JP4407205B2 - Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP4407205B2
JP4407205B2 JP2003298839A JP2003298839A JP4407205B2 JP 4407205 B2 JP4407205 B2 JP 4407205B2 JP 2003298839 A JP2003298839 A JP 2003298839A JP 2003298839 A JP2003298839 A JP 2003298839A JP 4407205 B2 JP4407205 B2 JP 4407205B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
mol
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003298839A
Other languages
Japanese (ja)
Other versions
JP2005071749A (en
Inventor
竜一 加藤
仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003298839A priority Critical patent/JP4407205B2/en
Publication of JP2005071749A publication Critical patent/JP2005071749A/en
Application granted granted Critical
Publication of JP4407205B2 publication Critical patent/JP4407205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池に関し、特に、高温保存特性及び低温レート特性に優れたリチウム二次電池用非水電解液及びそれを用いたリチウム二次電池に関する。   The present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery using the same, and in particular, a non-aqueous electrolyte for a lithium secondary battery excellent in high-temperature storage characteristics and low-temperature rate characteristics, and the same. The present invention relates to a lithium secondary battery.

近年、電子機器の小型化に伴い、高容量の二次電池の更なる高容量化が望まれている。そのため、ニッケル・カドミウム電池やニッケル・水素電池に比べ、よりエネルギー密度の高いリチウム二次電池が注目されている。   In recent years, with the downsizing of electronic devices, it is desired to further increase the capacity of high-capacity secondary batteries. Therefore, lithium secondary batteries with higher energy density are attracting attention as compared with nickel / cadmium batteries and nickel / hydrogen batteries.

リチウム二次電池は、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類、及びスルフォラン、ジエチルスルホン等の含硫黄有機溶媒の非水溶媒と、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiCF3(CF23SO3等の溶質を含有する非水電解液が用いられる。 Lithium secondary batteries include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, methyl acetate, propionic acid. Non-aqueous solvents of chain esters such as methyl, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and dimethoxymethane, and sulfur-containing organic solvents such as sulfolane and diethylsulfone And non-aqueous electrolytes containing solutes such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 are used. .

このような非水電解液を用いた二次電池では、その非水電解液の組成によって反応性が異なるため、非水電解液により電池特性は大きく変わることになる。特に、電解液の分解や副反応が二次電池のサイクル特性や保存特性に影響を及ぼすため、二次電池のサイクル特性や保存特性を良好にすることが困難であった。これに対し、従来、非水電解液に各種添加剤を混合することによって、サイクル特性や保存特性を改善する試みがなされている。   In such a secondary battery using a non-aqueous electrolyte, the reactivity differs depending on the composition of the non-aqueous electrolyte, so that the battery characteristics vary greatly depending on the non-aqueous electrolyte. In particular, it is difficult to improve the cycle characteristics and storage characteristics of the secondary battery because decomposition and side reactions of the electrolyte affect the cycle characteristics and storage characteristics of the secondary battery. In contrast, conventionally, attempts have been made to improve cycle characteristics and storage characteristics by mixing various additives into a non-aqueous electrolyte.

また、電池の特性として、低温環境下では内部抵抗が高くなり、一定の放電速度(以下適宜、レートという)で放電を行なった場合には、放電容量が低下してしまっていた。このため、リチウム二次電池が多種の電子機器に使用される中で、高温及び低温のどちらの環境下においても性能を低下させることのない電解液が求められていた。   Further, as a characteristic of the battery, the internal resistance is increased under a low temperature environment, and when the discharge is performed at a constant discharge rate (hereinafter referred to as a rate as appropriate), the discharge capacity is lowered. For this reason, while a lithium secondary battery is used for various electronic devices, an electrolyte solution that does not degrade performance under both high and low temperature environments has been demanded.

こうした中で、特許文献1には、モノフルオロリン酸リチウム(Li2PO3F)及びジフルオロリン酸リチウム(LiPO22)のうち少なくとも1種の添加剤を含有する非水電解液を用い、この添加剤をリチウムと反応させて正極及び負極界面に被膜を形成させることで、電解液と正極活物質及び負極活物質との接触を原因とする電解液の分解を抑制し、これにより自己放電を抑制し、充電後の保存特性を向上させる効果が得られることが記載されている。 Under these circumstances, Patent Document 1 uses a nonaqueous electrolytic solution containing at least one additive selected from lithium monofluorophosphate (Li 2 PO 3 F) and lithium difluorophosphate (LiPO 2 F 2 ). The additive reacts with lithium to form a film at the positive electrode and negative electrode interfaces, thereby suppressing the decomposition of the electrolytic solution caused by contact between the electrolytic solution and the positive electrode active material and the negative electrode active material. It is described that the effect of suppressing discharge and improving storage characteristics after charging can be obtained.

特開平11−67270号公報Japanese Patent Laid-Open No. 11-67270

しかしながら、特許文献1の技術では、低温環境下でのレート特性に関して十分な効果を得ることができず、低温レート特性をより大きく向上させることが課題となっていた。
本発明は、上述の課題に鑑みてなされたものである。即ち、リチウム二次電池の低温環境下でのレート特性をより向上させることができるリチウム二次電池用の非水電解液と、その非水電解液を用いたリチウム二次電池を提供することを目的とする。
However, the technique of Patent Document 1 cannot obtain a sufficient effect with respect to the rate characteristics under a low temperature environment, and it has been a problem to further improve the low temperature rate characteristics.
The present invention has been made in view of the above-described problems. That is, to provide a non-aqueous electrolyte for a lithium secondary battery that can further improve the rate characteristics of the lithium secondary battery in a low temperature environment, and a lithium secondary battery using the non-aqueous electrolyte. Objective.

本発明の発明者は、鋭意研究の結果、リチウム塩を含むリチウム二次電池用の非水電解液に、ジフルオロリン酸塩と、テトラフルオロホウ酸リチウムとを含有させ、テトラフルオロホウ酸リチウムの濃度を所定範囲とすることにより、低温環境下でのレート特性を向上させることができることを見出し、本発明を完成させた。   As a result of earnest research, the inventor of the present invention contains difluorophosphate and lithium tetrafluoroborate in a non-aqueous electrolyte for a lithium secondary battery containing a lithium salt. The inventors have found that the rate characteristics under a low temperature environment can be improved by setting the concentration within a predetermined range, and the present invention has been completed.

即ち、本発明の要旨は、リチウムの吸蔵及び放出が可能な正極及び負極とともにリチウム二次電池を構成する非水電解液であって、非水溶媒と、該非水溶媒に溶解される、ジフルオロリン酸リチウム及びテトラフルオロホウ酸リチウム以外の少なくとも1種の電解質リチウム塩と、ジフルオロリン酸塩と、テトラフルオロホウ酸リチウムとを混合し、該非水電解液中の該テトラフルオロホウ酸リチウムの濃度が、0.001mol/kg以上、0.3mol/kg以下であり、該非水電解液中のジフルオロリン酸塩の濃度が0.001mol/kg以上0.4mol/kg以下であることを特徴とする、リチウム二次電池用非水電解液に存する(請求項1)。 That is, the gist of the present invention is a non-aqueous electrolyte that constitutes a lithium secondary battery together with a positive electrode and a negative electrode capable of occluding and releasing lithium, the non-aqueous solvent, and difluorophosphorus dissolved in the non-aqueous solvent. and lithium and tetrafluoroborate least one electrolyte lithium salt other than lithium, and difluorophosphate, was mixed with lithium tetrafluoroborate, the concentration of the lithium tetrafluoroborate nonaqueous electrolyte , 0.001 mol / kg or more, 0.3 mol / kg Ri der hereinafter concentration difluorophosphate of the non-aqueous electrolytic solution and wherein der Rukoto below 0.001 mol / kg or more 0.4 mol / kg The present invention resides in a non-aqueous electrolyte for a lithium secondary battery.

また、上記リチウム二次電池用非水電解液は、該ジフルオロリン酸塩が、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、及び第4級アンモニウム塩からなる群より選ばれる少なくとも1種の塩であることが好ましい(請求項)。
また、該電解質リチウム塩としては、少なくともヘキサフルオロリン酸リチウムが含まれていることが好ましい(請求項)。
本発明の別の要旨は、リチウムの吸蔵及び放出が可能な正極及び負極と、上記のリチウム二次電池用非水電解液とを具備してなることを特徴とする、リチウム二次電池に存する(請求項)。
The non-aqueous electrolyte for a lithium secondary battery may include at least one selected from the group consisting of a lithium salt, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, and a quaternary ammonium salt. A salt of a seed is preferred (Claim 2 ).
As the The electrolyte lithium salt, it is preferable to contain at least lithium hexafluorophosphate (claim 3).
Another gist of the present invention resides in a lithium secondary battery comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and the above non-aqueous electrolyte for a lithium secondary battery. (Claim 4 ).

本発明のリチウム二次電池用非水電解液及びそれを用いたリチウム二次電池によれば、リチウム二次電池の低温環境下でのレート特性をより向上させることができる。また、高温環境下で保存した後でも、優れた低温レート特性が維持される。   According to the nonaqueous electrolytic solution for a lithium secondary battery and the lithium secondary battery using the same of the present invention, the rate characteristics of the lithium secondary battery in a low temperature environment can be further improved. In addition, excellent low temperature rate characteristics are maintained even after storage in a high temperature environment.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

〔I.リチウム二次電池用非水電解液〕
本発明のリチウム二次電池用非水電解液(以下適宜「本発明の非水電解液」と略称する)は、非水溶媒と、ジフルオロリン酸リチウム及びテトラフルオロホウ酸リチウム以外の少なくとも1種の電解質リチウム塩と、ジフルオロリン酸塩と、テトラフルオロホウ酸リチウムとを含有し、且つ、本発明の非水電解液中のテトラフルオロホウ酸リチウムの濃度が、0.001mol/kg以上、0.3mol/kg以下であるすることを特徴とする。
[I. Nonaqueous electrolyte for lithium secondary battery)
The non-aqueous electrolyte for a lithium secondary battery of the present invention (hereinafter appropriately abbreviated as “non-aqueous electrolyte of the present invention”) is at least one kind other than a non-aqueous solvent, lithium difluorophosphate and lithium tetrafluoroborate. The electrolyte lithium salt, difluorophosphate, and lithium tetrafluoroborate, and the concentration of lithium tetrafluoroborate in the non-aqueous electrolyte of the present invention is 0.001 mol / kg or more, 0 .3 mol / kg or less.

[非水溶媒]
本発明に用いる非水溶媒の種類は特に限定されず、任意の非水溶媒を用いることができる。本発明に用いる非水溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル、スルフォラン、ジエチルスルホン等の含硫黄有機溶媒等が挙げられる。また、本発明に用いる非水溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
[Nonaqueous solvent]
The kind of non-aqueous solvent used in the present invention is not particularly limited, and any non-aqueous solvent can be used. Examples of non-aqueous solvents used in the present invention include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, γ-butyrolactone, γ-valerolactone, and the like. Cyclic esters, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and dimethoxymethane, sulfur-containing organic solvents such as sulfolane and diethylsulfone Etc. Moreover, the nonaqueous solvent used for this invention may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

上記例示の中でも、環状カーボネートとジアルキルカーボネートとを混合した混合非水溶媒が、充放電特性、電池寿命等の電池性能全般を高める観点から好ましい。また、上記混合非水溶媒は、環状カーボネート及びジアルキルカーボネートをそれぞれ非水溶媒全体の20体積%以上含み、且つ、それらの体積の合計が非水溶媒全体の70体積%以上となるように混合することが好ましい。   Among the above examples, a mixed nonaqueous solvent in which a cyclic carbonate and a dialkyl carbonate are mixed is preferable from the viewpoint of improving overall battery performance such as charge / discharge characteristics and battery life. The mixed non-aqueous solvent contains cyclic carbonate and dialkyl carbonate so that each of them contains 20% by volume or more of the whole non-aqueous solvent, and the total of these volumes is 70% by volume or more of the whole non-aqueous solvent. It is preferable.

上記の環状カーボネート及びジアルキルカーボネートを混合した混合非水溶媒に用いられる環状カーボネートとしては、アルキレン基の炭素数が2以上4以下のアルキレンカーボネートが好ましい。その具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。   As the cyclic carbonate used in the mixed non-aqueous solvent in which the cyclic carbonate and the dialkyl carbonate are mixed, an alkylene carbonate having 2 to 4 carbon atoms in the alkylene group is preferable. Specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Of these, ethylene carbonate and propylene carbonate are preferable.

また、上記の環状カーボネート及びジアルキルカーボネートを混合した混合非水溶媒に用いられるジアルキルカーボネートとしては、アルキル基の炭素数が1以上4以下のジアルキルカーボネートが好ましい。その具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネートなどが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートが好ましい。これらの環状カーボネート及びジアルキルカーボネートは各々独立に、1種のみを単独で使用しても良く、複数種を任意の組み合わせ及び比率で併用しても良い。   Moreover, as a dialkyl carbonate used for the mixed non-aqueous solvent which mixed said cyclic carbonate and dialkyl carbonate, the dialkyl carbonate whose carbon number of an alkyl group is 1-4 is preferable. Specific examples thereof include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and the like. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable. Each of these cyclic carbonates and dialkyl carbonates may be used independently, or a plurality of types may be used in any combination and ratio.

さらに、上記の混合非水溶媒は、製造されるリチウム電池の電池性能を低下させない範囲であれば、環状カーボネート及びジアルキルカーボネート以外の溶媒を含んでいても良い。混合非水溶媒中における環状カーボネート及びジアルキルカーボネート以外の溶媒の割合は、通常30重量%以下、好ましくは10重量%以下である。   Furthermore, the mixed non-aqueous solvent may contain a solvent other than cyclic carbonate and dialkyl carbonate as long as the battery performance of the manufactured lithium battery is not deteriorated. The ratio of solvents other than cyclic carbonate and dialkyl carbonate in the mixed non-aqueous solvent is usually 30% by weight or less, preferably 10% by weight or less.

[電解質リチウム塩]
本発明に用いる電解質リチウム塩(以下適宜「本発明の電解質リチウム塩」と略称する)は、本発明の非水電解液の電解質となるものであり、ジフルオロリン酸リチウム及びテトラフルオロホウ酸リチウム以外の公知のリチウムの塩であれば、特に限定は無く様々なものを使用することができる。
[Electrolytic lithium salt]
The electrolyte lithium salt used in the present invention (hereinafter abbreviated as “the electrolyte lithium salt of the present invention” as appropriate) serves as the electrolyte of the non-aqueous electrolyte of the present invention, and other than lithium difluorophosphate and lithium tetrafluoroborate. Any known lithium salt can be used without limitation.

本発明の電解質リチウム塩として通常使用されるものの具体例としては、LiPF6、LiClO4、LiAsF6、LiSbF6などの無機リチウム塩、LiCF3SO3、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23等の含フッ素有機リチウム塩、Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF32]、Li[PF3(CF2CF2CF33]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF32]、Li[PF3(CF2CF2CF2CF33]等のフルオロアルキルフッ化リン酸リチウムなどが挙げられる。これら本発明の電解質リチウム塩は、1種のみを単独で使用しても良く、複数種を任意の組み合わせ及び比率で併用しても良い。中でも、二次電池とした場合の充放電特性、出力特性、安全性、価格などを総合的に判断すると、LiPF6が好ましい。 Examples of those usually used as an electrolyte lithium salt of the present invention, LiPF 6, LiClO 4, LiAsF 6, LiSbF inorganic lithium salt such as 6, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN ( Fluorine-containing organic lithium salts such as CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , Li [PF 5 (CF 2 CF 2 CF 3)], Li [PF 4 (CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 3) 3], Li [PF 5 (CF 2 CF 2 CF 2 CF 3)] , Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and the like fluoroalkyl fluorophosphates. These electrolyte lithium salts of the present invention may be used alone or in combination of any number and ratio. Among these, LiPF 6 is preferable when comprehensively judging charge / discharge characteristics, output characteristics, safety, price, and the like in the case of a secondary battery.

本発明の電解質リチウム塩の濃度について特に制限はないが、本発明の非水電解液1L当たり通常0.5mol以上、好ましくは0.6mol以上、より好ましくは0.7mol以上、また、通常2mol以下、好ましくは1.8mol以下、より好ましくは1.7mol以下の範囲が好適である。本発明の電解質リチウム塩の濃度がこの範囲外となると、本発明の非水電解液の電気伝導率が悪化したり粘度が影響したりすることで、リチウム二次電池の性能が低下する虞があるためである。   The concentration of the electrolyte lithium salt of the present invention is not particularly limited, but is usually 0.5 mol or more, preferably 0.6 mol or more, more preferably 0.7 mol or more, and usually 2 mol or less per liter of the nonaqueous electrolytic solution of the present invention. The range is preferably 1.8 mol or less, more preferably 1.7 mol or less. If the concentration of the electrolyte lithium salt of the present invention is out of this range, the electrical conductivity of the non-aqueous electrolyte of the present invention may deteriorate or the viscosity may affect the performance of the lithium secondary battery. Because there is.

[ジフルオロリン酸塩]
本発明の非水電解液は、ジフルオロリン酸塩を含有する。本発明に用いるジフルオロリン酸塩(以下適宜「本発明のジフルオロリン酸塩」と略称する)のカウンターカチオンとしては、本発明の非水電解液の低温レート特性を向上させるものとして機能するものであればその種類に特に制限はなく、各々様々なものを選択することができる。
[Difluorophosphate]
The nonaqueous electrolytic solution of the present invention contains a difluorophosphate. The counter cation of the difluorophosphate used in the present invention (hereinafter abbreviated as “the difluorophosphate of the present invention” as appropriate) functions to improve the low-temperature rate characteristics of the non-aqueous electrolyte of the present invention. If there is no particular limitation on the type, various types can be selected.

具体例としては、Li,Na,K,Rb,Cs,Mg,Ca,Ba,Co,Fe,Cu及び第4級アンモニウムカチオン(NR1234)が挙げられる。なお、ここでR1〜R4は、各々独立に、水素原子又は炭素数1以上、12以下の有機基を表わす。また、R1〜R4で表わされる有機基の例としては、通常、無置換又は置換のアルキル基、アリール基などが挙げられ、好ましくは、アルキル基、シクロアルキル基、窒素原子含有複素環基等が挙げられる。 Specific examples include Li, Na, K, Rb, Cs, Mg, Ca, Ba, Co, Fe, Cu, and a quaternary ammonium cation (NR 1 R 2 R 3 R 4 ). Here, R 1 to R 4 each independently represent a hydrogen atom or an organic group having 1 to 12 carbon atoms. Examples of the organic group represented by R 1 to R 4 usually include an unsubstituted or substituted alkyl group, an aryl group, etc., preferably an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group. Etc.

これらのカウンターカチオン中でも、リチウム二次電池の非水電解液として使用した際の、リチウム二次電池の特性などの観点から、Li,Na,K,Mg,Ca及びNR1234が好ましい。特に、NR1234としては、本発明の非水溶媒中の溶解度の点から、テトラエチルアンモニウム、トリエチルメチルアンモニウムが好ましい。
なお、本発明のジフルオロリン酸塩は、1種を単独で用いてもよく、別々のカウンターカチオンを有する複数種のジフルオロリン酸塩を任意の組み合わせ及び比率で同時に使用しても構わない。
Among these counter cations, Li, Na, K, Mg, Ca and NR 1 R 2 R 3 R 4 are used from the viewpoint of the characteristics of the lithium secondary battery when used as a non-aqueous electrolyte for a lithium secondary battery. Is preferred. In particular, NR 1 R 2 R 3 R 4 is preferably tetraethylammonium or triethylmethylammonium from the viewpoint of solubility in the non-aqueous solvent of the present invention.
In addition, the difluorophosphate of this invention may be used individually by 1 type, and may use multiple types of difluorophosphate which has a separate counter cation simultaneously by arbitrary combinations and a ratio.

本発明のジフルオロリン酸塩の含有量は、本発明の非水電解液1kg当たり、通常0.001mol以上、好ましくは0.003mol以上、より好ましくは0.005mol以上、また、通常0.4mol以下、好ましくは0.3mol以下、より好ましくは0.25mol以下の範囲である。上記範囲の下限を下回ると高温環境下での保存後の低温レート特性の維持効果が得られ難い一方で、上限を超えると却ってリチウム二次電池の放電容量の低下を招く虞があるためである。   The content of the difluorophosphate of the present invention is usually 0.001 mol or more, preferably 0.003 mol or more, more preferably 0.005 mol or more, and usually 0.4 mol or less per 1 kg of the non-aqueous electrolyte of the present invention. , Preferably 0.3 mol or less, more preferably 0.25 mol or less. This is because, if the lower limit of the above range is not reached, it is difficult to obtain the effect of maintaining the low-temperature rate characteristics after storage in a high temperature environment, whereas if the upper limit is exceeded, the discharge capacity of the lithium secondary battery may be reduced. .

本発明の非水電解液に含まれる、本発明の電解質リチウム塩と本発明のジフルオロリン酸塩酸塩との比は特に制限されないが、本発明の非水電解液中の{本発明の電解質リチウム塩の物質量(mol)}/{本発明のジフルオロリン酸塩の物質量(mol)}の値が、通常2以上、好ましくは5以上、また、通常1500以下、好ましくは150以下の範囲となるようにすることが望ましい。上記の比の値がこの範囲を下回ると電解液の伝導度低下する虞があり、この範囲を上回ると高温環境下での保存後の低温レート特性の維持効果が得られにくくなる虞がある。   The ratio of the electrolyte lithium salt of the present invention to the difluorophosphate hydrochloride of the present invention contained in the non-aqueous electrolyte of the present invention is not particularly limited, but {the electrolyte lithium of the present invention in the non-aqueous electrolyte of the present invention The value of salt substance amount (mol)} / {substance quantity of difluorophosphate of the present invention (mol)} is usually 2 or more, preferably 5 or more, and usually 1500 or less, preferably 150 or less. It is desirable to be If the value of the above ratio is below this range, the conductivity of the electrolytic solution may be reduced, and if it exceeds this range, the effect of maintaining the low temperature rate characteristics after storage in a high temperature environment may be difficult to obtain.

[テトラフルオロホウ酸リチウム]
本発明の非水電解液はテトラフルオロホウ酸リチウムを含有する。テトラフルオロホウ酸リチウムを含有することによる効果の詳細は明確でないが、リチウムイオンの正極に対する挿入反応を補助していると考えられる。
[Lithium tetrafluoroborate]
The nonaqueous electrolytic solution of the present invention contains lithium tetrafluoroborate. Although the details of the effect of containing lithium tetrafluoroborate are not clear, it is considered that the insertion reaction of lithium ions to the positive electrode is assisted.

テトラフルオロホウ酸リチウムの含有量は、本発明の非水電解液1kg当たり、0.001mol以上、好ましくは0.002mol以上、より好ましくは0.003mol以上、また、0.3mol以下、好ましくは0.2mol以下、より好ましくは0.15mol以下の範囲である。上記の下限を下回ると低温レート特性(低温環境下におけるレート特性)向上効果が得られ難い一方で、上限を超えると却って電池の保存特性の低下を招く虞があるためである。   The content of lithium tetrafluoroborate is 0.001 mol or more, preferably 0.002 mol or more, more preferably 0.003 mol or more, and 0.3 mol or less, preferably 0, per 1 kg of the nonaqueous electrolytic solution of the present invention. .2 mol or less, more preferably 0.15 mol or less. This is because, if the lower limit is not reached, the effect of improving the low-temperature rate characteristics (rate characteristics in a low-temperature environment) is difficult to obtain, whereas if the upper limit is exceeded, the storage characteristics of the battery may be deteriorated.

本発明の非水電解液に含まれる、本発明の電解質リチウム塩とテトラフルオロホウ酸リチウムとの比は特に制限されないが、本発明の非水電解液中の{本発明の電解質リチウム塩の物質量(mol)}/{テトラフルオロホウ酸リチウムの物質量(mol)}の値が、通常3以上、好ましくは6以上、また、通常1500以下、好ましくは200以下の範囲となるようにすることが望ましい。上記の比の値がこの範囲を下回ると本発明の非水電解液の伝導度が低下する虞があり、この範囲を上回ると、レート特性の向上効果が得られにくくなる虞がある。   The ratio of the electrolyte lithium salt of the present invention to lithium tetrafluoroborate contained in the non-aqueous electrolyte of the present invention is not particularly limited, but the {substance of the electrolyte lithium salt of the present invention in the non-aqueous electrolyte of the present invention] The amount (mol)} / {substance quantity (mol) of lithium tetrafluoroborate} is usually 3 or more, preferably 6 or more, and usually 1500 or less, preferably 200 or less. Is desirable. If the value of the above ratio is below this range, the conductivity of the non-aqueous electrolyte of the present invention may be reduced, and if it exceeds this range, the effect of improving the rate characteristics may be difficult to obtain.

[ジフルオロリン酸塩とテトラフルオロホウ酸リチウムとのバランス]
本発明の非水電解液に含まれる、本発明のジフルオロリン酸塩とテトラフルオロホウ酸リチウムとの比は特に制限されないが、本発明の非水電解液中の{ジフルオロリン酸塩の物質量(mol)}/{テトラフルオロホウ酸リチウムの物質量(mol)}の値が通常0.5以上、好ましくは0.8以上となるようにすることが望ましい。上記の比の値がこの範囲を下回ると高温保存特性が悪化する虞がある。
[Balance between difluorophosphate and lithium tetrafluoroborate]
The ratio of the difluorophosphate salt of the present invention to lithium tetrafluoroborate contained in the nonaqueous electrolyte solution of the present invention is not particularly limited, but {substance amount of difluorophosphate in the nonaqueous electrolyte solution of the present invention It is desirable that the value of (mol)} / {substance quantity (mol) of lithium tetrafluoroborate} is usually 0.5 or more, preferably 0.8 or more. When the value of the above ratio is below this range, the high temperature storage characteristics may be deteriorated.

[その他の添加剤]
本発明の非水電解液中には、本発明の要旨を損なわない限りにおいて、本発明のリチウム塩、本発明のジフルオロリン酸塩、及び、テトラフルオロホウ酸リチウム以外にも各種の任意の化合物を任意の比率で存在させても良い。具体例としては、シクロシクロヘキシルベンゼン、ビフェニル等の過充電防止剤や、ビニレンカーボネート、ビニルエチレンカーボネート等の負極被膜形成剤、プロパンサルトンなどの正極保護剤が挙げられる。
[Other additives]
In the non-aqueous electrolyte of the present invention, various arbitrary compounds other than the lithium salt of the present invention, the difluorophosphate of the present invention, and lithium tetrafluoroborate are used as long as the gist of the present invention is not impaired. May be present in any ratio. Specific examples include overcharge inhibitors such as cyclohexyl benzene and biphenyl, negative electrode film forming agents such as vinylene carbonate and vinyl ethylene carbonate, and positive electrode protective agents such as propane sultone.

[非水電解液の特徴]
本発明の非水電解液は、リチウム二次電池の非水電解液として用いて好適である。これによって、低温環境下でも優れたレート特性を持つとともに、高温保存した後でもそれを保つことが可能なリチウム二次電池を実現できる。
[Features of non-aqueous electrolyte]
The non-aqueous electrolyte of the present invention is suitable for use as a non-aqueous electrolyte for lithium secondary batteries. This makes it possible to realize a lithium secondary battery that has excellent rate characteristics even in a low-temperature environment and can maintain it even after high-temperature storage.

〔II.リチウム二次電池〕
本発明のリチウム二次電池は、上述した本発明の非水電解液と、リチウムの吸蔵及び放出が可能な正極及び負極とを備えて構成される。また、本発明のリチウム二次電池には、適宜セパレータが用いられる。
[II. Lithium secondary battery)
The lithium secondary battery of the present invention includes the above-described nonaqueous electrolytic solution of the present invention, and a positive electrode and a negative electrode capable of inserting and extracting lithium. Moreover, a separator is suitably used for the lithium secondary battery of the present invention.

[正極]
正極は、通常、正極集電体上に正極活物質層を設けて構成される。
正極集電体の材質は公知のものを任意に用いることができるが、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。
[Positive electrode]
The positive electrode is usually configured by providing a positive electrode active material layer on a positive electrode current collector.
As the material of the positive electrode current collector, known materials can be arbitrarily used, but usually metal materials such as aluminum, stainless steel, nickel plating, titanium and tantalum, and carbon materials such as carbon cloth and carbon paper are used. . Of these, metal materials are preferable, and aluminum is particularly preferable.

また、正極集電体の形状としては、金属材料の場合、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、例えば炭素板、炭素薄膜、炭素円柱等が挙げられる。
正極集電体としては、上記例示の中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
In addition, as the shape of the positive electrode current collector, in the case of a metal material, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, and the like can be mentioned. For example, a carbon plate, a carbon thin film, a carbon cylinder, etc. are mentioned.
As the positive electrode current collector, among the above examples, a metal thin film is preferable because it is currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.

正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下の範囲が好適である。上記範囲よりも薄いと、正極集電体として必要な強度が不足する虞がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる虞がある。   When a thin film is used as the positive electrode current collector, the thickness is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm. The following ranges are preferred. If the thickness is less than the above range, the strength required for the positive electrode current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.

正極活物質層は、正極活物質を含んで構成される。正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に制限はない。好ましい例としては、リチウム遷移金属複合酸化物が挙げられる。
リチウム遷移金属複合酸化物の具体例としては、LiCoO2などのリチウム・コバルト複合酸化物、LiNiO2などのリチウム・ニッケル複合酸化物、LiMnO2などのリチウム・マンガン複合酸化物等が挙げられる。これらのリチウム遷移金属複合酸化物は、主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置き換えると、安定化させることができるので好ましい。これらの正極活物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
The positive electrode active material layer includes a positive electrode active material. The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Preferable examples include lithium transition metal composite oxides.
Specific examples of the lithium-transition metal composite oxide, lithium cobalt complex oxides such as LiCoO 2, lithium-nickel composite oxide such as LiNiO 2, include lithium-manganese composite oxides such as LiMnO 2. In these lithium transition metal composite oxides, some of the main transition metal atoms are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, etc. Replacing with other metals is preferable because it can be stabilized. Any one of these positive electrode active materials may be used alone, or two or more thereof may be used in any combination and ratio.

正極活物質層は、上述の正極活物質と、バインダー(結着剤)と、必要に応じて増粘剤及び導電材とを、溶媒でスラリー化したものを正極集電体に塗布し、乾燥することにより製造することができる。また、上述の正極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としても良い。以下、スラリーを正極集電体に塗布・乾燥する場合について説明する。   The positive electrode active material layer is obtained by applying a slurry obtained by slurrying the above-described positive electrode active material, a binder (binder), and, if necessary, a thickener and a conductive material with a solvent, onto a positive electrode current collector, and then drying. Can be manufactured. Further, the positive electrode active material described above may be roll-formed to form a sheet electrode, or may be formed into a pellet electrode by compression molding. Hereinafter, a case where the slurry is applied to the positive electrode current collector and dried will be described.

バインダーとしては、電解液に用いる非水溶媒や電極製造時に用いる溶媒に対して安定な材料であれば、その種類は特に制限されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル−ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。   The type of the binder is not particularly limited as long as it is a material that is stable with respect to the non-aqueous solvent used in the electrolytic solution and the solvent used during electrode production. Specific examples include polyethylene, polypropylene, polyethylene terephthalate, and polymethyl methacrylate. Resin polymers such as aromatic polyamide, cellulose, nitrocellulose, rubbers such as SBR (styrene / butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR (acrylonitrile-butadiene rubber), ethylene / propylene rubber Molecule, styrene / butadiene / styrene block copolymer and its hydrogenated product, EPDM (ethylene-propylene-diene terpolymer), styrene / ethylene / butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer Thermoplastic elastomer-like polymers such as styrene and hydrogenated products, syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer, etc. Polymers, fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers, polymers having ion conductivity of alkali metal ions (especially lithium ions) Examples thereof include a composition. These substances may be used alone or in combination of two or more in any combination and ratio.

正極活物質層中のバインダーの割合は、通常0.1重量%以上、好ましくは1重量%以上、更に好ましくは5重量%以上であり、通常80重量%以下、好ましくは60重量%以下、更に好ましくは40重量%以下、最も好ましくは10重量%以下である。バインダーの割合が低過ぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう虞がある一方で、高過ぎると、電池容量や導電性の低下に繋がる虞がある。   The ratio of the binder in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less. Preferably it is 40 weight% or less, Most preferably, it is 10 weight% or less. If the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. There is a possibility that it may lead to a decrease in conductivity.

増粘剤は、スラリー粘度調製の目的で使用される。その種類に特に制限はないが、具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられる。これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の増粘剤の割合は、通常0.1重量%以上、好ましくは0.2重量%以上、更に好ましくは0.3重量%以上であり、また、通常15重量%以下、好ましくは10重量%以下、更に好ましくは5重量%以下である。増粘剤の割合が低過ぎると粘度が低いため塗布が困難になることがあり、逆に高過ぎると電池特性が悪化することがある。   The thickener is used for the purpose of adjusting the slurry viscosity. Although there is no restriction | limiting in particular in the kind, As a specific example, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein etc. are mentioned. These substances may be used alone or in combination of two or more in any combination and ratio. The proportion of the thickener in the positive electrode active material layer is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.3% by weight or more, and usually 15% by weight or less. Preferably it is 10 weight% or less, More preferably, it is 5 weight% or less. If the proportion of the thickener is too low, the viscosity may be low and thus application may be difficult. Conversely, if it is too high, battery characteristics may be deteriorated.

正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛,人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などが挙げられる。これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の導電材の割合は、通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、また、通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電材の割合が低過ぎると導電性が不十分になることがあり、逆に高過ぎると電池容量が低下することがある。   The positive electrode active material layer usually contains a conductive material in order to increase conductivity. There are no particular restrictions on the type, but specific examples include metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. And carbon materials. These substances may be used alone or in combination of two or more in any combination and ratio. The proportion of the conductive material in the positive electrode active material layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and usually 50% by weight or less, preferably 30%. % By weight or less, more preferably 15% by weight or less. If the proportion of the conductive material is too low, the conductivity may be insufficient, and conversely if it is too high, the battery capacity may be reduced.

スラリーを形成するための溶媒としては、上述した活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。   The solvent for forming the slurry is not particularly limited as long as it is a solvent that can dissolve or disperse the above-described active material, binder, and thickener and conductive material used as necessary. However, either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N -N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. Is mentioned. In particular, when an aqueous solvent is used, a dispersant or the like is added in addition to the above-described thickener, and a slurry is formed using a latex such as SBR. In addition, these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

上記の活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶媒に分散又は溶解させて作製したスラリーを、正極集電体に塗布・乾燥することにより、正極活物質層を形成する。
正極における正極活物質層の割合は、通常10重量%以上、好ましくは30重量%以上、更に好ましくは50重量%以上であり、通常99.9重量%以下、好ましくは99重量%以下である。また、正極活物質層の厚さは、通常10〜200μm程度である。
なお、塗布・乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるため、ローラープレス等により圧密するのが好ましい。
A positive electrode active material layer is prepared by applying and drying a slurry prepared by dispersing or dissolving the above-mentioned active material, binder, and thickener and conductive material used as necessary in a solvent to a positive electrode current collector. Form.
The proportion of the positive electrode active material layer in the positive electrode is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.9% by weight or less, preferably 99% by weight or less. The thickness of the positive electrode active material layer is usually about 10 to 200 μm.
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.

[負極]
負極は通常、正極の場合と同様に、負極集電体上に負極活物質層を設けて構成される。
負極集電体の材質としては、公知のものを任意に用いることができるが、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が用いられる。中でも加工し易さとコストの点から特に銅が好ましい。
[Negative electrode]
The negative electrode is usually configured by providing a negative electrode active material layer on a negative electrode current collector, as in the case of the positive electrode.
As a material of the negative electrode current collector, a known material can be arbitrarily used. For example, a metal material such as copper, nickel, stainless steel, nickel-plated steel, or the like is used. Among these, copper is particularly preferable from the viewpoint of ease of processing and cost.

負極集電体の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、正極集電体について上述した範囲と同様である。   Examples of the shape of the negative electrode current collector include a metal foil, a metal cylinder, a metal coil, a metal plate, and a metal thin film. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape. When a metal thin film is used as the negative electrode current collector, the preferred thickness range is the same as the range described above for the positive electrode current collector.

負極活物質層は、負極活物質を含んで構成される。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に他に制限はないが、通常は安全性の高さの面から、リチウムを吸蔵、放出できる炭素材料が用いられる。   The negative electrode active material layer includes a negative electrode active material. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions, but it can usually occlude and release lithium from the viewpoint of high safety. A carbon material is used.

上記の炭素材料としては、その種類に特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、或いはこれらピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。中でも黒鉛が好ましく、特に好適には、種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛にピッチを含む黒鉛材料等であって、種々の表面処理を施したものが主として使用される。これらの炭素材料は、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いても良い。   Although there is no restriction | limiting in particular as said carbon material, Artificial graphite, graphite (graphite), such as natural graphite, and the thermal decomposition thing of organic substance on various thermal decomposition conditions are mentioned. Examples of pyrolysis products of organic matter include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, or carbide obtained by oxidizing these pitches, needle coke, pitch coke, phenol resin, crystalline cellulose, etc. And carbon materials obtained by partially graphitizing these, furnace black, acetylene black, pitch-based carbon fibers, and the like. Among them, graphite is preferable, and particularly preferable is artificial graphite, purified natural graphite, or graphite material containing pitch in these graphites, which is manufactured by subjecting easy-graphite pitch obtained from various raw materials to high-temperature heat treatment. Therefore, those subjected to various surface treatments are mainly used. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

負極活物質として黒鉛材料を用いる場合、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上、また、通常0.34nm以下、好ましくは0.337nm以下であるものが好ましい。
また、黒鉛材料の灰分が、黒鉛材料の重量に対して通常1重量%以下、中でも0.5重量%以下、特に0.1重量%以下であることが好ましい。
When a graphite material is used as the negative electrode active material, the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is usually 0.335 nm or more, and usually 0.34 nm or less, preferably Is preferably 0.337 nm or less.
Further, the ash content of the graphite material is usually 1% by weight or less, particularly 0.5% by weight or less, and particularly preferably 0.1% by weight or less, based on the weight of the graphite material.

更に、学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)が、通常30nm以上、中でも50nm以上、特に100nm以上であることが好ましい。
また、レーザー回折・錯乱法により求めた黒鉛材料のメジアン径が、通常1μm以上、中でも3μm以上、更には5μm以上、特に7μm以上、また、通常100μm以下、中でも50μm以下、更には40μm以下、特に30μm以下であることが好ましい。
Further, the crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, and particularly preferably 100 nm or more.
Further, the median diameter of the graphite material obtained by the laser diffraction / confusion method is usually 1 μm or more, especially 3 μm or more, more preferably 5 μm or more, particularly 7 μm or more, and usually 100 μm or less, especially 50 μm or less, more preferably 40 μm or less, particularly 40 μm or less. It is preferable that it is 30 micrometers or less.

また、黒鉛材料のBET法比表面積は、通常0.5m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、更に好ましくは1.5m2/g以上、また、通常25.0m2/g以下、好ましくは20.0m2/g以下、より好ましくは15.0m2/g以下、更に好ましくは10.0m2/g以下である。
更に、黒鉛材料についてアルゴンイオンレーザー光を用いたラマンスペクトル分析を行なった場合に、1580〜1620cm-1の範囲で検出されるピークPAの強度IAと、1350〜1370cm-1の範囲で検出されるピークPBの強度IBとの強度比IA/IBが、0以上0.5以下であるものが好ましい。また、ピークPAの半値幅は26cm-1以下が好ましく、25cm-1以下がより好ましい。
Further, the BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, and further preferably 1.5 m 2 / g. or more, and usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g, more preferably 15.0 m 2 / g or less, still more preferably 10.0 m 2 / g or less.
Further, in the case of performing the Raman spectrum analysis using argon ion laser light for graphite material, and strength I A of the peak P A is detected in the range of 1580~1620Cm -1, detected in a range of 1350 -1 intensity ratio I a / I B of the intensity I B of a peak P B to be is what is preferably 0 to 0.5. Further, the half value width is preferably 26cm -1 or less of the peak P A, 25 cm -1 or less is more preferable.

なお、上述の各種の炭素材料の他に、リチウムの吸蔵及び放出が可能なその他の材料を負極活物質として用いることもできる。炭素材料以外の負極活物質の具体例としては、酸化錫や酸化ケイ素などの金属酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらの炭素材料以外の材料は、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いても良い。また、上述の炭素材料と組み合わせて用いても良い。   In addition to the various carbon materials described above, other materials capable of inserting and extracting lithium can be used as the negative electrode active material. Specific examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide, and lithium alloys such as lithium alone and lithium aluminum alloys. One of these materials other than the carbon material may be used alone, or two or more thereof may be used in combination. Moreover, you may use in combination with the above-mentioned carbon material.

負極活物質層は、通常は正極活物質層の場合と同様に、上述の負極活物質と、バインダーと、必要に応じて増粘剤及び導電材とを溶媒でスラリー化したものを負極集電体に塗布し、乾燥することにより製造できる。スラリーを形成する溶媒やバインダー、増粘剤、導電材等としては、正極活物質について上述したものと同様のものを使用することができる。   As in the case of the positive electrode active material layer, the negative electrode active material layer is usually a negative electrode current collector obtained by slurrying the above-described negative electrode active material, a binder, and, if necessary, a thickener and a conductive material with a solvent. It can be manufactured by applying to the body and drying. As the solvent, binder, thickener, conductive material and the like forming the slurry, the same materials as those described above for the positive electrode active material can be used.

[セパレータ]
電極同士の短絡を防止するために、正極と負極との間には通常、セパレータが介装される。セパレータの材質や形状は特に制限されないが、上述の非水電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が用いられる。特に、セパレータの重要な因子である化学的及び電気化学的な安定性の観点からは、ポリオレフィン系高分子が好ましく、電池におけるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが特に望ましい。
[Separator]
In order to prevent a short circuit between the electrodes, a separator is usually interposed between the positive electrode and the negative electrode. The material and shape of the separator are not particularly limited, but those that are stable with respect to the non-aqueous electrolyte described above, have excellent liquid retention properties, and can reliably prevent short-circuiting between electrodes are preferable. Preferable examples include microporous films, sheets, nonwoven fabrics and the like made of various polymer materials. Specific examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene. In particular, from the viewpoint of chemical and electrochemical stability, which is an important factor for separators, polyolefin polymers are preferable. From the viewpoint of self-occluding temperature, which is one of the purposes of use of separators in batteries, polyethylene is preferred. Is particularly desirable.

ポリエチレンからなるセパレータを用いる場合、高温形状維持性の点から、超高分子ポリエチレンを用いることが好ましく、その分子量の下限は好ましくは50万、更に好ましくは100万、最も好ましくは150万である。他方、分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大き過ぎると流動性が低くなり過ぎてしまい、加熱された時にセパレータの孔が閉塞しない場合があるからである。   When using a separator made of polyethylene, it is preferable to use ultra-high molecular weight polyethylene from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1,500,000. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the fluidity becomes too low and the pores of the separator may not close when heated.

[電池の組立]
本発明のリチウム二次電池は、上述した本発明の非水電解液と、正極と、負極と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
[Battery assembly]
The lithium secondary battery of the present invention is manufactured by assembling the above-described nonaqueous electrolytic solution of the present invention, a positive electrode, a negative electrode, and a separator used as necessary into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.

電池の形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。   The shape of the battery is not particularly limited, and can be appropriately selected from various commonly used shapes according to the application. Examples of commonly used shapes include a cylinder type with a sheet electrode and separator in a spiral shape, a cylinder type with an inside-out structure combining a pellet electrode and a separator, and a coin type with stacked pellet electrodes and a separator. Can be mentioned. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

[その他]
以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を越えない限りにおいて、各種の変形を加えて実施することが可能である。
[Others]
The general embodiment of the lithium secondary battery of the present invention has been described above. However, the lithium secondary battery of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist thereof. Can be implemented.

<実施例1>
〔電池の作製〕
(正極の作成)
正極活物質としてコバルト酸リチウム(LiCoO2)90重量%、導電材としてアセチレンブラック5重量%、及び、結着剤としてポリフッ化ビニリデン(PVdF)5重量%を、N−メチルピロリドン溶媒中で混合してスラリー化した。得られたスラリーを、正極集電体である厚さ20μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ80μmに圧延したものを、幅52mm、長さ830mmの方形に打ち抜き、正極とした。
<Example 1>
[Production of battery]
(Creation of positive electrode)
90% by weight of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5% by weight of acetylene black as a conductive material, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder were mixed in an N-methylpyrrolidone solvent. To make a slurry. The obtained slurry was applied to both sides of a 20 μm thick aluminum foil as a positive electrode current collector, dried, and rolled to a thickness of 80 μm with a press machine, and punched into a square having a width of 52 mm and a length of 830 mm, A positive electrode was obtained.

(負極の作製)
負極活物質である人造黒鉛粉末KS−44(ティムカル社製、商品名)94重量部に、結着剤として蒸留水で分散させたスチレン−ブタジエンゴム(SBR)を固形分で6重量部となるように加え、ディスパーザーで混合してスラリー化した。得られたスラリーを、負極集電体である厚さ18μmの銅箔上の両面に均一に塗布し、乾燥後、更にプレス機で85μmに圧延したものを直径12.5mmの円盤状に打ち抜いて電極を作成し、負極とした。
(Preparation of negative electrode)
Styrene-butadiene rubber (SBR) dispersed in distilled water as a binder in 94 parts by weight of artificial graphite powder KS-44 (trade name, manufactured by Timcal Co.), which is a negative electrode active material, is 6 parts by weight in solid content. And mixed with a disperser to form a slurry. The obtained slurry was uniformly applied on both surfaces of a negative electrode current collector 18 μm thick copper foil, dried, and then rolled to 85 μm with a press machine and punched into a disk shape having a diameter of 12.5 mm. An electrode was prepared and used as the negative electrode.

なお、負極活物質として用いた人造黒鉛粉末KS−44の物性は、X線回折における格子面(002面)のd値が0.336nm、晶子サイズ(Lc)が100nm以上(264nm)、灰分が0.04重量%、レーザー回折・散乱法によるメジアン径が17μm、BET法比表面積が8.9m2/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲のピークPA(ピーク強度IA)及び1350〜1370cm-1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAが0.15、1580〜1620cm-1の範囲のピークの半値幅が22.2cm-1である。 The physical properties of the artificial graphite powder KS-44 used as the negative electrode active material are as follows: d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, crystallite size (Lc) is 100 nm or more (264 nm), ash content is 0.04 wt%, median diameter by laser diffraction / scattering method is 17 μm, BET specific surface area is 8.9 m 2 / g, peak P in the range of 1580 to 1620 cm −1 in Raman spectrum analysis using argon ion laser light a strength ratio R = I B / I a of (peak intensity I a) and 1350 -1 ranging peak P B (peak intensity I B) of the peak in the range of 0.15,1580~1620Cm -1 The full width at half maximum is 22.2 cm −1 .

(非水電解液の調製)
乾燥アルゴン雰囲気下で、精製したエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びジエチルカーボネート(DEC)を体積比EC:DMC:DEC=3:3:4で混合した溶媒に、充分に乾燥させたヘキサフルオロリン酸リチウム(LiPF6)を濃度1mol/Lとなるように加えて溶解させ、混合溶液を調製した。更に、この混合溶液に、Inorganic Nuclear Chemistry Letters (1969), 5(7)の第581頁〜第582頁に記載の方法に従って作成されたジフルオロリン酸リチウムを0.02mol/kgの濃度で溶解させ、さらに、テトラフルオロホウ酸リチウムを0.02mol/kgの濃度で溶解させて非水電解液を調整した。
(Preparation of non-aqueous electrolyte)
In a dry argon atmosphere, the purified ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were sufficiently dried in a solvent mixed with a volume ratio EC: DMC: DEC = 3: 3: 4. Lithium hexafluorophosphate (LiPF 6 ) was added and dissolved at a concentration of 1 mol / L to prepare a mixed solution. Further, in this mixed solution, lithium difluorophosphate prepared according to the method described in Inorganic Nuclear Chemistry Letters (1969), 5 (7), pages 581 to 582, was dissolved at a concentration of 0.02 mol / kg. Furthermore, lithium tetrafluoroborate was dissolved at a concentration of 0.02 mol / kg to prepare a nonaqueous electrolytic solution.

(電池の組立)
アルゴン雰囲気のドライボックス内で、正極導電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に多孔性ポリエチレンのセパレータを配置して上記非水電解液を滴下し、その上に負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。
(Battery assembly)
In a dry box in an argon atmosphere, a positive electrode is accommodated in a stainless steel can that also serves as a positive electrode conductor, a porous polyethylene separator is placed thereon, and the non-aqueous electrolyte is dropped on the negative electrode. Was placed. The can body and a sealing plate that also serves as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery.

〔電池の評価〕
作成した実施例1のリチウム二次電池に対して、25℃で上限電圧4.2V、下限電圧3.0Vにて5サイクルの初期充放電を行なった。この時の5サイクル目0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)放電容量を初期容量とした。その後、次のようにして低温放電試験を行なった。充電上限電圧4.2Vまで1Cの定電流定電圧法で充電した後、0℃にて放電終止電圧3.0Vまで2Cの定電流で放電し、この放電容量の初期容量に対する割合を初期低温放電効率とした。この結果を下記表1に示す。
[Battery evaluation]
The prepared lithium secondary battery of Example 1 was subjected to initial charge / discharge for 5 cycles at 25 ° C. with an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. At this time, the discharge capacity was defined as the initial capacity 0.2C at the fifth cycle (the rated capacity due to the discharge capacity at the hour rate is 1 C, and the same applies hereinafter). Then, the low temperature discharge test was done as follows. After charging with a constant current constant voltage method of 1C up to a charge upper limit voltage of 4.2V, discharge at a constant current of 2C up to a discharge end voltage of 3.0V at 0 ° C, and the ratio of this discharge capacity to the initial capacity is the initial low temperature discharge. The efficiency. The results are shown in Table 1 below.

さらに、再び25℃の環境下で充電上限電圧4.2Vまで1Cの定電流定電圧法で充電し、60℃の高温環境下で5日間保存した。保存後の電池に対し、25℃環境下で3サイクルの充放電を行ない、その3サイクル目の0.2C放電容量を保存後容量とした。そして、初期と同様の低温放電試験を行ない、この放電容量の保存後容量に対する割合を保存後低温放電効率とした。この結果を同様に下記表1に示す。   Furthermore, the battery was charged again by a constant current / constant voltage method of 1 C up to a charging upper limit voltage of 4.2 V under an environment of 25 ° C. and stored for 5 days in a high temperature environment of 60 ° C. The battery after storage was charged and discharged for 3 cycles under a 25 ° C. environment, and the 0.2 C discharge capacity at the third cycle was defined as the capacity after storage. And the low temperature discharge test similar to the initial stage was performed, and the ratio of the discharge capacity to the capacity after storage was defined as the low temperature discharge efficiency after storage. The results are similarly shown in Table 1 below.

<実施例2>
非水電解液調製の際、ジフルオロリン酸リチウムの代わりにジフルオロリン酸ナトリウム(実施例1のジフルオロリン酸リチウムと同様の方法にて作製)を0.02mol/kgの濃度で混合したこと以外は実施例1と同様の手順で、コイン型電池(実施例2のリチウム二次電池)を作製し、その評価を行なった。評価の結果を下記表1に示す。
<Example 2>
When preparing the non-aqueous electrolyte, sodium difluorophosphate (produced by the same method as lithium difluorophosphate of Example 1) was mixed at a concentration of 0.02 mol / kg instead of lithium difluorophosphate. A coin-type battery (lithium secondary battery of Example 2) was prepared and evaluated in the same procedure as in Example 1. The evaluation results are shown in Table 1 below.

<比較例1>
非水電解液調製の際、テトラフルオロホウ酸リチウムを混合しなかったこと以外は実施例1と同様の手順で、コイン型電池(比較例1のリチウム二次電池)を作製し、その評価を行なった。評価の結果を下記表1に示す。
<Comparative Example 1>
A coin-type battery (lithium secondary battery of Comparative Example 1) was prepared and evaluated in the same procedure as in Example 1 except that lithium tetrafluoroborate was not mixed during the preparation of the non-aqueous electrolyte. I did it. The evaluation results are shown in Table 1 below.

<比較例2>
非水電解液調製の際、ジフルオロリン酸リチウムを混合しなかったこと以外は実施例1と同様の手順で、コイン型電池(比較例2のリチウム二次電池)を作製し、その評価を行なった。評価の結果を下記表1に示す。
<Comparative example 2>
A coin-type battery (lithium secondary battery of Comparative Example 2) was prepared and evaluated in the same procedure as in Example 1 except that lithium difluorophosphate was not mixed during the preparation of the non-aqueous electrolyte. It was. The evaluation results are shown in Table 1 below.

<比較例3>
非水電解液調製の際、ジフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムのどちらも混合しなかったこと以外は実施例1と同様の手順で、コイン型電池(比較例3のリチウム二次電池)を作製し、その評価を行なった。評価の結果を下記表1に示す。
<Comparative Example 3>
A coin-type battery (lithium secondary battery of Comparative Example 3) was prepared in the same procedure as in Example 1 except that neither lithium difluorophosphate nor lithium tetrafluoroborate was mixed during the preparation of the non-aqueous electrolyte. Were prepared and evaluated. The evaluation results are shown in Table 1 below.

<比較例4>
非水電解液調製を以下のように行なったこと以外は実施例1と同様の手順で、コイン型電池(比較例3のリチウム二次電池)を作製し、評価を行なった。
乾燥アルゴン雰囲気下で、精製したエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びジエチルカーボネート(DEC)を体積比EC:DMC:DEC=3:3:4で混合した溶媒に、充分に乾燥したヘキサフルオロリン酸リチウムを濃度0.5mol/Lとなる様に加えて溶解させ、更に、テトラフルオロホウ酸リチウムを0.5mol/Lとなる様に加えて溶解させ、混合溶液を調製した。この混合溶液に、ジフルオロリン酸リチウムを0.02mol/kgの濃度で溶解させて非水電解液を調製した。
評価の結果を下記表1に示す。
<Comparative example 4>
A coin-type battery (lithium secondary battery of Comparative Example 3) was prepared and evaluated in the same procedure as in Example 1 except that the non-aqueous electrolyte was prepared as follows.
Under a dry argon atmosphere, thoroughly dried hexacarbonate was added to a solvent in which purified ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed at a volume ratio EC: DMC: DEC = 3: 3: 4. Lithium fluorophosphate was added and dissolved at a concentration of 0.5 mol / L, and lithium tetrafluoroborate was added and dissolved at a concentration of 0.5 mol / L to prepare a mixed solution. In this mixed solution, lithium difluorophosphate was dissolved at a concentration of 0.02 mol / kg to prepare a non-aqueous electrolyte.
The evaluation results are shown in Table 1 below.

Figure 0004407205
Figure 0004407205

上記表1から明らかなように、ジフルオロリン酸塩とテトラフルオロホウ酸リチウムとを非水電解液中に含有する実施例1及び実施例2のリチウム二次電池は、非水電解液中にこれらを含有しない比較例3のリチウム二次電池に比べて、低温放電特性の向上が見られ、低温環境下におけるレート特性が向上したことが分かる。   As is clear from Table 1 above, the lithium secondary batteries of Examples 1 and 2 containing difluorophosphate and lithium tetrafluoroborate in the non-aqueous electrolyte were used in the non-aqueous electrolyte. Compared to the lithium secondary battery of Comparative Example 3 that does not contain, the low temperature discharge characteristics are improved, and it can be seen that the rate characteristics in a low temperature environment are improved.

また、比較例1及び比較例2のリチウム二次電池は、低温放電特性が比較例3よりも向上しているものの、実施例1及び実施例2に比較して低温放電特性の向上は小さく、特に比較例2では、保存後の特性向上は低くなっている。このことから、非水電解液中にジフルオロリン酸塩及びテトラフルオロホウ酸リチウムをともに含むことにより、高温環境下で保存した場合でも、優れた低温レート特性が維持されることが分かる。   Further, the lithium secondary batteries of Comparative Example 1 and Comparative Example 2 have improved low-temperature discharge characteristics as compared with Comparative Example 3, but the improvement in low-temperature discharge characteristics is small compared to Examples 1 and 2. Particularly in Comparative Example 2, the improvement in characteristics after storage is low. From this, it can be seen that by including both the difluorophosphate and lithium tetrafluoroborate in the non-aqueous electrolyte, excellent low temperature rate characteristics are maintained even when stored in a high temperature environment.

また、テトラフルオロホウ酸リチウムは電解質リチウム塩として知られ、使用されるものであるが、比較例4のように電解質塩として機能するように大量に使用した場合、初期の低温放電特性は良好であるものの、高温保存した後には性能が著しく低下してしまう。このことから、テトラフルオロホウ酸リチウムは、本発明のように、比較的少量の所定量のみを含有させることが好ましいことが分かる。   Further, lithium tetrafluoroborate is known and used as an electrolyte lithium salt, but when used in large quantities so as to function as an electrolyte salt as in Comparative Example 4, the initial low-temperature discharge characteristics are good. However, the performance is significantly degraded after high temperature storage. From this, it is understood that the lithium tetrafluoroborate preferably contains only a relatively small predetermined amount as in the present invention.

本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ等を挙げることができる。特に、本発明のリチウム二次電池は、高温環境下での保存を経る前後において常に高い低温レート特性を得られることから、寒暖差の激しい環境下での用途に使用した場合に、とりわけ大きい効果が得られる。   The use of the lithium secondary battery of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, etc. In particular, since the lithium secondary battery of the present invention can always obtain a high low temperature rate characteristic before and after storage under a high temperature environment, it is particularly effective when used in an environment with a severe temperature difference. Is obtained.

Claims (4)

リチウムの吸蔵及び放出が可能な正極及び負極とともにリチウム二次電池を構成する非水電解液であって、
非水溶媒と
該非水溶媒に溶解される、ジフルオロリン酸リチウム及びテトラフルオロホウ酸リチウム以外の少なくとも1種の電解質リチウム塩と、
ジフルオロリン酸塩と、
テトラフルオロホウ酸リチウムとを混合し、
該非水電解液中の該テトラフルオロホウ酸リチウムの濃度が0.001mol/kg以上0.3mol/kg以下であり、
該非水電解液中のジフルオロリン酸塩の濃度が0.001mol/kg以上0.4mol/kg以下である
ことを特徴とする、リチウム二次電池用非水電解液
A non-aqueous electrolyte constituting a lithium secondary battery together with a positive electrode and a negative electrode capable of inserting and extracting lithium,
A non-aqueous solvent ;
At least one electrolyte lithium salt other than lithium difluorophosphate and lithium tetrafluoroborate dissolved in the non-aqueous solvent ;
Difluorophosphate, and
Mixed with lithium tetrafluoroborate,
Ri said concentration of lithium tetrafluoroborate is 0.001 mol / kg or more 0.3 mol / kg der following nonaqueous electrolytic solution,
The nonaqueous electrolytic solution for a lithium secondary battery, wherein the concentration of difluorophosphate in the nonaqueous electrolytic solution is 0.001 mol / kg or more and 0.4 mol / kg or less .
該ジフルオロリン酸塩が、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、及び第4級アンモニウム塩からなる群より選ばれる少なくとも1種の塩である
ことを特徴とする、請求項1記載のリチウム二次電池用非水電解液。
The difluorophosphate, characterized in that the lithium salt, sodium salt, at least one salt of potassium, magnesium, selected from the group consisting of calcium salts and quaternary ammonium salts, according to claim 1, serial mounting lithium secondary battery for a non-aqueous electrolyte solution.
該電解質リチウム塩として、少なくともヘキサフルオロリン酸リチウムが含まれていることを特徴とする、請求項1又は請求項2記載のリチウム二次電池用非水電解液。 The nonaqueous electrolytic solution for a lithium secondary battery according to claim 1 or 2 , wherein at least lithium hexafluorophosphate is contained as the electrolyte lithium salt. リチウムの吸蔵及び放出が可能な正極及び負極と、請求項1〜のいずれか1項に記載のリチウム二次電池用非水電解液とを具備してなる
ことを特徴とする、リチウム二次電池。
A lithium secondary battery comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and the non-aqueous electrolyte for a lithium secondary battery according to any one of claims 1 to 3. battery.
JP2003298839A 2003-08-22 2003-08-22 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP4407205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298839A JP4407205B2 (en) 2003-08-22 2003-08-22 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298839A JP4407205B2 (en) 2003-08-22 2003-08-22 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005071749A JP2005071749A (en) 2005-03-17
JP4407205B2 true JP4407205B2 (en) 2010-02-03

Family

ID=34404222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298839A Expired - Lifetime JP4407205B2 (en) 2003-08-22 2003-08-22 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4407205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039500A1 (en) 2010-09-24 2012-03-29 積水化学工業株式会社 Manufacturing method for electrolyte, electrolyte solution, gel electrolyte, electrolyte membrane and gel electrolyte battery, and lithium-ion secondary battery

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238453B2 (en) * 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
JP4952080B2 (en) * 2005-06-20 2012-06-13 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
JP4952186B2 (en) * 2005-10-20 2012-06-13 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and secondary battery using the same
CN110061283A (en) * 2005-10-20 2019-07-26 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolytic solution used in it
CN102931434B (en) * 2005-10-20 2015-09-16 三菱化学株式会社 Lithium secondary battery and the nonaqueous electrolytic solution wherein used
JP5514394B2 (en) * 2005-10-28 2014-06-04 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP5503098B2 (en) * 2005-10-28 2014-05-28 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP2014082220A (en) * 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP5740802B2 (en) * 2005-11-16 2015-07-01 三菱化学株式会社 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165292A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and secondary battery using it
JP5671771B2 (en) * 2005-11-16 2015-02-18 三菱化学株式会社 Lithium secondary battery
JP5671770B2 (en) * 2005-11-16 2015-02-18 三菱化学株式会社 Lithium secondary battery
JP2010062164A (en) * 2005-11-16 2010-03-18 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery, nonaqueous electrolyte for the nonaqueous electrolyte secondary battery
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP5671772B2 (en) * 2005-11-25 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
JP5636622B2 (en) * 2005-11-29 2014-12-10 三菱化学株式会社 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5636623B2 (en) * 2005-11-29 2014-12-10 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP5671773B2 (en) * 2005-12-02 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
JP5916268B2 (en) * 2005-12-07 2016-05-11 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP2007188871A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP5741599B2 (en) * 2005-12-22 2015-07-01 三菱化学株式会社 Lithium secondary battery and assembled battery connecting the same
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP5671774B2 (en) * 2006-01-13 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
JP5671775B2 (en) * 2006-01-27 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
KR20160011227A (en) 2006-12-06 2016-01-29 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
US8623558B2 (en) 2010-03-29 2014-01-07 Panasonic Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5765582B2 (en) * 2012-06-29 2015-08-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN107285293B (en) * 2017-06-12 2019-06-18 上海如鲲新材料有限公司 A method of difluorophosphate is prepared with difluorophosphoric acid ester
JP7234529B2 (en) * 2017-08-31 2023-03-08 株式会社Gsユアサ Non-aqueous electrolyte and storage element
US11646446B2 (en) * 2018-01-15 2023-05-09 Panasonic Intellectual Property Management Co., Ltd. Rechargeable battery and electrolyte solution
CN114678156B (en) * 2022-01-24 2022-11-29 中国科学院兰州化学物理研究所 Oil-soluble conductive additive and preparation method thereof
WO2024034521A1 (en) * 2022-08-08 2024-02-15 住友精化株式会社 Secondary battery non-aqueous electrolytic solution, lithium ion battery, and lithium ion capacitor
WO2024034520A1 (en) * 2022-08-08 2024-02-15 住友精化株式会社 Non-aqueous electrolyte for secondary battery, lithium ion battery, and lithium ion capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039500A1 (en) 2010-09-24 2012-03-29 積水化学工業株式会社 Manufacturing method for electrolyte, electrolyte solution, gel electrolyte, electrolyte membrane and gel electrolyte battery, and lithium-ion secondary battery
US10256497B2 (en) 2010-09-24 2019-04-09 Sekisui Chemical Co., Ltd. Electrolyte, electrolyte solution, gel electrolyte, electrolyte membrane, method for manufacturing gel electrolyte battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005071749A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4604505B2 (en) Method for producing lithium difluorophosphate, non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP5202239B2 (en) Lithium secondary battery
JP2005251456A (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using the same
JP5636622B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
JP5277686B2 (en) Lithium secondary battery and positive electrode for lithium secondary battery used therefor
JP5671770B2 (en) Lithium secondary battery
JP7168851B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP2007214120A (en) Lithium ion secondary battery
JP4483253B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP7172015B2 (en) Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
JP2020064873A (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
JP5740802B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2007165299A (en) Lithium secondary battery
JP2007165298A (en) Lithium secondary battery
WO2021006302A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
CN111740162A (en) Electrolyte solution, electrochemical device including the same, and electronic device
JP2004327211A (en) Non-aqueous electrolyte lithium secondary battery, and lithium secondary battery
JP2007165301A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term