° was assigned to (020). The peak intensity ratio (I (102) / (020) ) between the peak at 2θ = 27.582 ° and the peak at 2θ = 28.309 °, the peak at 2θ = 26.966 °, and 2θ = 28.309 Table 1 shows the peak intensity ratio (I (201) / (020) ) with the peak at °.

[活物質の形状の観察]
走査型電子顕微鏡を用いて、実施例1の活物質の形状を観察した。実施例1の活物質の電子顕微鏡写真を図1に示す。活物質の粒子形状は柱状の多面体であった。多面体の軸に沿う面の結晶面を電子線回折により測定した。結晶面は{110}面に帰属された。
[Observation of active material shape]
The shape of the active material of Example 1 was observed using a scanning electron microscope. An electron micrograph of the active material of Example 1 is shown in FIG. The particle shape of the active material was a columnar polyhedron. The crystal plane along the polyhedron axis was measured by electron diffraction. The crystal plane was assigned to the {110} plane.

[放電容量の測定]
実施例1の活物質と、結合剤であるポリフッ化ビニリデン(PVDF)と、導電材であるアセチレンブラックと、を混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
[Measurement of discharge capacity]
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive material is dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent. To prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminate pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1の評価用セルを用いて、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。結果を表1に示す。   Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.1 C (current value at which discharge is completed in 10 hours when constant current discharge is performed at 25 ° C.) g) was measured. The results are shown in Table 1.

(実施例2)
水熱合成工程後、焼成工程を行わなかった以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例2の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 2)
After the hydrothermal synthesis step, an active material was prepared in the same manner as in Example 1 except that the firing step was not performed. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 2, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
水熱合成工程において、水熱合成の時間を15時間とした以外は実施例2と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例3の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 3)
In the hydrothermal synthesis step, an active material was produced in the same manner as in Example 2 except that the hydrothermal synthesis time was 15 hours. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 3, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
水熱合成工程において、水熱合成の温度を220℃とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例4の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
Example 4
In the hydrothermal synthesis step, an active material was produced in the same manner as in Example 1 except that the hydrothermal synthesis temperature was 220 ° C. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 4, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
水熱合成工程において、水熱合成の温度を280℃とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例5の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 5)
In the hydrothermal synthesis step, an active material was produced in the same manner as in Example 1 except that the hydrothermal synthesis temperature was 280 ° C. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 5, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
焼成工程において、焼成時間を430℃とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例6の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 6)
An active material was produced in the same manner as in Example 1 except that the firing time was 430 ° C. in the firing step. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 6, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例7)
焼成工程において、焼成時間を7時間とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例7の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 7)
In the firing step, an active material was produced in the same manner as in Example 1 except that the firing time was 7 hours. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 7, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
水熱合成工程において、水熱合成の還元剤としてヒドラジンを用いた以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例1の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 1)
In the hydrothermal synthesis step, an active material was prepared in the same manner as in Example 1 except that hydrazine was used as a reducing agent for hydrothermal synthesis. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 1, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
水熱合成工程において、水熱合成の温度を190℃とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対してX線回折測定を行い、I(102)/(020)及びI(201)/(020)を算出した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例2の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 2)
In the hydrothermal synthesis step, an active material was prepared in the same manner as in Example 1 except that the hydrothermal synthesis temperature was 190 ° C. In the same manner as in Example 1, X-ray diffraction measurement was performed on the active material, and I (102) / (020) and I (201) / (020) were calculated.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 2, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

水熱合成工程において、還元剤としてヒドラジンを用いた比較例1は、活物質の粒子形状は不定形となり、(201)面への配向性も低く、放電容量は実施例1〜7に比べて低かった。水熱合成工程において、水熱合成の温度を190℃とした比較例2も、活物質の粒子形状は不定形となり、放電容量は実施例1〜7に比べて低かった。
(102)/(020)が1.0より大きく、かつ、I(201)/(020)が3.0より大きい実施例3、4は、実施例1、2、5に比べて放電容量は劣っていた。I(201)/(020)が3.0より大きい実施例6も、実施例1、2、5に比べて放電容量が劣っていた。そして、I(102)/(020)が1.0より大きい実施例7も、実施例1、2、5に比べて放電容量が劣っていた。
In the hydrothermal synthesis process, in Comparative Example 1 using hydrazine as a reducing agent, the particle shape of the active material is indefinite, the orientation to the (201) plane is low, and the discharge capacity is compared to Examples 1-7. It was low. In Comparative Example 2 in which the hydrothermal synthesis temperature was 190 ° C. in the hydrothermal synthesis process, the particle shape of the active material was indefinite, and the discharge capacity was lower than in Examples 1-7.
In Examples 3 and 4 where I (102) / (020) is larger than 1.0 and I (201) / (020) is larger than 3.0, the discharge capacity is larger than that in Examples 1, 2, and 5. Was inferior. In Example 6 where I (201) / (020) is greater than 3.0, the discharge capacity was also inferior to Examples 1, 2, and 5. In Example 7 where I (102) / (020) is larger than 1.0, the discharge capacity was inferior to Examples 1, 2, and 5.

1…活物質、S1,S2…最も長い稜を含む面、L1…最も長い稜。   DESCRIPTION OF SYMBOLS 1 ... Active material, S1, S2 ... The surface containing the longest edge, L1 ... The longest edge.

Claims (7)

リチウム源と、5価のバナジウム源と、リン酸源と、水と、クエン酸とを含む混合物を、加圧下で200℃以上に加熱することにより、β型結晶構造のLiVOPOを得る水熱合成工程を備えるリチウム二次電池用活物質の製造方法。 Hydrothermal heat to obtain LiVOPO 4 having a β-type crystal structure by heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and citric acid to 200 ° C. or higher under pressure. The manufacturing method of the active material for lithium secondary batteries provided with a synthetic | combination process. 前記水熱合成工程で得られたβ型結晶構造のLiVOPOを加熱する工程をさらに備える、請求項1に記載のリチウム二次電池用活物質の製造方法。 The method for producing an active material for a lithium secondary battery according to claim 1, further comprising a step of heating LiVOPO 4 having a β-type crystal structure obtained in the hydrothermal synthesis step. 前記混合物は、前記リチウム源、前記5価のバナジウム源、及び前記リン酸源の少なくとも一部が前記水に溶解していない懸濁液である、請求項1又は2に記載のリチウム二次電池用活物質の製造方法。   The lithium secondary battery according to claim 1 or 2, wherein the mixture is a suspension in which at least a part of the lithium source, the pentavalent vanadium source, and the phosphoric acid source is not dissolved in the water. For producing an active material. β型結晶構造のLiVOPOを主成分として含有し、
X線回折測定により得られる、(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.9以下であり、かつ、(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上4.0以下であり、
粒子形状が多面体であるリチウム二次電池用活物質。
It contains LiVOPO 4 having a β-type crystal structure as a main component,
The ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane obtained by X-ray diffraction measurement is 0.6 or more and 1.9 or less, and on the (020) plane The ratio of the peak intensity attributed to the (201) plane to the attributed peak intensity is 1.8 or more and 4.0 or less,
An active material for a lithium secondary battery having a polyhedron particle shape.
前記(020)面に帰属されるピーク強度に対する(102)面に帰属されるピーク強度の比が0.6以上1.0以下であり、かつ、前記(020)面に帰属されるピーク強度に対する(201)面に帰属されるピーク強度の比が1.8以上3.0以下である請求項4に記載のリチウム二次電池用活物質。   The ratio of the peak intensity attributed to the (102) plane to the peak intensity attributed to the (020) plane is 0.6 or more and 1.0 or less, and the peak intensity attributed to the (020) plane is 5. The active material for a lithium secondary battery according to claim 4, wherein the ratio of the peak intensity attributed to the (201) plane is 1.8 or more and 3.0 or less. 集電体と、請求項4又は5に記載のリチウム二次電池用活物質を含み前記集電体上に設けられた活物質層と、を備えるリチウム二次電池用電極。 An electrode for a lithium secondary battery, comprising: a current collector; and an active material layer including the active material for a lithium secondary battery according to claim 4 or 5 and provided on the current collector. 請求項6に記載のリチウム二次電池用電極を備えるリチウム二次電池。 A lithium secondary battery comprising the electrode for a lithium secondary battery according to claim 6 .
JP2010139834A 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material Expired - Fee Related JP5609300B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010139834A JP5609300B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
US13/160,968 US8734987B2 (en) 2010-06-18 2011-06-15 Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
CN2011101703797A CN102363523A (en) 2010-06-18 2011-06-20 Active material, electrode containing same, lithium-ion secondary battery with electrode, and method of manufacturing active material
CN201310689040.7A CN103771386B (en) 2010-06-18 2011-06-20 Active material, the electrode containing it, the manufacture method of the lithium secondary battery for possessing the electrode and active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139834A JP5609300B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Publications (2)

Publication Number Publication Date
JP2012004044A JP2012004044A (en) 2012-01-05
JP5609300B2 true JP5609300B2 (en) 2014-10-22

Family

ID=45535800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139834A Expired - Fee Related JP5609300B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Country Status (1)

Country Link
JP (1) JP5609300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879324B1 (en) * 2016-12-09 2018-07-18 제이에이치화학공업(주) Positive active material precursor for rechargeable lithium battery and manufacturing method thereof
JP7399407B2 (en) * 2019-09-04 2023-12-18 時空化学株式会社 Pouch type supercapacitor, positive electrode material and negative electrode material
WO2023119056A1 (en) * 2021-12-24 2023-06-29 株式会社半導体エネルギー研究所 Method for producing precursor and method for producing positive electrode active material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068080A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of Making Active Materials For Use in Secondary Electrochemical Cells
JP5396798B2 (en) * 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
JP5541560B2 (en) * 2008-10-03 2014-07-09 株式会社Gsユアサ Positive electrode material, method for producing positive electrode material, and nonaqueous electrolyte secondary battery provided with positive electrode material produced by the production method
JP5515343B2 (en) * 2009-03-16 2014-06-11 Tdk株式会社 Active material manufacturing method, active material, electrode, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2012004044A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
JP5396942B2 (en) Manufacturing method of active material, active material, electrode using the active material, and lithium ion secondary battery including the electrode
WO2012008423A1 (en) Active material, electrode containing same, lithium secondary battery comprising the electrode, and method for producing active material
US8734987B2 (en) Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
US20050250010A1 (en) Coating liquid for electrode formation, electrode. electrochemical device, and process for producing these
WO2012169331A1 (en) Lithium titanate primary particles, lithium titanate aggregate, lithium ion secondary battery using lithium titanate primary particles or lithium titanate aggregate, and lithium ion capacitor using lithium titanate primary particles or lithium titanate aggregate
JP5347604B2 (en) Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
WO2013161748A1 (en) Method for producing anode active material for secondary battery, anode active material for secondary battery, method for producing anode for secondary battery, anode for secondary battery, and secondary battery
US20110052995A1 (en) Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material
JP5609299B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5609300B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
US10826110B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP5617744B2 (en) Active material particles, active material, electrode, and lithium ion secondary battery
TW201902823A (en) Dispersion containing carbon material, slurry for electrode formation, and method for producing electrode for nonaqueous electrolyte secondary battery
JP2012212634A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP2012212635A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP2019175658A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery including the same
JP5818086B2 (en) Secondary battery and manufacturing method thereof
JP2017152119A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
JP6349825B2 (en) Positive electrode and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees