JP7124305B2 - Method for producing nickel-manganese-cobalt composite hydroxide - Google Patents
Method for producing nickel-manganese-cobalt composite hydroxide Download PDFInfo
- Publication number
- JP7124305B2 JP7124305B2 JP2017236331A JP2017236331A JP7124305B2 JP 7124305 B2 JP7124305 B2 JP 7124305B2 JP 2017236331 A JP2017236331 A JP 2017236331A JP 2017236331 A JP2017236331 A JP 2017236331A JP 7124305 B2 JP7124305 B2 JP 7124305B2
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- nickel
- composite hydroxide
- cobalt composite
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は一次粒子と二次粒子で構成された、正極活物質の前駆体であるニッケルマンガンコバルト複合水酸化物の製造方法に関する。 The present invention provides secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or nickel- manganese-cobalt composite hydroxides, which are precursors of positive electrode active materials and are composed of primary particles and secondary particles. related to the manufacturing method of
近年、スマートフォンやタブレット端末及びノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な非水系電解質二次電池をはじめ、ハイブリット自動車や電気自動車用の電池として、高出力の二次電池の開発ニーズが拡大している。 In recent years, with the spread of mobile electronic devices such as smartphones, tablet terminals, and notebook computers, high energy density, compact and lightweight non-aqueous electrolyte secondary batteries, as well as batteries for hybrid and electric vehicles, are becoming popular. The development needs for output secondary batteries are expanding.
この様なニーズに対応出来る二次電池として、リチウムイオン二次電池が挙げられる。リチウムイオン二次電池は、正極及び負極のほか、電解液などで構成され、正極及び負極の活物質は、リチウムを脱離や挿入することの可能な材料が用いられている。リチウムイオン二次電池は、現在も、研究・開発が盛んに行われているが、このうち、層状又はスピネル型のリチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池では、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 As a secondary battery that can meet such needs, there is a lithium ion secondary battery. A lithium-ion secondary battery is composed of a positive electrode, a negative electrode, an electrolytic solution, and the like, and a material capable of desorbing and intercalating lithium is used as an active material for the positive electrode and the negative electrode. Lithium ion secondary batteries are still being actively researched and developed. Since a high-class voltage can be obtained, it is being put to practical use as a battery with high energy density.
この中でも、リチウムニッケルマンガンコバルト複合酸化物は、電池容量のサイクル特性が良く、低抵抗で高出力が得られる材料として注目されており、近年では、搭載スペースに制約を受ける電気自動車用電源やハイブリッド車用電源にも好適であり、車載用電源として重要視されている。一般的に、リチウムニッケルマンガンコバルト複合酸化物は、前駆体となるニッケルマンガンコバルト複合水酸化物をリチウム化合物と混合し、焼成する工程によって製造する。 Among these, lithium-nickel-manganese-cobalt composite oxides are attracting attention as a material that has good cycle characteristics of battery capacity, low resistance and high output. It is also suitable as a vehicle power source, and is regarded as important as a vehicle power source. Lithium-nickel-manganese-cobalt composite oxides are generally produced by mixing a precursor nickel-manganese-cobalt composite hydroxide with a lithium compound and calcining the mixture.
このニッケルマンガンコバルト複合水酸化物には、製造工程で用いる原料や薬剤由来の硫酸根、塩素根、ナトリウムなど不純物が含まれる。これらの不純物は、ニッケルマンガンコバルト複合水酸化物とリチウム化合物とを混合し、焼成する工程において、副反応などを誘発してリチウムとの反応を悪化させるために、層状構造であるリチウムニッケルマンガンコバルト複合酸化物の結晶性を低下させる。 This nickel-manganese-cobalt composite hydroxide contains impurities such as sulfate radicals, chlorine radicals and sodium derived from raw materials and chemicals used in the manufacturing process. These impurities induce side reactions and worsen the reaction with lithium in the process of mixing and firing the nickel-manganese-cobalt composite hydroxide and the lithium compound. It lowers the crystallinity of the composite oxide.
不純物の影響で、結晶性が低くなったリチウムニッケルマンガンコバルト複合酸化物は、正極活物質として電池を構成する際、固相内でのリチウムの拡散を阻害して電池容量が低下する。また、これらの不純物は、充放電反応には殆ど寄与しないため、電池の構成において、正極材料の不可逆容量に相当する分は、負極材料を余計に電池に使用せざるを得ない。その結果、電池全体としての重量当り、若しくは体積当りの容量が小さくなり、不可逆容量として負極に余分なリチウムが蓄積されることから、安全性の面からも問題となっている。 Lithium-nickel-manganese-cobalt composite oxide with reduced crystallinity due to the influence of impurities inhibits the diffusion of lithium in the solid phase when forming a battery as a positive electrode active material, resulting in a decrease in battery capacity. In addition, since these impurities hardly contribute to the charge/discharge reaction, in the configuration of the battery, the negative electrode material must be used in excess for the irreversible capacity of the positive electrode material. As a result, the capacity per weight or per volume of the battery as a whole becomes small, and excess lithium accumulates in the negative electrode as irreversible capacity, which poses a safety problem.
不純物としては、硫酸根や塩素根、ナトリウムなどが挙げられ、従来よりそれらの不純物を除去する技術が開示されている。 Impurities include sulfate radicals, chlorine radicals, sodium, and the like, and techniques for removing these impurities have been disclosed.
例えば、特許文献1には、ニオブ含有遷移金属複合水酸化物を得る晶析工程を行い、得られたニオブ含有遷移金属複合水酸化物を、炭酸カリウム、炭酸ナトリウム、炭酸アンモニウムなどの炭酸塩水溶液で洗浄することにより、硫酸根や塩素根を低減させることが開示されている。 For example, in Patent Document 1, a crystallization step is performed to obtain a niobium-containing transition metal composite hydroxide, and the obtained niobium-containing transition metal composite hydroxide is treated with an aqueous solution of a carbonate such as potassium carbonate, sodium carbonate, or ammonium carbonate. It is disclosed that sulfate radicals and chlorine radicals are reduced by washing with.
また、特許文献2には、晶析反応からニッケルマンガンコバルト複合水酸化物を製造する工程において、pH調整に用いるアルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根、塩素根、炭酸根を低減させることが開示されている。 Further, in Patent Document 2, in the step of producing a nickel-manganese-cobalt composite hydroxide from a crystallization reaction, the alkaline solution used for pH adjustment is a mixed solution of an alkali metal hydroxide and a carbonate, thereby removing impurities It is disclosed that the sulfate group, chlorine group, and carbonate group are reduced.
また、特許文献3~4には、晶析工程で得られた粒子内部に空隙構造を有するニッケルマンガン複合水酸化物粒子又はニッケル複合水酸化物粒子を、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸水素ナトリウムなどの炭酸塩水溶液で洗浄することにより、硫酸根や塩素根、ナトリウムを低減させることが開示されている。 Further, in Patent Documents 3 and 4, nickel-manganese composite hydroxide particles or nickel composite hydroxide particles having a void structure inside the particles obtained in the crystallization step are treated with potassium carbonate, sodium carbonate, potassium hydrogencarbonate and It is disclosed that sulfate radicals, chlorine radicals and sodium are reduced by washing with an aqueous carbonate solution such as sodium bicarbonate.
また、特許文献5には、ニッケルアンミン錯体、コバルトアンミン錯体及びM元素源を混合して得たニッケル-コバルト-M元素含有水溶液又は水性分散液を加熱して、ニッケルアンミン錯体及びコバルトアンミン錯体を熱分解させ、硫酸根、塩素根、ナトリウム、鉄などの不純物含有量が少ないニッケル-コバルト-M元素含有複合化合物を用いることが開示されている。 Further, in Patent Document 5, a nickel-cobalt-M element-containing aqueous solution or aqueous dispersion obtained by mixing a nickel ammine complex, a cobalt ammine complex, and an M element source is heated to form a nickel ammine complex and a cobalt ammine complex. It is disclosed to use a nickel-cobalt-M element-containing composite compound that is thermally decomposed and contains less impurities such as sulfate radicals, chlorine radicals, sodium and iron.
しかしながら、特許文献1~2については、ナトリウムの除去について全く触れられていない。また、特許文献3~4については、空隙率が低い2~4%の中実レベルの前駆体においても、依然として、ナトリウムが0.017又は0.001質量%残存しており、ナトリウム低減が不十分である。さらに特許文献5については、熱分解によってニッケル-コバルト-M元素含有複合化合物を得ているため、粒子の球状や粒度分布、比表面積の観点から、正極活物質とした際に、十分な電池特性となるかが疑問視される。また、不純物除去だけでなく、空隙率を高めたさらなる電池特性の向上が期待される。 However, Patent Documents 1 and 2 do not mention removal of sodium at all. In addition, regarding Patent Documents 3 and 4, even in solid-level precursors with a low porosity of 2 to 4%, sodium still remains at 0.017 or 0.001% by mass, and sodium reduction is unsatisfactory. It is enough. Furthermore, regarding Patent Document 5, since a nickel-cobalt-M element-containing composite compound is obtained by thermal decomposition, from the viewpoint of the spherical shape, particle size distribution, and specific surface area of the particles, sufficient battery characteristics are obtained when used as a positive electrode active material. It is questionable whether In addition to removing impurities, it is expected to further improve battery characteristics by increasing the porosity.
そこで本発明の目的は、充放電反応にも殆ど寄与しない不純物のうち、特にナトリウムの含有量を確実に低減させ、かつ空隙率を高めたさらなる電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物の製造方法を提供することを目的とする。 Therefore, the object of the present invention is to develop a lithium-ion secondary battery in which the content of sodium, among impurities that hardly contribute to the charge-discharge reaction, can be reliably reduced, and the porosity can be increased to further improve the battery characteristics. An object of the present invention is to provide a method for producing a nickel- manganese-cobalt composite hydroxide, which is a precursor of a positive electrode active material.
本発明の一態様では、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は前記一次粒子と前記二次粒子で構成された、正極活物質の前駆体であるニッケルマンガンコバルト複合水酸化物の製造方法であって、ニッケル、マンガン、コバルトを含む原料溶液と、アンモニウムイオン供給体を含む溶液と、アルカリ溶液とを添加して得られた反応溶液中で晶析し、遷移金属複合水酸化物を得る晶析工程と、前記晶析工程で得られた前記遷移金属複合水酸化物を、洗浄液で洗浄する洗浄工程とを有し、前記晶析工程における前記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩との混合溶液であり、前記混合溶液の前記アルカリ金属水酸化物に対する前記炭酸塩の比である[CO3 2-]/[OH-]が、0.002~0.050であり、前記晶析工程では、酸化性雰囲気と非酸化性雰囲気の2段階で雰囲気を切り替えて晶析を行い、前記洗浄工程における前記洗浄液は、濃度が0.05mol/L以上の炭酸水素アンモニウム溶液であることを特徴とする。 In one aspect of the present invention, secondary particles in which primary particles containing nickel, manganese, and cobalt are agglomerated, or nickel-manganese-cobalt composite water, which is a precursor of a positive electrode active material and is composed of the primary particles and the secondary particles A method for producing an oxide, wherein crystallization is performed in a reaction solution obtained by adding a raw material solution containing nickel, manganese, and cobalt, a solution containing an ammonium ion donor, and an alkaline solution, and a transition metal composite a crystallization step of obtaining a hydroxide; and a washing step of washing the transition metal composite hydroxide obtained in the crystallization step with a washing liquid, wherein the alkaline solution in the crystallization step contains an alkali metal It is a mixed solution of a hydroxide and a carbonate, and the ratio [CO 3 2− ]/[OH − ] of the carbonate to the alkali metal hydroxide in the mixed solution is 0.002 to 0.002. 050, and in the crystallization step, crystallization is performed by switching the atmosphere in two stages, an oxidizing atmosphere and a non-oxidizing atmosphere, and the cleaning liquid in the cleaning step is hydrogen carbonate having a concentration of 0.05 mol/L or more. It is characterized by being an ammonium solution.
このようにすれば、ナトリウムの含有量を確実に低減させ、かつ空隙率を高めたさらなる電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物の製造方法を提供することができる。 In this way, nickel-manganese-cobalt composite water, which is a precursor of the positive electrode active material of a lithium-ion secondary battery capable of reliably reducing the sodium content and further improving the battery characteristics by increasing the porosity. A method for producing an oxide can be provided.
このとき、本発明の一態様では、前記晶析工程は、さらに核生成工程と粒子成長工程とを有し、前記核生成工程では、液温25℃を基準に測定するpHが、12.0~14.0となる様に、前記アルカリ溶液を前記反応溶液に添加して核生成を行い、前記粒子成長工程では、前記核生成工程で形成された核を含む前記反応溶液を、液温25℃を基準に測定するpHが、10.5~12.0となる様にアルカリ溶液を添加してもよい。 At this time, in one aspect of the present invention, the crystallization step further includes a nucleation step and a particle growth step. 14.0 to 14.0, nuclei are generated by adding the alkaline solution to the reaction solution. An alkaline solution may be added so that the pH measured on the basis of °C is 10.5 to 12.0.
このようにすれば、狭い粒度分布を持つニッケルマンガンコバルト複合水酸化物が得られる。 By doing so, a nickel-manganese-cobalt composite hydroxide having a narrow particle size distribution can be obtained.
このとき、本発明の一態様では、前記洗浄工程を経て得られた前記ニッケルマンガンコバルト複合水酸化物は、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は前記一次粒子と前記二次粒子で構成された、正極活物質の前駆体であるニッケルマンガンコバルト複合水酸化物であり、前記ニッケルマンガンコバルト複合水酸化物に含まれるナトリウム含有量が、0.0005質量%未満であり、前記ニッケルマンガンコバルト複合水酸化物の粒子の空隙率が、20~50%としてもよい。 At this time, in one aspect of the present invention, the nickel-manganese-cobalt composite hydroxide obtained through the washing step is secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or the primary particles and the A nickel-manganese-cobalt composite hydroxide that is a precursor of a positive electrode active material and is composed of secondary particles, wherein the sodium content in the nickel-manganese-cobalt composite hydroxide is less than 0.0005% by mass. , the porosity of the particles of the nickel-manganese-cobalt composite hydroxide may be 20 to 50%.
このようにすれば、ナトリウムの含有量を確実に低減させ、かつ空隙率を高めたさらなる電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物を提供することができる。 In this way, nickel-manganese-cobalt composite water, which is a precursor of the positive electrode active material of a lithium-ion secondary battery capable of reliably reducing the sodium content and further improving the battery characteristics by increasing the porosity. Oxide can be provided.
本発明によれば、特にナトリウムの含有量を確実に低減させ、かつ空隙率を高めたさらなる電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物の製造方法を提供することができる。
According to the present invention , nickel- manganese is a precursor of a positive electrode active material for a lithium-ion secondary battery that can reliably reduce the sodium content and further improve the battery characteristics by increasing the porosity. A method for producing a cobalt composite hydroxide can be provided.
本発明者は、上記課題を解決するために鋭意検討したところ、ニッケルマンガンコバルト複合水酸化物の製造において、晶析工程における反応雰囲気を制御し、晶析工程で用いるアルカリ溶液をアルカリ金属水酸化物と炭酸塩との混合溶液とすることに加えて、晶析工程で得られた遷移金属複合水酸化物を、洗浄工程で炭酸水素塩(重炭酸塩)含有の洗浄液である炭酸水素アンモニウム溶液を用いて洗浄することによって、不純物である硫酸根、塩素根及びナトリウムを、より効率良く、より低濃度に低減出来るとの知見を得て、本発明を完成したものである。以下、本発明の好適な実施の形態について説明する。 As a result of intensive studies to solve the above problems, the present inventors have found that in the production of nickel-manganese-cobalt composite hydroxide, the reaction atmosphere in the crystallization step is controlled, and the alkaline solution used in the crystallization step is replaced with alkali metal hydroxide. In the washing step, the transition metal composite hydroxide obtained in the crystallization step is washed with an ammonium hydrogen carbonate solution, which is a washing liquid containing hydrogen carbonate (bicarbonate). The present invention has been completed based on the knowledge that the impurities of sulfate group, chlorine group and sodium can be reduced more efficiently and to a lower concentration by washing with . Preferred embodiments of the present invention will be described below.
なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物について、下記の順に説明する。
1.ニッケルマンガンコバルト複合水酸化物
2.リチウムニッケルマンガンコバルト複合酸化物
3.ニッケルマンガンコバルト複合水酸化物の製造方法
3-1.晶析工程
3-1-1.核生成工程
3-1-2.粒子成長工程
3-2.洗浄工程
The embodiments described below do not unduly limit the scope of the invention described in the claims, and can be modified without departing from the gist of the invention. Moreover, not all the configurations described in the present embodiment are essential as the solution means of the present invention. A nickel-manganese-cobalt composite hydroxide, a method for producing a nickel-manganese-cobalt composite hydroxide, and a lithium-nickel-manganese-cobalt composite oxide according to one embodiment of the present invention will be described in the following order.
1. Nickel manganese cobalt composite hydroxide 2 . Lithium nickel manganese cobalt composite oxide 3 . Method for producing nickel-manganese-cobalt composite hydroxide 3-1. Crystallization step 3-1-1. Nucleation step 3-1-2. Particle growth step 3-2. cleaning process
<1.ニッケルマンガンコバルト複合水酸化物>
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物は、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は上記一次粒子と上記二次粒子で構成された、正極活物質の前駆体である。
<1. Nickel manganese cobalt composite hydroxide>
A nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention is a positive electrode active material composed of secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or the primary particles and the secondary particles. is a precursor of
そして、上記ニッケルマンガンコバルト複合水酸化物に含まれるナトリウム含有量が、0.0005質量%未満であり、上記ニッケルマンガンコバルト複合水酸化物の粒子の空隙率が、20~50%であることを特徴とする。以下、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物について具体的に説明する。 And the sodium content contained in the nickel-manganese-cobalt composite hydroxide is less than 0.0005% by mass, and the porosity of the particles of the nickel-manganese-cobalt composite hydroxide is 20 to 50%. Characterized by A nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention will be specifically described below.
[粒子の組成]
ニッケルマンガンコバルト複合水酸化物は、その組成が、一般式:NixMnyCozMt(OH)2+a(但し、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.90、0.10≦z≦0.50、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wの中の1種以上)で表される様に、調整されることが好ましい。
[Particle composition]
The nickel-manganese-cobalt composite hydroxide has a composition represented by the general formula: Ni x Mny Co z M t (OH) 2 + a (where x + y + z + t = 1, 0.20 ≤ x ≤ 0.80, 0.10 ≤ y ≤ 0.90, 0.10 ≤ z ≤ 0.50, 0 ≤ t ≤ 0.10, 0 ≤ a ≤ 0.5, M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, one or more of Mo and W).
上記一般式において、ニッケル含有量を示すxは、0.20≦x≦0.80が好ましい。また、ニッケル含有量を示すxは、電気特性、熱安定性を考慮するとx≦0.6がより好ましい。 In the above general formula, x indicating the nickel content is preferably 0.20≦x≦0.80. Further, x indicating the nickel content is more preferably x≦0.6 in consideration of electrical properties and thermal stability.
また、マンガン含有量を示すyは、0.10≦y≦0.90が好ましい。この範囲でマンガンを添加すると、電池の正極活物質として用いられた場合に電池の耐久特性や安全性をより向上させることが出来る。yが0.10未満になると、電池の耐久特性や安全性の向上という効果を十分に得ることが出来ず、一方0.9を超えると、Redox反応に貢献する金属元素が減少し、電池容量が低下する場合があるため好ましくない。 Moreover, y indicating the manganese content is preferably 0.10≦y≦0.90. When manganese is added in this range, the durability and safety of the battery can be further improved when used as the positive electrode active material of the battery. When y is less than 0.10, it is not possible to sufficiently obtain the effect of improving durability and safety of the battery. is not preferable because it may decrease
また、上記一般式において、コバルト含有量を示すzは、0.10≦z≦0.50が好ましい。コバルトを適度に添加することで、サイクル特性の向上や充放電に伴うLiの脱離挿入による結晶格子の膨張収縮挙動を低減出来るが、zが0.10未満になると、結晶格子の膨張収縮挙動の低減効果を十分に得られにくいため好ましくない。一方、コバルトの添加量が多過ぎてzが0.5を超えると、初期放電容量の低下が大きくなる場合があり、更にコスト面で不利となる問題もあるため好ましくない。 In the above general formula, z, which indicates the cobalt content, is preferably 0.10≦z≦0.50. By adding an appropriate amount of cobalt, it is possible to improve the cycle characteristics and reduce the expansion and contraction behavior of the crystal lattice due to the desorption/insertion of Li during charging and discharging. It is not preferable because it is difficult to sufficiently obtain the effect of reducing the On the other hand, if the amount of cobalt added is too large and z exceeds 0.5, the initial discharge capacity may decrease significantly, and furthermore, there is a problem of being disadvantageous in terms of cost, which is not preferable.
添加元素Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wの中の1種以上であり、サイクル特性や出力特性などの電池特性を向上させるために、添加するものである。添加元素Mの含有量を示すtは、0≦t≦0.10が好ましい。tが0.1を超える場合には、Redox反応に貢献する金属元素が減少して、電池容量が低下する場合があるため好ましくない。 The additive element M is one or more of Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W, and is added in order to improve battery characteristics such as cycle characteristics and output characteristics. It is. t, which indicates the content of the additional element M, preferably satisfies 0≦t≦0.10. If t exceeds 0.1, the amount of metal elements that contribute to the Redox reaction may decrease, and the battery capacity may decrease, which is not preferable.
その他、粒子の組成に関する分析方法は、特に限定されないが、例えば、酸分解-ICP発光分光分析法などによる、化学分析手法から求めることが出来る。 In addition, the analysis method for the composition of the particles is not particularly limited, but it can be obtained from a chemical analysis method such as acid decomposition-ICP emission spectrometry.
[粒子構造]
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物は、複数の一次粒子が凝集した二次粒子、又はその一次粒子と二次粒子の両者で構成される。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、菱面体状などの様々な形状を採り得る。また、複数の一次粒子の凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に粒子の長径方向が凝集する場合も本発明に適用することは可能である。
[Particle structure]
A nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention is composed of secondary particles in which a plurality of primary particles are aggregated, or both of the primary particles and secondary particles. The shape of the primary particles that make up the secondary particles can take various shapes such as plate-like, needle-like, rectangular parallelepiped, elliptical, and rhombohedral shapes. In addition, the aggregation state of a plurality of primary particles can also be applied to the present invention, in addition to the case where the primary particles are aggregated in random directions, and the case where the major diameter direction of the particles is aggregated radially from the center.
凝集状態としては、板状や針状の一次粒子が、ランダムな方向に凝集して二次粒子を形成していることが好ましい。この様な構造の場合は、一次粒子間にほぼ均一な空隙が生じて、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物が二次粒子内へ行き渡り、リチウムの拡散が十分に行われるからである。 As for the aggregation state, it is preferable that plate-like or needle-like primary particles aggregate in random directions to form secondary particles. In the case of such a structure, almost uniform voids are generated between the primary particles, and when mixed with the lithium compound and fired, the molten lithium compound spreads throughout the secondary particles, and lithium diffuses sufficiently. for it will be
なお、一次粒子及び二次粒子の形状観察方法は、特に限定されないが、ニッケルマンガンコバルト複合水酸化物の断面を、走査型電子顕微鏡(SEM)などを用いて観察することにより測定出来る。 Although the method for observing the shapes of the primary particles and secondary particles is not particularly limited, they can be measured by observing a cross section of the nickel-manganese-cobalt composite hydroxide using a scanning electron microscope (SEM) or the like.
[粒子内部構造]
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物は、二次粒子内部に中空構造を有する。この中空構造を有する、ニッケルマンガンコバルト複合水酸化物を前駆体とした、リチウム金属複合酸化物は、正極活物質として用いられた際に、電解液との接触面積が増加することにより、出力特性に優れる。
[Particle internal structure]
A nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention has a hollow structure inside secondary particles. The nickel-manganese-cobalt composite hydroxide, which has this hollow structure, is used as a precursor of the lithium metal composite oxide. Excellent for
ところで、「二次粒子内部に中空構造を有する」とは、二次粒子中心部の空間からなる中空部と、その外側の外殻部で構成される構造を言う。図1に示すように、この中空構造は、ニッケルマンガンコバルト複合水酸化物のほか、リチウム金属複合酸化物を、断面SEM画像で示す様に、走査型電子顕微鏡によって断面を観察することで確認出来る。 By the way, "having a hollow structure inside the secondary particle" refers to a structure composed of a hollow portion which is a space in the center of the secondary particle and an outer shell portion outside the hollow portion. As shown in FIG. 1, this hollow structure can be confirmed by observing the cross section of nickel-manganese-cobalt composite hydroxide and lithium metal composite oxide with a scanning electron microscope, as shown in the cross-sectional SEM image. .
また、中空構造を有する、ニッケルマンガンコバルト複合水酸化物は、その粒子の断面観察において計測される空隙率が10~90%であることが好ましく、更に、20~50%であることが、より好ましい。かつ、中空構造を有する、リチウム金属複合酸化物も、その粒子の断面観察において計測される空隙率が10~90%であることが好ましく、更に、20~50%であることが、より好ましい。これによって、得られる正極活物質の嵩密度を低下させ過ぎることなく、粒子強度を許容範囲内に保ちながら、正極活物質と電解液との接触面積を十分なものにすることができ、電池特性の向上が可能となる。 In addition, the nickel-manganese-cobalt composite hydroxide having a hollow structure preferably has a porosity of 10 to 90%, more preferably 20 to 50%, as measured by cross-sectional observation of the particles. preferable. In addition, the lithium metal composite oxide having a hollow structure also preferably has a porosity of 10 to 90%, more preferably 20 to 50%, as measured by cross-sectional observation of the particles. As a result, the contact area between the positive electrode active material and the electrolyte can be made sufficient while maintaining the particle strength within an allowable range without excessively reducing the bulk density of the obtained positive electrode active material, and the battery characteristics can be improved.
なお、本発明では、ニッケルマンガンコバルト複合水酸化物及びリチウム金属複合酸化物を、中空構造にする。例えば、混合及び焼成時に、ニッケル、マンガン、コバルトなどの遷移金属の供給源となる金属複合水酸化物について、その製造工程中の晶析条件を調整することなどにより、中実構造のもの、中空構造のもの、多孔構造のもの、それぞれを組み合わせや割合で混在させることも可能であり、得られた金属複合酸化物は、中実品、中空品、多孔品を、ただ単に混合したものと比べて、全体的な組成や粒子径を安定させられる利点がある。 In addition, in the present invention, the nickel-manganese-cobalt composite hydroxide and the lithium-metal composite oxide have a hollow structure. For example, by adjusting the crystallization conditions during the manufacturing process for metal composite hydroxides that serve as a supply source of transition metals such as nickel, manganese, and cobalt during mixing and firing, solid structures and hollow structures can be obtained. It is also possible to mix structures and porous structures in combination and proportions, and the obtained metal composite oxide is better than simply mixing solid, hollow, and porous products. This has the advantage of stabilizing the overall composition and particle size.
[平均粒径(MV)]
ニッケルマンガンコバルト複合水酸化物は、粒子の平均粒径が3~20μmに調整されていることが好ましい。平均粒径が3μm未満の場合には、正極を形成した時に、粒子の充填密度が低下して正極の容積当りの電池容量が低下する場合があるため好ましくない。その一方、平均粒径が20μmを超えると、正極活物質の比表面積が低下し、電池の電解液との界面が減少することにより正極の抵抗が上昇して電池の出力特性が低下する場合があるため好ましくない。従って、ニッケルマンガンコバルト複合水酸化物は、粒子の平均粒径を3~20μm、好ましくは3~15μm、より好ましくは4~12μmとなる様に調整すれば、この正極活物質を正極材料に用いたリチウムイオン二次電池において、容積当りの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好である。
[Average particle size (MV)]
The nickel-manganese-cobalt composite hydroxide is preferably adjusted to have an average particle size of 3 to 20 μm. If the average particle size is less than 3 μm, the packing density of the particles may decrease when the positive electrode is formed, and the battery capacity per volume of the positive electrode may decrease, which is not preferable. On the other hand, if the average particle diameter exceeds 20 μm, the specific surface area of the positive electrode active material is reduced, and the interface with the electrolyte solution of the battery is reduced, which may increase the resistance of the positive electrode and reduce the output characteristics of the battery. I don't like it because Therefore, if the nickel-manganese-cobalt composite hydroxide is adjusted to have an average particle size of 3 to 20 μm, preferably 3 to 15 μm, more preferably 4 to 12 μm, this positive electrode active material can be used as a positive electrode material. In the lithium ion secondary battery, the battery capacity per volume can be increased, the safety is high, and the cycle characteristics are good.
また、平均粒径の測定方法は、特に限定されないが、例えば、レーザー回折・散乱法を用いて測定した体積基準分布から求めることが出来る。 Also, the method for measuring the average particle diameter is not particularly limited, but for example, it can be obtained from the volume standard distribution measured using the laser diffraction/scattering method.
[不純物含有量]
一般的に、ニッケルマンガンコバルト複合水酸化物は、不純物として硫酸根、塩素根、ナトリウムを含有する。これらの不純物は、リチウムとの反応を悪化させる原因となり、充放電反応にも殆ど寄与しないため、可能な限り除去し、その含有量を低減することが好ましい。従来から、それらの不純物を除去する技術が開示されているが、それらでは未だ不十分である。
[Impurity content]
Generally, nickel-manganese-cobalt composite hydroxide contains sulfate group, chlorine group and sodium as impurities. Since these impurities cause deterioration of the reaction with lithium and hardly contribute to the charge/discharge reaction, it is preferable to remove them as much as possible and reduce their content. Conventionally, techniques for removing those impurities have been disclosed, but they are still insufficient.
そこで本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物に含まれるナトリウム含有量が、0.0005質量%未満であることを特徴とする。このようにすれば、ナトリウムの含有量を確実に低減させ、電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物を提供することができる。 Therefore, the sodium content contained in the nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention is characterized by being less than 0.0005% by mass. In this way, it is possible to reliably reduce the sodium content and provide a nickel-manganese-cobalt composite hydroxide that is a precursor of a positive electrode active material for a lithium-ion secondary battery capable of improving battery characteristics. can.
また、上記ニッケルマンガンコバルト複合水酸化物に含まれる硫酸根含有量が、0.2質量%以下、かつ塩素根含有量が0.01質量%以下であることが好ましい。このようにすれば、硫酸根、塩素根及びナトリウムの含有量を確実に低減させ、電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物を提供することができる。 In addition, it is preferable that the nickel-manganese-cobalt composite hydroxide has a sulfate group content of 0.2% by mass or less and a chlorine group content of 0.01% by mass or less. In this way, the nickel-manganese-cobalt composite hydroxide, which is a precursor of the positive electrode active material of a lithium ion secondary battery, can reliably reduce the contents of sulfate radicals, chlorine radicals and sodium, and can improve battery characteristics. can provide things.
各不純物の含有量については、例えば、以下に示す分析方法を用いて求めることが出来る。ナトリウムは、酸分解-原子吸光分析法や、酸分解-ICP発光分光分析法などにより求めることが出来る。また、硫酸根は、ニッケルマンガンコバルト複合水酸化物の全硫黄含有量を、燃焼赤外線吸収法や、酸分解-ICP発光分光分析法などで分析して、この全硫黄含有量を硫酸根(SO4 2-)に換算することにより求めることが出来る。また、塩素根は、ニッケルマンガンコバルト複合水酸化物を直接、又は蒸留操作で含まれる塩素根を塩化銀などの形で分離し、蛍光X線(XRF)分析法で分析することにより求めることが出来る。 The content of each impurity can be obtained, for example, using the analysis method shown below. Sodium can be determined by acid decomposition-atomic absorption spectrometry, acid decomposition-ICP emission spectrometry, or the like. In addition, the total sulfur content of the nickel-manganese-cobalt composite hydroxide is analyzed by the combustion infrared absorption method, the acid decomposition-ICP emission spectroscopic analysis method, etc., and the total sulfur content is determined by the sulfuric acid radical (SO 4 2- ). In addition, the chlorine root can be obtained by separating the chlorine root contained in the nickel-manganese-cobalt composite hydroxide directly or by distillation in the form of silver chloride or the like and analyzing it by X-ray fluorescence (XRF) analysis. I can.
[粒度分布]
ニッケルマンガンコバルト複合水酸化物は、その粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.55以下となる様に調整されていることが好ましい。
[Particle size distribution]
The nickel-manganese-cobalt composite hydroxide is preferably adjusted so that [(d90-d10)/average particle diameter], which is an index showing the spread of the particle size distribution of the particles, is 0.55 or less.
仮に、粒度分布が広範囲になっており、その粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55を超える場合は、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粒子(大径粒子)が、多く存在し易くなる。 If the particle size distribution is wide and [(d90-d10)/average particle size], which is an index showing the spread of the particle size distribution, exceeds 0.55, the particle size is larger than the average particle size. A large number of very small fine particles and particles having a very large particle size with respect to the average particle size (large-diameter particles) tend to exist.
この様な、前駆体の段階における粒度分布の特徴は、焼成工程後に得られる正極活物質にも、大きな影響を及ぼす。微粒子が多く存在する正極活物質を用いて正極を形成した場合は、微粒子の局所的反応に起因して発熱する恐れがあり、安全性が低下する場合があるだけでなく、比表面積が大きい微粒子が選択的に劣化するので、サイクル特性が悪化する場合があるため好ましくない。その一方、大径粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加による電池出力が低下する場合があるため好ましくない。 Such characteristics of the particle size distribution in the precursor stage also greatly affect the positive electrode active material obtained after the firing process. When a positive electrode is formed using a positive electrode active material containing a large amount of fine particles, heat may be generated due to local reactions of the fine particles. is selectively deteriorated, and the cycle characteristics may deteriorate, which is not preferable. On the other hand, when the positive electrode is formed using a positive electrode active material in which many large particles are present, the reaction area between the electrolyte and the positive electrode active material cannot be sufficiently obtained, and the reaction resistance increases, resulting in a decrease in battery output. It is not preferable because there are cases.
故に、前駆体であるニッケルマンガンコバルト複合水酸化物の粒度分布において、〔(d90-d10)/平均粒径〕が、0.55以下であることが好ましく、正極活物質とした際の微粒子や大径粒子の割合が少なくなるので、この正極活物質を正極に用いたリチウムイオン二次電池では、より安全性に優れ、良好なサイクル特性及び電池出力を得ることが出来る。 Therefore, in the particle size distribution of the precursor nickel-manganese-cobalt composite hydroxide, [(d90-d10)/average particle size] is preferably 0.55 or less, and fine particles or Since the ratio of large-diameter particles is reduced, a lithium ion secondary battery using this positive electrode active material for the positive electrode is more excellent in safety, and can obtain good cycle characteristics and battery output.
なお、粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕では、d10は各粒径における粒子数を粒径が小さいほうから累積した時、その累積体積が全粒子の合計体積の10%となる粒径を意味している。これに対して、d90は各粒径における粒子数を粒径が小さいほうから累積した時、その累積体積が全粒子の合計体積の90%となる粒径を意味している。平均粒径や、d90、d10を求める方法は、特に限定されないが、例えば、レーザー回折・散乱法を用いて測定した体積基準分布から求めることが出来る。 In the index [(d90-d10)/average particle size] indicating the spread of the particle size distribution, d10 is the total volume of all particles when the number of particles in each particle size is accumulated from the smaller particle size. means the particle size that is 10% of the On the other hand, d90 means the particle size at which the cumulative volume becomes 90% of the total volume of all particles when the number of particles in each particle size is accumulated from the smaller particle size. Methods for determining the average particle size, d90, and d10 are not particularly limited, but they can be determined, for example, from a volume standard distribution measured using a laser diffraction/scattering method.
[比表面積]
ニッケルマンガンコバルト複合水酸化物は、比表面積が10~80m2/gとなる様に調整されていることが好ましく、粒子に空隙部が無い中実型のものであれば、更なる電池特性の安定のため、10~20m2/gとなる様に調整されていることがより好ましい。比表面積が上記範囲であれば、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物と接触出来る粒子表面積が十分確保でき、かつ正極活物質となった際の粒子強度も満足出来るからである。
[Specific surface area]
The nickel-manganese-cobalt composite hydroxide is preferably adjusted to have a specific surface area of 10 to 80 m 2 /g. For stability, it is more preferably adjusted to 10 to 20 m 2 /g. If the specific surface area is within the above range, a sufficient surface area of the particles that can come into contact with the molten lithium compound can be ensured when mixed with the lithium compound and fired, and the particle strength of the positive electrode active material can be satisfied. be.
一方、比表面積が10m2/gを下回ると、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケルマンガンコバルト複合酸化物の結晶性が低下し、正極材料としてリチウムイオン二次電池を構成する時、固相内でのリチウムの拡散を阻害して容量が低下する懸念性がある。また、比表面積が80m2/gを超えると、リチウム化合物と混合し焼成する際に、結晶成長が進み過ぎて、層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、充放電容量が減少する場合があるため好ましくない。 On the other hand, when the specific surface area is less than 10 m 2 /g, the contact with the molten lithium compound becomes insufficient when mixed with the lithium compound and fired, and the crystallinity of the resulting lithium-nickel-manganese-cobalt composite oxide decreases. However, when constructing a lithium ion secondary battery as a positive electrode material, there is a concern that the diffusion of lithium in the solid phase is hindered and the capacity decreases. In addition, when the specific surface area exceeds 80 m 2 /g, when mixed with a lithium compound and fired, crystal growth proceeds too much, and nickel is mixed in the lithium layer of the lithium-transition metal composite oxide, which is a layered compound. may occur and the charge/discharge capacity may decrease, which is not preferable.
更には、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物のように、二次粒子中心部に空間を持つ中空構造のものであれば、比表面積が30~40m2/gとなる様に調整されていることが、より好ましい。比表面積が30m2/g未満では、所定の空隙率が得にくく、焼成時におけるリチウム化合物との反応面積を、十分に確保することが出来ない。比表面積が40m2/gを超えると、中空構造を有する正極活物質となった際に、充填性が悪くなる場合がある。 Furthermore, like the nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention, if it has a hollow structure with a space in the center of the secondary particles, the specific surface area will be 30 to 40 m 2 /g. It is more preferable that they are adjusted in the same manner. If the specific surface area is less than 30 m 2 /g, it is difficult to obtain a predetermined porosity, and a sufficient reaction area with the lithium compound cannot be secured during firing. If the specific surface area exceeds 40 m 2 /g, the fillability may deteriorate when the positive electrode active material has a hollow structure.
比表面積の測定方法は、特に限定されないが、例えば、BET多点法や、BET1点法による、窒素ガス吸着・脱離法などにより求めることが出来る。 The method for measuring the specific surface area is not particularly limited, but it can be obtained, for example, by a BET multi-point method, a BET single-point method, a nitrogen gas adsorption/desorption method, or the like.
図1に、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の断面SEM写真を示す。このように、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物は、図1に示すように内部構造が中空構造となっている。 FIG. 1 shows a cross-sectional SEM photograph of a nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention. Thus, the nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention has a hollow internal structure as shown in FIG.
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物によれば、特にナトリウムの含有量を確実に低減させ、電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体を提供することができる。 According to the nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention, it is a positive electrode active material precursor for a lithium ion secondary battery that can reliably reduce the sodium content and improve the battery characteristics. can provide.
<2.リチウムニッケルマンガンコバルト複合酸化物>
本発明の一実施形態に係るリチウムニッケルマンガンコバルト複合酸化物は、リチウム、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は上記一次粒子と上記二次粒子で構成される。そして、上記リチウムニッケルマンガンコバルト複合酸化物に含まれるナトリウム含有量が0.0005質量%未満であり、上記リチウムニッケルマンガンコバルト複合酸化物に含まれるナトリウム含有量が0.0005質量%未満であり、上記リチウムニッケルマンガンコバルト複合酸化物の空隙率が20~50%であることを特徴とする。
<2. Lithium Nickel Manganese Cobalt Composite Oxide>
A lithium-nickel-manganese-cobalt composite oxide according to an embodiment of the present invention is composed of secondary particles in which primary particles containing lithium, nickel, manganese, and cobalt are aggregated, or the primary particles and the secondary particles. The sodium content in the lithium-nickel-manganese-cobalt composite oxide is less than 0.0005% by mass, and the sodium content in the lithium-nickel-manganese-cobalt composite oxide is less than 0.0005% by mass, The lithium-nickel-manganese-cobalt composite oxide has a porosity of 20 to 50%.
また、上記リチウムニッケルマンガンコバルト複合酸化物に含まれる硫酸根含有量が、0.15質量%以下、塩素根含有量が0.005質量%以下、かつMe席占有率が93.0%以上であることが好ましい。 Further, the lithium-nickel-manganese-cobalt composite oxide has a sulfate group content of 0.15% by mass or less, a chlorine group content of 0.005% by mass or less, and a Me site occupancy of 93.0% or more. Preferably.
上記のニッケルマンガンコバルト複合水酸化物は、リチウム化合物と混合し焼成することでリチウムニッケルマンガンコバルト複合酸化物を生成することが出来る。そして、上記のリチウムニッケルマンガンコバルト複合酸化物は、リチウムイオン二次電池用の正極活物質の原料として用いることが出来る。 The above nickel-manganese-cobalt composite hydroxide can be mixed with a lithium compound and fired to produce a lithium-nickel-manganese-cobalt composite oxide. The above lithium-nickel-manganese-cobalt composite oxide can be used as a raw material for a positive electrode active material for lithium-ion secondary batteries.
正極活物質として用いられるリチウムニッケルマンガンコバルト複合酸化物は、前駆体であるニッケルマンガンコバルト複合水酸化物と、炭酸リチウム(Li2CO3:融点723℃)や、水酸化リチウム(LiOH:融点462℃)のほか、硝酸リチウム(LiNO3:融点261℃)、塩化リチウム(LiCl:融点613℃)、硫酸リチウム(Li2SO4:融点859℃)などのリチウム化合物との混合後、焼成工程を経ることで得られる。 The lithium-nickel-manganese-cobalt composite oxide used as the positive electrode active material includes the precursor nickel-manganese-cobalt composite hydroxide, lithium carbonate (Li 2 CO 3 : melting point 723° C.), and lithium hydroxide (LiOH: melting point 462° C.). ° C.), lithium nitrate (LiNO 3 : melting point 261° C.), lithium chloride (LiCl: melting point 613° C.), and lithium sulfate (Li 2 SO 4 : melting point 859° C.). obtained through time.
リチウム化合物に関しては、取り扱いの容易さや品質の安定性を考慮すると、炭酸リチウム、又は水酸化リチウムを用いることが特に好ましい。 Regarding the lithium compound, it is particularly preferable to use lithium carbonate or lithium hydroxide in consideration of ease of handling and stability of quality.
この焼成工程では、リチウム化合物の構成成分ともなる、炭酸根、水酸基、硝酸根、塩素根、硫酸根は揮発するが、ごく一部は正極活物質に残存する。その他、ナトリウムなどの不揮発成分をはじめ、粒度分布や比表面積のほか、二次粒子の中空構造については、前駆体であるニッケルマンガンコバルト複合水酸化物の特徴を、ほぼ引き継ぐこととなる。 In this baking step, carbonate groups, hydroxyl groups, nitrate groups, chlorine groups, and sulfate groups, which are constituents of the lithium compound, are volatilized, but a very small portion remains in the positive electrode active material. In addition, non-volatile components such as sodium, particle size distribution, specific surface area, and the hollow structure of the secondary particles almost inherit the characteristics of the precursor nickel-manganese-cobalt composite hydroxide.
本発明の一実施形態に係るリチウムニッケルマンガンコバルト複合酸化物によれば、特にナトリウムの含有量を確実に低減させ、かつ空隙率を高めたさらなる電池特性の向上が可能なリチウムイオン二次電池の正極活物質を提供することができる。 According to the lithium-nickel-manganese-cobalt composite oxide according to one embodiment of the present invention, a lithium-ion secondary battery capable of further improving the battery characteristics by surely reducing the sodium content and increasing the porosity can be produced. A positive electrode active material can be provided.
<3.ニッケルマンガンコバルト複合水酸化物の製造方法>
次に本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の製造方法について、図2を用いて説明する。本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の製造方法は、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は上記一次粒子と上記二次粒子で構成された、正極活物質の前駆体の製造方法である。そして、図2に示すように、晶析工程S10と洗浄工程S20とを有する。
<3. Method for producing nickel-manganese-cobalt composite hydroxide>
Next, a method for producing a nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention will be described with reference to FIG. A method for producing a nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention is composed of secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or the primary particles and the secondary particles, This is a method for producing a precursor of a positive electrode active material. Then, as shown in FIG. 2, it has a crystallization step S10 and a washing step S20.
晶析工程S10では、ニッケル、マンガン、コバルトを含む原料溶液と、アンモニウムイオン供給体を含む溶液と、アルカリ溶液とを添加して得られた反応溶液中で晶析し、遷移金属複合水酸化物を得る。そして、洗浄工程S20では、上記晶析工程S10で得られた上記遷移金属複合水酸化物を、洗浄液で洗浄する。 In the crystallization step S10, the transition metal composite hydroxide is crystallized in a reaction solution obtained by adding a raw material solution containing nickel, manganese, and cobalt, a solution containing an ammonium ion donor, and an alkaline solution. get Then, in the washing step S20, the transition metal composite hydroxide obtained in the crystallization step S10 is washed with a washing liquid.
また、上記晶析工程S10における上記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩との混合溶液であり、上記混合溶液の上記アルカリ金属水酸化物に対する上記炭酸塩のモル比である[CO3 2-]/[OH-]が、0.002~0.050であり、上記晶析工程S10では、酸化性雰囲気と非酸化性雰囲気の2段階で雰囲気を切り替えて晶析を行い、上記洗浄工程S20における上記洗浄液は、濃度が0.05mol/L以上の炭酸水素アンモニウム溶液であることを特徴とする。以下、工程ごとに詳細に説明する。 Further, the alkaline solution in the crystallization step S10 is a mixed solution of an alkali metal hydroxide and a carbonate, and the molar ratio of the carbonate to the alkali metal hydroxide in the mixed solution is [CO 3 2− ]/[OH − ] is 0.002 to 0.050, and in the crystallization step S10, crystallization is performed by switching the atmosphere between an oxidizing atmosphere and a non-oxidizing atmosphere, followed by the washing. The cleaning liquid in step S20 is characterized by being an ammonium hydrogen carbonate solution having a concentration of 0.05 mol/L or more. Each step will be described in detail below.
<3-1.晶析工程>
晶析工程S10では、ニッケル、マンガン、コバルトを含む原料溶液と、アンモニウムイオン供給体を含む溶液と、アルカリ溶液とを添加して得られた反応溶液中で晶析し、遷移金属複合水酸化物を得る。
<3-1. Crystallization process>
In the crystallization step S10, the transition metal composite hydroxide is crystallized in a reaction solution obtained by adding a raw material solution containing nickel, manganese, and cobalt, a solution containing an ammonium ion donor, and an alkaline solution. get
また、晶析工程S10は、さらに核生成工程S11と、粒子成長工程S12とを有することが好ましい。核生成工程S11では、液温25℃を基準に測定するpHが12.0~14.0となる様、アルカリ溶液を添加し反応溶液中で核生成を行い、粒子成長工程S12では、核生成工程S11で形成された核を含有する反応溶液中に、液温25℃を基準に測定するpHが10.5~12.0となる様、アルカリ溶液を添加することが好ましい。詳細は後述する。 Moreover, the crystallization step S10 preferably further includes a nucleation step S11 and a grain growth step S12. In the nucleation step S11, an alkaline solution is added and nuclei are generated in the reaction solution so that the pH measured at a liquid temperature of 25° C. is 12.0 to 14.0. It is preferable to add an alkaline solution to the reaction solution containing the nuclei formed in step S11 so that the pH is 10.5 to 12.0 when measured at a liquid temperature of 25°C. Details will be described later.
従来の連続晶析法では、核生成反応と核成長反応とが、同じ反応槽内で同時に進行するため、得られる前駆体の粒度分布が広範囲となっていた。これに対して、本発明におけるニッケルマンガンコバルト複合水酸化物の製造方法は、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することで、両工程を同じ反応槽内で行ったとしても、狭い粒度分布を持つ遷移金属複合水酸化物が得られる。また、アルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減することが出来る。 In the conventional continuous crystallization method, the nucleation reaction and the nucleation growth reaction proceed simultaneously in the same reaction vessel, so the particle size distribution of the obtained precursor is wide. On the other hand, in the method for producing a nickel-manganese-cobalt composite hydroxide according to the present invention, the time during which the nucleation reaction mainly occurs (nucleation step) and the time during which the particle growth reaction occurs mainly (particle growth step) are clearly defined. By separating, even if both steps are performed in the same reactor, a transition metal composite hydroxide having a narrow particle size distribution can be obtained. Further, by using a mixed solution of an alkali metal hydroxide and a carbonate as the alkaline solution, impurities such as sulfate groups can be reduced.
以下に、本発明におけるニッケルマンガンコバルト複合水酸化物の製造方法で用いる材料や、条件について詳細に説明する。 Materials and conditions used in the method for producing a nickel-manganese-cobalt composite hydroxide according to the present invention are described in detail below.
[ニッケル、マンガン、コバルトを含む原料溶液]
ニッケル、マンガン、コバルトを含む原料溶液に用いられる、ニッケル塩、マンガン塩、コバルト塩などの金属塩としては、水溶性の化合物であれば、特に限定するものではないが、硫酸塩、硝酸塩、塩化物などを使用することが出来る。例えば、硫酸ニッケル、硫酸マンガン、硫酸コバルトを用いるのが好ましい。
[Raw material solution containing nickel, manganese and cobalt]
Metal salts such as nickel salts, manganese salts, and cobalt salts used in the raw material solution containing nickel, manganese, and cobalt are not particularly limited as long as they are water-soluble compounds. You can use things. For example, nickel sulfate, manganese sulfate, and cobalt sulfate are preferably used.
また、必要に応じて、1種以上の添加元素Mを含む化合物を、所定の割合で混合し、原料溶液を作製することも出来る。この場合の晶析工程S10では、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wの中の1種以上を含む化合物を用いることが好ましく、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることが出来る。 In addition, if necessary, compounds containing one or more additive elements M can be mixed at a predetermined ratio to prepare a raw material solution. In the crystallization step S10 in this case, it is preferable to use a compound containing one or more of Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo and W. Titanium sulfate, ammonium peroxotitanate , potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, and ammonium tungstate.
また、晶析によって得られたニッケルマンガンコバルト複合水酸化物を、1種以上の添加元素Mを含む水溶液と混合してスラリー化し、pHを調整することにより、1種以上の添加元素Mを含む化合物で、ニッケルマンガンコバルト複合水酸化物を被覆してもよい。 Further, the nickel-manganese-cobalt composite hydroxide obtained by crystallization is mixed with an aqueous solution containing one or more additional elements M to form a slurry, and the pH is adjusted to obtain one or more additional elements M. The compound may coat the nickel-manganese-cobalt composite hydroxide.
原料溶液の濃度は、金属塩の合計で1.0~2.6mol/Lとすることが好ましく、1.0~2.2mol/Lとすることがより好ましい。1.0mol/L未満であると、得られる水酸化物スラリー濃度が低く、生産性に劣る。一方、2.6mol/Lを超えると、-5℃以下で結晶析出や凍結が起こり、設備の配管を詰まらせる恐れがあり、配管の保温若しくは加温を行わなければならず、コストが掛かる。 The concentration of the raw material solution is preferably 1.0 to 2.6 mol/L, more preferably 1.0 to 2.2 mol/L in total of the metal salts. If it is less than 1.0 mol/L, the obtained hydroxide slurry concentration is low, resulting in poor productivity. On the other hand, if it exceeds 2.6 mol/L, crystal precipitation or freezing occurs at -5°C or lower, which may clog the pipes of the equipment, and the pipes must be kept warm or heated, which increases costs.
更に、原料溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30~250g/L、好ましくは80~150g/Lになる様にすることが好ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、250g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがある。 Furthermore, the amount of the raw material solution supplied to the reaction tank is preferably such that the concentration of the crystallized substance at the time of finishing the crystallization reaction is approximately 30 to 250 g/L, preferably 80 to 150 g/L. . If the crystallized substance concentration is less than 30 g/L, the aggregation of the primary particles may be insufficient, and if it exceeds 250 g/L, the mixed aqueous solution to be added may not diffuse sufficiently in the reactor. However, the grain growth may be biased.
[アンモニウムイオン供給体]
反応溶液中のアンモニウムイオン供給体は、水溶性化合物ならば、特に限定するものではなく、アンモニア水、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができ、例えば、アンモニア水、硫酸アンモニウムを用いるのが好ましい。
[Ammonium ion donor]
The ammonium ion donor in the reaction solution is not particularly limited as long as it is a water-soluble compound, and ammonia water, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc. can be used. Ammonium sulfate is preferably used.
反応溶液中のアンモニウムイオン濃度は、好ましくは3~25g/L、より好ましくは5~20g/L、更に好ましくは5~15g/Lとなる様に調節する。反応溶液中にアンモニウムイオンが存在することにより、金属イオン、特にニッケルイオンはアンミン錯体を形成し、金属イオンの溶解度が大きくなり、一次粒子の成長が促進され、緻密なニッケルマンガンコバルト複合水酸化物粒子が得られ易い。更には、金属イオンの溶解度が安定するため、形状及び粒径が整ったニッケルマンガンコバルト複合水酸化物粒子が得られ易い。そして、反応溶液中のアンモニウムイオン濃度を3~25g/Lとすることで、より緻密で形状及び粒径が整った複合水酸化物粒子が得られ易い。 The ammonium ion concentration in the reaction solution is adjusted to preferably 3 to 25 g/L, more preferably 5 to 20 g/L, still more preferably 5 to 15 g/L. Due to the presence of ammonium ions in the reaction solution, metal ions, especially nickel ions, form an ammine complex, increasing the solubility of metal ions, promoting the growth of primary particles, and producing a dense nickel-manganese-cobalt composite hydroxide. Particles are easily obtained. Furthermore, since the solubility of metal ions is stabilized, it is easy to obtain nickel-manganese-cobalt composite hydroxide particles having a uniform shape and particle size. By setting the ammonium ion concentration in the reaction solution to 3 to 25 g/L, it is easy to obtain composite hydroxide particles that are denser and have a uniform shape and particle size.
反応溶中のアンモニウムイオン濃度が3g/L未満であると、金属イオンの溶解度が不安定になる場合があり、形状及び粒径が整った一次粒子が形成されず、ゲル状の核が生成して粒度分布が広くなることがある。これに対して、アンモニウムイオン濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなり過ぎ、反応溶液中に残存する金属イオン量が増えることにより、組成のずれが起きる場合がある。なお、アンモニウムイオンの濃度は、イオン電極法(イオンメータ)によって測定することが出来る。 If the ammonium ion concentration in the reaction solution is less than 3 g/L, the solubility of metal ions may become unstable, and primary particles with uniform shape and particle size may not be formed, resulting in the formation of gel-like nuclei. may result in a broader particle size distribution. On the other hand, if the ammonium ion concentration exceeds 25 g/L, the solubility of metal ions becomes too high, and the amount of metal ions remaining in the reaction solution increases, which may cause composition deviation. The concentration of ammonium ions can be measured by an ion electrode method (ion meter).
[アルカリ溶液]
アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合溶液で調整される。アルカリ溶液は、アルカリ金属水酸化物と炭酸塩のモル比を表す[CO3
2-]/[OH-]が、0.002~0.050である。また、0.005~0.030であることがより好ましく、0.010~0.025であることが更に好ましい。
[Alkaline solution]
The alkaline solution is prepared with a mixed solution of alkali metal hydroxide and carbonate. The alkaline solution has a [CO 3 2− ]/[OH − ] ratio of 0.002 to 0.050, which represents the molar ratio of alkali metal hydroxide to carbonate. Further, it is more preferably 0.005 to 0.030, even more preferably 0.010 to 0.025.
アルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合溶液とすることで、晶析工程S10において得られるニッケルマンガンコバルト複合水酸化物に、不純物として残留する硫酸根や塩素根などの陰イオンを、炭酸根と置換除去することが出来る。炭酸根は、硫酸根や塩素根などに比べて、強熱することで、より揮発し易く、ニッケルマンガンコバルト複合水酸化物とリチウム化合物を混合し、焼成する工程で優先的に揮発するため、正極材料であるリチウムニッケルマンガンコバルト複合酸化物には、殆ど残留しない。 By using a mixed solution of an alkali metal hydroxide and a carbonate as the alkaline solution, anions such as sulfate radicals and chlorine radicals remaining as impurities in the nickel-manganese-cobalt composite hydroxide obtained in the crystallization step S10 are removed. , can be removed by substitution with carbonate radicals. Compared to sulfate radicals and chlorine radicals, carbonate radicals are more likely to volatilize by heating. It hardly remains in the lithium-nickel-manganese-cobalt composite oxide that is the positive electrode material.
[CO3 2-]/[OH-]が0.002未満であると、晶析工程S10において、原料由来の不純物である硫酸根や塩素と炭酸イオンの置換が不十分となり、これらの不純物をニッケルコバルトマンガン複合水酸化物中に取り込み易くなる。一方、[CO3 2-]/[OH-]が0.050を超えても、原料由来の不純物である硫酸根や塩素の低減は変わらず、過剰に加えた炭酸塩は、コストを増加させる。 If [CO 3 2− ]/[OH − ] is less than 0.002, in the crystallization step S10, the substitution of the raw material-derived impurities such as sulfate groups and chlorine for carbonate ions becomes insufficient, and these impurities are removed. It becomes easier to incorporate into the nickel-cobalt-manganese composite hydroxide. On the other hand, even if [CO 3 2− ]/[OH − ] exceeds 0.050, the reduction of sulfuric acid radicals and chlorine, which are impurities derived from raw materials, does not change, and excessively added carbonate increases the cost. .
アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムの中の1種以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。 The alkali metal hydroxide is preferably one or more of lithium hydroxide, sodium hydroxide, and potassium hydroxide, and a compound that is easily dissolved in water is preferable because the amount added is easy to control.
炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムの中の1種以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。 The carbonate is preferably one or more of sodium carbonate, potassium carbonate, and ammonium carbonate, and a compound that is easily dissolved in water is preferable because the amount added is easy to control.
また、アルカリ溶液を反応槽に添加する方法については、特に限定されるものではなく、定量ポンプなど、流量制御が可能なポンプで、反応溶液のpHが後述する範囲に保持される様に、添加すればよい。 In addition, the method of adding the alkaline solution to the reaction tank is not particularly limited. do it.
[pH制御]
晶析工程S10では、液温25℃を基準に測定する反応溶液のpHが12.0~14.0になる様に、アルカリ溶液を添加して、核生成を行う核生成工程S11と、この核生成工程S11において形成された核を含有する粒子成長用溶液を、液温25℃を基準に測定するpHが10.5~12.0となる様に、アルカリ溶液を添加して、核を成長させる粒子成長工程S12とからなることがより好ましい。
[pH control]
In the crystallization step S10, an alkaline solution is added to generate nuclei so that the pH of the reaction solution measured at a liquid temperature of 25° C. is 12.0 to 14.0; An alkaline solution is added to the particle growth solution containing the nuclei formed in the nucleation step S11 so that the pH measured at a liquid temperature of 25° C. is 10.5 to 12.0, thereby removing the nuclei. It is more preferable to consist of a grain growth step S12 for growing.
つまり、核生成反応と粒子成長反応とが、同じ槽内において同じ時期に進行するのではなく、主として核生成反応(核生成工程S11)が生じる時間と、主として粒子成長反応(粒子成長工程S12)が生じる時間とを明確に分離したことを特徴としている。以下に核生成工程S11及び粒子成長工程S12を詳細に説明する。 In other words, the nucleation reaction and the particle growth reaction do not proceed at the same time in the same tank, but the time for mainly the nucleation reaction (nucleation step S11) and the time for mainly the particle growth reaction (particle growth step S12) is characterized by a clear separation of the time at which The nucleation step S11 and the grain growth step S12 are described in detail below.
<3-1-1.核生成工程>
核生成工程S11では、反応溶液のpHが、液温25℃基準で12.0~14.0の範囲となる様に制御することが好ましい。pHが14.0を超える場合、生成する核が微細になり過ぎ、反応溶液がゲル化する場合がある。また、pHが12.0未満では、核形成と共に、核の成長反応が生じるので、形成される核の粒度分布の範囲が広くなり、不均質なものとなってしまう場合がある。
<3-1-1. Nucleation step>
In the nucleation step S11, it is preferable to control the pH of the reaction solution to be in the range of 12.0 to 14.0 at a liquid temperature of 25.degree. If the pH exceeds 14.0, the generated nuclei may become too fine and the reaction solution may gel. Further, if the pH is less than 12.0, a growth reaction of nuclei occurs together with nucleation, so that the range of particle size distribution of the nuclei formed may become wide and non-uniform.
即ち、核生成工程S11において、12.0~14.0の範囲に反応溶液のpHを制御することで、核の成長を抑制して、ほぼ核生成のみを起こすことができ、形成される核も均質かつ粒度分布の範囲がより狭いものとすることが出来る。 That is, in the nucleation step S11, by controlling the pH of the reaction solution in the range of 12.0 to 14.0, the growth of nuclei can be suppressed and only nucleation can occur, and the nuclei formed can also be homogeneous and have a narrower range of particle size distribution.
<3-1-2.粒子成長工程>
粒子成長工程S12においては、反応溶液のpHが、液温25℃基準で10.5~12.0とすることが好ましく、より好ましくは11.0~12.0の範囲である。pHが12.0を超える場合は、新たに生成される核が多くなり、微細二次粒子が生成するため、粒度分布が良好な水酸化物が得られない場合がある。また、pHが10.5未満では、アンモニウムイオンによる溶解度が高く、析出せずに液中に残る金属イオンが増えるため、生産効率が悪化する場合がある。
<3-1-2. Particle Growth Process>
In the particle growth step S12, the pH of the reaction solution is preferably 10.5 to 12.0, more preferably 11.0 to 12.0, based on the liquid temperature of 25°C. If the pH exceeds 12.0, the number of newly generated nuclei increases and fine secondary particles are generated, so that a hydroxide with a good particle size distribution may not be obtained. Further, when the pH is less than 10.5, the solubility of ammonium ions is high, and the amount of metal ions that remain in the liquid without precipitating increases, which may deteriorate the production efficiency.
つまり、粒子成長工程S12において、10.5~12.0の範囲に反応溶液のpHを制御することで、核生成工程S11で生成した核の成長のみを優先的に起こさせ、新たな核形成を抑制することができ、得られるニッケルコバルトマンガン複合水酸化物を、均質かつ粒度分布の範囲をより狭いものとすることが出来る。 That is, in the particle growth step S12, by controlling the pH of the reaction solution in the range of 10.5 to 12.0, only the growth of the nuclei generated in the nucleation step S11 is preferentially caused, and new nucleation is generated. can be suppressed, and the resulting nickel-cobalt-manganese composite hydroxide can be made homogeneous and have a narrower range of particle size distribution.
なお、pHが12.0の場合には、核生成と核成長の境界条件であるため、反応溶液中に存在する核の有無により、核生成工程若しくは粒子成長工程のいずれかの条件とすることが出来る。即ち、核生成工程S11のpHを12.0より高くして多量に核生成させた後、粒子成長工程S12でpHを12.0とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、より粒度分布が狭く比較的大きな粒径の上記水酸化物が得られる。 When the pH is 12.0, it is a boundary condition between nucleation and nucleus growth, so depending on the presence or absence of nuclei present in the reaction solution, either the nucleation step or the particle growth step can be set. can be done. That is, if the pH in the nucleation step S11 is set higher than 12.0 to generate a large amount of nuclei, and then the pH is set to 12.0 in the particle growth step S12, a large amount of nuclei are present in the reaction aqueous solution. growth occurs preferentially, and the hydroxide having a narrower particle size distribution and a relatively large particle size is obtained.
その一方、反応溶液中に核が存在しない状態、つまり、核生成工程S11においてpHを12.0とした場合には、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程S12のpHを12.0より小さくすることで、生成した核が成長してより良好な水酸化物が得られる。 On the other hand, when there are no nuclei in the reaction solution, that is, when the pH is set to 12.0 in the nucleation step S11, there are no growing nuclei, so nucleation occurs preferentially, and the particle growth step By making the pH of S12 lower than 12.0, the generated nuclei grow to obtain a better hydroxide.
いずれの場合においても、粒子成長工程S12のpHを、核生成工程S11のpHより低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程S12のpHを、核生成工程S11のpHより0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。 In any case, the pH in the particle growth step S12 may be controlled at a value lower than the pH in the nucleation step S11. , preferably lower than the pH of the nucleation step S11 by 0.5 or more, more preferably by 1.0 or more.
以上の様に、核生成工程S11と粒子成長工程S12をpHにより明確に分離することで、核生成工程S11では核生成が優先して起こり、核の成長は殆ど生じず、逆に、粒子成長工程S12では核成長のみが生じ、殆ど新しい核は生成されない。これにより、核生成工程S11では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程S12では、均質に核を成長させることが出来る。従って、ニッケルマンガンコバルト複合水酸化物の製造方法では、粒度分布の範囲がより狭く均質なニッケルマンガンコバルト複合水酸化物粒子を得ることが出来る。 As described above, by clearly separating the nucleation step S11 and the particle growth step S12 by pH, the nucleation occurs preferentially in the nucleation step S11, and the growth of nuclei hardly occurs. Only nucleus growth occurs in step S12, and almost no new nuclei are generated. As a result, in the nucleation step S11, uniform nuclei having a narrow particle size distribution range can be formed, and in the particle growth step S12, nuclei can be grown homogeneously. Therefore, in the method for producing nickel-manganese-cobalt composite hydroxide, uniform nickel-manganese-cobalt composite hydroxide particles with a narrower range of particle size distribution can be obtained.
[反応溶液温度]
反応槽内において、反応溶液の温度は、好ましくは20~80℃、より好ましくは30~70℃、更に好ましくは35~60℃に設定する。反応溶液の温度が20℃未満の場合には、金属イオンの溶解度が低いため、核発生が起こり易く制御が難しくなる。その一方、80℃を超える場合は、アンモニアの揮発が促進されるので、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
[Reaction solution temperature]
In the reaction tank, the temperature of the reaction solution is preferably set at 20-80°C, more preferably 30-70°C, and still more preferably 35-60°C. If the temperature of the reaction solution is lower than 20° C., the solubility of metal ions is low, so nuclei are likely to occur and control becomes difficult. On the other hand, if the temperature exceeds 80° C., volatilization of ammonia is accelerated, so an excess ammonium ion donor must be added in order to maintain a predetermined ammonia concentration, resulting in high costs.
[反応雰囲気]
ニッケルコバルトマンガン複合水酸化物の粒径及び粒子構造は、晶析工程S10における反応雰囲気によっても制御される。従って、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の製造方法における晶析工程S10では、酸化性雰囲気と非酸化性雰囲気の2段階で雰囲気を切り替えて晶析を行う。具体的には、酸化性雰囲気で晶析を行い、その後、非酸化性雰囲気に反応槽内の雰囲気を切り替えて晶析を行う。
[Reaction atmosphere]
The particle size and particle structure of the nickel-cobalt-manganese composite hydroxide are also controlled by the reaction atmosphere in the crystallization step S10. Therefore, in the crystallization step S10 in the method for producing a nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention, crystallization is performed by switching the atmosphere between two stages of an oxidizing atmosphere and a non-oxidizing atmosphere. Specifically, crystallization is performed in an oxidizing atmosphere, and then crystallization is performed by switching the atmosphere in the reaction vessel to a non-oxidizing atmosphere.
晶析工程S10中の反応槽内の雰囲気を非酸化性雰囲気に制御した場合、ニッケルコバルトマンガン複合水酸化物を形成する一次粒子の成長が促進されて、一次粒子が大きく緻密で、粒径が適度に大きな二次粒子が形成される。一方、晶析工程中の反応槽内の雰囲気を酸化性雰囲気に制御した場合、ニッケルコバルトマンガン複合水酸化物を形成する一次粒子の成長が抑制され、微細一次粒子からなり、粒子中心部に空間、若しくは微細な空隙が多数分散する二次粒子が形成される。 When the atmosphere in the reaction vessel during the crystallization step S10 is controlled to be a non-oxidizing atmosphere, the growth of the primary particles forming the nickel-cobalt-manganese composite hydroxide is promoted, the primary particles are large and dense, and the particle size is small. Moderately large secondary particles are formed. On the other hand, when the atmosphere in the reaction vessel during the crystallization process is controlled to an oxidizing atmosphere, the growth of the primary particles forming the nickel-cobalt-manganese composite hydroxide is suppressed, and the primary particles consist of fine primary particles, leaving a space in the center of the particles. Alternatively, secondary particles in which a large number of fine voids are dispersed are formed.
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の製造方法は、この晶析工程S10で、酸化性雰囲気と非酸化性雰囲気の2段階で雰囲気を切り替えて晶析を行う。上記の雰囲気を切り替える時期を調整することによって、中空構造を造り込む場合における粒子の中空部の大きさ、及び、多孔構造を造り込む場合における空隙部の割合を、制御することが出来る。 In the method for producing a nickel-manganese-cobalt composite hydroxide according to one embodiment of the present invention, in the crystallization step S10, crystallization is performed by switching between two stages of an oxidizing atmosphere and a non-oxidizing atmosphere. By adjusting the timing of switching the atmosphere, it is possible to control the size of the hollow portion of the particles when forming a hollow structure and the ratio of void portions when forming a porous structure.
ところで、非酸化性雰囲気とは、酸素濃度が5.0容量%以下、好ましくは2.5容量%以下、より好ましくは1.0容量%以下の酸素と、不活性ガスの混合雰囲気を示す。この様な非酸化性雰囲気に、反応槽内空間を保つための手段としては、窒素などの不活性ガスを、反応槽内空間部へ流通させること、更には反応溶液中に不活性ガスをバブリングさせることが挙げられる。なお晶析工程S10における、バブリングの好ましい流量は、3~7L/分であり、より好ましくは5L/分程度である。 By the way, the non-oxidizing atmosphere refers to a mixed atmosphere of oxygen having an oxygen concentration of 5.0% by volume or less, preferably 2.5% by volume or less, more preferably 1.0% by volume or less, and an inert gas. As a means for maintaining the interior space of the reaction vessel in such a non-oxidizing atmosphere, an inert gas such as nitrogen is passed through the interior space of the reaction vessel, and the inert gas is bubbled into the reaction solution. It is mentioned that The flow rate of bubbling in the crystallization step S10 is preferably 3 to 7 L/min, more preferably about 5 L/min.
一方、酸化性雰囲気とは、酸素濃度が5.0容量%を超える、好ましくは10.0容量%以上、より好ましくは15.0容量%以上の雰囲気を示す。この様な酸化性雰囲気に、反応槽内空間を保つための手段としては、大気などを反応槽内空間部へ流通させること、更に反応溶液中に大気などをバブリングさせることが挙げられる。 On the other hand, an oxidizing atmosphere means an atmosphere in which the oxygen concentration exceeds 5.0% by volume, preferably 10.0% by volume or more, and more preferably 15.0% by volume or more. Means for maintaining the space in the reaction vessel in such an oxidizing atmosphere include circulating air or the like into the space in the reaction vessel or bubbling the air or the like into the reaction solution.
中空構造を造り込む場合には、反応槽内の雰囲気を酸化性雰囲気(通常、21容量%を超える酸素濃度、例えば、大気雰囲気)とし、晶析処理を例えば0.5時間内で実施し、所定時間後に給液を停止して晶析処理を止めることが好ましい。その後、不活性雰囲気又は酸素濃度を0.2容量%以下に制御した非酸化性雰囲気に切り換え、晶析処理を0.5~3.5時間の範囲内で実施し、晶析状態を変化させることで、得られる金属複合水酸化物の空隙率を20~50%に制御して、多孔構造を有するニッケルマンガンコバルト複合水酸化物を製造することが好ましい。合計の晶析時間は、0.5~4時間の範囲であり、水酸化物粒子の大きさや、中空の大きさ、外殻部の厚みなどから、適宜調整される。 In the case of building a hollow structure, the atmosphere in the reaction vessel is set to an oxidizing atmosphere (usually, an oxygen concentration exceeding 21% by volume, such as an air atmosphere), and the crystallization treatment is carried out, for example, within 0.5 hours, It is preferable to stop the crystallization treatment by stopping the liquid supply after a predetermined time. Thereafter, the atmosphere is switched to an inert atmosphere or a non-oxidizing atmosphere in which the oxygen concentration is controlled to 0.2% by volume or less, and the crystallization treatment is performed within the range of 0.5 to 3.5 hours to change the crystallization state. Thus, it is preferable to produce a nickel-manganese-cobalt composite hydroxide having a porous structure by controlling the porosity of the obtained metal composite hydroxide to 20 to 50%. The total crystallization time is in the range of 0.5 to 4 hours, and is appropriately adjusted depending on the size of the hydroxide particles, the size of the hollow, the thickness of the outer shell, and the like.
この様に、反応槽内の雰囲気を、非酸化性雰囲気又は酸化性雰囲気に制御することによって、得られる金属複合水酸化物における二次粒子の空隙率が制御される。 By controlling the atmosphere in the reaction vessel to a non-oxidizing atmosphere or an oxidizing atmosphere in this way, the porosity of the secondary particles in the resulting metal composite hydroxide can be controlled.
なお、上記に核生成工程S11及び粒子成長工程S12を説明したが、核生成及び粒子成長をさせながら、上記の反応雰囲気の制御を同時進行で行う。 Although the nucleus generation step S11 and the grain growth step S12 have been described above, the reaction atmosphere is simultaneously controlled while the nucleation and grain growth are being performed.
[空隙率]
ニッケルマンガンコバルト複合水酸化物を樹脂に埋め込んだ後、クロスセクションポリッシャ(CP)を用い、アルゴンスパッタリングによって、ニッケルマンガンコバルト複合水酸化物の粒子を切断し、粒子断面を露出させる。露出した粒子断面を、走査型電子顕微鏡を用いて観察し、観察された粒子断面の画像を、画像解析ソフトによって、画像の空隙部を黒とし、且つ緻密部を白として解析し、任意の20個以上の粒子断面に対して、黒の部分/(黒の部分+白の部分)の面積を計算することで、空隙率を求めることが出来る。
[Porosity]
After the nickel-manganese-cobalt composite hydroxide is embedded in the resin, a cross-section polisher (CP) is used to cut particles of the nickel-manganese-cobalt composite hydroxide by argon sputtering to expose the cross section of the particles. The exposed grain cross section is observed using a scanning electron microscope, and the image of the observed grain cross section is analyzed by image analysis software, with the void portions of the image being black and the dense portions being white. The porosity can be obtained by calculating the area of black portion/(black portion+white portion) with respect to cross sections of at least one particle.
<2-2.洗浄工程>
洗浄工程S20では、上記晶析工程S10で得られた遷移金属複合水酸化物を、洗浄液で洗浄する。
<2-2. Washing process>
In the washing step S20, the transition metal composite hydroxide obtained in the crystallization step S10 is washed with a washing liquid.
[洗浄液種類]
洗浄工程S20では、炭酸塩、炭酸水素塩(重炭酸塩)、水酸化物のアルカリ金属塩やアンモニウム塩を基とした洗浄液で洗浄する。好ましくは、炭酸塩、炭酸水素塩(重炭酸塩)、若しくは、それらの混合物を、水で溶解した洗浄液を用いて、遷移金属複合水酸化物を洗浄する。
[Washing liquid type]
In the cleaning step S20, cleaning is performed with a cleaning liquid based on carbonate, hydrogen carbonate (bicarbonate), alkali metal salt or ammonium salt of hydroxide. Preferably, the transition metal composite hydroxide is washed with a washing solution prepared by dissolving carbonate, hydrogen carbonate (bicarbonate), or a mixture thereof in water.
そのようにすることで、不純物である硫酸根や塩素根などの陰イオンを、洗浄液中の炭酸イオンや炭酸水素イオン(重炭酸イオン)との置換反応を利用して、効率良く除去することが出来る。また、炭酸塩や炭酸水素塩(重炭酸塩)を用いることで、水酸化物を用いた場合に比べて、ナトリウムなどのアルカリ金属の混入も抑制することが出来る。その他、空隙構造を有する遷移金属複合水酸化物において、水酸化物を用いた場合は、粒子内部の不純物を除去することが困難であり、この点でも、炭酸塩や炭酸水素塩(重炭酸塩)を用いたほうが効果的である。 By doing so, anions such as sulfate radicals and chlorine radicals, which are impurities, can be efficiently removed by utilizing substitution reactions with carbonate ions and hydrogen carbonate ions (bicarbonate ions) in the cleaning solution. I can. In addition, by using a carbonate or a hydrogen carbonate (bicarbonate), contamination with an alkali metal such as sodium can be suppressed as compared with the case of using a hydroxide. In addition, in transition metal composite hydroxides having a void structure, when hydroxides are used, it is difficult to remove impurities inside the particles. ) is more effective.
炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムを選択するのが好ましく、炭酸水素塩(重炭酸塩)としては、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウムを選択するのが好ましい。また、炭酸塩や炭酸水素塩(重炭酸塩)のうち、アンモニウム塩を選択することによって、不純物であるナトリウムなどの陽イオンを、洗浄液中のアンモニウムイオンとの置換反応を利用して、効率良く除去することが出来る。更に、アンモニウム塩のうち、炭酸水素アンモニウム(重炭安)を選択することによって、ナトリウムなどの陽イオンを、最も効率良く除去することが出来る。 Sodium carbonate, potassium carbonate and ammonium carbonate are preferably selected as carbonates, and sodium hydrogen carbonate, potassium hydrogen carbonate and ammonium hydrogen carbonate are preferably selected as hydrogen carbonates (bicarbonates). In addition, by selecting an ammonium salt from carbonates and hydrogen carbonates (bicarbonates), cations such as sodium, which are impurities, can be efficiently removed by using a substitution reaction with ammonium ions in the cleaning solution. can be removed. Furthermore, cations such as sodium can be removed most efficiently by selecting ammonium hydrogen carbonate (ammonium bicarbonate) among ammonium salts.
何故なら、ナトリウムなどの陽イオンとアンモニウムイオンとの置換反応のみならず、これに加えて、炭酸水素アンモニウム(重炭安)が持つ、他の塩よりも優れた性質、即ち、洗浄液とした際の炭酸ガスの発泡効率の高さが、ナトリウムなどの陽イオンを除去するのに、大きく寄与しているものと考えられる。 This is because, in addition to the substitution reaction between cations such as sodium and ammonium ions, in addition to this, ammonium bicarbonate (ammonium bicarbonate) has properties superior to other salts, that is, when it is used as a cleaning solution. It is considered that the high foaming efficiency of carbon dioxide gas contributes greatly to the removal of cations such as sodium.
[濃度及びpH]
洗浄液である炭酸水素アンモニウム溶液の濃度は、0.05mol/L以上とする。濃度が0.05mol/L未満の場合、不純物である硫酸根、塩素根、ナトリウムの除去効果が低下する恐れがある。また、濃度が0.05mol/L以上なら、これらの不純物の除去効果は変わらない。それ故に、炭酸水素アンモニウム(重炭安)を過剰に加えると、コスト増加や排水基準などの環境負荷にも影響を及ぼすので、上限濃度を1.0mol/L程度に設定することが好ましい。
[Concentration and pH]
The concentration of the ammonium bicarbonate solution, which is the cleaning liquid, is set to 0.05 mol/L or more. If the concentration is less than 0.05 mol/L, the effect of removing impurities such as sulfate groups, chlorine groups, and sodium may decrease. Also, if the concentration is 0.05 mol/L or more, the effect of removing these impurities does not change. Therefore, if ammonium bicarbonate (ammonium bicarbonate) is excessively added, it will increase the cost and affect the environmental load such as the waste water standard, so it is preferable to set the upper limit concentration to about 1.0 mol/L.
なお、炭酸水素アンモニウム溶液のpHは、濃度が0.05mol/L以上ならば、特に調整する必要は無く、成り行きのpHで構わない。仮に、濃度が0.05~1.0mol/Lであるなら、そのpHは、おおよそ8.0~9.0の範囲内となる。 The pH of the ammonium bicarbonate solution does not need to be adjusted as long as the concentration is 0.05 mol/L or more, and the pH may be used as it is. If the concentration is 0.05-1.0 mol/L, the pH will be in the range of approximately 8.0-9.0.
[液温]
洗浄液である炭酸水素アンモニウム溶液の液温は、特に限定されないが、15~50℃が好ましい。液温が上記範囲であれば、不純物との置換反応や、炭酸水素アンモニウムから発生する炭酸ガスの発泡効果がより良好であり、不純物の除去が効率的に進む。
[Liquid temperature]
The liquid temperature of the ammonium hydrogen carbonate solution, which is the cleaning liquid, is not particularly limited, but is preferably 15 to 50°C. If the liquid temperature is within the above range, the substitution reaction with impurities and the bubbling effect of carbon dioxide gas generated from ammonium hydrogen carbonate are more favorable, and the removal of impurities proceeds efficiently.
[液量]
洗浄液である炭酸水素アンモニウム溶液の液量は、ニッケルマンガンコバルト複合水酸化物が1kgに対し、1~20Lである (スラリー濃度としては、50~1000g/Lである)ことが好ましい。1L未満では 、十分な不純物の除去効果が得られない場合がある。また、20Lを超える液量を用いても、不純物の除去効果は変わらず、過剰な液量では、コスト増加や排水基準などの環境負荷にも影響を及ぼし、排水処理における排水量の負荷増加の要因ともなる。
[Liquid volume]
The amount of the ammonium bicarbonate solution, which is the cleaning liquid, is preferably 1 to 20 L per 1 kg of the nickel-manganese-cobalt composite hydroxide (the slurry concentration is 50 to 1000 g/L). If it is less than 1 L, a sufficient effect of removing impurities may not be obtained. In addition, even if the amount of liquid exceeds 20 L, the effect of removing impurities does not change, and an excessive amount of liquid increases the cost and affects the environmental load such as wastewater standards, which is a factor in increasing the load of wastewater in wastewater treatment. It also becomes.
[洗浄時間]
炭酸水素アンモニウム溶液による洗浄時間は、不純物を十分除去出来れば、特に限定されないが、通常は0.5~2時間である。
[Washing time]
The washing time with the ammonium bicarbonate solution is not particularly limited as long as the impurities can be sufficiently removed, but it is usually 0.5 to 2 hours.
[洗浄方法]
洗浄方法としては、1)炭酸水素アンモニウム溶液にニッケルマンガンコバルト複合水酸化物を添加し、スラリー化して撹拌洗浄を行った後、濾過する一般的な洗浄方法や、若しくは、2)中和晶析により生成したニッケルマンガンコバルト複合水酸化物を含むスラリーを、フィルタープレスなどの濾過機に供給して、炭酸水素アンモニウム溶液を通液する、通液洗浄を行うことが出来る。通液洗浄は、不純物の除去効果が高く、濾過と洗浄を同一の設備で連続的に行うことが可能で、生産性が高いため、より好ましい。
[Washing method]
As a washing method, 1) a general washing method of adding nickel-manganese-cobalt composite hydroxide to an ammonium hydrogencarbonate solution, making it into a slurry, stirring and washing, and then filtering, or 2) neutralization and crystallization. The slurry containing the nickel-manganese-cobalt composite hydroxide produced by is supplied to a filter such as a filter press, and an ammonium bicarbonate solution is passed through for washing. Liquid washing is more preferable because it is highly effective in removing impurities, and filtration and washing can be continuously performed in the same facility, resulting in high productivity.
また、炭酸水素アンモニウム溶液での洗浄後は、置換反応によって洗い出された不純物を含む洗浄液が、ニッケルマンガンコバルト複合水酸化物に付着している場合があるため、最後に水洗することが好ましい。更に、水洗した後は、濾過したニッケルマンガンコバルト複合水酸化物の付着水を乾燥する、乾燥工程(不図示)を行うことが好ましい。 After washing with the ammonium bicarbonate solution, the nickel-manganese-cobalt composite hydroxide may be adhered to the washing liquid containing impurities washed out by the substitution reaction, so it is preferable to wash with water at the end. Furthermore, after washing with water, it is preferable to perform a drying step (not shown) for drying the filtered water adhering to the nickel-manganese-cobalt composite hydroxide.
上記洗浄工程S20を経て得られた前記ニッケルマンガンコバルト複合水酸化物は、ニッケル、マンガン、コバルトを含む一次粒子が凝集した二次粒子、又は上記一次粒子と上記二次粒子で構成された、正極活物質の前駆体であるニッケルマンガンコバルト複合水酸化物であり、上記ニッケルマンガンコバルト複合水酸化物に含まれるナトリウム含有量が、0.0005質量%未満であり、上記ニッケルマンガンコバルト複合水酸化物の粒子の空隙率が、20~50%であることを特徴とする。 The nickel-manganese-cobalt composite hydroxide obtained through the washing step S20 is a positive electrode composed of secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or the primary particles and the secondary particles. A nickel-manganese-cobalt composite hydroxide that is a precursor of an active material, wherein the sodium content in the nickel-manganese-cobalt composite hydroxide is less than 0.0005% by mass, and the nickel-manganese-cobalt composite hydroxide The porosity of the particles is 20 to 50%.
本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物の製造方法によれば、特にナトリウムの含有量を確実に低減させ、電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物の製造方法を提供することができる。 According to the method for producing a nickel-manganese-cobalt composite hydroxide according to an embodiment of the present invention, it is possible to reliably reduce the content of sodium in particular and improve the battery characteristics of a positive electrode active material for a lithium-ion secondary battery. A method for producing nickel-manganese-cobalt composite hydroxide, which is a precursor, can be provided.
次に、本発明の一実施形態に係るニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及びリチウムニッケルマンガンコバルト複合酸化物について、実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。 Next, the nickel-manganese-cobalt composite hydroxide, the method for producing the nickel-manganese-cobalt composite hydroxide, and the lithium-nickel-manganese-cobalt composite oxide according to one embodiment of the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
実施例1~13、比較例1~9について、晶析工程で得られた遷移金属複合水酸化物を、洗浄、濾過、乾燥操作を経て、前駆体であるニッケルマンガンコバルト複合水酸化物として回収した後、以下の方法で各種分析を行った。 For Examples 1 to 13 and Comparative Examples 1 to 9, the transition metal composite hydroxide obtained in the crystallization step was washed, filtered, and dried to recover nickel-manganese-cobalt composite hydroxide as a precursor. After that, various analyzes were performed by the following methods.
[組成]
組成は、酸分解-ICP発光分光分析法で分析し、測定にはマルチ型ICP発光分光分析装置である、ICPE-9000(島津製作所社製)を用いた。
[composition]
The composition was analyzed by acid decomposition-ICP emission spectrometry, and the measurement was performed using ICPE-9000 (manufactured by Shimadzu Corporation), which is a multi-type ICP emission spectrometer.
[ナトリウム含有量]
ナトリウム含有量は、酸分解-原子吸光分析法で分析し、測定には原子吸光分析装置である、原子吸光分光光度計240AA(アジレント・テクノロジー株式会社製)を用いた。
[Sodium content]
The sodium content was analyzed by acid decomposition-atomic absorption spectrometry, using an atomic absorption spectrophotometer 240AA (manufactured by Agilent Technologies) for measurement.
[硫酸根含有量]
硫酸根含有量は、酸分解-ICP発光分光分析法で全硫黄含有量を分析し、この全硫黄含有量を、硫酸根(SO4
2-)に換算することにより求めた。なお、測定にはマルチ型ICP発光分光分析装置である、ICPE-9000(島津製作所社製)を用いた。
[Sulfate group content]
The sulfate radical content was obtained by analyzing the total sulfur content by acid decomposition-ICP emission spectrometry and converting the total sulfur content into sulfate radical (SO 4 2− ). For the measurement, ICPE-9000 (manufactured by Shimadzu Corporation), which is a multi-type ICP emission spectrometer, was used.
[塩素根含有量]
塩素根含有量は、試料を直接、又は蒸留操作で含まれる塩素根を塩化銀の形で分離して、蛍光X線分析法(XRF)で分析した。なお、測定には蛍光X線分析装置である、Axios(スペクトリス株式会社製)を用いた。
[Chlorine root content]
Chlorine root content was analyzed by X-ray fluorescence spectroscopy (XRF) by separating the chlorine root contained in the sample directly or by a distillation operation in the form of silver chloride. For the measurement, Axios (manufactured by Spectris Co., Ltd.), which is a fluorescent X-ray analyzer, was used.
[平均粒径及び粒度分布]
平均粒径(MV)及び粒度分布〔(d90-d10)/平均粒径〕は、レーザー回折・散乱法を用いて測定した体積基準分布から求めた。なお、測定にはレーザー回折・散乱方式の粒度分布測定装置である、マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社製)を用いた。
[Average particle size and particle size distribution]
The average particle size (MV) and the particle size distribution [(d90-d10)/average particle size] were obtained from the volume standard distribution measured using a laser diffraction/scattering method. For the measurement, Microtrac MT3300EXII (manufactured by Microtrac Bell Co., Ltd.), which is a laser diffraction/scattering particle size distribution analyzer, was used.
[比表面積]
比表面積は、BET1点法による、窒素ガス吸着・脱離法で分析し、測定にはガス流動方式の比表面積測定装置である、マックソーブ1200シリーズ(株式会社マウンテック製)を用いた。
[Specific surface area]
The specific surface area was analyzed by the nitrogen gas adsorption/desorption method based on the BET one-point method, and the gas flow type specific surface area measuring device Macsorb 1200 series (manufactured by Mountech Co., Ltd.) was used for the measurement.
[空隙率]
空隙率は、試料粒子の切断には、断面の調製装置である、クロスセクションポリッシャIB-19530CP(日本電子株式会社製)を用い、また、その断面の観察には、ショットキー電界放出型の走査型電子顕微鏡SEM-EDSである、JSM-7001F(日本電子株式会社製)を用いた。更に、画像解析・計測ソフトウェアである、WinRoof6.1.1(三谷商事株式会社製)によって、粒子断面の空隙部を黒として測定し、粒子の緻密部を白として測定し、任意の20個以上の粒子に対して、黒部分/(黒部分+白部分)の面積を計算することで、空隙率を求めた。
[Porosity]
The porosity was measured by using a cross section polisher IB-19530CP (manufactured by JEOL Ltd.), which is a cross section preparation device, for cutting the sample particles, and for observing the cross section, using a Schottky field emission scanning. A type electron microscope SEM-EDS, JSM-7001F (manufactured by JEOL Ltd.) was used. Furthermore, using WinRoof 6.1.1 (manufactured by Mitani Shoji Co., Ltd.), which is an image analysis and measurement software, the void part of the particle cross section is measured as black, and the dense part of the particle is measured as white, and any 20 or more The porosity was obtained by calculating the area of black portion/(black portion+white portion) for the particles.
[正極活物質の製造及び評価]
また、本発明のニッケルマンガンコバルト複合水酸化物を原料とした正極活物質である、リチウム金属複合酸化物、より具体的には、リチウムニッケルマンガンコバルト複合酸化物は、以下の方法で製造及び評価を行った。
[Manufacturing and Evaluation of Positive Electrode Active Material]
In addition, a lithium metal composite oxide, more specifically a lithium nickel manganese cobalt composite oxide, which is a positive electrode active material using the nickel manganese cobalt composite hydroxide of the present invention as a raw material, is produced and evaluated by the following method. did
[A、正極活物質の製造]
前駆体であるニッケルマンガンコバルト複合水酸化物を、空気(酸素:21容量%)気流中において、700℃で6時間の熱処理を行い、金属複合酸化物を回収した。続いて、Li /Me=1.025となる様、リチウム化合物である水酸化リチウムを秤量し、回収した金属複合酸化物と混合し、リチウム混合物を作製した。なお、混合操作にはシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA-TypeT2C)を用いた。
[A, production of positive electrode active material]
The precursor nickel-manganese-cobalt composite hydroxide was heat-treated at 700° C. for 6 hours in an air stream (oxygen: 21% by volume) to recover the metal composite oxide. Subsequently, lithium hydroxide, which is a lithium compound, was weighed so that Li 2 /Me=1.025, and mixed with the recovered metal composite oxide to prepare a lithium mixture. For the mixing operation, a shaker mixer device (TURBULA-Type T2C manufactured by Willie & Bacchofen (WAB)) was used.
次に、作製したリチウム混合物を、酸素(酸素:100容量%)気流中において、500℃で4時間仮焼し、更に730℃で24時間焼成し、冷却後に解砕して、リチウムニッケルマンガンコバルト複合酸化物を得た。 Next, the prepared lithium mixture is calcined at 500° C. for 4 hours in an oxygen (oxygen: 100% by volume) stream, further calcined at 730° C. for 24 hours, cooled and then pulverized to obtain lithium nickel manganese cobalt. A composite oxide was obtained.
[B、正極活物質の評価]
得られたリチウムニッケルマンガンコバルト複合酸化物において、ナトリウム含有量、硫酸根含有量、塩素根含有量、空隙率の分析には、上述の分析方法及び分析機器を用いた。また、リチウムニッケルマンガンコバルト複合酸化物の結晶性を示す、Me席占有率は、X線回折分析装置(XRD)を用いて測定した回折パターンについて、リートベルト解析を行うことで算出した。なお、測定にはX線回折分析装置X‘Pert-PRO(スペクトリス株式会社製)を用いた。Me席占有率は、リチウムニッケルマンガンコバルト複合酸化物の、ニッケル、マンガン、コバルト及び添加元素Mが、層状構造のメタル層(Me席)中に占める、金属元素の存在割合を示す。Me席占有率は、電池特性と相関があり、Me席占有率が高い程、良好な電池特性を示す。
[B, Evaluation of Positive Electrode Active Material]
The above-described analytical method and analytical instrument were used to analyze the sodium content, sulfate group content, chlorine group content, and porosity of the resulting lithium-nickel-manganese-cobalt composite oxide. The Me site occupancy, which indicates the crystallinity of the lithium-nickel-manganese-cobalt composite oxide, was calculated by Rietveld analysis of the diffraction pattern measured using an X-ray diffraction analyzer (XRD). An X-ray diffraction analyzer X'Pert-PRO (manufactured by Spectris Co., Ltd.) was used for the measurement. The Me site occupancy ratio indicates the abundance ratio of metal elements in the metal layer (Me site) of the layered structure of nickel, manganese, cobalt, and additive element M in the lithium-nickel-manganese-cobalt composite oxide. The Me seat occupancy has a correlation with the battery characteristics, and the higher the Me seat occupancy, the better the battery characteristics.
以下、実施例及び比較例の各条件について、説明する。 Each condition of Examples and Comparative Examples will be described below.
(実施例1)
実施例1では、晶析工程における晶析の反応槽(5L)内に、水を0.9L入れて撹拌しながら、槽内温度を40℃に設定した。
(Example 1)
In Example 1, 0.9 L of water was added to the reaction tank (5 L) for crystallization in the crystallization step, and the temperature in the tank was set to 40° C. while stirring.
反応槽内の水中に、25%水酸化ナトリウム水溶液と、アンモニウムイオン供給体である25%アンモニア水を適量加えて、液温25℃を基準に測定するpHとして、槽内の反応溶液のpHが12.8となる様に調整した。また、反応溶液のアンモニウムイオン濃度は、10g/Lに調整した。 A 25% aqueous sodium hydroxide solution and an appropriate amount of 25% ammonia water, which is an ammonium ion donor, are added to the water in the reaction tank, and the pH of the reaction solution in the tank is measured based on the liquid temperature of 25 ° C. It was adjusted to be 12.8. Also, the ammonium ion concentration of the reaction solution was adjusted to 10 g/L.
次に、硫酸ニッケル、硫酸マンガン、塩化コバルトを水に溶かして、2.0mol/Lの原料溶液を作製した。この原料溶液では、各金属の元素モル比が、Ni:Mn:Co =1:1:1となる様に調整した。更に、アルカリ金属水酸化物である水酸化ナトリウムと、炭酸塩である炭酸ナトリウムを、[CO3 2-]/[OH-]が0.025となる様に、水に溶解してアルカリ溶液を作製した。 Next, nickel sulfate, manganese sulfate, and cobalt chloride were dissolved in water to prepare a 2.0 mol/L raw material solution. In this raw material solution, the element molar ratio of each metal was adjusted to Ni:Mn:Co=1:1:1. Furthermore, sodium hydroxide, which is an alkali metal hydroxide, and sodium carbonate, which is a carbonate, are dissolved in water so that [CO 3 2− ]/[OH − ] is 0.025, and an alkaline solution is prepared. made.
原料溶液を、反応槽内の反応溶液に12.9mL/分で加え、それと共にアンモニウムイオン供給体やアルカリ溶液も、反応溶液に一定速度で加えていき、反応溶液中のアンモニウムイオン濃度を10g/Lに保持した状態において、pHを12.8(核生成工程pH)に制御し、晶析を2分30秒間実施することで、核生成を行った。 The raw material solution was added to the reaction solution in the reaction tank at 12.9 mL/min, and the ammonium ion donor and the alkaline solution were also added to the reaction solution at a constant rate, so that the ammonium ion concentration in the reaction solution was 10 g/min. The pH was controlled to 12.8 (the pH of the nucleation step) while the pH was maintained at L, and crystallization was performed for 2 minutes and 30 seconds to generate nuclei.
その後、反応溶液のpHが、液温25℃を基準に測定するpHとして11.6(粒子成長工程pH)になるまで、64%硫酸を添加した。液温25℃を基準に測定するpHとして、反応溶液のpHが11.6に到達した後、原料溶液、アンモニウムイオン供給体、アルカリ溶液の供給を再開し、pHを11.6に制御したまま、晶析を4時間継続し粒子成長を行うことにより、遷移金属複合水酸化物を得た。 After that, 64% sulfuric acid was added until the pH of the reaction solution reached 11.6 (particle growth process pH) as measured based on a liquid temperature of 25°C. After the pH of the reaction solution reaches 11.6, the supply of the raw material solution, the ammonium ion donor, and the alkaline solution is resumed, and the pH is maintained at 11.6. A transition metal composite hydroxide was obtained by continuing crystallization for 4 hours to grow particles.
また、反応雰囲気については、まず、反応槽内を大気雰囲気(酸素濃度:21容量%)とし、晶析開始から32分間保持した後、原料溶液、アンモニア水、アルカリ溶液の給液を一旦停止し、反応槽内空間の酸素濃度が0.2容量%以下となるまで、窒素ガスを流量5L/分で流通、置換させ、酸素濃度が0.2容量%以下になってから給液を再開して3.5時間晶析を行った。 As for the reaction atmosphere, first, the inside of the reaction tank was set to an atmospheric atmosphere (oxygen concentration: 21% by volume), and after holding for 32 minutes from the start of crystallization, supply of the raw material solution, aqueous ammonia, and alkaline solution was temporarily stopped. , Nitrogen gas is circulated and replaced at a flow rate of 5 L / min until the oxygen concentration in the space inside the reaction vessel becomes 0.2% by volume or less, and the liquid supply is restarted after the oxygen concentration becomes 0.2% by volume or less. Crystallization was carried out for 3.5 hours.
得られた遷移金属複合水酸化物を、フィルタープレス濾過機によって固液分離した後、濃度が0.05mol/Lの炭酸水素アンモニウム溶液を洗浄液に用いて、遷移金属複合水酸化物1kgに対し、洗浄液を5Lの割合で、フィルタープレス濾過機に通液することにより不純物を除去し、その後、更に水を通液して水洗した。そして、水洗した遷移金属複合水酸化物の付着水を乾燥し、前駆体となるニッケルマンガンコバルト複合水酸化物を得た。 After solid-liquid separation of the obtained transition metal composite hydroxide by a filter press filtration machine, an ammonium hydrogen carbonate solution having a concentration of 0.05 mol/L was used as a washing liquid, and 1 kg of the transition metal composite hydroxide was Impurities were removed by passing 5 L of the washing liquid through a filter press filtration machine, and then water was further passed through to wash with water. Then, the adhering water of the washed transition metal composite hydroxide was dried to obtain nickel-manganese-cobalt composite hydroxide as a precursor.
(実施例2)
実施例2では、硫酸ニッケル、硫酸マンガン、塩化コバルトを水に溶かして2.0mol/Lの原料溶液を作製する際に、原料溶液におけるニッケル、マンガン、コバルトのモル比が、Ni:Mn:Co=6:2:2となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 2)
In Example 2, when nickel sulfate, manganese sulfate, and cobalt chloride were dissolved in water to prepare a 2.0 mol/L raw material solution, the molar ratio of nickel, manganese, and cobalt in the raw material solution was Ni:Mn:Co A nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the ratio was adjusted to 6:2:2.
(実施例3)
実施例3では、硫酸ニッケル、硫酸マンガン、塩化コバルトを水に溶かして2.0mol/Lの原料溶液を作製する際に、原料溶液におけるニッケル、マンガン、コバルトのモル比が、Ni:Mn:Co=2:7:1となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 3)
In Example 3, when nickel sulfate, manganese sulfate, and cobalt chloride were dissolved in water to prepare a 2.0 mol/L raw material solution, the molar ratio of nickel, manganese, and cobalt in the raw material solution was Ni:Mn:Co A nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the ratio was adjusted to 2:7:1.
(実施例4)
実施例4では、アルカリ溶液を作製する際に、[CO3
2-]/[OH-]が0.003となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 4)
In Example 4, nickel-manganese-cobalt composite water was prepared in the same manner as in Example 1, except that [CO 3 2− ]/[OH − ] was adjusted to 0.003 when preparing the alkaline solution. An oxide was obtained.
(実施例5)
実施例5では、アルカリ溶液を調整する際に、[CO3
2-]/[OH-]が0.048となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 5)
In Example 5, nickel-manganese-cobalt composite water was prepared in the same manner as in Example 1, except that [CO 3 2− ]/[OH − ] was adjusted to 0.048 when adjusting the alkaline solution. An oxide was obtained.
(実施例6)
実施例6では、核生成工程のpHを13.6とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 6)
In Example 6, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the pH in the nucleation step was changed to 13.6.
(実施例7)
実施例7では、核生成工程のpHを12.3とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 7)
In Example 7, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the pH in the nucleation step was set to 12.3.
(実施例8)
実施例8では、粒子成長工程のpHを11.8とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 8)
In Example 8, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the pH in the particle growth step was changed to 11.8.
(実施例9)
実施例9では、粒子成長工程のpHを10.6とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 9)
In Example 9, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the pH in the particle growth step was changed to 10.6.
(実施例10)
実施例10では、アルカリ溶液を調整する際に、アルカリ金属水酸化物を水酸化カリウムとし、炭酸塩を炭酸カリウムとした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 10)
In Example 10, nickel-manganese-cobalt composite hydroxide was prepared in the same manner as in Example 1, except that potassium hydroxide was used as the alkali metal hydroxide and potassium carbonate was used as the carbonate when preparing the alkaline solution. Obtained.
(実施例11)
実施例11では、アルカリ溶液を調整する際に、炭酸塩を炭酸アンモニウムとし、 アンモニウムイオン濃度を20g/Lに調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 11)
In Example 11, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that ammonium carbonate was used as the carbonate and the ammonium ion concentration was adjusted to 20 g/L when preparing the alkaline solution. rice field.
(実施例12)
実施例12では、槽内温度を35℃に設定した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 12)
In Example 12, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the temperature in the tank was set to 35°C.
(実施例13)
実施例13では、濃度が1.00mol/Lの炭酸水素アンモニウム溶液を洗浄液とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Example 13)
In Example 13, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that an ammonium hydrogen carbonate solution having a concentration of 1.00 mol/L was used as the cleaning liquid.
(比較例1)
比較例1では、硫酸ニッケル、硫酸マンガン、塩化コバルトを水に溶かして2.0mol/Lの原料溶液を作製する際に、原料溶液のニッケル、マンガン、コバルトのモル比が、Ni:Mn:Co=2:6:2となる様に調整したことと、[CO3
2-]/[OH-]が0.001となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative example 1)
In Comparative Example 1, when nickel sulfate, manganese sulfate, and cobalt chloride were dissolved in water to prepare a 2.0 mol/L raw material solution, the molar ratio of nickel, manganese, and cobalt in the raw material solution was Ni:Mn:Co = 2:6:2, and [CO 3 2- ]/[OH - ] was adjusted to 0.001. A composite hydroxide was obtained.
(比較例2)
比較例2では、アルカリ溶液の調整に水酸化ナトリウムのみを用い、[CO3
2-]/[OH-]を考慮しない様にした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative example 2)
In Comparative Example 2, nickel-manganese-cobalt composite water was prepared in the same manner as in Example 1 except that only sodium hydroxide was used to prepare the alkaline solution and [CO 3 2- ]/[OH - ] was not considered. An oxide was obtained.
(比較例3)
比較例3では、アルカリ溶液を調整する際に、[CO3
2-]/[OH-]が0.001となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 3)
In Comparative Example 3, nickel-manganese-cobalt composite water was prepared in the same manner as in Example 1, except that [CO 3 2− ]/[OH − ] was adjusted to 0.001 when preparing the alkaline solution. An oxide was obtained.
(比較例4)
比較例4では、アルカリ溶液を調整する際に、[CO3
2-]/[OH-]が0.055となる様に調整した以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 4)
In Comparative Example 4, nickel-manganese-cobalt composite water was prepared in the same manner as in Example 1, except that [CO 3 2− ]/[OH − ] was adjusted to 0.055 when preparing the alkaline solution. An oxide was obtained.
(比較例5)
比較例5では、洗浄工程を省いて、炭酸水素アンモニウム溶液による洗浄を行わない様にした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 5)
In Comparative Example 5, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that the washing step was omitted and the washing with the ammonium hydrogen carbonate solution was not performed.
(比較例6)
比較例6では、濃度が0.02mol/Lの炭酸水素アンモニウム溶液を洗浄液とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 6)
In Comparative Example 6, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that an ammonium hydrogen carbonate solution having a concentration of 0.02 mol/L was used as the cleaning liquid.
(比較例7)
比較例7では、炭酸アンモニウム溶液を洗浄液とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 7)
In Comparative Example 7, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that an ammonium carbonate solution was used as the cleaning liquid.
(比較例8)
比較例8では、炭酸水素ナトリウム溶液を洗浄液とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 8)
In Comparative Example 8, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that a sodium hydrogen carbonate solution was used as the cleaning liquid.
(比較例9)
比較例9では、炭酸ナトリウム溶液を洗浄液とした以外は、実施例1と同様にして、ニッケルマンガンコバルト複合水酸化物を得た。
(Comparative Example 9)
In Comparative Example 9, a nickel-manganese-cobalt composite hydroxide was obtained in the same manner as in Example 1, except that a sodium carbonate solution was used as the cleaning liquid.
以上の条件及び結果を表1及び表2に示す。 Tables 1 and 2 show the above conditions and results.
(総合評価)
表1及び表2に示す通り、実施例1~13では、前駆体であるニッケルマンガンコバルト複合水酸化物において、晶析工程及び洗浄工程の各条件が、全て好ましい範囲内であった。このため、ニッケルマンガンコバルト複合水酸化物だけに限らず、正極活物質であるリチウムニッケルマンガンコバルト複合酸化物に関しても、不純物除去において、ナトリウム含有量をはじめ、硫酸根含有量や塩素根含有量が、十分に低減されていた。更には、リチウムニッケルマンガンコバルト複合酸化物では、Me席占有率が93.0%を超えており、結晶性にも優れた結果となり、電池特性が向上した。
(Comprehensive evaluation)
As shown in Tables 1 and 2, in Examples 1 to 13, the conditions of the crystallization step and the washing step for the precursor nickel-manganese-cobalt composite hydroxide were all within preferred ranges. Therefore, not only nickel-manganese-cobalt composite hydroxide, but also lithium-nickel-manganese-cobalt composite oxide, which is a positive electrode active material, can be used to remove impurities. , was sufficiently reduced. Furthermore, in the lithium-nickel-manganese-cobalt composite oxide, the Me site occupancy exceeded 93.0%, resulting in excellent crystallinity and improved battery characteristics.
特に、ナトリウム含有量については、前駆体及び正極活物質のどちらも、全ての実施例データが、定量(分析)下限(0.0005質量%)未満という、非常に良好な結果を示した。 In particular, regarding the sodium content, both the precursor and the positive electrode active material showed very good results in which all example data were below the lower limit of quantification (analysis) (0.0005% by mass).
ここで、定量下限とは、ある分析方法による、目的成分の分析(定量)が可能な最小量、又は最小濃度を意味する。また、測定における目的成分の信号検出が可能な最小量(値)を検出限界、測定で得られる目的成分の信号において、信頼性が担保される最小量(値)を測定下限と言う。更に、分析試料を測定検体液に調製する過程で、元の分析試料から、どれだけ濃縮若しくは希釈されたかを示す希釈倍率を、測定下限に乗ずることにより、定量下限が求められる。 Here, the lower limit of quantification means the minimum amount or minimum concentration at which a target component can be analyzed (quantified) by a certain analytical method. In addition, the minimum amount (value) at which the signal of the target component can be detected in the measurement is called the detection limit, and the minimum amount (value) at which the reliability of the signal of the target component obtained in the measurement is ensured is called the lower limit of measurement. Furthermore, the lower limit of determination is obtained by multiplying the lower limit of measurement by a dilution factor that indicates how much the original analysis sample has been concentrated or diluted in the process of preparing the sample solution for measurement.
つまり、本発明でのナトリウム含有量は、原子吸光分析装置の測定下限0.05μg/mLに対し、分析試料1gを酸分解して測定検体液100mLに調製(希釈倍率は100倍)したことから、定量下限は5ppm(μg/g)であり、即ち、0.0005質量%となる。 That is, the sodium content in the present invention is determined by acid decomposition of 1 g of the analysis sample to prepare 100 mL of the measurement sample solution (dilution ratio is 100 times) with respect to the lower limit of measurement of 0.05 μg / mL of the atomic absorption spectrometer. , the lower limit of determination is 5 ppm (μg/g), that is, 0.0005% by mass.
これに対して、比較例1~9では、アルカリ溶液を作製する際の[CO3 2-]/[OH-]や、洗浄液である炭酸水素アンモニウム溶液の濃度が、好ましい範囲で無かったり、炭酸水素アンモニウム溶液以外の洗浄液を用いたり、最適条件から逸脱していたことから、実施例の様な優れた効果は得られなかった。 On the other hand, in Comparative Examples 1 to 9, the [CO 3 2− ]/[OH − ] in preparing the alkaline solution and the concentration of the ammonium bicarbonate solution used as the cleaning solution were not within the preferable range, and Due to the use of a cleaning liquid other than the ammonium hydrogen solution and the deviation from the optimum conditions, the excellent effects of the examples could not be obtained.
また、実施例1~13では、ニッケルマンガンコバルト複合水酸化物のほか、リチウムニッケルマンガンコバルト複合酸化物の中空構造についても、空隙率が20~50%と好ましい範囲であり、正極活物質として用いられる際に、嵩密度を低下させ過ぎることなく、粒子強度を許容範囲内に保ちながら、正極活物質と電解液との接触面積を十分なものにすることが出来、電池特性が向上した。 Further, in Examples 1 to 13, in addition to the nickel-manganese-cobalt composite hydroxide, the hollow structure of the lithium-nickel-manganese-cobalt composite oxide also had a porosity in the preferable range of 20 to 50%, and was used as a positive electrode active material. In this case, the contact area between the positive electrode active material and the electrolyte can be made sufficient while maintaining the particle strength within an allowable range without excessively lowering the bulk density, and the battery characteristics are improved.
以上より、特にナトリウムの含有量を確実に低減させ、電池特性の向上が可能なリチウムイオン二次電池の正極活物質の前駆体である、ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物を提供することができた。更には、優れた特性を有するリチウムイオン二次電池を提供することにも繋がると期待される。 As described above, nickel-manganese-cobalt composite hydroxide and nickel-manganese-cobalt composite hydroxide are precursors of positive electrode active materials for lithium-ion secondary batteries that can reliably reduce sodium content and improve battery characteristics. It was possible to provide a method for manufacturing a product and a lithium-nickel-manganese-cobalt composite oxide. Furthermore, it is expected to lead to the provision of a lithium ion secondary battery having excellent characteristics.
なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although the embodiments and examples of the present invention have been described in detail as described above, it should be understood by those skilled in the art that many modifications are possible without substantially departing from the novel matters and effects of the present invention. , will be easily understood. Accordingly, all such modifications are intended to be included within the scope of the present invention.
例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。またニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及びリチウムニッケルマンガンコバルト複合酸化物の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in the specification or drawings together with a different, broader or synonymous term can be replaced with the different term anywhere in the specification or drawings. Also, the nickel-manganese-cobalt composite hydroxide, the method for producing the nickel-manganese-cobalt composite hydroxide, and the configuration and operation of the lithium-nickel-manganese-cobalt composite oxide are not limited to those described in the embodiments and examples of the present invention. , various modifications are possible.
S10 晶析工程、S11 核生成工程、S12 粒子成長工程、S20 洗浄工程 S10 crystallization step, S11 nucleation step, S12 particle growth step, S20 washing step
Claims (3)
ニッケル、マンガン、コバルトを含む原料溶液と、アンモニウムイオン供給体を含む溶液と、アルカリ溶液とを添加して得られた反応溶液中で晶析し、遷移金属複合水酸化物を得る晶析工程と、
前記晶析工程で得られた前記遷移金属複合水酸化物を、洗浄液で洗浄する洗浄工程とを有し、
前記晶析工程における前記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩との混合溶液であり、
前記混合溶液の前記アルカリ金属水酸化物に対する前記炭酸塩の比である[CO3 2-]/[OH-]が、0.002~0.050であり、
前記晶析工程では、酸化性雰囲気と非酸化性雰囲気の2段階で雰囲気を切り替えて晶析を行い、
前記洗浄工程における前記洗浄液は、濃度が0.05mol/L以上の炭酸水素アンモニウム溶液であることを特徴とするニッケルマンガンコバルト複合水酸化物の製造方法。 A method for producing a nickel-manganese-cobalt composite hydroxide, which is a precursor of a positive electrode active material, composed of secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or the primary particles and the secondary particles. hand,
a crystallization step of obtaining a transition metal composite hydroxide by crystallization in a reaction solution obtained by adding a raw material solution containing nickel, manganese, and cobalt, a solution containing an ammonium ion donor, and an alkaline solution; ,
a washing step of washing the transition metal composite hydroxide obtained in the crystallization step with a washing liquid;
The alkaline solution in the crystallization step is a mixed solution of an alkali metal hydroxide and a carbonate,
[CO 3 2− ]/[OH − ], which is the ratio of the carbonate to the alkali metal hydroxide in the mixed solution, is 0.002 to 0.050;
In the crystallization step, crystallization is performed by switching the atmosphere between two stages of an oxidizing atmosphere and a non-oxidizing atmosphere,
The method for producing a nickel-manganese-cobalt composite hydroxide, wherein the cleaning liquid in the cleaning step is an ammonium hydrogen carbonate solution having a concentration of 0.05 mol/L or more.
前記核生成工程では、液温25℃を基準に測定するpHが、12.0~14.0となる様に、前記アルカリ溶液を前記反応溶液に添加して核生成を行い、
前記粒子成長工程では、前記核生成工程で形成された核を含む前記反応溶液を、液温25℃を基準に測定するpHが、10.5~12.0となる様にアルカリ溶液を添加することを特徴とする請求項1に記載のニッケルマンガンコバルト複合水酸化物の製造方法。 The crystallization step further includes a nucleation step and a grain growth step,
In the nucleation step, nucleation is performed by adding the alkaline solution to the reaction solution so that the pH measured at a liquid temperature of 25° C. is 12.0 to 14.0,
In the particle growth step, an alkaline solution is added to the reaction solution containing the nuclei formed in the nucleus generation step so that the pH measured at a liquid temperature of 25° C. is 10.5 to 12.0. The method for producing a nickel-manganese-cobalt composite hydroxide according to claim 1 , characterized in that:
前記ニッケルマンガンコバルト複合水酸化物に含まれるナトリウム含有量が、0.0005質量%未満であり、
前記ニッケルマンガンコバルト複合水酸化物の粒子の空隙率が、20~50%であることを特徴とする請求項1又は2に記載のニッケルマンガンコバルト複合水酸化物の製造方法。 The nickel-manganese-cobalt composite hydroxide obtained through the washing step is composed of secondary particles in which primary particles containing nickel, manganese, and cobalt are aggregated, or composed of the primary particles and the secondary particles. a nickel-manganese-cobalt composite hydroxide that is a precursor of the substance,
The sodium content contained in the nickel-manganese-cobalt composite hydroxide is less than 0.0005% by mass,
3. The method for producing a nickel-manganese-cobalt composite hydroxide according to claim 1 , wherein the particles of the nickel-manganese-cobalt composite hydroxide have a porosity of 20 to 50%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017236331A JP7124305B2 (en) | 2017-12-08 | 2017-12-08 | Method for producing nickel-manganese-cobalt composite hydroxide |
JP2022087158A JP2022116212A (en) | 2017-12-08 | 2022-05-27 | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017236331A JP7124305B2 (en) | 2017-12-08 | 2017-12-08 | Method for producing nickel-manganese-cobalt composite hydroxide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022087158A Division JP2022116212A (en) | 2017-12-08 | 2022-05-27 | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019106238A JP2019106238A (en) | 2019-06-27 |
JP7124305B2 true JP7124305B2 (en) | 2022-08-24 |
Family
ID=67061416
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017236331A Active JP7124305B2 (en) | 2017-12-08 | 2017-12-08 | Method for producing nickel-manganese-cobalt composite hydroxide |
JP2022087158A Pending JP2022116212A (en) | 2017-12-08 | 2022-05-27 | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022087158A Pending JP2022116212A (en) | 2017-12-08 | 2022-05-27 | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7124305B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220119274A1 (en) * | 2019-01-22 | 2022-04-21 | Sumitomo Metal Mining Co., Ltd. | Nickel manganese cobalt composite hydroxide, method for producing nickel manganese cobalt composite hydroxide, lithium nickel manganese cobalt composite oxide, and lithium ion secondary battery |
WO2020152768A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide |
WO2020153093A1 (en) * | 2019-01-22 | 2020-07-30 | 住友金属鉱山株式会社 | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery |
CN111430706B (en) * | 2019-11-29 | 2022-05-27 | 蜂巢能源科技有限公司 | Method for washing high-nickel carbonate precursor material and high-nickel carbonate precursor material |
CN115461893A (en) * | 2020-12-08 | 2022-12-09 | 株式会社Lg新能源 | Positive electrode active material precursor for lithium secondary battery, positive electrode active material, and positive electrode comprising same |
CN113860395A (en) * | 2021-11-11 | 2021-12-31 | 金驰能源材料有限公司 | High-specific-surface-area hollow cathode material precursor and preparation method thereof |
CN115172738A (en) * | 2022-08-08 | 2022-10-11 | 陕西红马科技有限公司 | High-power cathode material with hollow interior and preparation method thereof |
CN116830306A (en) * | 2023-03-29 | 2023-09-29 | 广东邦普循环科技有限公司 | Ternary positive electrode material, and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257992A (en) | 2007-04-04 | 2008-10-23 | Sumitomo Metal Mining Co Ltd | Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery |
JP2012230898A (en) | 2011-04-14 | 2012-11-22 | Toda Kogyo Corp | Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP2015162323A (en) | 2014-02-27 | 2015-09-07 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same |
JP2015162322A (en) | 2014-02-27 | 2015-09-07 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery |
JP2015191844A (en) | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof |
JP2016117625A (en) | 2014-12-22 | 2016-06-30 | 住友金属鉱山株式会社 | Nickel-cobalt-manganese composite hydroxide and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016162601A (en) * | 2015-03-02 | 2016-09-05 | Jx金属株式会社 | Method of manufacturing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
-
2017
- 2017-12-08 JP JP2017236331A patent/JP7124305B2/en active Active
-
2022
- 2022-05-27 JP JP2022087158A patent/JP2022116212A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257992A (en) | 2007-04-04 | 2008-10-23 | Sumitomo Metal Mining Co Ltd | Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery |
JP2012230898A (en) | 2011-04-14 | 2012-11-22 | Toda Kogyo Corp | Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP2015162323A (en) | 2014-02-27 | 2015-09-07 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same |
JP2015162322A (en) | 2014-02-27 | 2015-09-07 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery |
JP2015191844A (en) | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof |
JP2016117625A (en) | 2014-12-22 | 2016-06-30 | 住友金属鉱山株式会社 | Nickel-cobalt-manganese composite hydroxide and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2019106238A (en) | 2019-06-27 |
JP2022116212A (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7124305B2 (en) | Method for producing nickel-manganese-cobalt composite hydroxide | |
JP6252010B2 (en) | Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP7124307B2 (en) | Method for producing nickel-cobalt-aluminum composite hydroxide | |
US20170104208A1 (en) | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery | |
WO2016103975A1 (en) | Nickel cobalt manganese composite hydroxide and method for producing same | |
JP2022116215A (en) | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide | |
JP2022116213A (en) | Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide | |
WO2020152771A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide | |
JP6436335B2 (en) | Transition metal composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using the same | |
WO2020153093A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery | |
WO2020152768A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide | |
JP7547767B2 (en) | Lithium nickel manganese cobalt composite oxide, lithium ion secondary battery, and manufacturing method thereof | |
WO2020153094A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery | |
WO2020152770A1 (en) | Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, and lithium-nickel-cobalt-aluminum composite oxide | |
JP7547765B2 (en) | Lithium nickel manganese cobalt composite oxide, lithium ion secondary battery, and manufacturing method thereof | |
JP7547764B2 (en) | Lithium nickel manganese cobalt composite oxide, lithium ion secondary battery, and manufacturing method thereof | |
JP7547766B2 (en) | Lithium nickel cobalt aluminum composite oxide, lithium ion secondary battery, and manufacturing method thereof | |
WO2020152769A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide | |
WO2020153096A1 (en) | Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery | |
WO2020153095A1 (en) | Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, lithium-nickel-cobalt-aluminum composite oxide, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220527 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220527 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220603 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220725 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7124305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |