JPH1125980A - Positive electrode active material for non-aqueous electrolyte secondary battery and evaluating method thereof - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and evaluating method thereof

Info

Publication number
JPH1125980A
JPH1125980A JP9187778A JP18777897A JPH1125980A JP H1125980 A JPH1125980 A JP H1125980A JP 9187778 A JP9187778 A JP 9187778A JP 18777897 A JP18777897 A JP 18777897A JP H1125980 A JPH1125980 A JP H1125980A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9187778A
Other languages
Japanese (ja)
Other versions
JP3473671B2 (en
Inventor
Atsushi Yamanaka
厚志 山中
Riyuuichi Kuzuo
竜一 葛尾
Etsushi Yajima
悦士 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18777897A priority Critical patent/JP3473671B2/en
Publication of JPH1125980A publication Critical patent/JPH1125980A/en
Application granted granted Critical
Publication of JP3473671B2 publication Critical patent/JP3473671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To quickly and accurately determine the appropriateness of a positive electrode active material and to improve the cycle characteristic of a secondary battery by using a relation between a crystal structure obtained by the powder X-ray diffraction of a hexagonal system lithium composite oxide and the cycle characteristic as a reference. SOLUTION: In a hexagonal system lithium composite oxide represented by a formula: [Li]3a[Na1-x-yCox My]3b[O2 ]6c (0.75<1-x-y<=0.90, cobalt addition x:0.05<=z<=0.25, metal M addition y:0<=y<=0.15, added character of [] means site) and having a layer structure, in an atomic position coordinate obtained from the Rietveld analyzing result of X-ray diffraction, 1.065 or lower of the distortion (ODP) of an oxygen octahedron around the metallic atom of 3b site is used as a reference for determining the appropriateness of using a lithium composite oxide active material as a positive electrode active material for a non-aqueous electrolyte secondary battery. Herein, ODP indicates a distance between oxygen atoms within a surface made by an (a) axis and (b) axis or a distance between oxygen atoms outside the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極にリチウム、リ
チウム合金またはカーボンを用いる非水系電解質二次電
池の正極活物質に関するものであり、特に正極活物質の
改良により電池の高容量化およびサイクル特性の向上
(高容量の維持)に関するものである。また、上記正極
活物質の評価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery using lithium, a lithium alloy or carbon for a negative electrode. (Maintenance of high capacity). The present invention also relates to a method for evaluating the positive electrode active material.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
する小型、軽量で高い容量を持つ二次電池の開発が強く
望まれている。このようなものとしてリチウム、リチウ
ム合金あるいはカーボンを負極として用いるリチウムイ
オン二次電池があり、研究開発が盛んに行われている。
合成が比較的簡単なリチウムコバルト複酸化物(LiC
oO2)を正極活物質に用いたリチウムイオン二次電池
は4V級の高い電圧が得られるため、高エネルギー密度を
持つ電池として期待され、実用化が進んでいる。
2. Description of the Related Art In recent years, with the spread of portable devices such as portable telephones and notebook personal computers, there is a strong demand for the development of small, lightweight, high capacity secondary batteries having a high energy density. As such a device, there is a lithium ion secondary battery using lithium, a lithium alloy or carbon as a negative electrode, and research and development have been actively conducted.
Lithium cobalt complex oxide (LiC
Since a lithium ion secondary battery using oO 2 ) as a positive electrode active material can obtain a high voltage of 4V class, it is expected as a battery having a high energy density, and its practical use is progressing.

【0003】しかしながら、原料に高価なコバルト化合
物を用いるため、容量当たりの単価はニッケル水素電池
の約4倍である等、活物質さらには電池のコストアップ
の原因となる。従って、適用される用途がかなり限定さ
れている。活物質のコストを下げより安価なリチウム電
池の製造が可能となることは、現在普及している携帯機
器の軽量、小型化において工業的に大きな意義を持つ。
[0003] However, since an expensive cobalt compound is used as a raw material, the unit cost per capacity is about four times that of a nickel-metal hydride battery. Therefore, the applications to which they are applied are quite limited. Reducing the cost of the active material and enabling the production of a cheaper lithium battery is of great industrial significance in reducing the weight and size of portable devices that are currently widespread.

【0004】リチウム電池の正極活物質の新たなる材料
としてコバルトよりも安価なニッケルを用いたリチウム
ニッケル複酸化物(LiNiO2)を挙げることができ
る。このリチウムニッケル複酸化物はリチウムコバルト
複酸化物よりも低い電気化学ポテンシャルを示すため、
電解液の酸化による分解が問題になりにくいためより高
容量が期待でき、開発が盛んに行われている。しかしな
がら、このリチウムニッケル複酸化物は、化学量論性に
優れたものが得られにくく、合成が困難であるとされて
いる。これは、Ni3+が高温では不安定であり、非化学
量論組成LixNi1ーx2(0<x<1)をとりやすいた
めである(例えば、M.G.S.G. Thomas et al, Mat. Res.
Bull., 20, 1137(1985))。この問題は、原料として過
酸化リチウムや硝酸ニッケル等の反応性に富んだ材料を
用いることで回避が可能であるが、取扱が難しく、工業
原料としては高価であるため低コスト化の目的を達成す
ることができない。
As a new material for the positive electrode active material of a lithium battery, there is a lithium nickel double oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt. Since this lithium nickel composite oxide shows a lower electrochemical potential than the lithium cobalt composite oxide,
Decomposition due to oxidation of the electrolyte is unlikely to cause a problem, so higher capacity can be expected, and development has been actively conducted. However, it is said that it is difficult to obtain a lithium nickel composite oxide having excellent stoichiometry and it is difficult to synthesize. This is because Ni 3+ is unstable at high temperatures and tends to have a non-stoichiometric composition Li x Ni 1−x O 2 (0 <x <1) (for example, MGSG Thomas et al, Mat. Res.
Bull., 20, 1137 (1985)). This problem can be avoided by using a highly reactive material such as lithium peroxide or nickel nitrate as a raw material, but it is difficult to handle and is expensive as an industrial raw material. Can not do it.

【0005】さらに、この化学量論性に優れたリチウム
ニッケル複酸化物においてもサイクル特性に問題があ
り、この原因としては、Liイオンがデインターカレー
トした際にニッケルイオンの共同ヤーンテラー歪により
結晶性が低下し、充放電が困難な結晶相に転移してしま
うことが報告されている(例えば、菅野了次、電気化学
63、No.7、778(1995)。
[0005] Furthermore, the lithium-nickel double oxide having excellent stoichiometry also has a problem in cycle characteristics, which is caused by the joint Jahn-Teller distortion of nickel ions when Li ions are deintercalated. It has been reported that the crystallinity deteriorates and the crystal phase changes to a crystal phase that is difficult to charge and discharge (for example, Ryuji Kanno, Electrochemistry 63, No. 7, 778 (1995)).

【0006】また、このような活物質の基本的な特性
は、実際に電池を試作し容量を測定することで評価され
ている。活物質の評価としては、サイクル特性に問題が
あることから1サイクルの充放電試験では不十分であ
り、数十以上のサイクルを繰り返し、容量の維持率をも
評価する必要がある。このため、容量が大きいリチウム
二次電池の優れた特性が、活物質の評価試験にはマイナ
ス要因となり、特性評価に長時間を要してしまうという
問題があった。
The basic characteristics of such an active material are evaluated by actually producing a battery and measuring the capacity. As for the evaluation of the active material, one cycle of the charge / discharge test is insufficient because of the problem of the cycle characteristics, and it is necessary to repeat several tens of cycles and evaluate the capacity retention rate. For this reason, there is a problem that the excellent characteristics of the lithium secondary battery having a large capacity become a negative factor in the evaluation test of the active material, and it takes a long time to evaluate the characteristics.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、二次
電池のサイクル特性を向上(放電容量を維持)させるこ
とが可能なリチウムニッケル複酸化物を提供することに
ある。また、活物質の適否を迅速かつ正確に判定できる
評価法の提供を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium nickel double oxide capable of improving the cycle characteristics of a secondary battery (maintaining a discharge capacity). It is another object of the present invention to provide an evaluation method capable of quickly and accurately determining the suitability of an active material.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するた
め、本発明者等は種々研究を進めた結果、粉末X線回折
より求めた結晶構造とサイクル特性との間に深い関係が
あることを見いだした。本活物質の結晶構造を模式的に
示すと図1(a)のようになる。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted various studies and found that there is a deep relationship between the crystal structure obtained by powder X-ray diffraction and the cycle characteristics. I found it. FIG. 1A schematically shows the crystal structure of the present active material.

【0009】特に陵を共有するNiO6八面体から形成され
るNiO2層はスラブと呼ばれるが、(A. Rougier, C. Del
mas and A.V. Chadwick, Solid State Commun., 94[2]
(1995) 123-127.)このスラブでサンドイッチされたL
iイオンが可逆的に出入りすることで電池の充放電反応
が進行し活物質として作用する。したがって、NiO2スラ
ブ構造は電池反応中の活物質の安定性を知る上で大きな
指針となると考えた。そこで、上記課題を達成するため
に種々研究を進めた結果、スラブ中のニッケルNi原子
を中心とした図1(b)に示す酸素八面体の構造とサイ
クル特性との間に深い関係があることを見いだした。図
中では正八面体に書いてあるが、実際は酸素1と酸素2
の(a軸とb軸で作られる面内)距離と酸素1と酸素3
の(面間)距離では長さが異なるためLiが脱離する前
からこの八面体は歪んでいる。この歪みが、ある値をと
るとき、充電時と放電時とで結晶構造の変化が小さく、
リチウムイオンが出入りしやすいものと推察した。
In particular, NiO 2 layers formed from NiO 6 octahedra sharing a ridge are called slabs (A. Rougier, C. Del.
mas and AV Chadwick, Solid State Commun., 94 [2]
(1995) 123-127.) L sandwiched with this slab
When the i-ions enter and exit reversibly, the charge / discharge reaction of the battery progresses and acts as an active material. Therefore, the NiO 2 slab structure was considered to be a great guide to know the stability of the active material during the battery reaction. Therefore, as a result of conducting various studies to achieve the above object, there is a deep relationship between the structure of the oxygen octahedron shown in FIG. 1 (b) centered on nickel Ni atoms in the slab and the cycle characteristics. Was found. In the figure, it is written in octahedron, but actually oxygen 1 and oxygen 2
(In the plane formed by the a-axis and b-axis) and oxygen 1 and oxygen 3
This octahedron is distorted before Li desorbs because the length is different at the (interplane) distance. When this distortion takes a certain value, the change in crystal structure between charging and discharging is small,
It was speculated that lithium ions could easily enter and exit.

【0010】その結果、化学量論性に優れたリチウムニ
ッケル複酸化物において電池試験を行うことなく、X線
回折リートベルト解析の結果よりニッケルNi原子(3
bサイトの金属原子)を中心とした酸素八面体の歪みを
求めることで活物質の評価が可能であることがわかっ
た。
As a result, without conducting a battery test on a lithium-nickel double oxide having excellent stoichiometry, the results of X-ray diffraction Rietveld analysis showed that nickel Ni atoms (3
It was found that the active material can be evaluated by determining the strain of the oxygen octahedra centering on the metal atom at the b site).

【0011】すなわち本発明は、 式: [Li]3a[Ni1-x-yCox M y]3b[ O2]6c ここで、0.75<1-x-y≦0.90 コバルトの添加量x:0.05≦x≦0.25 金属Mの添加量y:0≦y≦0.15 また[ ]の添え字はサイトをあらわすものである。That is, the present invention relates to the following formula: [Li] 3a [Ni 1 -x-y Cox My] 3b [O 2 ] 6c where 0.75 <1-xy ≦ 0.90 0.05 ≦ x ≦ 0.25 Addition amount of metal M y: 0 ≦ y ≦ 0.15 The suffix [] indicates a site.

【0012】で表わされ、かつ層状構造を有する六方晶
系のリチウム複酸化物において、X線回折のリートベル
ト解析結果から得られた原子位置座標より3bサイトの
金属原子を中心とした酸素八面体の歪み(ODP=Octahedr
al Distoration Parameter) ODP=dO-O、intra/dO-O、inter ただし、dO-O、intraはa軸とb軸で作られる面内の酸素
原子間距離、dO-O、interは面外の酸素原子間距離 を求めた場合、該ODP値が1.065以下になること
を特徴とする非水系電解質二次電池用正極活物質であ
る。
In the hexagonal system lithium complex oxide represented by the following formula and having a layered structure, the oxygen octane centered on the metal atom at the 3b site is determined from the atomic position coordinates obtained from the Rietveld analysis result of X-ray diffraction. Face Distortion (ODP = Octahedr
al Distoration Parameter) ODP = dO-O, intra / dO-O, inter where dO-O and intra are distances between oxygen atoms in the plane formed by the a-axis and b-axis, and dO-O and inter are out-of-plane When the distance between oxygen atoms is determined, the ODP value is 1.065 or less, which is a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0013】また、上記活物質において、リートベルト
解析によりえられるa軸の格子定数が2.863〜2.865オン
グストロームであることを特徴とする上記非水系電解質
二次電池用正極活物質である。この考えは、サイクル特
性向上のためにCoとMn(M=Mn)を添加する場合
にも適用することが可能であり、より高い添加効果を得
る指針となる。
Further, the positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that the a-axis lattice constant obtained by Rietveld analysis is 2.863 to 2.865 angstroms. This concept can be applied to the case where Co and Mn (M = Mn) are added for improving the cycle characteristics, and serves as a guideline for obtaining a higher addition effect.

【0014】すなわち本発明は、 式: [Li]3a[Ni1-x-yCox Mny]3b[O2]6c ここで、0.75<1-x-y≦0.90、0.05≦x≦0.25、0<y≦0.
15、 で表わされ、かつ層状構造を有する六方晶系のリチウム
複酸化物において、X線回折のリートベルト解析結果か
らえられた原子位置座標より3bサイトの金属原子を中
心とした酸素八面体の歪み(ODP値)が1.060以下にな
ることを特徴とする非水系電解質二次電池用正極活物質
である。さらに、この考えは、サイクル特性向上のため
にM=Alである場合にも適用することが可能であり、
より高い添加効果を得る指針となる。
That is, the present invention relates to the following formula: [Li] 3a [Ni 1 -x-y Cox Mny] 3b [O 2 ] 6c where 0.75 <1-xy ≦ 0.90, 0.05 ≦ x ≦ 0.25, 0 <y ≦ 0.
In the hexagonal lithium double oxide having a layered structure and represented by the following formula, the oxygen octahedron centered on the metal atom at the 3b site from the atomic position coordinates obtained from the Rietveld analysis result of X-ray diffraction. Is a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the strain (ODP value) is 1.060 or less. Further, this idea can be applied to the case where M = Al in order to improve cycle characteristics.
It serves as a guideline for obtaining a higher addition effect.

【0015】すなわち本発明は、 式: [Li]3a[Ni1-x-yCox Aly]3b[O2]6c ここで、0.75<1-x-y≦0.90、0.05≦x≦0.25、0<y≦0.
15、 で表わされ、かつ層状構造を有する六方晶系のリチウム
複酸化物において、X線回折のリートベルト解析結果か
らえられた原子位置座標より3bサイトの金属原子を中
心とした酸素八面体の歪み(ODP値)が1.058以
下になることを特徴とする非水系電解質二次電池用正極
活物質である。
That is, the present invention relates to the following formula: [Li] 3a [Ni 1 -x-y Cox Aly] 3b [O 2 ] 6c where 0.75 <1-xy ≦ 0.90, 0.05 ≦ x ≦ 0.25, 0 <y ≦ 0.
In the hexagonal lithium double oxide having a layered structure and represented by the following formula, the oxygen octahedron centered on the metal atom at the 3b site from the atomic position coordinates obtained from the Rietveld analysis result of X-ray diffraction. Is a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by having a distortion (ODP value) of 1.058 or less.

【0016】また、六方晶型を有し、X線回折によるリ
ートベルト解析結果が3aサイトの非リチウムイオンの
席占有率が2%以下である、上記M=MnまたはAlで
あるリチウムニッケル複酸化物において、c軸格子定数
とa軸格子定数の比(c/a)が4.94以上かつ4.96以下で
あることを特徴とする非水系電解質二次電池用正極活物
質である。さらには、リートベルト解析によりえられる
a軸の格子定数が2.855〜2.870オングストロームである
ことを特徴とする上記非水系電解質二次電池用正極活物
質である。
The lithium-nickel double oxide of M = Mn or Al, which has a hexagonal crystal structure and whose Rietveld analysis by X-ray diffraction shows that the non-lithium ion occupancy of the 3a site is 2% or less. A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the ratio of the c-axis lattice constant to the a-axis lattice constant (c / a) is 4.94 or more and 4.96 or less. Further, the positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that the lattice constant of the a-axis obtained by Rietveld analysis is 2.855 to 2.870 angstroms.

【0017】また、本発明は、 式:[Li]3a[Ni1-x-yCox My]3b[O2]6c ただし、0.75<1-x-y≦0.90、Coの添加量x:0.05≦x
≦0.25、金属Mの添加量y:0≦y≦0.15 で表わされ、かつ層状構造を有する六方晶系のリチウム
複酸化物において、X線回折によるリートベルト解析結
果からえられた原子座標より面内の酸素原子間距離(d
o-o、intra)および3bサイトの金属原子の層を挟んだ
面外の酸素原子間距離(do-o、inter)を求め、3bサ
イトの金属原子を中心とした酸素八面体の歪み(ODP) ODP= do-o、intra/do-o、inter により該リチウム複酸化物系活物質の適否を判定するこ
と特徴とする評価法である。さらに前記ODP値が1.
065以下であれば活物質として適していると判断する
ことを特徴とする非水系電解質二次電池用正極活物質の
評価方法である。
Further, the present invention has the formula: [Li] 3a [Ni 1 -x-yCox My] 3b [O 2] 6c However, 0.75 <1-xy ≦ 0.90 , the addition amount of Co x: 0.05 ≦ x
≦ 0.25, addition amount of metal M y: 0 ≦ y ≦ 0.15, and in a hexagonal lithium complex oxide having a layered structure, from atomic coordinates obtained from Rietveld analysis results by X-ray diffraction. The distance between oxygen atoms in the plane (d
oo, intra) and the out-of-plane oxygen atom distance (do-o, inter) sandwiching the layer of metal atoms at the 3b site (do-o, inter) are determined. = do-o, intra / do-o, inter, to judge the suitability of the lithium double oxide-based active material. Further, when the ODP value is 1.
The method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that it is determined that the positive electrode active material is suitable as an active material if the value is 065 or less.

【0018】[0018]

【発明の実施の形態】結晶構造、化学量論性の検討は、
X線回折によるリートベルト解析(例えば、R.A. Youn
g, ed.,The Rietveld Method,Oxford University Press
(1992).)を用いて行うことができ、この解析は、格子
定数の他に結晶の完全性(化学量論性)の指標となる各
イオンのサイト占有率を求めることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The crystal structure and stoichiometry
Rietveld analysis by X-ray diffraction (for example, RA Youn
g, ed., The Rietveld Method, Oxford University Press
(1992).), And this analysis can determine the site occupancy of each ion as an index of crystal integrity (stoichiometry) in addition to the lattice constant.

【0019】六方晶系の化合物の場合には、3a、3
b、6cのサイトがあり、完全な化学量論組成の場合に
は3aサイトはLi、3bサイトはNi、6cサイトは
Oがそれぞれ100%の席占有率を示す。3aサイトの
Liイオンの席占有率が98%以上であるようなリチウ
ムニッケル複酸化物は化学量論性に優れていると言え
る。換言すれば3aサイトへのLiイオン以外の金属イ
オンの混入率が2%以下であるようなリチウムニッケル
複酸化物は化学量論性に優れていると言える。
In the case of a hexagonal compound, 3a, 3
There are sites b and 6c, and in the case of perfect stoichiometry, Li is the site 3a, Ni is the site 3b, and O is the site occupancy of 100%, respectively. It can be said that a lithium-nickel double oxide having a Li ion site occupancy of the 3a site of 98% or more has excellent stoichiometry. In other words, it can be said that a lithium nickel double oxide in which the mixing ratio of metal ions other than Li ions into the 3a site is 2% or less is excellent in stoichiometry.

【0020】3aサイトのLiイオンの席占有率が98
%以上であるようなリチウムニッケル複酸化物におい
て、NiO2スラブ構造が安定であれば充電時の結晶構
造の変化に起因する活物質の変質/分解を抑えることが
できる。つまり、スラブを形成するニッケルNi原子を
中心とする酸素八面体の歪みが少なければ充放電のサイ
クルを繰り返しても容量劣化の少ない、良好な活物質で
ある。
The seat occupancy of Li ions at the 3a site is 98
% Or more, if the NiO 2 slab structure is stable, it is possible to suppress the transformation / decomposition of the active material due to the change in the crystal structure during charging. That is, as long as the strain of the oxygen octahedra centering on the nickel Ni atoms forming the slab is small, the active material is a good active material with little capacity deterioration even after repeated charge / discharge cycles.

【0021】電池活物質として考えた場合、Liは脱
離、挿入が可能なためLi欠損が生じても結晶の完全性
は維持できる。したがって、現実的には3aサイトの非
リチウムイオンの混入率をもって化学量論性あるいは結
晶の完全性を示すのがよい方法と考えられる。
When considered as a battery active material, since Li can be desorbed and inserted, the integrity of the crystal can be maintained even if Li deficiency occurs. Therefore, in practice, it is considered that it is a good method to indicate the stoichiometry or the crystal perfection based on the mixing ratio of non-lithium ions at the 3a site.

【0022】本発明の活物質は上記リチウムニッケル複
酸化物においてNiO2スラブ構造中の酸素八面体の歪
み(ODP)が1.065以下であり、a軸の格子定数
が2.863〜2.865オングストロームである非水系電解質二
次電池用正極活物質である。
In the active material of the present invention, the lithium-nickel compound oxide has a strain (ODP) of oxygen octahedron in the NiO 2 slab structure of 1.065 or less and a lattice constant of a-axis of 2.863 to 2.865 angstroms. It is a positive electrode active material for an aqueous electrolyte secondary battery.

【0023】また、本発明の活物質は、上記リチウムニ
ッケル複酸化物のニッケルの一部をCoとMn、もしく
は、CoとAlで置換したリチウムニッケル複酸化物で
あって、NiO2スラブ構造中の酸素八面体の歪み(O
DP)が1.058以下であり、および、a軸の格子定
数が2.855〜2.870Åであり、c軸格子定数と
a軸格子定数の比(c/a)が4.94以上かつ4.96以下であ
る非水系電解質二次電池用正極活物質である。
The active material of the present invention is a lithium-nickel composite oxide in which a part of nickel of the above-mentioned lithium-nickel composite oxide is replaced with Co and Mn or Co and Al, and has an NiO 2 slab structure. Of the oxygen octahedron of
DP) is 1.058 or less, the a-axis lattice constant is 2.855 to 2.870 °, and the ratio (c / a) of the c-axis lattice constant to the a-axis lattice constant is 4.94 or more and 4.96 or less. Is a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0024】[0024]

【実施例】【Example】

−実施例1− [活物質試料の合成]水酸化リチウム(LiOH・H2O:純度
99%)及び 式: (Ni1-x-yCox My)(OH)n においてx及びyがそれぞれ以下の乃至に示す値と
なるように調製したニッケルコバルト共沈水酸化物を、
{リチウム/(ニッケル+コハ゛ルト)}原子比が各々以下の乃至に
示す所定値となるように秤量し、それらの合計重量3.
4kgを混合造粒機(深江工業(株)製;ハイスピード
ミキサー)を用いて5分間混合し、さらに2%PVA水
溶液を430cc加え10分間造粒を行った。次に造粒物
を回収した後、100℃で2時間乾燥した後、これをマグ
ネシアセッターを用いて酸素流量3.0リットル/minの雰
囲気で、300℃/hの加熱速度で所定温度まで加熱し、15
時間保持することにより合成した。
Example 1 Synthesis of Active Material Sample Lithium Hydroxide (LiOH.H 2 O: Purity)
99%) and the formula: (Ni 1 -x-yCox My) (OH) n is a nickel-cobalt coprecipitated hydroxide prepared such that x and y have the following values, respectively:
2. Lithium / (nickel + cobalt) The weight ratio is weighed so that the respective atomic ratios have the following predetermined values, and the total weight thereof is 3.
4 kg was mixed for 5 minutes using a mixing granulator (manufactured by Fukae Kogyo Co., Ltd .; High Speed Mixer), and 430 cc of a 2% PVA aqueous solution was added, followed by granulation for 10 minutes. Next, after collecting the granulated material, after drying at 100 ° C. for 2 hours, this was heated to a predetermined temperature at a heating rate of 300 ° C./h using a magnesia setter in an atmosphere with an oxygen flow rate of 3.0 L / min. Fifteen
It was synthesized by holding for a time.

【0025】実施例1-1 x=0.08、y=0、Li/(Ni
+Co)=1.1、合成温度=700℃ 実施例1-2 x=0.16、y=0、Li/(Ni+Co)=1.05、
合成温度=680℃ 実施例1-3 x=0.16、y=0、Li/(Ni+Co)=1.05、
合成温度=700℃ 実施例1-4 x=0.16、y=0、Li/(Ni+Co)=1.05、
合成温度=720℃ 比較例1-1 x=0.17、y=0、Li/(Ni+Co)=1.05、
合成温度=750℃ 比較例1-2 x=0.17、y=0、Li/(Ni+Co)=1.10、
合成温度=750℃ 比較例1-3 x=0.15、y=0、Li/(Ni+Co)=1.05、
合成温度=650℃
Example 1-1 x = 0.08, y = 0, Li / (Ni
+ Co) = 1.1, synthesis temperature = 700 ° C. Example 1-2 x = 0.16, y = 0, Li / (Ni + Co) = 1.05,
Synthesis temperature = 680 ° C. Example 1-3 x = 0.16, y = 0, Li / (Ni + Co) = 1.05,
Synthesis temperature = 700 ° C. Example 1-4 x = 0.16, y = 0, Li / (Ni + Co) = 1.05,
Synthesis temperature = 720 ° C. Comparative Example 1-1 x = 0.17, y = 0, Li / (Ni + Co) = 1.05,
Synthesis temperature = 750 ° C. Comparative Example 1-2 x = 0.17, y = 0, Li / (Ni + Co) = 1.10,
Synthesis temperature = 750 ° C. Comparative Example 1-3 x = 0.15, y = 0, Li / (Ni + Co) = 1.05,
Synthesis temperature = 650 ° C

【0026】[X線回折]理学(株)製X線回折装置
(RADrVB)を用いて、各試料のX線回折図形を測定し
た。測定条件は、CuKα線(管電圧40kV、管電流1
50mA)によりサンプリング幅0.02°、走査速度4.00
°/minで、スリットをそれぞれ発散1.00°、散乱1.00
°受光0.3mmとした。
[X-ray Diffraction] The X-ray diffraction pattern of each sample was measured using an X-ray diffractometer (RADrVB) manufactured by Rigaku Corporation. The measurement conditions were CuKα radiation (tube voltage 40 kV, tube current 1
50mA), sampling width 0.02 °, scanning speed 4.00
At / ° / min, the slits diverge 1.00 ° and scattering 1.00, respectively.
° Light reception was set to 0.3 mm.

【0027】X線回折図形をリートベルト解析プログラ
ムXReitanを用いてR3mの結晶モデルに基づき解析を行っ
た。例として実施例1ー1の場合の得られた原子座標位
置を表1に示す。
The X-ray diffraction pattern was analyzed based on the R3m crystal model using a Rietveld analysis program XReitan. As an example, Table 1 shows the obtained atomic coordinate positions in the case of Example 1-1.

【0028】[0028]

【表1】 [Table 1]

【0029】また八面体の歪みODPは次の数式に基づ
いて求めた。
The octahedral distortion ODP was determined based on the following equation.

【数1】 ここでZは、リートベルト解析により求めた酸素原子の
X座標位置を示し、その値は表1のZ欄に示されてい
る。表1中、X欄及びY欄は同じくX座標及びY座標の
位置を示す。a及びcはそれぞれa軸及びc軸の格子定
数である。
(Equation 1) Here, Z indicates the X coordinate position of the oxygen atom determined by Rietveld analysis, and its value is shown in the Z column of Table 1. In Table 1, the X and Y columns also show the positions of the X and Y coordinates. a and c are lattice constants of the a-axis and the c-axis, respectively.

【0030】3aサイト非Liイオン混入率、格子定数
およびODPをまとめて表2に示す。実施例1ー2、
3、比較例1〜3も同様に酸素座標原子位置を求め、3
aサイト非Liイオン混入率、格子定数およびODPを
求めた。結果をまとめて表2に示す。
Table 2 summarizes the 3a-site non-Li ion mixing ratio, lattice constant, and ODP. Example 1-2,
3. In Comparative Examples 1 to 3, the oxygen coordinate atom positions were similarly determined.
The a-site non-Li ion mixing ratio, lattice constant, and ODP were determined. Table 2 summarizes the results.

【0031】[電池試験]得られた活物質を用いて以下
のように電池を作製し、充放電容量を測定した。活物質
粉末85wt%にアセチレンブラック6wt%およびPVDF
(ポリ沸化ビニリデン)9wt%を混合し、NMP(nー
メチルピロリドン)を加えペースト化した。これをアル
ミ製のエキスパンドメタルメッシュに乾燥後の活物質重
量が0.07g/cm2になるように塗布し、乾燥する。
さらに120℃で真空乾燥を行い、正極とした。負極と
してLiメタルを、電解液には1MのLiPF6を支持塩
とするエチレンカーボネート(EC)とジエチルカーボ
ネート(DEC)の等量混合溶液を用いた。図2に示す
ビーカー電池にAr雰囲気のグローブボックス中で組み
立てる。なお、作製した電池は10時間程放置し、開路電
圧(OCV)が安定した後、正極に対する電流密度を1.
0mA/cm2とし、カットオフ4.3-3.0Vで充放電試験を行っ
た。結果を表2に示す。ただし容量維持率(%)は、 100×(100回目の放電容量)/(1回目の放電容
量) である。
[Battery Test] A battery was prepared using the obtained active material as follows, and the charge / discharge capacity was measured. 85% by weight of active material powder and 6% by weight of acetylene black and PVDF
9 wt% (polyvinylidene fluoride) was mixed, and NMP (n-methylpyrrolidone) was added to form a paste. This is applied to an expanded metal mesh made of aluminum so that the weight of the active material after drying becomes 0.07 g / cm 2 , and dried.
Further, vacuum drying was performed at 120 ° C. to obtain a positive electrode. Li metal was used as a negative electrode, and an electrolytic solution was a mixed solution of an equal amount of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiPF 6 as a supporting salt. The beaker battery shown in FIG. 2 is assembled in a glove box in an Ar atmosphere. The prepared battery was left for about 10 hours, and after the open circuit voltage (OCV) was stabilized, the current density with respect to the positive electrode was 1.
The charge / discharge test was performed at a cutoff of 4.3 to 3.0 V at 0 mA / cm 2 . Table 2 shows the results. However, the capacity retention ratio (%) is 100 × (100th discharge capacity) / (first discharge capacity).

【0032】[0032]

【表2】 表2にあるように活物質の3aサイトの非Liイオン混
入率が2%以下であり、ODPの値が1.065以下の
範囲であるとき、放電容量が高く、かつ容量維持率の高
い性能を有する電池が得られることがわかる。
[Table 2] As shown in Table 2, when the non-Li ion mixing ratio of the 3a site of the active material is 2% or less and the ODP value is in a range of 1.065 or less, the discharge capacity is high and the capacity retention ratio is high. It can be seen that a battery having

【0033】また本実施例における電池は、Li金属を
負極とする電池であったが、本発明の活物質の使用がこ
れに限定されるものではなく、負極には電池反応により
Liが可逆的にインターカレートが可能なカーボンファ
イバー、グラファイト等のカーボンも用いることができ
る。
Although the battery in this example was a battery using Li metal as a negative electrode, the use of the active material of the present invention is not limited to this. Li is reversibly applied to the negative electrode by a battery reaction. Carbon such as carbon fiber and graphite that can be intercalated can also be used.

【0034】−実施例2− [活物質試料の合成]原料粉末として実施例1で用いた
ニッケルコバルト共沈水酸化物に代えて、 式: (Ni1-x-yCox Mny)(OH)n においてx及びyがそれぞれ以下の乃至に示す値と
なるように調製したニッケルコバルトマンガン共沈水酸
化物を用いた以外は、実施例1と同様に合成した。
Example 2 [Synthesis of Active Material Sample] Instead of the nickel cobalt coprecipitated hydroxide used in Example 1 as a raw material powder, the following formula: (Ni 1 -x-yCox Mny) (OH) n Synthesis was performed in the same manner as in Example 1 except that nickel cobalt manganese coprecipitated hydroxide prepared such that x and y had the following values was used.

【0035】実施例2-1 x=0.16、y=0.04、Li/
(Ni+Co+Mn)=1.0、合成温度=700℃ 実施例2-2 x=0.10、y=0.10、Li/(Ni+Co+Mn)=
1.0、合成温度=700℃ 実施例2-3 x=0.15、y=0.10、Li/(Ni+Co+Mn)=
1.0、合成温度=700℃ 実施例2-4 x=0.20、y=0.05、Li/(Ni+Co+Mn)=
1.0、合成温度=700℃ 比較例2-1 x=0 、 y=0.20、Li/(Ni+Co+Mn)=
1.0、合成温度=700℃ 比較例2-2 x=0.16、y=0.04、Li/(Ni+Co+Mn)=
1.0、合成温度=780℃ 比較例2-3 x=0.10、y=0.10、Li/(Ni+Co+Mn)=
1.0、合成温度=650℃
Example 2-1 x = 0.16, y = 0.04, Li /
(Ni + Co + Mn) = 1.0, synthesis temperature = 700 ° C. Example 2-2 x = 0.10, y = 0.10, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 700 ° C. Example 2-3 x = 0.15, y = 0.10, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 700 ° C. Example 2-4 x = 0.20, y = 0.05, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 700 ° C. Comparative Example 2-1 x = 0, y = 0.20, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 700 ° C. Comparative Example 2-2 x = 0.16, y = 0.04, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 780 ° C. Comparative Example 2-3 x = 0.10, y = 0.10, Li / (Ni + Co + Mn) =
1.0, synthesis temperature = 650 ° C

【0036】[X線回折]実施例1と同様に、活物質試
料のX線回折図形を測定し解析を行った。実施例2ー1
における得られた原子座標位置を表3に示す。この解析
では、3aサイトの混入金属イオンをニッケルイオンだ
けとしたが、コバルト、マンガンおよびニッケルの3つ
のイオンが混入した場合でも同様な解析結果を得ること
ができ、結晶の歪みを調べるためには誤差は生じない。
[X-ray Diffraction] An X-ray diffraction pattern of the active material sample was measured and analyzed in the same manner as in Example 1. Example 2-1
Are shown in Table 3. In this analysis, the mixed metal ions at the 3a site were only nickel ions. However, even when three ions of cobalt, manganese, and nickel were mixed, similar analysis results can be obtained. No error occurs.

【0037】[0037]

【表3】 [Table 3]

【0038】また八面体の歪みODPは、実施例1と同
様に求めた。3aサイト非Liイオン混入率、格子定数
およびODPをまとめて表4に示す。なお、格子定数は
リートベルト解析による結果を用いたが、c/aを求め
るためには通常の格子定数測定による値を用いても評価
は可能である。
The octahedral strain ODP was determined in the same manner as in Example 1. Table 4 summarizes the 3a site non-Li ion mixing ratio, lattice constant, and ODP. Although the result of Rietveld analysis was used for the lattice constant, evaluation can be performed using a value obtained by ordinary measurement of lattice constant in order to obtain c / a.

【0039】[電池試験]得られた活物質を用いて、実
施例1と同様に電池を作製し、充放電容量を測定した。
結果を表4に示す。
[Battery test] Using the obtained active material, a battery was fabricated in the same manner as in Example 1, and the charge / discharge capacity was measured.
Table 4 shows the results.

【0040】[0040]

【表4】 [Table 4]

【0041】以上のようにニッケルの一部をCoおよび
Mnで置換し、ODPを1.060以下に制御した本発
明リチウムニッケル複酸化物は、リチウム二次電池の活
物質として用いた場合、放電容量が高く、かつ容量維持
率の高い性能を有する電池が得られることがわかる。こ
れに対して、比較例が示すように単にCoやMnを添加
しただけでは結晶性が低下するため、サイクル特性の向
上は得ることができない。
As described above, the lithium-nickel double oxide of the present invention, in which a part of nickel is replaced by Co and Mn and the ODP is controlled to 1.060 or less, when used as an active material of a lithium secondary battery, It can be seen that a battery having a high capacity and a high capacity retention ratio can be obtained. On the other hand, as shown in the comparative example, the mere addition of Co or Mn lowers the crystallinity, so that the cycle characteristics cannot be improved.

【0042】−実施例3− [活物質試料の合成]原料粉末として実施例1で用いた
ニッケルコバルト共沈水酸化物に代えて、 式: (Ni1-x-yCox Aly)(OH)n においてx及びyがそれぞれ以下の乃至に示す値と
なるように調製したニッケルコバルトアルミニウム共沈
水酸化物を用いた以外は、実施例1と同様に合成した。
合成温度はどれも700℃とした。
Example 3 [Synthesis of Active Material Sample] In place of the nickel cobalt coprecipitated hydroxide used in Example 1 as a raw material powder, the following formula: (Ni 1 -x-yCox Aly) (OH) n The synthesis was carried out in the same manner as in Example 1 except that nickel cobalt aluminum coprecipitated hydroxide prepared such that x and y had the following values respectively was used.
All the synthesis temperatures were 700 ° C.

【0043】実施例3-1 x=0.16、y=0.03、Li/
(Ni+Co+Al)=1.0 実施例3-2 x=0.11、y=0.03、Li/(Ni+Co+Al)=
1.0 実施例3-3 x=0.15、y=0.10、Li/(Ni+Co+Al)=
1.0 実施例3-4 x=0.10、y=0.10、Li/(Ni+Co+Al)=
1.0 比較例3-1 x=0.10、y=0.16、Li/(Ni+Co+Al)=
1.0 比較例3-2 x=0.04、y=0.28、Li/(Ni+Co+Al)=
1.0 比較例3-3 x=0 、 y=0.16、Li/(Ni+Co+Al)=
1.0
Example 3-1 x = 0.16, y = 0.03, Li /
(Ni + Co + Al) = 1.0 Example 3-2 x = 0.11, y = 0.03, Li / (Ni + Co + Al) =
1.0 Example 3-3 x = 0.15, y = 0.10, Li / (Ni + Co + Al) =
1.0 Example 3-4 x = 0.10, y = 0.10, Li / (Ni + Co + Al) =
1.0 Comparative Example 3-1 x = 0.10, y = 0.16, Li / (Ni + Co + Al) =
1.0 Comparative Example 2-2 x = 0.04, y = 0.28, Li / (Ni + Co + Al) =
1.0 Comparative Example 3-3 x = 0, y = 0.16, Li / (Ni + Co + Al) =
1.0

【0044】[X線回折]実施例1と同様に活物質試料
のX線回折図形を測定し解析を行った。実施例3ー1に
おける得られた原子座標位置を例として表5に示す。こ
の解析では、3aサイトの混入金属イオンをニッケルイ
オンだけとしたが、アルミ、コバルトおよびニッケルの
3つのイオンが混入した場合でも同様な解析結果を得る
ことができ、結晶の歪みを調べるためには誤差は生じな
い。
[X-ray Diffraction] The X-ray diffraction pattern of the active material sample was measured and analyzed in the same manner as in Example 1. Table 5 shows the obtained atomic coordinate positions in Example 3-1 as an example. In this analysis, the mixed metal ions at the 3a site were only nickel ions, but the same analysis results can be obtained even when three ions of aluminum, cobalt and nickel are mixed. No error occurs.

【0045】[0045]

【表5】 [Table 5]

【0046】また、実施例1と同様に八面体の歪みOD
Pを求めた。3aサイト非Liイオン混入率、格子定数
およびODPをまとめて表6に示す。なお、格子定数は
リートベルト解析による結果を用いたが、c/aを求め
るためには通常の格子定数測定による値を用いても評価
は可能である。
Further, the octahedral distortion OD was obtained in the same manner as in Example 1.
P was determined. Table 6 summarizes the 3a-site non-Li ion mixing ratio, lattice constant, and ODP. Although the result of Rietveld analysis was used for the lattice constant, evaluation can be performed using a value obtained by ordinary measurement of lattice constant in order to obtain c / a.

【0047】[電池試験]得られた活物質を用いて、実
施例1と同様に充放電容量を測定した。結果を表6に示
す。
[Battery Test] Using the obtained active material, the charge / discharge capacity was measured in the same manner as in Example 1. Table 6 shows the results.

【0048】[0048]

【表6】 [Table 6]

【0049】以上のようにニッケルの一部をCo及びA
lで置換し、ODPを1.058以下に制御した本発明
リチウムニッケル複酸化物は、リチウム二次電池の活物
質として用いた場合、放電容量が高く、かつ容量維持率
の高い性能を有する電池が得られることがわかる。これ
に対して、比較例が示すように単にCo及びAlを添加
しただけでは、電池のサイクル特性は向上するものの容
量が低下してしまう。
As described above, a part of nickel is changed to Co and A.
The lithium nickel double oxide of the present invention, in which ODP is controlled to 1.058 or less, has a high discharge capacity and a high capacity retention rate when used as an active material of a lithium secondary battery. Is obtained. On the other hand, as shown in the comparative example, simply adding Co and Al improves the cycle characteristics of the battery but decreases the capacity.

【0050】[0050]

【発明の効果】本発明によるリチウムコバルト複酸化物
を非水系二次電池の正極活物質として用いることで、容
量維持率の優れた二次電池が作製できるという効果があ
り、本発明の評価の方法によれば、簡便かつ確実に非水
系二次電池用正極活物質の特性を測定することが可能で
ある。よって、本発明の活物質およびその評価方法を用
い、活物質を評価し、それに基づき電池を組み立てれば
容易に高性能のリチウム二次電池を得ることが可能であ
る。
The use of the lithium-cobalt double oxide according to the present invention as a positive electrode active material for a non-aqueous secondary battery has the effect of producing a secondary battery having an excellent capacity retention ratio. According to the method, it is possible to easily and reliably measure the characteristics of the positive electrode active material for a non-aqueous secondary battery. Therefore, it is possible to easily obtain a high-performance lithium secondary battery by evaluating the active material using the active material and the evaluation method of the present invention and assembling the battery based on the evaluation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウムニッケル複酸化物の結晶構造を模式的
に示したもので、(a)はその全体図、(b)はそのN
iO2スラブ中の酸素八面体の拡大図である。
FIG. 1 schematically shows the crystal structure of a lithium-nickel double oxide, wherein (a) is an overall view thereof, and (b) is its N-structure.
FIG. 4 is an enlarged view of an oxygen octahedron in an iO 2 slab.

【図2】充放電容量の試験に用いたビーカー型電池の縦
断面図である。
FIG. 2 is a longitudinal sectional view of a beaker type battery used for a charge / discharge capacity test.

【符号の説明】[Explanation of symbols]

1. ビーカー 2. 電解液 3. テフロン栓 4. 正極 5. 対極(Li金属) 6. 参照極(Li金属) 1. Beaker 2. Electrolyte 3. Teflon stopper 4. Positive electrode 5. Counter electrode (Li metal) 6. Reference electrode (Li metal)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 式: [Li]3a[Ni1-x-yCox M
y]3b[ O2]6c ここで、0.75<1-x-y≦0.90 コバルトの添加量 x:0.05≦x≦0.25、 金属Mの添加量 y:0≦y≦0.15 また[ ]の添え字はサイトをあらわすものである。 で表わされ、かつ層状構造を有する六方晶系のリチウム
複酸化物において、X線回折のリートベルト解析結果か
らえられた原子位置座標より3bサイトの金属原子を中
心とした酸素八面体の歪み(ODP=Octahedral Distorati
on Parameter) ODP= do-o、intra/ do-o、inter ただし、do-o、intraはa軸とb軸とで作られる面内の
酸素原子間距離 do-o、interは面外の酸素原子間距離 を求めた場合、該ODP値が1.065以下になること
を特徴とする非水系電解質二次電池用正極活物質。
1. The formula: [Li] 3a [Ni 1 -x-yCox M
y] 3b [O 2 ] 6c where 0.75 < 1- xy ≦ 0.90 Cobalt addition x: 0.05 ≦ x ≦ 0.25, metal M addition y: 0 ≦ y ≦ 0 .15 The subscript in [] indicates a site. In the hexagonal lithium compound oxide having a layered structure and represented by the following formula, the distortion of the oxygen octahedron centered on the metal atom at the 3b site from the atomic position coordinates obtained from the Rietveld analysis result of X-ray diffraction (ODP = Octahedral Distorati
on Parameter) ODP = do-o, intra / do-o, inter where do-o and intra are the distances between oxygen atoms in the plane formed by the a-axis and b-axis, and do-o and inter are out-of-plane oxygen The cathode active material for a non-aqueous electrolyte secondary battery, wherein the ODP value is 1.065 or less when the interatomic distance is determined.
【請求項2】 y=0の場合、リートベルト解析により
得られるa軸の格子定数が2.863〜2.865オングストロー
ムであることを特徴とする請求項1記載の非水系電解質
二次電池用正極活物質。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein when y = 0, the lattice constant of the a-axis obtained by Rietveld analysis is 2.863 to 2.865 angstroms.
【請求項3】 金属MがMnであり、ODP値が1.0
60以下であることを特徴とする請求項1記載の非水系
電解質二次電池用正極活物質。
3. The metal M is Mn and the ODP value is 1.0.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is 60 or less.
【請求項4】 金属MがAlであり、ODP値が1.0
58以下であることを特徴とする請求項1記載の非水系
電解質二次電池用正極活物質。
4. The metal M is Al and has an ODP value of 1.0.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is 58 or less.
【請求項5】 六方晶型を有し、X線回折によるリート
ベルト解析結果において、3aサイトの非リチウムイオ
ンの席占有率が2%以下であるリチウムニッケル複酸化
物において、c軸格子定数とa軸格子定数の比(c/a)
が4.94以上かつ4.96以下であることを特徴とする請求項
3または4に記載の非水系電解質二次電池用正極活物
質。
5. A lithium-nickel double oxide having a hexagonal structure and having a non-lithium ion site occupancy of 3a site of 2% or less in a result of Rietveld analysis by X-ray diffraction, the c-axis lattice constant and a-axis lattice constant ratio (c / a)
5. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the positive electrode active material is 4.94 or more and 4.96 or less.
【請求項6】 リートベルト解析により得られるa軸の
格子定数が2.855〜2.870オングストロームであることを
特徴とする請求項3、4または5記載の非水系電解質二
次電池用正極活物質。
6. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the lattice constant of the a-axis obtained by Rietveld analysis is 2.855 to 2.870 angstroms.
【請求項7】 請求項1記載の層状構造を有する六方晶
系のリチウム複酸化物において、X線回折のリートベル
ト解析結果からえられた原子位置座標よりa軸とb軸で
作られる面内の酸素原子間距離(do-o、intra)および
3bサイトの金属原子の層を挟んだ面外の酸素原子間距
離(do-o、inter)を求め、3bサイトの金属原子を中
心とした酸素八面体の歪み(ODP)により該リチウム
複酸化物系活物質の適否を判定することを特徴とする非
水系電解質二次電池用正極活物質の評価方法。
7. The in-plane formed by the a-axis and the b-axis from the atomic position coordinates obtained from the Rietveld analysis result of X-ray diffraction, in the hexagonal system lithium double oxide having a layered structure according to claim 1. Between oxygen atoms (do-o, intra) and the distance between out-of-plane oxygen atoms (do-o, inter) sandwiching the layer of metal atoms at the 3b site are determined. A method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising determining whether or not the lithium double oxide-based active material is appropriate based on octahedral distortion (ODP).
【請求項8】 請求項7記載の評価方法において、OD
P値が1.065以下であれば活物質として適している
判断することを特徴とする非水系電解質二次電池用正極
活物質の評価方法。
8. The evaluation method according to claim 7, wherein the OD
A method for evaluating a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein a P value of 1.065 or less is determined to be suitable as an active material.
JP18777897A 1997-06-26 1997-06-26 Positive active material for non-aqueous electrolyte secondary battery and evaluation method thereof Expired - Lifetime JP3473671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18777897A JP3473671B2 (en) 1997-06-26 1997-06-26 Positive active material for non-aqueous electrolyte secondary battery and evaluation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18777897A JP3473671B2 (en) 1997-06-26 1997-06-26 Positive active material for non-aqueous electrolyte secondary battery and evaluation method thereof

Publications (2)

Publication Number Publication Date
JPH1125980A true JPH1125980A (en) 1999-01-29
JP3473671B2 JP3473671B2 (en) 2003-12-08

Family

ID=16212063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18777897A Expired - Lifetime JP3473671B2 (en) 1997-06-26 1997-06-26 Positive active material for non-aqueous electrolyte secondary battery and evaluation method thereof

Country Status (1)

Country Link
JP (1) JP3473671B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
JP2008130287A (en) * 2006-11-17 2008-06-05 Matsushita Battery Industrial Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7923147B2 (en) 2003-05-13 2011-04-12 Mitsubishi Chemical Corporation Layered lithium-nickel-based compound oxide powder and its prodution process
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2012084552A (en) * 2012-02-01 2012-04-26 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2014010448A1 (en) * 2012-07-12 2014-01-16 住友金属鉱山株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
WO2015156399A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Electrical device
JP2015216105A (en) * 2014-04-25 2015-12-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
US7923147B2 (en) 2003-05-13 2011-04-12 Mitsubishi Chemical Corporation Layered lithium-nickel-based compound oxide powder and its prodution process
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2008130287A (en) * 2006-11-17 2008-06-05 Matsushita Battery Industrial Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
JP2012084552A (en) * 2012-02-01 2012-04-26 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2014010448A1 (en) * 2012-07-12 2014-01-16 住友金属鉱山株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US10084188B2 (en) 2012-07-12 2018-09-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
WO2015156399A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Electrical device
CN106165181A (en) * 2014-04-11 2016-11-23 日产自动车株式会社 Electric device
JPWO2015156399A1 (en) * 2014-04-11 2017-04-13 日産自動車株式会社 Electrical device
US10199680B2 (en) 2014-04-11 2019-02-05 Nissan Motor Co., Ltd. Electric device
JP2015216105A (en) * 2014-04-25 2015-12-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material

Also Published As

Publication number Publication date
JP3473671B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP3473671B2 (en) Positive active material for non-aqueous electrolyte secondary battery and evaluation method thereof
JP5870930B2 (en) Composite metal oxide, method for producing composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
US10290869B2 (en) Doped lithium-rich layered composite cathode materials
KR102190222B1 (en) Doped nickelate materials
JP3614670B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4960561B2 (en) Lithium cobalt oxide and method for producing the same
CN104011911B (en) Active positive electrode material and non-aqueous lithium secondary battery for non-aqueous secondary batteries
EP3930051B1 (en) Positive electrode material and application thereof
CA2976022C (en) Positive electrode active substance comprising lithium nickel-cobalt-manganese-based composite transition metal layered oxide for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP5765705B2 (en) Composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JPWO2002040404A1 (en) Non-aqueous secondary battery
JP2002124261A (en) Positive electrode active material for lithium secondary battery and battery
CA2831756A1 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process of production thereof
KR20010040161A (en) Active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JPH05283076A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
Kan et al. Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system
JP7220431B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
Li et al. Unravelling the structure and electrochemical performance of Li–Cr–Mn–O cathodes: from spinel to layered
Huang et al. Optimization of synthesis parameters for uniform sphere-like Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as high performance cathode material for lithium ion batteries
Yu et al. Synthesis and electrochemical properties of high-voltage LiNi 0.5 Mn 1.5 O 4 electrode material for Li-ion batteries by the polymer-pyrolysis method
Nithya et al. High-Capacity Sol− Gel Synthesis of LiNi x Co y Mn1− x− y O2 (0≤ x, y≤ 0.5) Cathode Material for Use in Lithium Rechargeable Batteries
Windmüller et al. Impact of fluorination on phase stability, crystal chemistry, and capacity of LiCoMnO4 high voltage spinels
Pavithra et al. Surface Modification and Electrochemical Performance of Al 2 O 3 Coated and Ni-Doped Spinel LiMn 2 O 4 for Aqueous Rechargeable Battery Applications
Yang et al. A simple strategy to prepare the La2Li0. 5Al0. 5O4 modified high-performance ni-rich cathode material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term