JP7262419B2 - Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7262419B2
JP7262419B2 JP2020079816A JP2020079816A JP7262419B2 JP 7262419 B2 JP7262419 B2 JP 7262419B2 JP 2020079816 A JP2020079816 A JP 2020079816A JP 2020079816 A JP2020079816 A JP 2020079816A JP 7262419 B2 JP7262419 B2 JP 7262419B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020079816A
Other languages
Japanese (ja)
Other versions
JP2020115485A (en
Inventor
寛子 大下
一臣 漁師
元彬 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020079816A priority Critical patent/JP7262419B2/en
Publication of JP2020115485A publication Critical patent/JP2020115485A/en
Priority to JP2022071978A priority patent/JP2022095989A/en
Application granted granted Critical
Publication of JP7262419B2 publication Critical patent/JP7262419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解質二次電池用正極活物質、および非水系電解質二次電池に関する。 The present invention relates to a positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が要求されている。また、ハイブリッド自動車を始めとする電気自動車用の電池として、高出力の非水系電解質二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。 In recent years, with the spread of mobile electronic devices such as mobile phones and laptop computers, there is a demand for the development of small, lightweight non-aqueous electrolyte secondary batteries with high energy density. There is also a demand for the development of high-output non-aqueous electrolyte secondary batteries as batteries for electric vehicles such as hybrid vehicles. Lithium ion secondary batteries are known as non-aqueous electrolyte secondary batteries that satisfy such requirements. A lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and intercalating lithium is used as an active material for the negative electrode and the positive electrode.

リチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。中でも、層状またはスピネル型のリチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。これまで主に提案されているリチウム金属複合酸化物としては、合成が比較的容易なリチウムコバルト複合酸化物(例えば、LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(例えば、LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1/3Co1/3Mn1/3)、リチウムマンガン複合酸化物(例えば、LiMn)などが挙げられる。 Lithium ion secondary batteries are currently being vigorously researched and developed. Among them, a lithium-ion secondary battery using a layered or spinel-type lithium metal composite oxide as a positive electrode active material can obtain a high voltage of 4V class, and is being put to practical use as a battery having a high energy density. Lithium-metal composite oxides mainly proposed so far include lithium-cobalt composite oxides (e.g., LiCoO 2 ), which are relatively easy to synthesize, and lithium-nickel composite oxides using nickel, which is cheaper than cobalt ( LiNiO 2 ), lithium-nickel-cobalt-manganese composite oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium-manganese composite oxides (eg, LiMn 2 O 4 ), and the like.

リチウムコバルト複合酸化物を正極活物質として用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われており、すでにさまざまな成果が得られている。しかし、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物が用られる。このため、リチウムコバルト複合酸化物は、これを用いた電池の容量あたりの単価がニッケル水素電池より大幅に高く、正極活物質として適用可能な用途がかなり限定される。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。 Batteries using lithium-cobalt composite oxide as a positive electrode active material have been developed to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. However, the lithium-cobalt composite oxide uses an expensive cobalt compound as a raw material. For this reason, lithium-cobalt composite oxides are significantly higher in unit price per capacity than nickel-metal hydride batteries, and their applications as positive electrode active materials are considerably limited. Therefore, not only for small secondary batteries for portable devices, but also for large secondary batteries for power storage and electric vehicles, it is necessary to reduce the cost of positive electrode active materials and manufacture cheaper lithium ion secondary batteries. There are high expectations for making it possible, and its realization is of great industrial significance.

コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物は、これを正極材料としてリチウムイオン二次電池を作製した場合、コバルト系と比較してサイクル特性が劣り、また、高温環境下で使用や保存により比較的電池性能を損ないやすいという欠点を有する。そのため、例えば特許文献1に開示されるように、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。 Lithium-nickel composite oxides using nickel, which is cheaper than cobalt, exhibit a lower electrochemical potential than lithium-cobalt composite oxides. Since it shows a high battery voltage like the cobalt system, it is being actively developed. However, when a lithium-nickel composite oxide synthesized purely from nickel is used as a positive electrode material in a lithium-ion secondary battery, the cycle characteristics are inferior to those of cobalt-based materials, and it is difficult to use in high-temperature environments. It has a drawback that the battery performance is relatively likely to be damaged by storage. Therefore, as disclosed in Patent Document 1, for example, lithium-nickel composite oxides in which nickel is partially replaced with cobalt or aluminum are generally known.

正極活物質であるリチウムニッケル複合酸化物の一般的な製造方法としては、中和晶析法により前駆体であるニッケル複合水酸化物を作製し、この前駆体を水酸化リチウムなどのリチウム化合物と混合して焼成し、リチウムニッケル複合酸化物を得る方法が知られている。しかしながら、この方法で合成したリチウムニッケル複合酸化物には未反応の水酸化リチウムが残留している。未反応の水酸化リチウムは、正極活物質を正極合材ペーストに混練する際に、正極合材ペーストのゲル化を引き起こす原因になる。さらに正極活物質が高温環境下で充電される場合、未反応の水酸化リチウムが酸化分解しガス発生を引き起こす要因にもなる。 As a general method for producing a lithium-nickel composite oxide as a positive electrode active material, a nickel composite hydroxide as a precursor is produced by a neutralization crystallization method, and this precursor is combined with a lithium compound such as lithium hydroxide. A method of mixing and firing to obtain a lithium-nickel composite oxide is known. However, unreacted lithium hydroxide remains in the lithium-nickel composite oxide synthesized by this method. Unreacted lithium hydroxide causes gelation of the positive electrode mixture paste when the positive electrode active material is kneaded into the positive electrode mixture paste. Furthermore, when the positive electrode active material is charged in a high-temperature environment, unreacted lithium hydroxide is oxidatively decomposed to cause gas generation.

そこで、特許文献2によれば合成後のリチウムニッケル複合酸化物に自然水を加えて攪拌し、水酸化リチウムを除去する方法が提案されている。また、特許文献3によれば焼成後のリチウムニッケル複合酸化物に含まれる未反応のアルカリ分を水洗により除去する方法が提案されている。しかしながら、これらの水洗による洗浄方法は、水洗の際に、リチウムニッケル複合酸化物に含まれる水酸化リチウムが除去されるのみならず、リチウムニッケル複合酸化物の格子内からもリチウムが引き抜かれ、リチウム化合物が多く溶出することにより、その表面の結晶でリチウムイオンの欠損が生じ、電池容量の低下や電池抵抗が増大するという問題点がある。 Therefore, according to Patent Document 2, a method is proposed in which natural water is added to the synthesized lithium-nickel composite oxide and stirred to remove lithium hydroxide. Further, Patent Document 3 proposes a method of removing unreacted alkali contained in the lithium-nickel composite oxide after firing by washing with water. However, in these washing methods using water, not only is lithium hydroxide contained in the lithium-nickel composite oxide removed during washing, but lithium is also extracted from the lattice of the lithium-nickel composite oxide. Due to the elution of a large amount of the compound, there is a problem that lithium ion deficiency occurs in the crystals on the surface, resulting in a decrease in battery capacity and an increase in battery resistance.

そこで、特許文献4によれば合成後のリチウムニッケル複合酸化物に自然水を加えて攪拌し、水酸化リチウムを除去した後、酸素濃度が80容量%以上の酸素雰囲気下、120℃以上550℃以下の温度で熱処理する方法が提案されている。この方法で得られる正極活物質は、水洗時に欠損した表面のリチウムが、粒子内部から補填されるため、その表面にリチウム欠損が存在せず、電池の正極抵抗を低減させることができるとしている。しかし、正極活物質粒子内部から粒子表面へリチウムがごく少量ではあるが補充されており、正極活物質全体から見たリチウム欠損の解決には改善の余地があった。 Therefore, according to Patent Document 4, natural water is added to the synthesized lithium-nickel composite oxide and stirred to remove the lithium hydroxide, and then the mixture is heated at 120° C. to 550° C. in an oxygen atmosphere with an oxygen concentration of 80% by volume or more. A method of heat-treating at the following temperatures has been proposed. In the positive electrode active material obtained by this method, the lithium on the surface that is deficient during washing with water is compensated from the inside of the particles, so there is no lithium deficiency on the surface, and the positive electrode resistance of the battery can be reduced. However, a very small amount of lithium is replenished from the inside of the positive electrode active material particles to the particle surface, and there is room for improvement in solving the lithium deficiency seen from the overall positive electrode active material.

特開平05-242891号公報JP-A-05-242891 特開2007-273108号公報Japanese Patent Application Laid-Open No. 2007-273108 特開1996-138669号公報JP-A-1996-138669 国際公開第2014/189108号WO2014/189108

本発明の目的はこのような問題に鑑みて、正極合材ペーストのゲル化を抑制し、さらに、二次電池に用いた場合、高容量が得られ、かつ、正極抵抗が低減された非水系電解質二次電池用正極活物質を提供することを目的とする。 In view of such problems, the object of the present invention is to suppress the gelation of the positive electrode mixture paste, and when used in a secondary battery, obtain a high capacity and reduce the positive electrode resistance. An object of the present invention is to provide a positive electrode active material for an electrolyte secondary battery.

本発明者は、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられているリチウム金属複合酸化物およびその製造方法に関して鋭意研究を重ねた結果、リチウムニッケル複合酸化物からなる粉末を、リチウム塩を含む水溶液により洗浄することによって、未反応の水酸化リチウムや原料由来の不純物を除去するとともに、リチウムニッケル複合酸化物の格子内からのリチウム引き抜きを防止することが可能であるとの知見を得て、本発明を完成した。 In order to solve the above problems, the present inventors have made intensive research on lithium metal composite oxides used as positive electrode active materials for non-aqueous electrolyte secondary batteries and methods for producing the same. By washing the powder with an aqueous solution containing a lithium salt, it is possible to remove unreacted lithium hydroxide and impurities derived from the raw material and prevent lithium from being extracted from the lattice of the lithium-nickel composite oxide. The present invention was completed after obtaining the knowledge that there is.

本発明の第1の態様では、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物粉末からなる非水系電解質二次電池用正極活物質であって、水酸化リチウム含有量が0.5質量%以下であり、かつ、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下である非水系電解質二次電池用正極活物質が提供される。 In the first aspect of the present invention, the general formula Li z Ni 1-xy Co x M y O 2 (where 0≦x≦0.35, 0≦y≦0.10, 0.95≦z≦ 1.10, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al). A substance having a lithium hydroxide content of 0.5% by mass or less, and the ratio of Li and metals other than Li (Ni, Co and M) on the surface of the powder measured by X-ray photoelectron spectroscopy A positive electrode active material for a non-aqueous electrolyte secondary battery having a composition ratio (Li/(Ni+Co+M)) of 0.80 or more and 1.5 or less is provided.

また、上記粉末を水に分散させた5質量%の懸濁溶液における粉体pHが、11.5以下であることが好ましい。 Moreover, it is preferable that the pH of the powder in a 5% by mass suspension of the powder dispersed in water is 11.5 or less.

本発明の第2の態様では、上記非水系電解質二次電池用正極活物質を正極に含む非水系電解質二次電池が提供される。 A second aspect of the present invention provides a non-aqueous electrolyte secondary battery containing the positive electrode active material for a non-aqueous electrolyte secondary battery in its positive electrode.

本発明の正極活物質によれば、正極合材ペーストのゲル化を抑制し、さらに、二次電池に用いた場合、高容量が得られ、かつ、正極抵抗が低減された非水系電解質二次電池用正極活物質が得られる。さらに、本発明の製造方法は、この正極活物質を容易に生産でき、特に工業的規模での大量生産に適するため、その工業的価値は極めて大きい。 ADVANTAGE OF THE INVENTION According to the positive electrode active material of the present invention, a non-aqueous electrolyte secondary in which gelation of the positive electrode mixture paste is suppressed, and a high capacity is obtained and the positive electrode resistance is reduced when used in a secondary battery A positive electrode active material for batteries is obtained. Furthermore, the manufacturing method of the present invention can easily produce this positive electrode active material, and is particularly suitable for mass production on an industrial scale, so its industrial value is extremely high.

図1は、本実施形態に係る非水系電解質二次電池用正極活物質の製造方法の一例を示すフローチャートである。FIG. 1 is a flow chart showing an example of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to this embodiment. 図2は、電池評価に使用したコイン型電池の概略断面図である。FIG. 2 is a schematic cross-sectional view of a coin-type battery used for battery evaluation. 図3は、インピーダンス測定法によるナイキストプロット(上段)及び等価回路(下段)を示す図である。FIG. 3 shows a Nyquist plot (top) and an equivalent circuit (bottom) obtained by the impedance measurement method.

1.非水系電解質二次電池用正極活物質の製造方法
以下、図を参照して、本発明の実施形態の一例を説明する。図1は、本実施形態に係る非水系電解質二次電池用正極活物質(以下、「正極活物質」ともいう。)の製造方法を示すフローチャートである。なお、以下の説明は、製造方法の一例であって、本発明の製造方法を限定するものではない。
1. Method for Producing Positive Electrode Active Material for Non-aqueous Electrolyte Secondary Battery Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter also referred to as "positive electrode active material") according to this embodiment. In addition, the following description is an example of the manufacturing method, and does not limit the manufacturing method of the present invention.

図1に示すように、リチウムニッケル複合酸化物からなる粉末を炭酸リチウム水溶液により洗浄する(ステップS1)。まず、母材として、リチウムニッケル複合酸化物からなる粉末(以下、単に「粉末」ともいう。)を準備する。粉末は、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなる。 As shown in FIG. 1, a powder made of lithium-nickel composite oxide is washed with an aqueous solution of lithium carbonate (step S1). First, a powder made of a lithium-nickel composite oxide (hereinafter also simply referred to as “powder”) is prepared as a base material. The powder has the general formula Li z Ni 1-x-y Co x M y O 2 (where 0≦x≦0.35, 0≦y≦0.10, 0.95≦z≦1.10, M is , Mn, V, Mg, Mo, Nb, Ti and Al).

粉末の製造方法は、特に限定されず、公知の方法で製造できる。粉末の製造方法は、例えば、リチウムを含む化合物と、リチウム以外の金属(ニッケル、コバルトなどの遷移金属やアルミニウム等)を含む化合物とを混合し、焼成する方法や、リチウムとリチウム以外の金属を含む水溶液を噴霧熱分解処理する方法や、中和晶析法により得られたリチウム以外の金属を含む水酸化物、あるいは該水酸化物を熱処理して得られる酸化物と、リチウム化合物とを混合し、焼成する方法などが挙げられる。これらの中でも、中和晶析法により得られたリチウム以外の金属を含む水酸化物を用いる方法は、得られる粉末の比表面積などを所望の範囲に容易に制御できる。また、粉末の原料として、水酸化物などを用い、粉末中にこれらに由来する物質が残留している場合、本実施形態の製造方法を好適に用いることができる。 The method for producing the powder is not particularly limited, and it can be produced by a known method. Powder production methods include, for example, a method of mixing a compound containing lithium and a compound containing metals other than lithium (transition metals such as nickel and cobalt, aluminum, etc.) and firing the mixture; A hydroxide containing a metal other than lithium obtained by a method of spray pyrolysis treatment of an aqueous solution containing lithium or a neutralization crystallization method, or an oxide obtained by heat treatment of the hydroxide, and a lithium compound are mixed. and firing. Among these methods, the method using a hydroxide containing a metal other than lithium obtained by the neutralization crystallization method can easily control the specific surface area of the resulting powder within a desired range. Moreover, when a hydroxide or the like is used as the raw material of the powder, and substances derived from these substances remain in the powder, the production method of the present embodiment can be preferably used.

粉末は、水酸化リチウム以外の水溶性リチウム塩から選ばれる1種類以上のリチウム塩を含む水溶液(以下、「リチウム塩水溶液」ともいう。)により洗浄される。洗浄は、例えば、粉末をリチウム塩水溶液中に分散させて、撹拌することにより行う。このリチウム塩を含む水溶液による洗浄により、粉末表面に存在する水酸化リチウムなどの不純物が除去されると同時に、粉末表面の結晶格子内からのリチウム引き抜きが抑制される。これにより、正極合材ペーストのゲル化を抑制しつつ、さらに電池の正極抵抗を低減して高容量かつ出力特性に優れた正極活物質が得られる。 The powder is washed with an aqueous solution containing one or more lithium salts selected from water-soluble lithium salts other than lithium hydroxide (hereinafter also referred to as "lithium salt aqueous solution"). Washing is performed, for example, by dispersing the powder in an aqueous lithium salt solution and stirring. By washing with the aqueous solution containing the lithium salt, impurities such as lithium hydroxide existing on the powder surface are removed, and at the same time lithium abstraction from the crystal lattice of the powder surface is suppressed. As a result, while suppressing gelation of the positive electrode mixture paste, it is possible to obtain a positive electrode active material that has a high capacity and excellent output characteristics by reducing the positive electrode resistance of the battery.

洗浄に用いられる水溶液は、水酸化リチウム以外の水溶性リチウム塩から選ばれる1種類以上のリチウム塩を溶質として含む。水酸化リチウム以外の水溶性リチウム塩としては、特に限定されず、公知のリチウム塩を用いることができ、例えば、炭酸リチウム、炭酸水素リチウム、クエン酸リチウム、酢酸リチウム、シュウ酸リチウム、酒石酸リチウム、硫酸リチウム、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムなどを用いることができる。また、水溶性リチウム塩として硝酸リチウム、硫酸リチウムを用いることにより、より正極抵抗(以下、「反応抵抗」ともいう。)を低減することができる。また、硫酸根の残留量を低減するという観点から、硫酸塩以外の水溶性リチウム塩を用いることが好ましい。また、リチウム塩は、1種類単独で用いられてもよいし、2種類以上が併用されてもよい。なお、発明の効果を阻害しない範囲であれば、水溶性リチウム塩以外の溶質を含んでもよい。 The aqueous solution used for washing contains, as a solute, one or more lithium salts selected from water-soluble lithium salts other than lithium hydroxide. The water-soluble lithium salt other than lithium hydroxide is not particularly limited, and known lithium salts can be used. Examples include lithium carbonate, lithium hydrogen carbonate, lithium citrate, lithium acetate, lithium oxalate, lithium tartrate, Lithium sulfate, lithium nitrate, lithium chloride, lithium bromide, lithium iodide, and the like can be used. Further, by using lithium nitrate or lithium sulfate as the water-soluble lithium salt, the positive electrode resistance (hereinafter also referred to as “reaction resistance”) can be further reduced. Moreover, from the viewpoint of reducing the amount of residual sulfate group, it is preferable to use a water-soluble lithium salt other than sulfate. Moreover, lithium salt may be used individually by 1 type, and 2 or more types may be used together. In addition, solutes other than the water-soluble lithium salt may be included as long as the effects of the invention are not impaired.

なお、水酸化リチウムを含む水溶液を用いて洗浄した場合、正極活物質に残留した水酸化リチウムが、正極合材ペーストのゲル化を引き起こす原因の一つとなる。また、この正極活物質を高温環境下で充電した場合、残留した水酸化リチウムが酸化分解しガス発生を引き起こす要因の一つとなる。 Note that when the positive electrode active material is washed with an aqueous solution containing lithium hydroxide, the lithium hydroxide remaining in the positive electrode active material is one of the causes of gelation of the positive electrode mixture paste. In addition, when this positive electrode active material is charged in a high-temperature environment, the remaining lithium hydroxide is oxidatively decomposed to become one of the factors causing gas generation.

リチウム塩水溶液のリチウム濃度は、特に限定されず、水に可溶な範囲とすることができる。リチウム濃度は、例えば、0.1g/L以上5.0g/L以下である。リチウム濃度が0.1g/L未満である場合、粉末表面の結晶格子内からのリチウム引き抜きを防止する効果が十分でなく、期待される効果が得られ難いことがある。一方、5.0g/Lを超える場合、過度のリチウム化合物が正極活物質中に残留し、電池性能が低下する恐れがある。 The lithium concentration of the lithium salt aqueous solution is not particularly limited, and can be within a water-soluble range. The lithium concentration is, for example, 0.1 g/L or more and 5.0 g/L or less. If the lithium concentration is less than 0.1 g/L, the effect of preventing extraction of lithium from within the crystal lattice of the powder surface is insufficient, and the expected effect may be difficult to obtain. On the other hand, if it exceeds 5.0 g/L, an excessive lithium compound may remain in the positive electrode active material, deteriorating battery performance.

リチウム塩水溶液のリチウム濃度は、好ましくは0.3g/L以上5.0g/L以下であり、より好ましくは0.5g/L以上3.0g/L以下、さらに好ましくは1.0g/L以上2.5g/L以下である。リチウム濃度が上記範囲であることにより、より効率的に正極活物質中のリチウム含有量などを容易に所望の範囲に調整することができる。 The lithium concentration of the lithium salt aqueous solution is preferably 0.3 g/L or more and 5.0 g/L or less, more preferably 0.5 g/L or more and 3.0 g/L or less, and still more preferably 1.0 g/L or more. 2.5 g/L or less. When the lithium concentration is within the above range, the lithium content in the positive electrode active material can be easily adjusted to the desired range more efficiently.

粉末を含むリチウム塩水溶液のスラリー濃度は、特に限定されず、リチウム塩水溶液中に粉末が均一に分散されればよい。スラリー濃度は、例えば、100g/L以上3000g/L以下である。ここで、スラリー濃度の単位であるg/Lは、スラリー中の炭酸リチウム水溶液量(L)に対する粉末量(g)を意味する。スラリー濃度が上記範囲である場合、スラリー濃度が高いほどスラリー中に含まれる粉末量は多くなり、大量の粉末を処理することができる。スラリー濃度が100g/L未満である場合、粉末表面の結晶格子内からのチリウムの引き抜きを防止する効果が十分でなく、期待される効果が得られない場合がある。一方、スラリー濃度が3000g/Lを超えると、スラリー粘度が非常に高くなり攪拌が困難となったり、水酸化リチウムが十分に除去されなかったりする場合がある。 The slurry concentration of the lithium salt aqueous solution containing the powder is not particularly limited as long as the powder is uniformly dispersed in the lithium salt aqueous solution. The slurry concentration is, for example, 100 g/L or more and 3000 g/L or less. Here, the unit of slurry concentration, g/L, means the amount of powder (g) with respect to the amount of lithium carbonate aqueous solution (L) in the slurry. When the slurry concentration is within the above range, the amount of powder contained in the slurry increases as the slurry concentration increases, and a large amount of powder can be processed. If the slurry concentration is less than 100 g/L, the effect of preventing tilium from being pulled out from the crystal lattice of the powder surface is insufficient, and the expected effect may not be obtained. On the other hand, when the slurry concentration exceeds 3000 g/L, the viscosity of the slurry becomes very high, making it difficult to stir, and lithium hydroxide may not be sufficiently removed.

粉末を含むリチウム塩水溶液のスラリー濃度は、好ましくは100g/L以上2500g/L以下、より好ましくは200g/L以上2000g/L以下、さらに好ましくは400g/L以上2000g/L以下である。スラリー濃度が上記範囲である場合、スラリーの粘度が適切な範囲となり、水酸化リチウムなどをより効率的に除去することができる。 The slurry concentration of the lithium salt aqueous solution containing the powder is preferably 100 g/L or more and 2500 g/L or less, more preferably 200 g/L or more and 2000 g/L or less, and still more preferably 400 g/L or more and 2000 g/L or less. When the slurry concentration is within the above range, the viscosity of the slurry is within an appropriate range, and lithium hydroxide and the like can be removed more efficiently.

上記以外の洗浄の条件は、特に限定されず、粉末に残留した水酸化リチウムや硫酸根を十分除去し、炭酸リチウムの含有量が所望の範囲となるように、適宜調整することができる。例えば、粉末を含む炭酸リチウム水溶液を攪拌する場合、攪拌時間は、5分~1時間程度とすることができる。また、洗浄の温度は、例えば、10℃~30℃程度とすることができる。 Washing conditions other than those described above are not particularly limited, and can be adjusted as appropriate so that lithium hydroxide and sulfate radicals remaining in the powder are sufficiently removed and the content of lithium carbonate is within the desired range. For example, when a lithium carbonate aqueous solution containing powder is stirred, the stirring time can be about 5 minutes to 1 hour. The cleaning temperature can be, for example, about 10.degree. C. to 30.degree.

なお、洗浄の際、粉末中のリチウムがスラリー中に溶出し、洗浄前後で粉末のLiの原子比が異なるものとなることがある。この場合、洗浄によって変化する原子比は主にLiであり、洗浄前のLi以外の金属の原子比は洗浄後も維持される。上記の洗浄により減少するLiの原子比は、例えば、0.03~0.08程度とする。リチウム塩水溶液を用いた洗浄は、通常の水を用いた洗浄と比較して、洗浄により減少するLiの原子比の値が小さく、Liの減少は緩和される傾向にある。洗浄後のLiの原子比は、予め洗浄条件を同じにした予備試験によって洗浄前後でのLiの原子比の減少量を確認し、母材としてLiの原子比を調整したリチウム金属複合酸化物粉末を用いることにより制御することができる。 During washing, lithium in the powder is eluted into the slurry, and the atomic ratio of Li in the powder may differ before and after washing. In this case, the atomic ratio that changes due to cleaning is mainly Li, and the atomic ratio of metals other than Li before cleaning is maintained after cleaning. The atomic ratio of Li to be reduced by the cleaning is, for example, about 0.03 to 0.08. Compared to cleaning with normal water, cleaning with a lithium salt aqueous solution reduces the value of the atomic ratio of Li that decreases due to cleaning, and the decrease in Li tends to be moderated. Regarding the atomic ratio of Li after washing, the amount of decrease in the atomic ratio of Li before and after washing was confirmed by a preliminary test under the same washing conditions, and the lithium metal composite oxide powder in which the atomic ratio of Li was adjusted as the base material. can be controlled by using

次に、図1に示すように、炭酸リチウム水溶液により洗浄した後、粉末を含むスラリーを濾過する(ステップS2)。濾過の方法は、特に限定されず、公知の方法で行うことができる。濾過は、例えば、吸引濾過機、フィルタープレスや遠心機などの通常用いられる濾過装置を用いて、行うことができる。濾過を行うことにより、スラリーの固液分離の際、粉末表面に残存する付着水の量を減少させることができる。付着水が多い場合、液中に溶解したリチウム塩が再析出し、乾燥後のリチウムニッケル複合酸化物粒子の表面に存在するリチウム量が期待する範囲から外れることがある。なお、ステップS2を行うか否かは任意である。ステップ2Sを行なわない場合、例えば、スラリーを静置し、又は、遠心し、上澄みを除去することなどにより、付着水を除去してもよい。 Next, as shown in FIG. 1, after washing with an aqueous solution of lithium carbonate, the slurry containing the powder is filtered (step S2). A method of filtration is not particularly limited, and a known method can be used. Filtration can be performed, for example, using a commonly used filtration device such as a suction filter, filter press, or centrifuge. Filtration can reduce the amount of adhering water remaining on the surface of the powder during solid-liquid separation of the slurry. When a large amount of adhering water is present, the lithium salt dissolved in the liquid may be reprecipitated, and the amount of lithium present on the surfaces of the dried lithium-nickel composite oxide particles may be outside the expected range. It is optional whether step S2 is performed or not. If step 2S is not performed, the adhering water may be removed by, for example, allowing the slurry to stand still or centrifuging to remove the supernatant.

次に、図1に示すように、濾過後、得られた粉末を乾燥する(ステップS3)。乾燥温度は、特に限定されず、粉末に含まれる水分が十分除去される温度であればよい。乾燥温度は、例えば、80℃以上350℃以下であるのが好ましい。乾燥温度が80℃未満の場合、洗浄後の粉末の乾燥が遅くなるため、粉末表面と粉末内部との間でリチウム濃度の勾配が生じ、得られる正極活物質の電池特性が低下することがある。一方、乾燥温度が350℃を超える場合、粉末表面付近の結晶構造が崩れ、得られる正極活物質の電池特性が低下することがある。これは、洗浄後の粉末の表面付近の結晶構造は、化学量論比にきわめて近いか、もしくは若干リチウムが脱離して充電状態に近い状態になっており、崩れやすくなっているためであると考えられる。 Next, as shown in FIG. 1, after filtration, the obtained powder is dried (step S3). The drying temperature is not particularly limited, and may be any temperature that sufficiently removes the moisture contained in the powder. The drying temperature is preferably 80° C. or higher and 350° C. or lower, for example. If the drying temperature is less than 80° C., drying of the powder after washing is slowed down, so that a lithium concentration gradient occurs between the powder surface and the inside of the powder, and the battery characteristics of the obtained positive electrode active material may deteriorate. . On the other hand, when the drying temperature exceeds 350° C., the crystal structure near the surface of the powder collapses, and the battery characteristics of the resulting positive electrode active material may deteriorate. This is because the crystal structure near the surface of the powder after washing is very close to the stoichiometric ratio, or is in a state close to a charged state due to the detachment of some lithium, and is likely to collapse. Conceivable.

乾燥時間は、特に限定されず、乾燥後の粉末の水分率が0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下となる時間で乾燥することが好ましい。乾燥時間は、例えば、1時間以上24時間以下である。なお、粉末の水分率は、カールフィッシャー水分計により気化温度300℃で測定することができる。 The drying time is not particularly limited, and the moisture content of the powder after drying is 0.2% by mass or less, more preferably 0.1% by mass or less, and further preferably 0.05% by mass or less. is preferred. The drying time is, for example, 1 hour or more and 24 hours or less. The moisture content of the powder can be measured at a vaporization temperature of 300° C. using a Karl Fischer moisture meter.

乾燥雰囲気は、炭素および硫黄を含む化合物成分を含有しないガス雰囲気下、または真空雰囲気下で乾燥することが好ましい。粉末中の炭素および硫黄量は、洗浄(ステップS1)により容易に制御できる。乾燥(ステップS3)時に、さらに炭素および硫黄化合物成分を含有する雰囲気下、または真空雰囲気下で乾燥すると、粉末中の炭素量および硫黄量が変化し、期待する効果が得られないことがある。 The drying atmosphere is preferably a gas atmosphere that does not contain compound components containing carbon and sulfur, or a vacuum atmosphere. The amount of carbon and sulfur in the powder can be easily controlled by washing (step S1). At the time of drying (step S3), if the powder is further dried in an atmosphere containing carbon and sulfur compound components or in a vacuum atmosphere, the amount of carbon and sulfur in the powder will change, and the expected effect may not be obtained.

2.非水系電解質二次電池用正極活物質
本実施形態に係る正極活物質は、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物粉末からなる正極活物質であって、水酸化リチウム含有量が0.5質量%以下であり、かつ、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下である。以下、正極活物質の実施形態の一例について説明する。
2. Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material according to the present embodiment has the general formula Li z Ni 1-xy Co x M y O 2 (where 0 ≤ x ≤ 0.35, 0 ≤ y ≦0.10, 0.95≦z≦1.10, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al). A positive electrode active material consisting of a lithium hydroxide content of 0.5% by mass or less, and metals other than Li and Li on the surface of the powder measured by X-ray photoelectron spectroscopy (Ni, Co and M) and the composition ratio (Li/(Ni+Co+M)) is 0.80 or more and 1.5 or less. An example of an embodiment of the positive electrode active material will be described below.

[粉末全体組成]
非水系電解質二次電池用正極活物質は、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなる。
[Powder overall composition]
The positive electrode active material for non-aqueous electrolyte secondary batteries has the general formula Li z Ni 1-xy Co x M y O 2 (where 0≦x≦0.35, 0≦y≦0.10, 0.95 ≦z≦1.10, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al).

上記一般式中、zは、リチウムニッケル複合酸化物中のLi以外の金属(Ni、Co及びM)の原子比を1としたときの、Liの原子比を示す。zの範囲は、0.95≦z≦1.10である。zが上記範囲である場合、zの値が大きくなるに応じて充放電容量は増加する。zが0.95未満である場合、正極の反応抵抗が大きくなり、電池出力が低くなることがある。一方、zが1.10を超える場合、二次電池の安全性が低下することがある。電池出力及び安全性のバランスの観点から、zの範囲は、好ましくは0.97≦z≦1.05、より好ましくは0.97≦z≦1.00である。上述したように、リチウムニッケル複合酸化物からなる粉末を母材として洗浄した場合、この粉末からLiが溶出することがある。したがって、洗浄する場合、洗浄前後でのLiの減少量を予備実験により確認し、洗浄後のLiの元素比が上記範囲となるように、洗浄前の粉末を準備することにより、Liの原子比を上記範囲とすることができる。 In the above general formula, z represents the atomic ratio of Li when the atomic ratio of metals (Ni, Co and M) other than Li in the lithium-nickel composite oxide is 1. The range of z is 0.95≤z≤1.10. When z is within the above range, the charge/discharge capacity increases as the value of z increases. When z is less than 0.95, the reaction resistance of the positive electrode increases and the battery output may decrease. On the other hand, when z exceeds 1.10, the safety of the secondary battery may deteriorate. From the viewpoint of the balance between battery output and safety, the range of z is preferably 0.97≦z≦1.05, more preferably 0.97≦z≦1.00. As described above, when a powder made of a lithium-nickel composite oxide is used as a base material and washed, Li may be eluted from this powder. Therefore, in the case of washing, the amount of decrease in Li before and after washing is confirmed by a preliminary experiment, and the atomic ratio of Li is obtained by preparing the powder before washing so that the element ratio of Li after washing is within the above range. can be within the above range.

上記一般式中、xは、Li以外の金属(Ni、Co及びM)の原子比を1としたときの、Coの元素比を示す。xの範囲は、0≦x≦0.35であり、好ましくは0<x≦0.35である。正極活物質にコバルトを含有させることで、良好なサイクル特性を得ることができる。これは、結晶格子のニッケルの一部をコバルトに置換することにより、充放電に伴うリチウムの脱挿入による結晶格子の膨張収縮挙動を低減できるためである。 In the above general formula, x represents the element ratio of Co when the atomic ratio of metals (Ni, Co and M) other than Li is 1. The range of x is 0≤x≤0.35, preferably 0<x≤0.35. Good cycle characteristics can be obtained by including cobalt in the positive electrode active material. This is because by substituting cobalt for a portion of nickel in the crystal lattice, it is possible to reduce the expansion and contraction behavior of the crystal lattice due to the desorption/insertion of lithium during charging and discharging.

xの範囲は、二次電池のサイクル特性向上の観点から、好ましくは、0.03≦x≦0.35であり、より好ましくは0.05≦x≦0.35である。また、xの範囲は、二次電池の電池容量の観点から、好ましくは、0.03≦x≦0.15であり、より好ましくは0.05≦x≦0.15である。また、xの範囲は、熱安定性の観点から、好ましくは0.07≦x≦0.25であり、より好ましくは0.10≦x≦0.20である。 The range of x is preferably 0.03≦x≦0.35, more preferably 0.05≦x≦0.35, from the viewpoint of improving the cycle characteristics of the secondary battery. Also, the range of x is preferably 0.03≦x≦0.15, more preferably 0.05≦x≦0.15, from the viewpoint of the battery capacity of the secondary battery. Also, the range of x is preferably 0.07≦x≦0.25, more preferably 0.10≦x≦0.20, from the viewpoint of thermal stability.

上記一般式中、yは、Li以外の金属(Ni、Co及びM)の原子比を1としたときの、M(添加元素)の元素比を示す。Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素である。yの範囲は、0≦y≦0.10であり、好ましくは、Mを必ず含む0<y≦0.10、より好ましくは0<y≦0.05である。Mを正極活物質中に添加することにより、この正極活物質を含む二次電池の耐久特性や安全性を向上させることができる。一方、yが0.10を超えると、酸化還元反応(Redox反応)に貢献する金属元素が減少し、電池容量が低下することがある。また、Mがアルミニウムである場合、正極活物質の安全性がより向上する。 In the above general formula, y represents the elemental ratio of M (additional element) when the atomic ratio of metals (Ni, Co and M) other than Li is 1. M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al. The range of y is 0≦y≦0.10, preferably 0<y≦0.10, which must include M, and more preferably 0<y≦0.05. By adding M to the positive electrode active material, the durability and safety of the secondary battery containing this positive electrode active material can be improved. On the other hand, if y exceeds 0.10, the metal element that contributes to the oxidation-reduction reaction (Redox reaction) decreases, and the battery capacity may decrease. Moreover, when M is aluminum, the safety of the positive electrode active material is further improved.

また、上記一般式中、ニッケルの元素比は、Li以外の金属(Ni、Co及びM)の原子比を1とした場合、0.55以上1以下である。リチウムニッケル複合酸化物中の各金属元素の原子比は、Li、Ni、Co及びMを含む原料の混合比を調整することにより上記範囲とすることができる。 In the above general formula, the elemental ratio of nickel is 0.55 or more and 1 or less when the atomic ratio of metals (Ni, Co and M) other than Li is 1. The atomic ratio of each metal element in the lithium-nickel composite oxide can be set within the above range by adjusting the mixing ratio of the raw materials containing Li, Ni, Co and M.

[水酸化リチウム含有量]
本実施形態の正極活物質は、水酸化リチウム含有量が0.5質量%以下、好ましくは0.2質量%以下である。正極活物質中の水酸化リチウム含有量が、0.5質量%を超えると、正極活物質をペーストに混練する際にゲル化を引き起こす原因の一つになる。さらに正極活物質が高温環境下で充電される場合、水酸化リチウムが酸化分解しガス発生を引き起こす原因の一つになる。また、正極活物質中の水酸化リチウム含有量の下限は、特に限定されないが、例えば、0.01質量%以上である。
[Lithium hydroxide content]
The positive electrode active material of the present embodiment has a lithium hydroxide content of 0.5% by mass or less, preferably 0.2% by mass or less. If the lithium hydroxide content in the positive electrode active material exceeds 0.5% by mass, it becomes one of the causes of gelation when the positive electrode active material is kneaded into a paste. Furthermore, when the positive electrode active material is charged in a high-temperature environment, lithium hydroxide is oxidatively decomposed to become one of the causes of gas generation. Moreover, the lower limit of the lithium hydroxide content in the positive electrode active material is not particularly limited, but is, for example, 0.01% by mass or more.

ここで、正極活物質に含有される水酸化リチウムは、正極活物質を製造する際に用いた原料由来の水酸化リチウムを含む。例えば、ニッケル複合水酸化物又はニッケル複合酸化物などと水酸化リチウムなどのリチウム化合物を混合し、焼成して、リチウムニッケル複合酸化物を得る際の未反応物を含む。なお、水酸化リチウム含有量は、得られた正極活物質に純水を添加し、攪拌した後、この純水に溶出したリチウム(Li)量を、1mol/リットルの塩酸で中和滴定より測定し、その後、溶出したリチウム(Li)量から洗浄で用いたリチウム塩に由来するリチウム(Li)量を差し引いた値を水酸化リチウム由来のリチウム(Li)量とし、これをLiOHに換算することにより求めた値である。ここで、リチウム塩に由来するリチウム(Li)量は、リチウム塩に含まれるLi以外の1種以上の量を化学分析により求め、リチウム塩の量に換算することで求めた。 Here, the lithium hydroxide contained in the positive electrode active material includes lithium hydroxide derived from raw materials used when producing the positive electrode active material. For example, it includes an unreacted product when nickel composite hydroxide or nickel composite oxide is mixed with a lithium compound such as lithium hydroxide and fired to obtain a lithium-nickel composite oxide. The lithium hydroxide content is measured by adding pure water to the obtained positive electrode active material and stirring, and then measuring the amount of lithium (Li) eluted in this pure water by neutralization titration with 1 mol/liter of hydrochloric acid. After that, the value obtained by subtracting the amount of lithium (Li) derived from the lithium salt used in washing from the amount of eluted lithium (Li) is taken as the amount of lithium (Li) derived from lithium hydroxide, and this is converted to LiOH. It is a value obtained by Here, the amount of lithium (Li) derived from the lithium salt was determined by chemically analyzing the amount of one or more species other than Li contained in the lithium salt and converting it into the amount of the lithium salt.

[粉末表面のLi/(Ni+Co+M)]
本実施形態の正極活物質は、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下であり、好ましくは0.80以上1.45以下、より好ましくは0.93以上1.45以下、さらに好ましくは0.95以上1.45以下、特に好ましくは1.00以上1.45以下である。粉末表面のLi/(Ni+Co+M)が0.80未満である場合、粒子表面でリチウムイオン欠損が生じるため、二次電池の正極に用いた場合、リチウムイオンの伝導パスが阻害されて放電容量が低下したり、反応抵抗が増加したりする要因の一つとなる。反応抵抗が低減されることで、電池内で損失される電圧が減少し、実際に負荷側に印加される電圧が相対的に高くなるため、高出力が得られる。一方、粉末表面のLi/(Ni+Co+M)が1.5を超えると、粉末表面に過剰な水酸化リチウムなどのリチウム化合物が存在し、正極合材ペーストのゲル化を引き起こす要因の一つとなる。さらに、過剰なリチウム化合物がその表面に存在する正極活物質を高温環境下で充電した場合、リチウム化合物が分解しガス発生を引き起こし、電池特性が低下することがある。また、充放電に寄与しないリチウム化合物が存在する場合、電池を構成する際、正極活物質の不可逆容量に相当する分の負極材料を余計に使用することになる。その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなることもある上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となることもある。
[Li/(Ni + Co + M) on powder surface]
In the positive electrode active material of the present embodiment, the composition ratio (Li/(Ni + Co + M)) of Li and metals other than Li (Ni, Co and M) on the surface of the powder measured by X-ray photoelectron spectroscopy is 0.80. 1.5 or less, preferably 0.80 or more and 1.45 or less, more preferably 0.93 or more and 1.45 or less, still more preferably 0.95 or more and 1.45 or less, particularly preferably 1.00 or more 1.45 or less. When Li/(Ni + Co + M) on the powder surface is less than 0.80, lithium ion deficiency occurs on the particle surface, so when used for the positive electrode of a secondary battery, the conduction path of lithium ions is hindered and the discharge capacity decreases. This is one of the factors that increase reaction resistance. Since the reaction resistance is reduced, the voltage lost in the battery is reduced, and the voltage actually applied to the load side is relatively increased, resulting in high output. On the other hand, when Li/(Ni+Co+M) on the powder surface exceeds 1.5, excessive lithium compounds such as lithium hydroxide are present on the powder surface, which is one of the factors causing gelation of the positive electrode mixture paste. Furthermore, when a positive electrode active material having an excessive lithium compound present on its surface is charged in a high-temperature environment, the lithium compound may decompose to generate gas, which may deteriorate the battery characteristics. In addition, if there is a lithium compound that does not contribute to charge/discharge, an extra amount of negative electrode material corresponding to the irreversible capacity of the positive electrode active material is used when constructing the battery. As a result, the capacity per weight and per volume of the battery as a whole may be reduced, and the excess lithium accumulated in the negative electrode as irreversible capacity may pose a safety problem.

なお、粉末表面のLiとLi以外の金属との組成比(Li/(Ni+Co+M))は、後述の実施例に詳述されるように、X線光電子分光法により測定できる。また、粉体表面とは、X線光電子分光(XPS)装置(アルバック・ファイ株式会社製、Versa ProbeII)により測定される正極活物質の表面から中心方向に向かって深さ数nm~10nm程度までの領域を意味する。 The composition ratio (Li/(Ni+Co+M)) of Li and metals other than Li on the surface of the powder can be measured by X-ray photoelectron spectroscopy, as described in detail in Examples below. Further, the powder surface is measured by an X-ray photoelectron spectroscopy (XPS) device (manufactured by ULVAC-Phi, Inc., Versa ProbeII) from the surface of the positive electrode active material to a depth of several nm to about 10 nm toward the center. means the area of

[粉体pH]
本実施形態の正極活物質は、粉末を水に分散させた5質量%の懸濁溶液における粉体pHが、11.5以下である。pHが11.5を超えると、正極活物質をペーストに混練する際に正極合材ペーストがゲル化することがある。粉体pHの下限は、特に限定されないが、例えば、好ましくは10.5以上、より好ましくは11.0以上である。
[Powder pH]
The positive electrode active material of the present embodiment has a powder pH of 11.5 or less in a 5% by mass suspension solution in which the powder is dispersed in water. If the pH exceeds 11.5, the positive electrode mixture paste may gel when the positive electrode active material is kneaded into the paste. Although the lower limit of the powder pH is not particularly limited, it is, for example, preferably 10.5 or higher, more preferably 11.0 or higher.

[平均粒径]
本実施形態の正極活物質の平均粒径は、特に限定されないが、例えば、3μm以上25μm以下であることにより、正極活物質の容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好な二次電池を得ることができる。なお、平均粒径は、レーザ回折式粒度分布計により測定される値である。
[Average particle diameter]
Although the average particle size of the positive electrode active material of the present embodiment is not particularly limited, for example, when it is 3 μm or more and 25 μm or less, the battery capacity per volume of the positive electrode active material can be increased, and safety is high. A secondary battery with good cycle characteristics can be obtained. The average particle size is a value measured by a laser diffraction particle size distribution analyzer.

[比表面積]
本実施形態の正極活物質の比表面積は、特に限定されないが、例えば、1.0m/g以上7.0m/g以下である場合、電解液との接触できる粒子表面が十分となる。比表面積が1.0m/g未満になると、電解液と接触できる粒子表面が少なくなり、十分な充放電容量が得られないことがある。一方、比表面積が7.0m/gを超えると、電解液と接触する粒子表面が多くなり過ぎて安全性が低下することがある。なお、比表面積は、窒素ガス吸着法によるBET法を用いて比表面積測定装置により測定される値である。
[Specific surface area]
Although the specific surface area of the positive electrode active material of the present embodiment is not particularly limited, for example, when it is 1.0 m 2 /g or more and 7.0 m 2 /g or less, the particle surface that can be in contact with the electrolytic solution is sufficient. If the specific surface area is less than 1.0 m 2 /g, the surface area of the particles that can come into contact with the electrolytic solution is reduced, and sufficient charge/discharge capacity may not be obtained. On the other hand, if the specific surface area exceeds 7.0 m 2 /g, the surface of the particles that come into contact with the electrolytic solution may become too large, resulting in a decrease in safety. The specific surface area is a value measured by a specific surface area measuring device using the BET method based on the nitrogen gas adsorption method.

本実施形態の正極活物質は、上述した正極活物質の製造方法を用いることにより、容易に、かつ、工業的規模で大量に生産することができる。 The positive electrode active material of the present embodiment can be easily mass-produced on an industrial scale by using the above-described method for producing a positive electrode active material.

3. 非水系電解質二次電池
本実施形態に係る非水系電解質二次電池は、上記正極活物質を正極に含む。本実施形態の非水系電解質二次電池は、一般の非水系電解質二次電池と同様に、正極、負極、セパレータ、および非水電解液から構成することができる。以下、非水系電解質二次電池の実施形態について、各構成要素、および電池の形状と構成について詳しく説明する。
3. Non-Aqueous Electrolyte Secondary Battery A non-aqueous electrolyte secondary battery according to the present embodiment includes the positive electrode active material described above in the positive electrode. The non-aqueous electrolyte secondary battery of the present embodiment can be composed of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolytic solution, like general non-aqueous electrolyte secondary batteries. In the following, embodiments of the non-aqueous electrolyte secondary battery will be described in detail with respect to each component and the shape and configuration of the battery.

[正極]
正極を形成する正極合材及びそれを構成する各材料について説明する。本発明の粉末状の正極活物質と、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの材料の混合比も、リチウム二次電池の性能を決定する重要な要素となる。
[Positive electrode]
The positive electrode compound material forming the positive electrode and each material constituting the same will be described. The powdery positive electrode active material of the present invention, a conductive material, and a binder are mixed, and if necessary, activated carbon and a solvent for viscosity adjustment are added, and the mixture is kneaded to form a positive electrode mixture paste. make. The mixing ratio of each material in the positive electrode mixture is also an important factor that determines the performance of the lithium secondary battery.

正極合材中の各材料の混合比は、特に限定されないが、一般のリチウム二次電池の正極と同様、溶剤を除いた正極合材の固形分の全質量100質量%に対して、それぞれ、正極活物質を60質量%以上95質量%以下、導電材を1質量%以上20質量%以下、結着剤(バインダー)を1質量%以上20質量%以下含有することが望ましい。 The mixing ratio of each material in the positive electrode mixture is not particularly limited, but similar to the positive electrode of a general lithium secondary battery, the total solid content of the positive electrode mixture excluding the solvent is 100% by mass. It is desirable to contain 60% by mass or more and 95% by mass or less of the positive electrode active material, 1% by mass or more and 20% by mass or less of the conductive material, and 1% by mass or more and 20% by mass or less of the binder.

得られた正極合材ペーストは、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散(蒸発)させる。必要に応じ、電極密度を高めるべくロールプレスなどにより加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などし、電池の作製に供することができる。ただし、正極の作製方法は、上記例示のものに限られることなく、他の方法に依ってもよい。 The obtained positive electrode mixture paste is applied, for example, to the surface of a current collector made of aluminum foil, and dried to scatter (evaporate) the solvent. If necessary, pressure may be applied by a roll press or the like in order to increase the electrode density. Thus, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size depending on the intended battery, and used for manufacturing the battery. However, the method for producing the positive electrode is not limited to the above examples, and other methods may be used.

上記正極の作製にあたって、導電材としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。 In manufacturing the positive electrode, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black-based materials such as acetylene black, and ketjen black can be used as the conductive material.

また、結着剤は、活物質粒子をつなぎ止める役割を果たすもので、としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴムなどの含フッ素樹脂、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂などを用いることができる。 In addition, the binder plays a role of binding the active material particles. Thermoplastic resins such as resins, polyacrylic acid, polypropylene, and polyethylene can be used.

また、必要に応じて、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加してもよい。添加する溶剤としては、一例として、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加してもよい。 Further, if necessary, the positive electrode active material, the conductive material, and the activated carbon may be dispersed, and a solvent that dissolves the binder may be added to the positive electrode mixture. As the solvent to be added, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used. In addition, activated carbon may be added to the positive electrode mixture in order to increase the electric double layer capacity.

[負極]
負極には、金属リチウム、リチウム合金など、又は、リチウムイオンを吸蔵・脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
[Negative electrode]
For the negative electrode, metal lithium, a lithium alloy, etc., or a negative electrode active material capable of intercalating and deintercalating lithium ions, mixed with a binder, added with an appropriate solvent and made into a paste, was made into a negative electrode compound material such as copper. is coated on the surface of the metal foil current collector, dried, and compressed to increase the electrode density as necessary.

負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、コークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデンなどの含フッ素樹脂などを用いることができ、これら活物質及び結着剤を分散させる溶剤としてはN-メチル-2-ピロリドンなどの有機溶剤を用いることができる。 As the negative electrode active material, for example, natural graphite, artificial graphite, baked organic compounds such as phenol resin, and powdery carbon substances such as coke can be used. In this case, as the negative electrode binder, similarly to the positive electrode, fluorine-containing resin such as polyvinylidene fluoride can be used. Organic solvents can be used.

[セパレータ]
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い膜で、微少な穴を多数有する膜を用いることができる。
[Separator]
A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode from the negative electrode and holds the electrolyte, and may be a thin film of polyethylene, polypropylene, or the like, having a large number of fine holes.

[非水系電解液]
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
[Non-aqueous electrolyte]
The non-aqueous electrolytic solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of organic solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate; One selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butane sultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate, and the like, or a mixture of two or more thereof is used. be able to.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSOなど、及びそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル補足剤、界面活性剤及び難燃剤などを含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN(CF 3 SO 2 ) 2 and the like, and composite salts thereof can be used. Furthermore, the nonaqueous electrolytic solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

[電池の形状および構成]
本実施形態に係るリチウム二次電池の形状は、円筒型、積層型など、種々の形状とすることができる。いずれの形状を採る場合であっても、セパレータを介して正極及び負極を積層させ、電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間に集電用リードなどを用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
[Battery Shape and Configuration]
The shape of the lithium secondary battery according to this embodiment can be various shapes such as a cylindrical shape and a laminated shape. Regardless of which shape is used, the positive electrode and the negative electrode are laminated via a separator to form an electrode assembly, and the electrode assembly is impregnated with the non-aqueous electrolyte. A current collecting lead or the like is used to connect between the positive electrode current collector and the positive electrode terminal connected to the outside, and between the negative electrode current collector and the negative electrode terminal connected to the outside. A battery can be completed by sealing the above structure in a battery case.

以下、実施例及び比較例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例は、以下の装置及び方法を用いた測定結果により評価した。 EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. The examples and comparative examples were evaluated based on the measurement results using the following apparatus and method.

[粒子全体組成]
母材として用いたリチウムニッケル複合酸化物の粉末を硝酸で溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により、各成分の組成比を測定した。また、得られた正極活物質を上記と同様の方法で測定した。
[Whole particle composition]
After dissolving the lithium-nickel composite oxide powder used as the base material in nitric acid, the composition ratio of each component was measured by an ICP emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation). Moreover, the obtained positive electrode active material was measured by the same method as described above.

[粒子表面組成]
得られた正極活物質をX線光電子分光装置(アルバック・ファイ株式会社製、Versa ProbeII)を用いて測定した。この際、X線源として、単色化したAl-Kα線(1486.7eV)を使用し、傾斜角(tilt angle)を45°、パスエナジーを187.85eV、真空度を10-7Paとした。
[Particle surface composition]
The positive electrode active material thus obtained was measured using an X-ray photoelectron spectrometer (Versa ProbeII, manufactured by ULVAC-Phi, Inc.). At this time, monochromatic Al-Kα rays (1486.7 eV) were used as the X-ray source, the tilt angle was 45°, the pass energy was 187.85 eV, and the degree of vacuum was 10 -7 Pa. .

[水酸化リチウム含有量]
得られた正極活物質粉末10gに超純水を100ml添加して5分間攪拌し、ろ過した後、ろ液を1mol/リットルの塩酸で滴定し第二中和点まで測定した。塩酸で中和されたアルカリ分の量を、水酸化リチウム(LiOH)および洗浄に用いたリチウム塩に由来するリチウム量(Li)の合計量とした。そして、下記式に示すように、中和滴定で中和されたアルカリ分の量から、洗浄に用いたリチウム塩由来のLi量を引いた量を、水酸化リチウム(LiOH)由来のLi量とした。なお、洗浄に用いたリチウム塩に由来するリチウム(Li)量は、下記の方法でそれぞれ求めたリチウム塩含有量から算出した。
[Lithium hydroxide content]
100 ml of ultrapure water was added to 10 g of the obtained positive electrode active material powder, stirred for 5 minutes, filtered, and the filtrate was titrated with 1 mol/liter hydrochloric acid to measure up to the second neutralization point. The amount of alkali content neutralized with hydrochloric acid was taken as the total amount of lithium hydroxide (LiOH) and the amount of lithium (Li) derived from the lithium salt used for washing. Then, as shown in the following formula, the amount obtained by subtracting the amount of Li derived from the lithium salt used for washing from the amount of alkali content neutralized by neutralization titration is the amount of Li derived from lithium hydroxide (LiOH). bottom. The amount of lithium (Li) derived from the lithium salt used for washing was calculated from the lithium salt content determined by the following method.

(水酸化リチウム由来のLi量)=(塩酸で中和されたアルカリ分の量)-(洗浄に用いたリチウム塩由来のLi量)・・・(式) (Amount of Li derived from lithium hydroxide) = (amount of alkali content neutralized with hydrochloric acid) - (amount of Li derived from lithium salt used for washing) (formula)

上記式により算出した水酸化リチウム(LiOH)由来のLi量をLiOH量に換算することにより、水酸化リチウム含有量とした。 The lithium hydroxide content was obtained by converting the amount of Li derived from lithium hydroxide (LiOH) calculated by the above formula into the amount of LiOH.

(炭酸リチウム、クエン酸リチウム及び/または酢酸リチウム)
これらのリチウム塩含有量は、炭素硫黄分析装置(LECO社製CS-600)で全炭素元素(C)含有量を測定し、この測定された全炭素元素の量をそれぞれのリチウム塩に換算することにより求めた。
(硫酸リチウム)
硫酸リチウム含有量は、ICP発光分析により硫黄元素(S)含有量を測定し、この測定された硫黄元素(S)含有量を硫酸リチウムに換算することにより求めた。
(硝酸リチウム)
硝酸リチウム含有量は、正極活物質粉末を超純水中で撹拌して硝酸リチウムを溶出させた後、ろ過し、ろ液をイオンクロマトグラフィー法により硝酸根含有量を測定し、この測定された硝酸根含有量を硝酸根リチウムに換算することにより求めた。
(lithium carbonate, lithium citrate and/or lithium acetate)
These lithium salt contents are determined by measuring the total carbon element (C) content with a carbon sulfur analyzer (CS-600 manufactured by LECO), and converting the measured total carbon element amount into each lithium salt. I asked for it.
(lithium sulfate)
The lithium sulfate content was obtained by measuring the elemental sulfur (S) content by ICP emission analysis and converting the measured elemental sulfur (S) content into lithium sulfate.
(lithium nitrate)
The lithium nitrate content was measured by stirring the positive electrode active material powder in ultrapure water to elute lithium nitrate, filtering the filtrate, and measuring the nitrate group content of the filtrate by ion chromatography. It was determined by converting the nitrate content into lithium nitrate.

[粉末pH]
得られた正極活物質粉末5.0gを100mlの蒸留水に分散させた5質量%の懸濁液を作製し、25℃室温で30分間攪拌した懸濁液のpH値を測定した。
[Powder pH]
5.0 g of the obtained positive electrode active material powder was dispersed in 100 ml of distilled water to prepare a 5% by mass suspension, and the pH value of the suspension was measured after stirring at 25° C. and room temperature for 30 minutes.

[ペーストのゲル化の判定]
得られた正極活物質20gに対して、PVDF(呉羽化学工業製、型番KFポリマー#1100)2.2gと、NMP(関東化学製)9.6mlと容器に入れ、ニーダ(日本精機製作所、製品名ノンバブリングニーダ、型番NBK-1)で2000rpmの回転速度で10分間十分に混合しペーストを作製した。得られたペーストをガラス瓶に移し、密栓した後、温度25℃、露点-40℃のドライボックス中に保管し、24時間放置後のペーストの流動性を観察した。24時間放置後、ペーストの流動性に変化のないものを◎、ペーストの流動性はあるが、流動性が変化したものを○、ゲル化したものを×と評価した。
[Determination of Gelation of Paste]
For 20 g of the obtained positive electrode active material, put 2.2 g of PVDF (manufactured by Kureha Chemical Industry Co., Ltd., model number KF polymer # 1100) and 9.6 ml of NMP (manufactured by Kanto Chemical Industry) in a container, and kneader (Nippon Seiki Seisakusho, product The mixture was sufficiently mixed for 10 minutes with a non-bubbling kneader (model number NBK-1) at a rotational speed of 2000 rpm to prepare a paste. The obtained paste was transferred to a glass bottle, sealed, stored in a dry box at a temperature of 25° C. and a dew point of −40° C., and the fluidity of the paste was observed after being left for 24 hours. After standing for 24 hours, the case where the fluidity of the paste did not change was evaluated as ⊚, the case where the fluidity of the paste was changed but the fluidity was changed was evaluated as ◯, and the case where gelation occurred was evaluated as ×.

[電池特性の評価]
(1)評価用コイン電池の作製
得られた正極活物質70質量%に、アセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し、正極とした。負極としてリチウム金属を用い、電解液として、1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用い、露点が-80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン型電池を作製した。2032型の評価用コイン型電池BAは、負極にリチウム金属負極1と、電解液を含浸させたセパレータ2と、正極3と、ガスケット4と、負極缶5と、正極缶6と、集電体7とを備える。
[Evaluation of battery characteristics]
(1) Production of Coin Battery for Evaluation To 70% by mass of the positive electrode active material thus obtained, 20% by mass of acetylene black and 10% by mass of PTFE were mixed, and 150 mg of the mixture was taken out to prepare a pellet, which was used as a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) with 1 M LiClO 4 as the supporting electrolyte (manufactured by Toyama Pharmaceutical Co., Ltd.) was used as the electrolyte, and the dew point was −80 ° C. A 2032-type coin-type battery as shown in FIG. The 2032-type evaluation coin-type battery BA includes a lithium metal negative electrode 1 as a negative electrode, a separator 2 impregnated with an electrolytic solution, a positive electrode 3, a gasket 4, a negative electrode can 5, a positive electrode can 6, and a current collector. 7.

(2)放電容量
作製したコイン型電池BAを24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を放電容量として評価した。
(2) Discharge capacity The prepared coin-type battery BA is left for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density for the positive electrode is set to 0.5 mA / cm and charged to a cutoff voltage of 4.3 V. The charge capacity was evaluated as the discharge capacity, and the capacity when the battery was discharged to a cutoff voltage of 3.0 V after resting for 1 hour was evaluated as the discharge capacity.

(3)正極抵抗
作製したコイン型電池BAを充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により測定した。図2上段は、得られたナイキストプロットを示す。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき図2下段に示す等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出した。正極抵抗は実施例1を100とした相対値を評価値とした。
(3) Positive Electrode Resistance The prepared coin-type battery BA was charged at a charging potential of 4.1 V, and measured by the AC impedance method using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron, 1255B). The upper part of FIG. 2 shows the Nyquist plots obtained. Since this Nyquist plot is expressed as the sum of characteristic curves showing solution resistance, negative electrode resistance and its capacity, and positive electrode resistance and its capacity, fitting calculation is performed using the equivalent circuit shown in the lower part of FIG. 2 based on this Nyquist plot. was performed to calculate the value of the positive electrode resistance. Positive electrode resistance was evaluated as a relative value with Example 1 as 100.

(実施例1)
ニッケルを主成分とする酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られた、Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物の焼成粉末を得た。この粉末を母材として用いた。この粉末の平均粒径は12.0μmであり、比表面積は1.2m/gであった。なお、平均粒径はレーザ回折式粒度分布計(日機装株式会社製、マイクロトラック)用い、比表面積は比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS-10)を用いて、窒素ガス吸着によるBET法を用いて評価した。
(Example 1)
Lithium nickel represented by Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 obtained by a known technique of mixing and firing an oxide powder containing nickel as a main component and lithium hydroxide A sintered powder of composite oxide was obtained. This powder was used as the base material. This powder had an average particle size of 12.0 μm and a specific surface area of 1.2 m 2 /g. The average particle size was measured using a laser diffraction particle size distribution meter (Microtrac, manufactured by Nikkiso Co., Ltd.), and the specific surface area was measured using a specific surface area measuring device (Kantasorb QS-10, manufactured by Yuasa Ionics Co., Ltd.), using nitrogen gas adsorption. It was evaluated using the BET method by.

上記リチウムニッケル複合酸化物粉末(母材)に、リチウム量が1.5g/Lとなるように調製した炭酸リチウム水溶液を加えて、スラリー濃度を750g/Lとした。このスラリーを30分間攪拌して洗浄した後、濾過して取り出した粉末を、真空雰囲気下で、温度210℃で14時間保持しながら乾燥して、リチウムニッケル複合酸化物からなる正極活物質を得た。得られた正極活物質をICP発光分光分析装置で測定したところ、Liの原子比zは、0.992であった。 A lithium carbonate aqueous solution prepared so that the amount of lithium was 1.5 g/L was added to the lithium nickel composite oxide powder (base material) to adjust the slurry concentration to 750 g/L. After stirring and washing this slurry for 30 minutes, the powder taken out by filtration is dried in a vacuum atmosphere while being held at a temperature of 210° C. for 14 hours to obtain a positive electrode active material composed of a lithium-nickel composite oxide. rice field. The atomic ratio z of Li was 0.992 when the obtained positive electrode active material was measured by an ICP emission spectrometer.

(実施例2)
実施例2では、炭酸リチウム水溶液の濃度をリチウム量が0.3g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例3)
実施例3では、炭酸リチウム水溶液の濃度をリチウム量が0.7g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例4)
実施例4では、炭酸リチウム水溶液の濃度をリチウム量が1.0g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例5)
実施例5では、炭酸リチウム水溶液の濃度をリチウム量が2.5g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例6)
実施例6では、炭酸リチウム水溶液の濃度をリチウム量が3.0g/Lとなるように調製した以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(Example 2)
In Example 2, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 0.3 g/L.
(Example 3)
In Example 3, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 0.7 g/L.
(Example 4)
In Example 4, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 1.0 g/L.
(Example 5)
In Example 5, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 2.5 g/L.
(Example 6)
In Example 6, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the lithium carbonate aqueous solution was adjusted so that the amount of lithium was 3.0 g/L.

(実施例7)
実施例7では、スラリーの濃度を100g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例8)
実施例8では、スラリーの濃度を375g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例9)
実施例9では、スラリーの濃度を1500g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例10)
実施例10では、スラリーの濃度を3000g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(Example 7)
In Example 7, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the slurry was set to 100 g/L.
(Example 8)
In Example 8, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the slurry was changed to 375 g/L.
(Example 9)
In Example 9, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the slurry was changed to 1500 g/L.
(Example 10)
In Example 10, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the concentration of the slurry was adjusted to 3000 g/L.

(実施例11)
実施例11では、炭酸リチウム水溶液をクエン酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例12)
実施例12では、炭酸リチウム水溶液を酢酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例13)
実施例13では、炭酸リチウム水溶液を硝酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(実施例14)
実施例14では、炭酸リチウム水溶液を硫酸リチウム水溶液となるようにした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(Example 11)
In Example 11, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the aqueous lithium carbonate solution was changed to an aqueous lithium citrate solution.
(Example 12)
In Example 12, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the aqueous lithium carbonate solution was changed to an aqueous lithium acetate solution.
(Example 13)
In Example 13, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the lithium carbonate aqueous solution was changed to a lithium nitrate aqueous solution.
(Example 14)
In Example 14, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the lithium carbonate aqueous solution was changed to a lithium sulfate aqueous solution.

(比較例1)
比較例1では、炭酸リチウム水溶液で洗浄する工程を行わなかったこと以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例2)
比較例2では、炭酸リチウム水溶液の代わりに純水を用いた以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例3)
比較例3では、炭酸リチウム水溶液の代わりに純水を用い、スラリー濃度を375g/Lとした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例4)
比較例4では、炭酸リチウム水溶液の代わりに純水を用い、スラリー濃度を3000g/Lとした以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(比較例5)
比較例5では、炭酸リチウム水溶液の代わりに水酸化リチウム水溶液を用いた以外は、実施例1と同様にして正極活物質を得るとともに評価した。
(Comparative example 1)
In Comparative Example 1, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that the step of washing with an aqueous lithium carbonate solution was not performed.
(Comparative example 2)
In Comparative Example 2, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that pure water was used instead of the lithium carbonate aqueous solution.
(Comparative Example 3)
In Comparative Example 3, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that pure water was used instead of the lithium carbonate aqueous solution and the slurry concentration was 375 g/L.
(Comparative Example 4)
In Comparative Example 4, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that pure water was used instead of the lithium carbonate aqueous solution and the slurry concentration was 3000 g/L.
(Comparative Example 5)
In Comparative Example 5, a positive electrode active material was obtained and evaluated in the same manner as in Example 1, except that an aqueous lithium hydroxide solution was used instead of the aqueous lithium carbonate solution.

Figure 0007262419000001
Figure 0007262419000001

(評価)
実施例および、比較例で得られた正極活物質の製造条件及び評価結果を表1に示す。
表1から明らかなように、実施例1~14により得られた正極活物質は、水酸化リチウム含有量が0.5質量%以下かつ、得られた正極活物質の粉末表面のLi/(Ni+Co+M)が0.80以上1.5以下である。また、得られた正極活物質は、ペースト混練時のゲル化が抑制されるとともに、放電容量が高く、正極抵抗が低いものであり、正極活物質として有用であることが分かる。
(evaluation)
Table 1 shows the production conditions and evaluation results of the positive electrode active materials obtained in Examples and Comparative Examples.
As is clear from Table 1, the positive electrode active materials obtained in Examples 1 to 14 have a lithium hydroxide content of 0.5% by mass or less, and the powder surface of the obtained positive electrode active material Li / (Ni + Co + M ) is 0.80 or more and 1.5 or less. In addition, the obtained positive electrode active material was found to be useful as a positive electrode active material because gelling during paste kneading was suppressed, the discharge capacity was high, and the positive electrode resistance was low.

一方、比較例1では、リチウム塩水溶液で洗浄する工程を行わなかったため、水酸化リチウム含有量が1.06と高く、粉末表面のLi/(Ni+Co+M)が6.28と高い。また、得られた正極活物質は、ペースト混練時のゲル化が観察され、さらに放電容量が低く、実施例と比較して、電池性能に劣る。 On the other hand, in Comparative Example 1, since the step of washing with an aqueous lithium salt solution was not performed, the lithium hydroxide content was as high as 1.06 and the powder surface Li/(Ni+Co+M) was as high as 6.28. In addition, gelation during paste kneading was observed in the obtained positive electrode active material, and furthermore, the discharge capacity was low, and the battery performance was inferior to that of the examples.

比較例2および3では、純水を用いて洗浄したため、粉末表面の組成比を表すLi/(Ni+Co+M)が0.80以下と低い。また、得られた正極活物質は、放電容量が低く、さらに正極抵抗が高くなり、実施例と比較して電池性能に劣る。 In Comparative Examples 2 and 3, since the cleaning was performed using pure water, Li/(Ni+Co+M), which represents the composition ratio of the powder surface, is as low as 0.80 or less. In addition, the obtained positive electrode active material has a low discharge capacity and a high positive electrode resistance, and is inferior in battery performance compared to the examples.

比較例4では、純水を用いてスラリー濃度を3000g/Lで洗浄したため、水酸化リチウム含有量が0.51と高く、粉末表面の組成比を表すLi/(Ni+Co+M)が2.01と高い。また、得られた正極活物質は、ペースト混練時のゲル化が観察され、実施例と比較して電池性能に劣る。 In Comparative Example 4, since the slurry was washed with pure water at a slurry concentration of 3000 g/L, the lithium hydroxide content was as high as 0.51, and Li/(Ni + Co + M), which represents the composition ratio of the powder surface, was as high as 2.01. . In addition, gelation during paste kneading was observed in the obtained positive electrode active material, and the battery performance was inferior to that of the examples.

比較例5では、水酸化リチウム水溶液を用いて洗浄したため、水酸化リチウム含有量が0.78と高く、粉末表面の組成比を表すLi/(Ni+Co+M)が4.69と高い。また、得られた正極活物質は、ペースト混練時にゲル化が観察され、さらに放電容量が低くなり、実施例と比較して電池性能に劣る。 In Comparative Example 5, since the lithium hydroxide aqueous solution was used for washing, the lithium hydroxide content was as high as 0.78, and the Li/(Ni+Co+M) representing the composition ratio of the powder surface was as high as 4.69. In addition, gelation was observed during paste kneading in the obtained positive electrode active material, and furthermore, the discharge capacity was lowered, and the battery performance was inferior to that of the examples.

以上の結果より、本実施形態の製造方法を用いて、得られた正極活物質は、電池の正極材に用いられた場合に正極合材ペーストのゲル化を抑制でき、さらに電池の正極抵抗を低減して、高容量かつ出力特性に優れている。また、本実施形態の正極活物質は、非水系電解質二次電池の正極活物質として有用であることがわかる。 From the above results, the positive electrode active material obtained by using the manufacturing method of the present embodiment can suppress the gelation of the positive electrode mixture paste when used as the positive electrode material of the battery, and furthermore, can reduce the positive electrode resistance of the battery. reduced, high capacity and excellent output characteristics. Moreover, it can be seen that the positive electrode active material of the present embodiment is useful as a positive electrode active material for non-aqueous electrolyte secondary batteries.

本発明により得られる正極活物質を正極に含む非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パソコンや携帯電話端末など)の電源に好適に用いられることができ、高出力が要求される電気自動車用電池にも好適に用いられることができる。 A non-aqueous electrolyte secondary battery containing the positive electrode active material obtained by the present invention in the positive electrode can be suitably used as a power source for small portable electronic devices (laptop personal computers, mobile phone terminals, etc.) that are always required to have a high capacity. It can also be suitably used for electric vehicle batteries that require high output.

また、本発明に係る非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適に用いられることができる。なお、本発明に係る非水系電解質二次電池は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。 In addition, the non-aqueous electrolyte secondary battery according to the present invention has excellent safety and can be made smaller and higher in output. be able to. The non-aqueous electrolyte secondary battery according to the present invention can be used not only as a power source for electric vehicles driven purely by electric energy, but also as a power source for so-called hybrid vehicles used in combination with a combustion engine such as a gasoline engine or a diesel engine. can be used.

BA・・・評価用コイン型電池
1・・・リチウム金属負極
2・・・セパレータ(電解液含浸)
3・・・正極(評価用電極)
4・・・ガスケット
5・・・負極缶
6・・・正極缶
7・・・集電体
BA... Coin type battery for evaluation 1... Lithium metal negative electrode 2... Separator (impregnated with electrolytic solution)
3 ... positive electrode (electrode for evaluation)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (3)

一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物粉末からなる非水系電解質二次電池用正極活物質であって、水酸化リチウム含有量が0.5質量%以下であり、かつ、X線光電子分光法により測定される前記粉末表面のLiとLi以外の金属(Ni、Co及びM)との組成比(Li/(Ni+Co+M))が0.80以上1.5以下であることを特徴とする非水系電解質二次電池用正極活物質。 general formula Li z Ni 1-x-y Co x M y O 2 (where 0≦x≦0.35, 0≦y≦0.10, 0.95≦z≦1.10, M is Mn, At least one element selected from V, Mg, Mo, Nb, Ti and Al) for a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-nickel composite oxide powder represented by V, Mg, Mo, Nb, Ti and Al, containing lithium hydroxide The amount is 0.5% by mass or less, and the composition ratio (Li/(Ni + Co + M)) of Li and metals other than Li (Ni, Co and M) on the surface of the powder measured by X-ray photoelectron spectroscopy is 0.80 or more and 1.5 or less, a positive electrode active material for non-aqueous electrolyte secondary batteries. 前記粉末を水に分散させた5質量%の懸濁溶液における粉体pHが11.5以下である請求項1に記載の非水系電解質二次電池用正極活物質。 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the powder has a pH of 11.5 or less in a 5% by mass suspension of the powder in water. 請求項1または2に記載の非水系電解質二次電池用正極活物質を正極に含むことを特徴とする非水系電解質二次電池。
A non-aqueous electrolyte secondary battery comprising the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2 in a positive electrode.
JP2020079816A 2020-04-28 2020-04-28 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP7262419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020079816A JP7262419B2 (en) 2020-04-28 2020-04-28 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2022071978A JP2022095989A (en) 2020-04-28 2022-04-25 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020079816A JP7262419B2 (en) 2020-04-28 2020-04-28 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015167530A Division JP6733140B2 (en) 2015-08-27 2015-08-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022071978A Division JP2022095989A (en) 2020-04-28 2022-04-25 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2020115485A JP2020115485A (en) 2020-07-30
JP7262419B2 true JP7262419B2 (en) 2023-04-21

Family

ID=71778980

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020079816A Active JP7262419B2 (en) 2020-04-28 2020-04-28 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2022071978A Pending JP2022095989A (en) 2020-04-28 2022-04-25 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022071978A Pending JP2022095989A (en) 2020-04-28 2022-04-25 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (2) JP7262419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022095989A (en) * 2020-04-28 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821838B (en) 2020-12-25 2023-11-11 日商大金工業股份有限公司 Manufacturing method of sheet for solid secondary battery and binder for solid secondary battery
KR20230118192A (en) 2020-12-25 2023-08-10 다이킨 고교 가부시키가이샤 Method for manufacturing a secondary battery electrode using a non-aqueous electrolyte solution, and binder for a secondary battery electrode using a non-aqueous electrolyte solution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064944A (en) 2008-09-12 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JP2010157361A (en) 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012174569A (en) 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2013157109A (en) 2012-01-27 2013-08-15 Toyota Motor Corp Lithium secondary battery and manufacturing method therefor
WO2014142314A1 (en) 2013-03-14 2014-09-18 日本化学産業株式会社 Treatment process for a positive electrode active material for lithium-ion secondary battery
JP2015046306A (en) 2013-08-28 2015-03-12 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262419B2 (en) * 2020-04-28 2023-04-21 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064944A (en) 2008-09-12 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JP2010157361A (en) 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012174569A (en) 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2013157109A (en) 2012-01-27 2013-08-15 Toyota Motor Corp Lithium secondary battery and manufacturing method therefor
WO2014142314A1 (en) 2013-03-14 2014-09-18 日本化学産業株式会社 Treatment process for a positive electrode active material for lithium-ion secondary battery
JP2015046306A (en) 2013-08-28 2015-03-12 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022095989A (en) * 2020-04-28 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020115485A (en) 2020-07-30
JP2022095989A (en) 2022-06-28

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP5651937B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN109565048B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP6733140B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11289688B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP2019515460A (en) Lithium ion secondary battery
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2019040844A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2020171089A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP7271891B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP6961955B2 (en) Non-aqueous electrolyte Positive electrode active material for secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221128

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230104

C30 Protocol of an oral hearing

Free format text: JAPANESE INTERMEDIATE CODE: C30

Effective date: 20230213

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230314

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150