JP2008257992A - Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery - Google Patents

Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008257992A
JP2008257992A JP2007098927A JP2007098927A JP2008257992A JP 2008257992 A JP2008257992 A JP 2008257992A JP 2007098927 A JP2007098927 A JP 2007098927A JP 2007098927 A JP2007098927 A JP 2007098927A JP 2008257992 A JP2008257992 A JP 2008257992A
Authority
JP
Japan
Prior art keywords
lithium
active material
secondary battery
electrode active
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098927A
Other languages
Japanese (ja)
Inventor
Shuhei Oda
周平 小田
Riyuuichi Kuzuo
竜一 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007098927A priority Critical patent/JP2008257992A/en
Publication of JP2008257992A publication Critical patent/JP2008257992A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive-electrode active material for a nonaqueous electrolyte secondary battery that can be stably manufactured, has a high initial discharge capacity, high safety, and excellent cycle characteristics, its manufacturing method, and a nonaqueous electrolyte secondary battery using the positive-electrode active material for a positive electrode. <P>SOLUTION: It is possible to obtain the following positive-electrode active material for a nonaqueous electrolyte secondary battery. The positive-electrode active material is expressed by formula of [Li]<SB>3a</SB>[Ni<SB>x</SB>Co<SB>y</SB>Mn<SB>z</SB>]<SB>3b</SB>[O<SB>2</SB>]<SB>6c</SB>(where, suffixes following the [] denote sites and formula satisfies conditions that x=z, x+y+z=1, 0.3≤x≤0.45, 0.1≤y≤0.4, and 0.3≤z≤0.45). The positive-electrode active material is a hexagonal lithium-nickel-cobalt-manganese composite oxide having a layer structure. The positive-electrode active material has ≤5% of a site occupancy of metal ions other than nickel, cobalt, and manganese in a 3b site obtained from the Rietveld analysis of an X-ray diffraction pattern. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水系電解質二次電池用正極活物質およびその製造方法、並びにそれを正極に用いた非水系電解質二次電池に関するものである。より詳しくは、安全性が高くリチウムイオン二次電池用正極材料として有用な、異相のない層状結晶構造をもつリチウムニッケルコバルトマンガン複合酸化物とその製造方法、およびそれを正極に用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same for a positive electrode. More specifically, a lithium nickel cobalt manganese composite oxide having a layered crystal structure having no heterogeneous phase, useful as a positive electrode material for lithium ion secondary batteries, and a method for producing the same, and a non-aqueous electrolyte using the same as a positive electrode The present invention relates to a secondary battery.

携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池が必要とされている。このような二次電池として、リチウム金属やリチウム合金、金属酸化物、あるいはカーボンのようなリチウムを脱離挿入可能な物質を負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。
また、自動車分野でも、資源、環境問題から電気自動車に対する要望が高まり、電気自動車用やハイブリット自動車用のモータ駆動用バッテリーとして、安価でかつ、容量が大きく、サイクル特性および出力特性が良好なリチウムイオン二次電池が求められている。
With the widespread use of portable devices such as mobile phones and laptop computers, small and lightweight secondary batteries with high energy density are required. As such secondary batteries, there are lithium ion secondary batteries using lithium metal, lithium alloy, metal oxide, or a material capable of detaching and inserting lithium, such as carbon, as a negative electrode, and research and development are actively performed. ing.
Also in the automobile field, demand for electric vehicles has increased due to resource and environmental problems, and lithium-ion batteries that are inexpensive, have a large capacity, and have good cycle characteristics and output characteristics as motor drive batteries for electric cars and hybrid cars. There is a need for secondary batteries.

正極活物質として、リチウム含有複合酸化物、特に、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、その実用化が進んでいる。そして、上記のリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 A lithium ion secondary battery using a lithium-containing composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize as a positive electrode active material, has a high energy level because a high voltage of 4V is obtained. It is expected as a battery having a high density, and its practical application is progressing. In the lithium ion secondary battery using the above lithium cobalt composite oxide, many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. Yes.

しかし、リチウムコバルト複合酸化物は、主原料に高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の改良が望まれている。このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、二次電池としてすでに利用されているニッケル水素電池の約4倍と高いため、適用される用途がかなり限定されているのが実態である。
したがって、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、現在普及している携帯機器用の小型二次電池だけではなく、電力貯蔵用や電気自動車用などの大型二次電池へ用途を拡大することが可能となり、工業的に大きな意義を持つ。
However, since the lithium cobalt composite oxide uses an expensive cobalt compound as a main raw material, the cost of the active material and the battery is increased, and improvement of the active material is desired. The unit price per capacity of a battery using this lithium cobalt composite oxide is about four times as high as that of a nickel-metal hydride battery already used as a secondary battery. is there.
Therefore, reducing the cost of active materials and making it possible to manufacture cheaper lithium ion secondary batteries is not only used for small secondary batteries for portable devices, but also for power storage and electric vehicles. It is possible to expand the application to large-sized secondary batteries such as, and this is industrially significant.

ここで、リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)やマンガンを用いたリチウムマンガン複合酸化物を挙げることができる。 Here, examples of new materials for the positive electrode active material for lithium ion secondary batteries include lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium manganese composite oxide using manganese. Can do.

リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも高い容量が期待でき、リチウムコバルト複合酸化物を正極活物質に用いたリチウムイオン二次電池と同様に高い電池電圧を示すことから、開発が盛んに行なわれている。   Lithium nickel composite oxides can be expected to have higher capacity than lithium cobalt composite oxides, and because of the high battery voltage similar to lithium ion secondary batteries using lithium cobalt composite oxide as the positive electrode active material, It is actively performed.

ただし、このリチウムニッケル複合酸化物を正極活物質に用いたリチウムイオン二次電池には、以下のような欠点があった。すなわち、リチウムコバルト複合酸化物を正極活物質に用いたリチウムイオン二次電池と比較すると、サイクル特性が劣り、かつ、高温環境下で使用されたり保存されたりした場合に電池性能が比較的損なわれやすいという欠点を有していた。   However, the lithium ion secondary battery using this lithium nickel composite oxide as the positive electrode active material has the following drawbacks. That is, when compared with a lithium ion secondary battery using a lithium cobalt composite oxide as a positive electrode active material, the cycle characteristics are inferior, and the battery performance is relatively impaired when used or stored in a high temperature environment. It had the disadvantage of being easy.

リチウムマンガン複合酸化物は、リチウムコバルト複合酸化物よりも高い安全性が期待でき、リチウムマンガン複合酸化物を正極活物質に用いたリチウムイオン二次電池と同様に高い電圧を示すことから、開発が盛んに行なわれている。
しかしながら、このリチウムマンガン複合酸化物を正極活物質に用いたリチウムイオン二次電池には、充放電に伴い、マンガンが電解液中に溶解し、充放電特性を悪化させてしまい、さらに放電容量がリチウムコバルト複合酸化物の2/3と少ないという欠点を有していた。
Lithium manganese composite oxides can be expected to be safer than lithium cobalt composite oxides, and since they exhibit a high voltage in the same way as lithium ion secondary batteries using lithium manganese composite oxides as positive electrode active materials, It is actively performed.
However, in the lithium ion secondary battery using this lithium manganese composite oxide as the positive electrode active material, manganese is dissolved in the electrolytic solution with charge / discharge, which deteriorates the charge / discharge characteristics, and further has a discharge capacity. The lithium-cobalt composite oxide had a disadvantage of 2/3.

そこで、これら欠点を解決することを目的として、リチウム金属複合酸化物について種々の提案がなされている。
例えば、特開平8−213015号公報では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiXNiaCobC2(ただし、0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、CuおよびZnから選ばれる少なくとも1種の元素)で表されるリチウム含有複合酸化物が提案されている。上記のリチウムニッケル複合酸化物は、上述したリチウムコバルト複合酸化物に比べて充電容量、放電容量がともに高く、かつLiNiO2で示した従来のリチウムニッケル複合酸化物に比べてサイクル特性も改善されている。しかし、この材料は、基本的にはCoとNiを組み合わせ、これらの元素の電位的な特徴を残したまま第3の元素を添加し結晶構造の安定化などを図ろうとするものであり、その改良は未だ不充分であった。
Therefore, various proposals have been made for lithium metal composite oxides with the aim of solving these drawbacks.
For example, Japanese Laid-8-213015 discloses, for the purpose of improving the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li X Ni a Co b M C O 2 ( however, 0.8 ≦ x ≦ 1.2, 0.01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, A lithium-containing composite oxide represented by at least one element selected from Mn, Fe, Cu, and Zn has been proposed. The above lithium nickel composite oxide has higher charge capacity and discharge capacity than the above-described lithium cobalt composite oxide, and improved cycle characteristics compared to the conventional lithium nickel composite oxide represented by LiNiO 2. Yes. However, this material is basically a combination of Co and Ni, and is intended to stabilize the crystal structure by adding a third element while retaining the potential characteristics of these elements. Improvements were still inadequate.

さらに、特開2003−17052号公報では一般式Li[LiX(APQR1-X]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、−0.1≦X≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)でニッケル、コバルト、マンガンを同比率で組み合わせた正極材料も提案されている。この公報では、水溶液中に不活性ガスである窒素やアルゴンなどをバブリングして溶存酸素を除去するか、または還元剤をあらかじめ水溶液中に添加するなどの方法を付加した共沈法により、原子レベルで3種の元素を均一に混合した大粒径、高密度の複合水酸化物または複合酸化物が得られると記載されている。しかし、3種の遷移金属元素を含む原料を、リチウム源である水酸化リチウムや炭酸リチウムなどと粉混合焼成することでは単相が得られにくく、原子レベルで元素を確実に規則配列させることはできず、また、粒子形状や結晶性などの制御が難しいという課題を残していた。 Furthermore, in Japanese Patent Application Laid-Open No. 2003-17052, the general formula Li [Li X (A P B Q C R ) 1-X ] O 2 (wherein A, B and C are three different transition metal elements, − 0.1 ≦ X ≦ 0.3, 0.2 ≦ P ≦ 0.4, 0.2 ≦ Q ≦ 0.4, 0.2 ≦ R ≦ 0.4) and nickel, cobalt, and manganese in the same ratio Combined cathode materials have also been proposed. In this publication, nitrogen or argon, which is an inert gas, is bubbled into an aqueous solution to remove dissolved oxygen, or a coprecipitation method to which a reducing agent is added to an aqueous solution in advance is added to the atomic level. It is described that a large particle size, high density composite hydroxide or composite oxide in which three kinds of elements are uniformly mixed can be obtained. However, it is difficult to obtain a single phase by powder mixing and firing a raw material containing three kinds of transition metal elements with lithium hydroxide or lithium carbonate, which is a lithium source. In addition, there remains a problem that it is difficult to control the particle shape and crystallinity.

一方、LiNiO2系正極活物質の特性改善を目的として、特開平9−298061号公報では、粉末X線回折パターンから得られるリチウム及びニッケルのサイトの占有率、格子定数と放電容量、充放電サイクル特性に相関関係を見い出し、層状岩塩型構造を持ち、X線を用いた粉末回折法により得られた回折パターンをリートベルト解析により求める方法から得られる、格子定数、リチウムの3bサイトの占有率、ニッケルの3aサイトの占有率が特定の範囲にある場合、リチウムとニッケルが他サイトを適度に占有し、結晶構造が安定化するために放電容量が安定化し、放電容量の大きい、さらにサイクル特性の優れた特性を得ることができるとしている。 On the other hand, for the purpose of improving the characteristics of the LiNiO 2 positive electrode active material, Japanese Patent Application Laid-Open No. 9-298061 discloses lithium and nickel site occupancy obtained from a powder X-ray diffraction pattern, lattice constant and discharge capacity, and charge / discharge cycle. Finding a correlation in characteristics, having a layered rock salt structure, and obtaining a diffraction pattern obtained by a powder diffraction method using X-rays by a Rietveld analysis, a lattice constant, an occupation ratio of a 3b site of lithium, When the occupation ratio of the 3a site of nickel is in a specific range, lithium and nickel occupy other sites appropriately, the crystal structure is stabilized, the discharge capacity is stabilized, the discharge capacity is large, and the cycle characteristics It is said that excellent characteristics can be obtained.

また、特開平10−270043号公報に示される、LiCoxNi1-x2では、X線回折によるリートベルト解析結果において、3aサイトのリチウムイオンLi+以外の金属イオンの席占有率が2%以下である化学量論性に優れたリチウムニッケル複酸化物を得ることによって、該正極活物質を用いた電池は、不可逆容量が小さくなり、サイクル特性を向上させることが可能であることが見出されている。 Further, in LiCo x Ni 1-x O 2 disclosed in Japanese Patent Laid-Open No. 10-270043, the seat occupancy of metal ions other than lithium ions Li + at the 3a site is 2 in the Rietveld analysis result by X-ray diffraction. %, A battery using the positive electrode active material has a reduced irreversible capacity and can improve cycle characteristics. Has been issued.

また、特開2001−68113号公報では、組成式LiXNi1-Y-QCoQYZ(0≦X≦1.1、0<Y+Q<0.5、0<Y<0.5、0<Q<0.5、1.8≦Z≦2.2、Mは珪素、チタン、バナジウム、クロム、マンガン、鉄、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、錫、テルル、ハフニウム、タングステン、イリジウム、白金、鉛の何れかを含む1種類以上の元素)で与えられる複酸化物において、その層構造中のNiを主とする遷移金属主体層におけるリチウム占有率が0.5%以上15%以下であることにより、放電容量が大きく安全性に優れ動作温度範囲の広いリチウム電池用正極活物質が得られると記載されている。さらに、層構造中の遷移金属主体層におけるリチウム占有率が0.5%未満である場合は、特に満充電時など電圧が高い状態で、環境温度が高くなった場合や電池が内部短絡を起こしたような場合に、構造中の主に遷移金属主体層に入っているニッケル、コバルト、元素Mとリチウム主体層に入っているリチウムが自由混合を起こし、ニッケル、コバルト、元素M及びリチウムがランダムに配列した岩塩構造に変化するために、電池が発熱したり、極端な場合には発煙や発火が見られることが指摘されている。
特開平8−213015号公報 特開2003−17052号公報 特開平9−298061号公報 特開平10−270043号公報 特開2001−68113号公報
Further, JP-A-2001-68113 discloses a composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0 <Y + Q <0.5,0 <Y <0.5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, In a double oxide given by one or more elements including any of tungsten, iridium, platinum, and lead), the lithium occupancy ratio in the transition metal main layer mainly composed of Ni in the layer structure is 0.5% or more. It is described that when the content is 15% or less, a positive electrode active material for a lithium battery having a large discharge capacity, excellent safety, and a wide operating temperature range can be obtained. In addition, when the lithium occupancy ratio in the transition metal main layer in the layer structure is less than 0.5%, especially when the voltage is high, such as when fully charged, the environmental temperature becomes high, or the battery causes an internal short circuit. In such a case, nickel, cobalt, element M mainly contained in the transition metal main layer in the structure and lithium contained in the lithium main layer cause free mixing, and nickel, cobalt, element M, and lithium are random. It has been pointed out that the battery generates heat, and in extreme cases, smoke and fire are seen due to the change to the rock salt structure arranged in the.
Japanese Patent Laid-Open No. 8-213015 JP 2003-17052 A Japanese Patent Laid-Open No. 9-298061 JP-A-10-270043 JP 2001-68113 A

本発明の目的は、安定的に製造でき、初期放電容量、安全性が高く、かつサイクル特性の良い非水系電解質二次電池用正極活物質およびその製造方法、並びにそれを正極に用いた非水系電解質二次電池を提供することにある。   An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can be stably manufactured, has high initial discharge capacity, high safety, and good cycle characteristics, a method for manufacturing the same, and a non-aqueous system using the same as a positive electrode The object is to provide an electrolyte secondary battery.

発明者等は、さまざまな視点から製造方法や非水系電解質二次電池用正極活物質について検討を重ねた結果、非水系電解質二次電池に適用される正極活物質、一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウム含有複合酸化物の製造方法において、
ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させて、ニッケル化合物とコバルト化合物とマンガン化合物の混合物を得る工程1と、得られた複合塩原料とリチウム化合物をニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1:0.95〜1.05となるように調整して混合物を熱処理する工程2を具備する非水系電解質二次電池用正極活物質の製造方法であれば、従来、粉混合焼成では困難であった、3種の元素を組み合わせるリチウムニッケルマンガン複合酸化物の単相を得ることができることを見出した。
Inventor As a result of extensive study for the positive electrode active material for the production method and a non-aqueous electrolyte secondary battery from a variety of perspectives, the positive electrode active material applied to the non-aqueous electrolyte secondary battery, the general formula LiNi x Co y Mn z O 2 (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and In the method for producing a hexagonal lithium-containing composite oxide having a layered structure,
Nickel compound, cobalt compound, and manganese compound are pulverized and mixed to 0.1 μm or less in a solvent, and the resulting slurry is spray-dried to obtain a mixture of nickel compound, cobalt compound, and manganese compound; Step 2 of adjusting the obtained composite salt raw material and the lithium compound so that the total atomic ratio of nickel, cobalt and manganese and the atomic ratio of lithium are substantially 1: 0.95 to 1.05 and heat treating the mixture. Can produce a single phase of lithium-nickel-manganese composite oxide combining three kinds of elements, which has heretofore been difficult with powder-mixed firing, if it is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising I found out that I can do it.

さらに、上記一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ層状構造を有する六方晶系のリチウムニッケルコバルトマンガン複合酸化物の粉末からなる該粉末のX線回折のリートベルト解析結果から得られた3bサイトのニッケルイオン、コバルトイオン、マンガンイオン以外の金属イオンのサイト占有率(以下、金属イオンのサイト占有率をM席占有率と記す場合がある。また、ニッケルイオン、コバルトイオン、マンガンイオンのサイト占有率をM(Ni、Co、Mn)席占有率と記す場合がある。)が5%以下になるようにすることで、原子レベルで元素を確実に規則配列させることができ、これにより、正極活物質中のニッケルイオンが3価にならず2価で固定し、リチウムイオンの脱離挿入に伴い、2価と4価のレドックス反応を生じるニッケルイオンが確保され、電池特性の良い二次電池を提供することができることを見出し、本発明に至った。 Furthermore, the general formula LiNi x Co y Mn z O 2 ( where, x = z, x + y + z = 1,0.3 ≦ x ≦ 0.45,0.1 ≦ y ≦ 0.4,0.3 ≦ z ≦ 0.45) and a layered hexagonal lithium-nickel-cobalt-manganese composite oxide powder. The x-ray diffraction Rietveld analysis results of the powders show that the nickel ions and cobalt on the 3b site are obtained. Site occupancy of metal ions other than ions and manganese ions (hereinafter, the site occupancy of metal ions may be referred to as M seat occupancy. In addition, the site occupancy of nickel ions, cobalt ions, and manganese ions is represented by M (Ni , Co, Mn) may be described as a seat occupancy ratio)) to be 5% or less, so that the elements can be arranged regularly at the atomic level. To provide a secondary battery with good battery characteristics, in which nickel ions that are fixed in divalent rather than trivalent, are fixed in divalent, and cause divalent and tetravalent redox reactions as lithium ions are desorbed and inserted. As a result, the inventors have found out that the present invention can be achieved.

すなわち、本発明の第1の発明は、[Li]3a[NixCoyMnz]3b[O2]6c(但し、[ ]の添え字はサイトを示し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45なる条件を満たす)で表わされ、かつ、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物において、X線回折図形のリートベルト解析から得られる3bサイトにおけるニッケル、コバルト、マンガン以外の金属イオンのサイト占有率が5%以下であることを特徴とする非水系電解質二次電池用正極活物質を提供する。 That is, according to the first aspect of the present invention, [Li] 3a [Ni x Co y Mn z ] 3b [O 2 ] 6c (where the subscript of [] indicates a site, x = z, x + y + z = 1, And satisfies the following conditions: 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and has a layered structure Non-aqueous electrolyte secondary characterized in that the site occupancy of metal ions other than nickel, cobalt and manganese at 3b sites obtained from Rietveld analysis of X-ray diffraction patterns in cobalt manganese composite oxide is 5% or less A positive electrode active material for a battery is provided.

本発明の第2の発明は、一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物の製造方法であって、ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られた化合物スラリーを噴霧乾燥させて、ニッケル化合物、コバルト化合物、マンガン化合物の混合物を得る工程1と、得られた混合物原料とリチウム化合物を、ニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1.0:0.95〜1.05となるように混合して熱処理する工程2を具備することを特徴とする非水系電解質二次電池用正極活物質の製造方法を提供する。 The second invention of the present invention has the general formula LiNi x Co y Mn z O 2 (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and a method for producing a hexagonal lithium nickel cobalt manganese composite oxide having a layered structure, the nickel compound, the cobalt compound, and the manganese compound Are mixed in a solvent to a size of 0.1 μm or less, and the obtained compound slurry is spray-dried to obtain a mixture of a nickel compound, a cobalt compound and a manganese compound, and the obtained mixture raw material and lithium compound are mixed. , Nickel, cobalt, and manganese, and a heat treatment is performed by mixing and heat treatment so that the atomic ratio of lithium and the atomic ratio of lithium is substantially 1.0: 0.95 to 1.05. For non-aqueous electrolyte secondary batteries To provide a manufacturing method of electrode active material.

本発明の第3の発明は、900°C以上1100°C以下かつ酸素気流中4時間以上の条件で上記混合物の熱処理を行なうことを特徴とする第2の発明に記載の非水系電解質二次電池用正極活物質の製造方法を提供する。   A third aspect of the present invention is the non-aqueous electrolyte secondary according to the second aspect, wherein the mixture is heat-treated under conditions of 900 ° C. or higher and 1100 ° C. or lower and in an oxygen stream for 4 hours or longer. A method for producing a positive electrode active material for a battery is provided.

本発明の第4の発明は、第1の発明に記載の非水系電解質二次電池用正極活物質の製造方法で得られる非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池を提供する。   A fourth invention of the present invention is a nonaqueous system comprising a positive electrode using the positive electrode active material for a nonaqueous electrolyte secondary battery obtained by the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to the first invention. An electrolyte secondary battery is provided.

本発明の非水系電解質二次電池用正極活物質の製造方法は、非水系電解質二次電池に適用される正極活物質、一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウム含有複合酸化物の製造方法において、ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させて、ニッケル化合物とコバルト化合物とマンガン化合物の混合物を得る工程1と、得られた複合塩原料とリチウム化合物をニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1:0.95〜1.05となるように調整した混合物を熱処理する工程2を具備することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。この製造方法により、従来粉混合焼成では困難であった3種の元素を組み合わせるリチウムニッケルマンガン複合酸化物の単相の合成を行なうことができる。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode active material applied to a non-aqueous electrolyte secondary battery, a general formula LiNi x Co y Mn z O 2 (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and a hexagonal lithium-containing composite oxide having a layered structure In the manufacturing method, a nickel compound, a cobalt compound, and a manganese compound are pulverized and mixed in a solvent to a size of 0.1 μm or less, and the resulting slurry is spray-dried to obtain a mixture of the nickel compound, the cobalt compound, and the manganese compound. Step 1 obtained, and a mixture prepared by adjusting the obtained composite salt raw material and the lithium compound so that the total atomic ratio of nickel, cobalt, and manganese and the atomic ratio of lithium are substantially 1: 0.95 to 1.05 Heat treat It is a manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries characterized by including the process 2. By this production method, it is possible to synthesize a single phase of a lithium nickel manganese composite oxide combining three kinds of elements, which has been difficult with conventional powder mixing and firing.

さらに一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ層状構造を有する六方晶系のリチウムニッケルコバルトマンガン複合酸化物の粉末からなる該粉末のX線回折のリートベルト解析結果から得られた3bサイトのニッケルイオン、コバルトイオン、マンガンイオン以外の金属イオンのサイト占有率(M席占有率)が5%以下になるようにすることで、原子レベルで元素を確実に規則配列させることができる。これにより、正極活物質中のニッケルイオンが3価にならず2価で固定し、リチウムイオンの脱離挿入に伴い、2価と4価のレドックス反応を生じるニッケルイオンが確保され、電池特性の良い二次電池を提供することができるという効果を有している。 Further general formula LiNi x Co y Mn z O 2 ( where, x = z, x + y + z = 1,0.3 ≦ x ≦ 0.45,0.1 ≦ y ≦ 0.4,0.3 ≦ z ≦ 0. 45), and a 3b-site nickel ion, cobalt ion, obtained from the result of X-ray diffraction Rietveld analysis of the powder comprising a hexagonal lithium nickel cobalt manganese composite oxide powder having a layered structure, By making the site occupancy (M-seat occupancy) of metal ions other than manganese ions 5% or less, the elements can be surely regularly arranged at the atomic level. As a result, nickel ions in the positive electrode active material are fixed to be divalent rather than trivalent, and nickel ions that generate a bivalent and tetravalent redox reaction as lithium ions are desorbed and inserted are ensured. It has the effect that a good secondary battery can be provided.

電池の充放電反応は、リチウムと複合酸化物を形成する遷移金属が、レドックス反応を起こすことで生じている。そのため、同じ組成の物質でも、原子同士が規則正しく並んでいる結晶性の良い単相の方が、充放電時の電荷バランスが安定しやすく、遷移金属のレドックス反応の利用率が高くなると考えられる。しかし、2種類以上の遷移金属元素が入っているリチウム金属複合酸化物を合成しようとすると、単純に原料を混ぜて焼成しても、原子同士が規則正しく並んだ結晶性のよい単相の合成は、容易でない。   The charge / discharge reaction of a battery is caused by a redox reaction of a transition metal that forms a composite oxide with lithium. For this reason, it is considered that a single phase having good crystallinity in which atoms are regularly arranged even with a material having the same composition is more likely to have a stable charge balance during charge and discharge, and the utilization rate of the redox reaction of the transition metal is increased. However, when trying to synthesize lithium metal composite oxide containing two or more kinds of transition metal elements, the synthesis of a single phase with good crystallinity in which atoms are regularly arranged, even if the raw materials are simply mixed and fired, Not easy.

本発明者等は、さまざまな検討を重ねた結果、以下のことを見出した。   As a result of various studies, the present inventors have found the following.

すなわち、本発明の非水系電解質二次電池用正極活物質は、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物における3a、3b、6cの各サイトを[Li]3a[NixCoyMnz]3b[O2]6c(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表示した場合、上記リチウム含有複合酸化物のX線回折のリートベルト解析から得られた3bサイトにおけるニッケル、コバルト、マンガン以外の金属イオンのサイト占有率が5%以下であることを特徴とする。 That is, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has [Li] 3a [Ni x Co y as the sites 3a, 3b, and 6c in the hexagonal lithium nickel cobalt manganese composite oxide having a layered structure. Mn z ] 3b [O 2 ] 6c (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45) The site occupancy of metal ions other than nickel, cobalt, and manganese at the 3b site obtained from the Rietveld analysis of the X-ray diffraction of the lithium-containing composite oxide is 5% or less. .

また、本発明の非水系電解質二次電池用正極活物質の製造方法は、一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウム含有複合酸化物の製造方法において、ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させて、ニッケル化合物、コバルト化合物、マンガン化合物の混合物を得る工程1と、得られた複合化合物原料とリチウム化合物をニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1.0:0.95〜1.05となるように調整した混合物を熱処理する工程2を具備していることを特徴とする。 A method of manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula LiNi x Co y Mn z O 2 ( where, x = z, x + y + z = 1,0.3 ≦ x ≦ 0.45 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and a method for producing a hexagonal lithium-containing composite oxide having a layered structure, a nickel compound, a cobalt compound, And manganese compound are pulverized and mixed to 0.1 μm or less in a solvent, and the resulting slurry is spray-dried to obtain a mixture of a nickel compound, a cobalt compound, and a manganese compound, and the obtained composite compound raw material and And a step of heat-treating a mixture prepared by adjusting a lithium compound so that a total atomic ratio of nickel, cobalt, and manganese and an atomic ratio of lithium is substantially 1.0: 0.95 to 1.05. That features To.

本発明による非水系電解質二次電池すなわちリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。   The non-aqueous electrolyte secondary battery, that is, the lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte.

以下に、本発明のリチウムイオン二次電池の実施形態について、正極、負極、他の構成要素等、用途等の項目に分けて詳しく説明する。   Hereinafter, embodiments of the lithium ion secondary battery according to the present invention will be described in detail for each of the items such as the positive electrode, the negative electrode, and other components.

1.正極活物質
本発明にかかる非水系電解質二次電池用正極活物質は、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物における3a、3b、6cの各サイトを[Li]3a[NixCoyMnz]3b[O2]6c(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表示した場合、上記リチウム含有複合酸化物のX線回折のリートベルト解析から得られた3bサイトにおけるニッケル、コバルト、マンガン以外の金属イオンのサイト占有率が5%以下であることを特徴とする。
1. Positive electrode active material The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has [Li] 3a [Ni x ] each site of 3a, 3b, and 6c in a hexagonal lithium nickel cobalt manganese composite oxide having a layered structure. Co y Mn z ] 3b [O 2 ] 6c (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0. 45), the site occupancy of metal ions other than nickel, cobalt, and manganese at the 3b site obtained from the X-ray diffraction Rietveld analysis of the lithium-containing composite oxide is 5% or less. And

本発明による正極活物質の粉末を構成する粒子は、一次粒子が複数集合して形成した二次粒子から主としてなり、かつ該二次粒子の平均粒子径は5〜10μmで、比表面積は0.7m2/g程度で、タップ密度は2.0g/cm3となっている。 The particles constituting the positive electrode active material powder according to the present invention are mainly composed of secondary particles formed by aggregating a plurality of primary particles, the average particle diameter of the secondary particles is 5 to 10 μm, and the specific surface area is 0.00. The tap density is 2.0 g / cm 3 at about 7 m 2 / g.

上記範囲を外れて、3bサイトのニッケル、コバルト、マンガン以外の金属イオンのサイト占有率が5%以上になると、リチウムニッケルコバルトマンガン複合酸化物中の2価のニッケルイオンが減り、3価のニッケルイオンが増える。それに伴い、放電容量が小さくなるので好ましくない。   When the site occupancy of metal ions other than nickel, cobalt, and manganese on the 3b site is 5% or more outside the above range, the divalent nickel ions in the lithium nickel cobalt manganese composite oxide decrease, and the trivalent nickel. Ions increase. Along with this, the discharge capacity becomes small, which is not preferable.

また、ニッケルイオンとマンガンイオンの比を同率にすることで、2価のニッケルイオンと4価のマンガンイオンで平均して電荷が3価になるよう調節している。また、コバルトイオンは結晶構造を安定化する役割を果たしている。   In addition, by adjusting the ratio of nickel ions and manganese ions to the same rate, the charge is adjusted to be trivalent on average for divalent nickel ions and tetravalent manganese ions. Cobalt ions play a role in stabilizing the crystal structure.

本発明の非水系電解質二次電池用正極活物質である一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウム含有複合酸化物を製造するには、ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させて、ニッケル化合物とコバルト化合物とマンガン化合物の混合物を得る工程1と、得られた複合化合物原料とリチウム化合物をニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1:0.95〜1.05となるように調整した混合物を900°C〜1100°Cで熱処理することによって合成することができる。 A positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention the general formula LiNi x Co y Mn z O 2 ( where, x = z, x + y + z = 1,0.3 ≦ x ≦ 0.45,0 ≦ y ≦ In order to produce a hexagonal lithium-containing composite oxide represented by 0.4, 0.3 ≦ z ≦ 0.45) and having a layered structure, a nickel compound, a cobalt compound, and a manganese compound are used as a solvent. In step 1, the slurry obtained is pulverized and mixed to 0.1 μm or less, and the resulting slurry is spray-dried to obtain a mixture of a nickel compound, a cobalt compound and a manganese compound, and the obtained composite compound raw material and lithium compound are mixed with nickel and cobalt. And a mixture prepared so that the total atomic ratio of manganese and the atomic ratio of lithium are substantially 1: 0.95 to 1.05 can be synthesized by heat treatment at 900 ° C. to 1100 ° C. .

熱処理温度が900°Cより低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造を持ったリチウムニッケルコバルトマンガン複合酸化物を合成することが困難になる。1100°Cを越えると結晶構造が乱れ始め好ましくない。したがって、熱処理温度を900°C以上1100°C以下にすることでより乱れの少ない結晶構造を実現できる。   When the heat treatment temperature is lower than 900 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel cobalt manganese composite oxide having a desired layered structure. If it exceeds 1100 ° C, the crystal structure starts to be disturbed. Therefore, a crystal structure with less disturbance can be realized by setting the heat treatment temperature to 900 ° C. or higher and 1100 ° C. or lower.

リチウム化合物としては、水酸化リチウム、炭酸リチウム等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等が利用できる。   As the lithium compound, lithium hydroxide, lithium carbonate and the like are preferable. As the nickel compound, nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, or the like can be used.

コバルト化合物としては、酸化コバルト、炭酸コバルト、水酸化コバルト、オキシ水酸化コバルト等が利用できる。マンガン化合物としては、二酸化マンガン、水酸化マンガン、炭酸マンガン、オキシ水酸化マンガン等が利用できる。   As the cobalt compound, cobalt oxide, cobalt carbonate, cobalt hydroxide, cobalt oxyhydroxide and the like can be used. As the manganese compound, manganese dioxide, manganese hydroxide, manganese carbonate, manganese oxyhydroxide and the like can be used.

正極は、上記正極活物質、導電材および結着剤を含んだ正極合材から形成される。詳しくは、粉末状の正極活物質、導電材を混合し、それに結着剤を加え、さらに必要に応じて粘度調整等の目的で溶剤を添加して正極合材ペーストを調整し、その正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布、乾燥、必要に応じ加圧することにより、シート状の正極を作製することができる。   The positive electrode is formed from a positive electrode mixture containing the positive electrode active material, a conductive material, and a binder. Specifically, a powdered positive electrode active material and a conductive material are mixed, a binder is added thereto, and if necessary, a solvent is added for the purpose of adjusting the viscosity to adjust the positive electrode mixture paste. A sheet-like positive electrode can be produced by applying the material paste onto the surface of a current collector made of, for example, an aluminum foil, drying, and pressing as necessary.

導電材は、正極の電気伝導性を確保するためのものであり、例えば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種又は2種以上を混合したものを用いることができる。   The conductive material is for securing the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .

結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ正極合材に添加する溶剤、つまり、活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。   The binder plays a role of binding the active material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent to be added to the positive electrode mixture as needed, that is, as a solvent for dispersing the active material, conductive material and activated carbon and dissolving the binder. .

また、活性炭を、電気二重層容量を増加させるために添加することができる。   Activated carbon can also be added to increase the electric double layer capacity.

上記活物質、導電材、結着剤とを混合し、必要に応じ上記活性炭、溶剤を添加し、これを混練して正極合材ペーストを調製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。正極合材の固形分の全体(溶剤を除く意味)を100wt%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、活物質は60〜95wt%、導電材は1〜20wt%、結着剤は1〜20wt%とすることが望ましい。   The above active material, conductive material, and binder are mixed, and if necessary, the above activated carbon and solvent are added and kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total solid content (meaning excluding solvent) of the positive electrode mixture is 100 wt%, the active material is 60 to 95 wt%, the conductive material is 1 to 20 wt%, respectively, in the same manner as the positive electrode of a general lithium secondary battery. The binder is preferably 1 to 20 wt%.

正極は、例えば、アルミニウム等の金属箔集電体の表面に、充分に混練した上記正極合材ペーストを塗布し、乾燥して溶剤を飛散させ、必要に応じ、その後に電極密度を高めるべくロールプレス等により圧縮することにより、シート状のものを形成することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等を行い、電池の作製に供することができる。   The positive electrode is, for example, applied to the surface of a metal foil current collector made of aluminum or the like, the above-mentioned positive electrode mixture paste sufficiently kneaded, dried to disperse the solvent, and then, if necessary, a roll to increase the electrode density By compressing with a press or the like, a sheet-like material can be formed. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.

2.負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。この時、負極活物質として、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
2. Negative electrode For the negative electrode, metallic lithium, lithium alloy, etc. Also, a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions, and adding a suitable solvent, is made of copper, etc. The metal foil current collector is coated, dried, and compressed as necessary to increase the electrode density. At this time, as the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used. In this case, a fluorine-containing resin such as polyvinylidene fluoride is used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent for dispersing the active material and the binder. be able to.

3.セパレータ
正極と負極の間にはセパレータを挟み装填する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
3. Separator A separator is inserted between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

4.非水系電解質
非水電解質は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。支持塩としては、LiPF6、LiBF4 、LiClO4 、LiASF6 、LiN(CF3 SO22 等、およびそれらの複合塩を用いることができる。さらに、非水電解質は、ラジカル補足剤、界面活性剤や難燃剤などを含んでいてもよい。
4). Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorous compounds such as triethyl phosphate, triethyl phosphate and trioctyl phosphate alone, or two or more kinds It can be used by mixing. As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiASF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used. Further, the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.

以上のもので構成される本発明のリチウム二次電池であるが、その形状は円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続し、この電極体に上記非水電解質を含浸させ、電池ケースに密閉して電池を完成させることができる。   The lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type and a stacked type. Even if any shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, The battery can be completed by connecting with a current collecting lead or the like, impregnating the electrode body with the non-aqueous electrolyte, and sealing the battery case.

5.非水系電解質二次電池
本発明は、前記非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池を提供する。上記非水系電解質二次電池においては、上記の非水系電解質二次電池用正極活物質を用いた正極を備えており、3.0〜4.5Vの電位で充放電を行なうことで、リチウムコバルト複合酸化物よりも大きな放電容量を示し、かつ安全性が高い非水系電解質二次電池が実現可能となる。
5. Non-aqueous electrolyte secondary battery The present invention provides a non-aqueous electrolyte secondary battery including a positive electrode using the positive electrode active material for the non-aqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery includes a positive electrode using the positive electrode active material for the non-aqueous electrolyte secondary battery, and is charged and discharged at a potential of 3.0 to 4.5 V, whereby lithium cobalt A non-aqueous electrolyte secondary battery that exhibits a discharge capacity larger than that of the composite oxide and that is highly safe can be realized.

6.その他用途等
以上説明した実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
6). Other Applications The embodiments described above are merely examples, and the non-aqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments. can do.

また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。安全性が優れているという本発明の非水系電解質二次電池のメリットを活かせば、多量の正極活物質を利用する、電気自動車用電源のような大型の二次電池として好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッドカー用の電源として用いることをも含むことを意味する。   Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. If the merit of the non-aqueous electrolyte secondary battery of the present invention that is excellent in safety is utilized, it is suitable as a large-sized secondary battery such as a power source for an electric vehicle that uses a large amount of a positive electrode active material. The electric vehicle power source means not only an electric vehicle driven purely by electric energy but also a so-called hybrid car power source used in combination with a combustion engine such as a gasoline engine or a diesel engine. .

以下、本発明になる一実施の形態を好適な図面に基づいて詳述する。   Hereinafter, an embodiment according to the present invention will be described in detail with reference to the preferred drawings.

(実施例1)
市販の炭酸マンガン六水和物(MnCO3・6H2O:和光純薬工業製)および硫酸ニッケルや硫酸コバルト原料から晶析法を用いて作製した水酸化ニッケル、水酸化コバルトおよび市販の炭酸マンガン六水和物(MnCO3・6H2O:和光純薬工業製)をニッケル、コバルト、マンガンのモル比で1:1:1になるように秤量し、これに純水を加えて固形分濃度10重量%のスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕器を用いて、スラリー中の固形分の平均粒子径が0.1μm以下になるまで、粉砕し二流体ノズル噴霧型のスプレードライヤー(藤崎電気社製:MDL−050−M)を用いて、噴霧乾燥を行ない、原料粉を得た。その後仕込みのLi/M比をLi:M(Ni、Co、Mn)=1.05:1.0(モル比)となるように市販の水酸化リチウム一水和物(LiOH・H2O:FMC社製)と前記原料粉を秤量し、混合した後に、酸素雰囲気中、1000°C、10時間の条件で熱処理を行なった。その結果、平均粒子径7μmで比表面積0.7m2/g、タップ密度1.8g/cm3のほぼ球状二次粒子が得られた。
Example 1
Commercially available manganese carbonate hexahydrate (MnCO 3 .6H 2 O: Wako Pure Chemical Industries, Ltd.) and nickel sulfate, cobalt hydroxide and commercially available manganese carbonate produced from nickel sulfate and cobalt sulfate raw materials Hexahydrate (MnCO 3 .6H 2 O: Wako Pure Chemical Industries, Ltd.) was weighed so that the molar ratio of nickel, cobalt, and manganese was 1: 1: 1. A 10 wt% slurry was prepared. While stirring this slurry, using a circulating medium agitation type wet pulverizer, the slurry is pulverized until the average particle size of the solid content in the slurry becomes 0.1 μm or less, and a two-fluid nozzle spray type spray dryer (Fujisaki Electric). The product powder was obtained by spray drying using MDL-050-M). Thereafter, a commercially available lithium hydroxide monohydrate (LiOH.H 2 O :) is used so that the charged Li / M ratio is Li: M (Ni, Co, Mn) = 1.05: 1.0 (molar ratio). FMC) and the raw material powder were weighed and mixed, and then heat-treated in an oxygen atmosphere at 1000 ° C. for 10 hours. As a result, substantially spherical secondary particles having an average particle diameter of 7 μm, a specific surface area of 0.7 m 2 / g, and a tap density of 1.8 g / cm 3 were obtained.

得られた粉末をCu−Kα線による粉末X線回折で分析したところ、六方晶の層状結晶リチウムニッケルコバルトマンガン複合酸化物単相であることが確認された。   When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα rays, it was confirmed to be a hexagonal layered crystal lithium nickel cobalt manganese composite oxide single phase.

なお、粒度分布の測定は、レーザー回折散乱式粒度分布測定装置(日機装製 マイクロトラックHRA)により行い、比表面積は窒素吸着式BET法測定機(ユアサアイオニックス社製 カンタソーブQS−10)により測定し、タップ密度測定はJIS R 1628により測定し、X線回折の測定は、(リガク電機社製:RINT−1400)を用いて行った。   The particle size distribution is measured with a laser diffraction / scattering particle size distribution measuring device (Nikkiso Microtrac HRA), and the specific surface area is measured with a nitrogen adsorption BET method measuring device (Yuta Ionix Kantasorb QS-10). The tap density was measured according to JIS R 1628, and the X-ray diffraction was measured using (Rigaku Electric Co., Ltd .: RINT-1400).

さらに得られたX線回折パターンのリートベルト解析により、3bサイトのM(Ni、Co、Mn)席占有率が、99.8%であった。   Furthermore, according to the Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy of the 3b site was 99.8%.

得られた活物質を用いて以下のように電池を作製し、充放電容量を測定した。活物質52.5mg、アセチレンブラック15mgおよびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mmにプレス成形した。作製した電極を真空乾燥機中120°Cで一晩乾燥し、図1に示す2032型コイン電池にAr雰囲気のグローブボックス内で組み立てた。負極には、直径17mm厚さ1mmのLi金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液を用いた。セパレータには膜厚25μmのポリエチレン多孔膜を用いた。なおコイン電池は、組み立て後、開回路電圧が安定した後、電流密度0.1mA/cm2で充電および放電の終止電圧をそれぞれ4.5Vおよび3.0Vとして充放電試験を行なった。放電容量と20サイクルの放電維持率を表1に示す。 Using the obtained active material, a battery was prepared as follows, and the charge / discharge capacity was measured. 52.5 mg of active material, 15 mg of acetylene black and 7.5 mg of polytetrafluoroethylene resin (PTFE) were mixed and press-molded to a diameter of 11 mm at a pressure of 100 MPa. The produced electrode was dried overnight at 120 ° C. in a vacuum dryer, and assembled into a 2032 type coin battery shown in FIG. 1 in an Ar atmosphere glove box. For the negative electrode, Li metal having a diameter of 17 mm and a thickness of 1 mm was used, and for the electrolytic solution, an equal mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used. A polyethylene porous film having a film thickness of 25 μm was used for the separator. The coin battery was subjected to a charge / discharge test after assembly, after the open circuit voltage was stabilized, at a current density of 0.1 mA / cm 2, with charge and discharge end voltages of 4.5 V and 3.0 V, respectively. Table 1 shows the discharge capacity and the discharge maintenance rate of 20 cycles.

(実施例2)
仕込みのLiとM(Ni、Co、Mn)のモル比(Li/M比)をLi:M(Ni、Co、Mn)=1.0:1.0と変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は95.6%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Example 2)
Example 1 except that the molar ratio (Li / M ratio) of charged Li and M (Ni, Co, Mn) was changed to Li: M (Ni, Co, Mn) = 1.0: 1.0 Similarly, lithium nickel cobalt manganese composite oxide was synthesized. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 95.6%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(実施例3)
仕込みのLiとM(Ni、Co、Mn)のモル比(Li/M比)をLi:M(Ni、Co、Mn)=0.95:1.0と変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。
(Example 3)
Example 1 except that the molar ratio (Li / M ratio) of charged Li and M (Ni, Co, Mn) was changed to Li: M (Ni, Co, Mn) = 0.95: 1.0 Similarly, lithium nickel cobalt manganese composite oxide was synthesized.

得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。X線回折パターンの結果をリートベルト解析した結果より、M(Ni、Co、Mn)席占有率は96.3%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。   It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the result of the X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 96.3%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(実施例4)
熱処理温度を1100°Cと変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は97.7%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
Example 4
A lithium nickel cobalt manganese composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature was changed to 1100 ° C. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 97.7%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(実施例5)
熱処理温度を1100°Cと変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は96.8%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Example 5)
A lithium nickel cobalt manganese composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature was changed to 1100 ° C. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 96.8%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(比較例1)
仕込みのLiとM(Ni、Co、Mn)のモル比(Li/M比)をLi:M(Ni、Co、Mn)=1.1:1.0と変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は92.1%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Comparative Example 1)
Example 1 except that the molar ratio (Li / M ratio) of charged Li and M (Ni, Co, Mn) was changed to Li: M (Ni, Co, Mn) = 1.1: 1.0 Similarly, lithium nickel cobalt manganese composite oxide was synthesized. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 92.1%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(比較例2)
仕込みのLiとM(Ni、Co、Mn)のモル比(Li/M比)をLi:M(Ni、Co、Mn)=0.9:1.0と変えた以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は95.3%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Comparative Example 2)
Example 1 except that the molar ratio (Li / M ratio) between charged Li and M (Ni, Co, Mn) was changed to Li: M (Ni, Co, Mn) = 0.9: 1.0 Similarly, lithium nickel cobalt manganese composite oxide was synthesized. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 95.3%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(比較例3)
熱処理温度を850°Cと変えたこと以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は93.4%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Comparative Example 3)
A lithium nickel cobalt manganese composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature was changed to 850 ° C. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 93.4%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

(比較例4)
熱処理温度を1150°Cと変えたこと以外は、実施例1と同様にして、リチウムニッケルコバルトマンガン複合酸化物を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られたX線回折パターンのリートベルト解析の結果より、M(Ni、Co、Mn)席占有率は94.1%であった。得られた複合酸化物を用いて測定した放電容量と20サイクルの放電維持率を表1に示す。
(Comparative Example 4)
A lithium nickel cobalt manganese composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature was changed to 1150 ° C. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. From the result of Rietveld analysis of the obtained X-ray diffraction pattern, the M (Ni, Co, Mn) seat occupancy was 94.1%. Table 1 shows the discharge capacity measured using the obtained composite oxide and the discharge maintenance ratio of 20 cycles.

「評価」
表1の実施例と比較例の結果より、正極活物質が、仕込みLi/M比0.95〜1.05の間で、3bサイトのM(Ni、Co、Mn)席占有率が95%を超えて大きく、すなわち、3bサイトのニッケルイオン、コバルトイオン、マンガンイオン以外の金属イオンのサイト占有率(M席占有率)が5%以下であり、熱処理温度が900°C〜1100°Cであると、該正極活物質を用いた非水系電解質二次電池は、初期放電容量、サイクル特性ともによくなることがわかる。
"Evaluation"
From the results of Examples and Comparative Examples in Table 1, the positive electrode active material has a charged Li / M ratio of 0.95 to 1.05, and the M (Ni, Co, Mn) seat occupancy of the 3b site is 95%. In other words, the site occupancy (M seat occupancy) of metal ions other than nickel ions, cobalt ions, and manganese ions at the 3b site is 5% or less, and the heat treatment temperature is 900 ° C to 1100 ° C. If it exists, it turns out that the non-aqueous electrolyte secondary battery using this positive electrode active material improves both initial discharge capacity and cycle characteristics.

上記正極材料は、ニッケルイオンの2価と4価のレドックス反応でLiの脱離挿入が生じるので、2価のニッケルイオンの数が多ければ多いほど、放電容量は大きくなると考えられる。   In the positive electrode material, Li is desorbed and inserted by a bivalent and tetravalent redox reaction of nickel ions, so it is considered that the larger the number of divalent nickel ions, the larger the discharge capacity.

M(Ni、Co、Mn)席占有率が小さくなるということは、Liイオンが3bサイトに混入しているためと考えられる。Liイオンが3bサイトに混入すると、2価のニッケルイオン、3価のコバルトイオン、および4価のマンガンイオンと置換して1価のリチウムイオンとの電荷の差だけプラスの電荷が余る。この余った電荷により3bサイトで一番酸化されやすいと考えられる2価のニッケルイオンが3価に酸化されることで電荷バランスが保たれると考えられる。つまり、M(Ni、Co、Mn)席占有率が小さくなることで、Liイオンの脱離挿入に関わる2価のニッケルイオンの数が減少してしまい、放電容量が小さくなると考えられる。したがって、初期放電容量を大きくするためには、M(Ni、Co、Mn)席占有率が95%を超えて大きいほどよい。   The fact that the M (Ni, Co, Mn) seat occupancy is small is considered to be because Li ions are mixed in the 3b site. When Li ions are mixed into the 3b site, the divalent nickel ions, the trivalent cobalt ions, and the tetravalent manganese ions are substituted and a positive charge is left by the difference in charge from the monovalent lithium ions. It is thought that the charge balance is maintained by divalent nickel ions which are considered to be most easily oxidized at the 3b site due to the surplus charges to be trivalently oxidized. That is, it is considered that the decrease in the M (Ni, Co, Mn) seat occupancy decreases the number of divalent nickel ions involved in the desorption / insertion of Li ions, thereby reducing the discharge capacity. Therefore, in order to increase the initial discharge capacity, it is better that the M (Ni, Co, Mn) seat occupancy exceeds 95%.

比較例2については、M(Ni、Co、Mn)席占有率が95%を越えているが、Li/M比が0.90とLiが少ないので、Mサイトに入り込むリチウムイオンの数が少なくなり、M(Ni、Co、Mn)席占有率が高くなっているものと考えられる。しかしながら、リチウムイオンが少ないことから、結晶構造が安定しておらず、20サイクル後の容量維持率は良好ではなく、サイクル特性は若干悪くなってしまっている。   In Comparative Example 2, the M (Ni, Co, Mn) seat occupancy rate exceeds 95%, but since the Li / M ratio is 0.90 and Li is small, the number of lithium ions entering the M site is small. Therefore, it is considered that the M (Ni, Co, Mn) seat occupancy is high. However, since the amount of lithium ions is small, the crystal structure is not stable, the capacity retention rate after 20 cycles is not good, and the cycle characteristics are slightly deteriorated.

初期放電容量とサイクル特性の結果からすると、本発明の製造方法では、特に、Li/M比1.0〜1.05であって、1000°C近傍の温度で熱処理する時が最適な合成条件であると考えられる。   From the results of the initial discharge capacity and cycle characteristics, in the production method of the present invention, the optimum synthesis condition is particularly when the heat treatment is performed at a temperature near 1000 ° C. with a Li / M ratio of 1.0 to 1.05. It is thought that.

Figure 2008257992
Figure 2008257992

電池評価に用いたコイン電池の断面である。It is a cross section of the coin battery used for battery evaluation.

符号の説明Explanation of symbols

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体














1 Lithium metal negative electrode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector














Claims (4)

[Li]3a[NixCoyMnz]3b[O2]6c(但し、[ ]の添え字はサイトを示し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45なる条件を満たす)で表わされ、かつ、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物において、X線回折図形のリートベルト解析から得られる3bサイトにおけるニッケル、コバルト、マンガン以外の金属イオンのサイト占有率が5%以下であることを特徴とする非水系電解質二次電池用正極活物質。 [Li] 3a [Ni x Co y Mn z ] 3b [O 2 ] 6c (where the subscript of [] indicates a site, x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0 .. 1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45), and a hexagonal lithium nickel cobalt manganese composite oxide having a layered structure. A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the site occupancy of metal ions other than nickel, cobalt, and manganese at the 3b site obtained from Rietveld analysis is 5% or less. 一般式LiNixCoyMnz2(但し、x=z、x+y+z=1、0.3≦x≦0.45、0.1≦y≦0.4、0.3≦z≦0.45)で表され、かつ、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物の製造方法であって、ニッケル化合物、コバルト化合物、およびマンガン化合物を、溶媒中で0.1μm以下に粉砕混合し、得られた化合物スラリーを噴霧乾燥させて、ニッケル化合物、コバルト化合物、マンガン化合物の混合物を得る工程1と、得られた混合物原料とリチウム化合物を、ニッケル、コバルト、マンガンの合計の原子比とリチウムの原子比が実質的に1.0:0.95〜1.05となるように混合して熱処理する工程2を具備することを特徴とする非水系電解質二次電池用正極活物質の製造方法。 General formula LiNi x Co y Mn z O 2 (where x = z, x + y + z = 1, 0.3 ≦ x ≦ 0.45, 0.1 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.45) and a method for producing a hexagonal lithium nickel cobalt manganese composite oxide having a layered structure, in which a nickel compound, a cobalt compound, and a manganese compound are 0.1 μm or less in a solvent. The obtained compound slurry is spray-dried to obtain a mixture of a nickel compound, a cobalt compound, and a manganese compound, and the obtained mixture raw material and lithium compound are combined with nickel, cobalt, and manganese. A positive electrode active for a non-aqueous electrolyte secondary battery, comprising a step 2 of mixing and heat-treating so that an atomic ratio and an atomic ratio of lithium are substantially 1.0: 0.95 to 1.05. A method for producing a substance. 900°C以上1100°C以下かつ酸素気流中4時間以上の条件で上記混合物の熱処理を行なうことを特徴とする請求項第2項に記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the mixture is heat-treated under conditions of 900 ° C or higher and 1100 ° C or lower and in an oxygen stream for 4 hours or longer. . 請求項1に記載の非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1.
JP2007098927A 2007-04-04 2007-04-04 Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery Pending JP2008257992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098927A JP2008257992A (en) 2007-04-04 2007-04-04 Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098927A JP2008257992A (en) 2007-04-04 2007-04-04 Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008257992A true JP2008257992A (en) 2008-10-23

Family

ID=39981351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098927A Pending JP2008257992A (en) 2007-04-04 2007-04-04 Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008257992A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289726A (en) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp Lithium transition metal system compound powder, method of manufacturing the same, and spray-dried material to become its calcination precursor, and positive electrode for lithium secondary battery using the same, and lithium secondary cell
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP2019106238A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2019106241A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2019106239A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
CN110010887A (en) * 2019-04-11 2019-07-12 南开大学 A kind of high voltage high-energy long circulation life lithium cobaltate cathode material and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298061A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH1125980A (en) * 1997-06-26 1999-01-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and evaluating method thereof
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
WO2002073718A1 (en) * 2001-03-14 2002-09-19 Yuasa Corporation Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2004355986A (en) * 2003-05-30 2004-12-16 Yuasa Corp Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2005025975A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2005123180A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP2005251717A (en) * 2003-05-13 2005-09-15 Mitsubishi Chemicals Corp Layered lithium-nickel-based compound oxide powder for lithium secondary cell positive electrode material and its manufacturing method, positive electrode for lithium secondary cell and lithium secondary cell
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2007048464A (en) * 2005-08-05 2007-02-22 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298061A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH1125980A (en) * 1997-06-26 1999-01-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and evaluating method thereof
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
WO2002073718A1 (en) * 2001-03-14 2002-09-19 Yuasa Corporation Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2005251717A (en) * 2003-05-13 2005-09-15 Mitsubishi Chemicals Corp Layered lithium-nickel-based compound oxide powder for lithium secondary cell positive electrode material and its manufacturing method, positive electrode for lithium secondary cell and lithium secondary cell
JP2004355986A (en) * 2003-05-30 2004-12-16 Yuasa Corp Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2005025975A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2005123180A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2007048464A (en) * 2005-08-05 2007-02-22 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP2009289726A (en) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp Lithium transition metal system compound powder, method of manufacturing the same, and spray-dried material to become its calcination precursor, and positive electrode for lithium secondary battery using the same, and lithium secondary cell
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
JP2022116212A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP2019106241A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2019106239A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2022116213A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP2019106238A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2022116215A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP7124308B2 (en) 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-manganese-cobalt composite hydroxide
JP7124305B2 (en) 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-manganese-cobalt composite hydroxide
JP7124306B2 (en) 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-manganese-cobalt composite hydroxide
CN110010887A (en) * 2019-04-11 2019-07-12 南开大学 A kind of high voltage high-energy long circulation life lithium cobaltate cathode material and preparation method thereof
CN110010887B (en) * 2019-04-11 2022-03-11 南开大学 High-voltage high-energy long-cycle-life lithium cobalt oxide cathode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5518182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4997693B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2014010448A1 (en) Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
JP2010064944A5 (en)
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP5181482B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008257992A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016222483A (en) Cathode active material for nonaqueous electrolyte secondary cell and production method therefor and nonaqueous electrolyte secondary cell
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP4268442B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
KR102582927B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002