JP2015162322A - Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery - Google Patents

Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015162322A
JP2015162322A JP2014036201A JP2014036201A JP2015162322A JP 2015162322 A JP2015162322 A JP 2015162322A JP 2014036201 A JP2014036201 A JP 2014036201A JP 2014036201 A JP2014036201 A JP 2014036201A JP 2015162322 A JP2015162322 A JP 2015162322A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014036201A
Other languages
Japanese (ja)
Other versions
JP6237330B2 (en
Inventor
広将 戸屋
Hiromasa Toya
広将 戸屋
相田 平
Taira Aida
平 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014036201A priority Critical patent/JP6237330B2/en
Publication of JP2015162322A publication Critical patent/JP2015162322A/en
Application granted granted Critical
Publication of JP6237330B2 publication Critical patent/JP6237330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery, the positive electrode active material comprising a lithium-nickel-cobalt-manganese composite oxide particle less in an amount of residual impurities, high in capacity and excellent in coulomb efficiency and reaction resistance; a method for producing the precursor; and a method for producing a positive electrode active material using the precursor.SOLUTION: A precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery can be obtained by cleaning a nickel-cobalt-manganese composite hydroxide particle with an aqueous solution of a carbonate, the nickel-cobalt-manganese composite hydroxide particle containing nickel, cobalt and manganese, as a main component, and further one or more of other elements, as an optimal element.

Description

本発明は非水系電解質二次電池用正極活物質に関するものである。より詳しくは、この発明は、正極材料として用いることで電池の高容量化が可能となる非水系電解質二次電池の正極活物質に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery that can be used as a positive electrode material to increase the capacity of the battery.

近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の開発が強く望まれている。このような二次電池として、リチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。   In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries with high energy density is strongly desired. As such a secondary battery, there is a lithium ion secondary battery using lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode, and research and development are actively performed.

リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。 A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material has a high energy density because a high voltage of 4V can be obtained. Is expected to be put to practical use. A battery using a lithium cobalt composite oxide has been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.

しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質や電池のコストアップの原因となり、活物質の代替が望まれている。活物質のコストを下げ、より安価なリチウムイオン二次電池の製造が可能となることは、現在普及している携帯機器の軽量、小型化において工業的に大きな意義を持つ。   However, since lithium cobalt complex oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in the cost of the active material and the battery, and an alternative to the active material is desired. Lowering the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery has a significant industrial significance in terms of reducing the weight and size of portable devices that are currently in widespread use.

リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 New materials for the positive electrode active material for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel. ).

リチウムマンガン複合酸化物は原料が安価である上、熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。   Lithium-manganese composite oxide is an inexpensive alternative and has excellent thermal stability, so it can be said to be a powerful alternative to lithium-cobalt composite oxide, but its theoretical capacity is only about half that of lithium-cobalt composite oxide. Therefore, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year.

一方、リチウムニッケル複合酸化物はリチウムコバルト複合酸化物よりもサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。   On the other hand, the lithium nickel composite oxide has inferior cycle characteristics as compared with the lithium cobalt composite oxide, and has a drawback that battery performance is relatively easily lost when used or stored in a high temperature environment.

そのため、コバルト化合物と同程度の熱安定性、耐久性を有しているリチウムニッケルコバルトマンガン複合酸化物は、コバルト化合物の代替として有力候補となっている。   Therefore, lithium nickel cobalt manganese composite oxide having the same thermal stability and durability as the cobalt compound is a promising candidate as an alternative to the cobalt compound.

たとえば、特許文献1には、実質的にマンガン:ニッケルが1:1である複合水酸化物粒子であって、平均粒径が5〜15μm、タップ密度が0.6〜1.4g/ml、バルク密度が0.4〜1.0g/ml、比表面積が20〜55m2/g、含有硫酸根が0.25〜0.45質量%であるマンガンニッケル複合水酸化物粒子が提案されている。その製造方法として、マンガンイオンの酸化の程度を一定の範囲に制御しつつ、pH値が9〜13の水溶液中で、錯化剤の存在下、マンガンとニッケルの原子比が実質的に1:1であるマンガン塩とニッケル塩の混合水溶液を、アルカリ溶液と適当な攪拌条件下で反応させて生じる粒子を共沈殿させることが開示されている。
しかしながら、特許文献1においては、マンガンニッケル複合酸化物の粒子の構造について検討されているものの、不純物の低減についての検討はなされていない。
For example, Patent Document 1 discloses composite hydroxide particles substantially having a manganese: nickel ratio of 1: 1, an average particle diameter of 5 to 15 μm, a tap density of 0.6 to 1.4 g / ml, Manganese nickel composite hydroxide particles having a bulk density of 0.4 to 1.0 g / ml, a specific surface area of 20 to 55 m 2 / g, and a sulfate content of 0.25 to 0.45% by mass have been proposed. . As its production method, the atomic ratio of manganese and nickel is substantially 1: 1 in an aqueous solution having a pH value of 9 to 13 in the presence of a complexing agent while controlling the degree of oxidation of manganese ions within a certain range. It is disclosed to coprecipitate particles produced by reacting a mixed aqueous solution of manganese salt and nickel salt, which is 1, with an alkaline solution under appropriate stirring conditions.
However, in Patent Document 1, although the structure of the manganese nickel composite oxide particles has been studied, no study has been made on the reduction of impurities.

特開2004−210560号公報JP 2004-210560 A

従来の製造方法によって得られたリチウムニッケルコバルトマンガン複合酸化物では、原料由来の硫酸根や塩素など充放電反応に寄与しない不純物を含んでいるため、電池を構成する際、正極材料の不可逆容量に相当する量の負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たりおよび体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となる。   Lithium nickel cobalt manganese composite oxide obtained by a conventional manufacturing method contains impurities that do not contribute to charge / discharge reactions such as sulfate radicals and chlorine derived from raw materials. Therefore, when configuring a battery, the irreversible capacity of the positive electrode material is reduced. A corresponding amount of negative electrode material must be used in the battery, resulting in a smaller capacity per unit weight and volume, and the extra lithium stored in the negative electrode as irreversible capacity is safe. It becomes a problem from the aspect of sex.

また、不純物として残留する塩素は、焼成工程で揮発し、焼成炉および周辺設備を腐食し、電池の短絡につながる製品への金属異物の混入を生じる可能性があり、できる限り低くすることが求められる。   Chlorine remaining as an impurity may volatilize in the firing process, corrode the firing furnace and surrounding equipment, and may cause contamination of metallic foreign matter into the product leading to a short circuit of the battery. It is done.

本発明の目的は、充放電反応に寄与しない、さらに焼成炉および周辺設備を腐食させる不純物量を低減させることで、電池特性、および安全性に優れた非水系電解質二次電池を得ることが可能な正極活物質の前駆体とその製造方法を提供することにある。   The object of the present invention is to reduce the amount of impurities that do not contribute to the charge / discharge reaction and further corrode the firing furnace and peripheral equipment, thereby making it possible to obtain a non-aqueous electrolyte secondary battery excellent in battery characteristics and safety. It is to provide a precursor of a positive electrode active material and a method for producing the same.

本発明者は、上記課題を解決するため、不純物量の低減に関して研究を深めた結果、ニッケルコバルトマンガン複合水酸化物を炭酸塩水溶液で水洗することで、不純物の少ないニッケルコバルトマンガン複合水酸化物が得られ、これを原料に用いることで不純物の少ないリチウムニッケルコバルトマンガン複合酸化物が作製できることを見出し、本発明を完成するに至った。   As a result of deepening research on the reduction of the amount of impurities in order to solve the above problems, the present inventor has washed nickel nickel cobalt manganese composite hydroxide with an aqueous carbonate solution, thereby reducing nickel cobalt manganese composite hydroxide with less impurities. It was found that by using this as a raw material, a lithium nickel cobalt manganese composite oxide with few impurities can be produced, and the present invention has been completed.

すなわち、本発明の非水電解質二次電池用正極活物質の前駆体の製造方法は、下記の一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子からなる非水電解質二次電池用正極活物質の前駆体の製造方法であって、前記ニッケルコバルトマンガン複合水酸化物粒子を、炭酸塩濃度が0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:NiCoMn(OH)・・・(1)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
That is, the method for producing a precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising nickel cobalt manganese composite hydroxide particles represented by the following general formula (1). A method for producing a precursor of a positive electrode active material for use, wherein the nickel cobalt manganese composite hydroxide particles are washed with a carbonate aqueous solution having a carbonate concentration of 0.1 mol / L or more.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)

また、前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液であり、前記炭酸塩水溶液のpHが11以上であることが好ましい。   The carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate, sodium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate, and the pH of the carbonate aqueous solution is preferably 11 or more.

また、前記洗浄は、液温度15〜50℃の範囲で行うことが好ましい。   Moreover, it is preferable to perform the said washing | cleaning in the liquid temperature range of 15-50 degreeC.

また、前記ニッケルコバルトマンガン複合水酸化物粒子は、加温した反応槽中に、ニッケル、コバルト及びマンガン並びに必要に応じて前記元素Mを含む金属化合物の混合水溶液と、アンモニウムイオン供給体を含む水溶液とを供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析により得ることが好ましい。
さらに、前記金属化合物は、少なくとも1種の金属塩化物もしくは金属塩化物溶液であることが好ましい。
The nickel-cobalt-manganese composite hydroxide particles are mixed in an aqueous solution containing nickel, cobalt and manganese and, if necessary, a metal compound containing the element M, and an aqueous solution containing an ammonium ion supplier. It is preferable to obtain by neutralization crystallization by appropriately supplying an aqueous solution of an alkali metal hydroxide sufficient to keep the reaction solution alkaline.
Furthermore, the metal compound is preferably at least one metal chloride or metal chloride solution.

本発明の非水電解質二次電池用正極活物質の前駆体は、下記一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子からなり、硫酸根含有量が0.20質量%以下、ナトリウム含有量が0.018質量%以下であることを特徴とする。
一般式:NiCoMn(OH)・・・(1)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
また、本発明の非水電解質二次電池用正極活物質の前駆体は、塩素含有量が0.1質量%以下であることが好ましい。
The precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is composed of nickel cobalt manganese composite hydroxide particles represented by the following general formula (1), and the sulfate group content is 0.20% by mass or less. The sodium content is 0.018% by mass or less.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)
The precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention preferably has a chlorine content of 0.1% by mass or less.

本発明の非水電解質二次電池用正極活物質の製造方法は、下記の一般式(2)で表されるリチウムニッケルコバルトマンガン複合酸化物粒子からなる非水電解質二次電池用正極活物質の製造方法であって、前記非水電解質二次電池用正極活物質の前駆体をリチウム化合物と混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸化性雰囲気中800〜1100℃の範囲で焼成して、リチウムニッケルコバルトマンガン複合酸化物粒子を得る焼成工程と、を含むことを特徴とする。
一般式:LiNiCoMn・・・(2)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1、aは、0.95≦a≦1.20である。)
また、前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることが好ましい。
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of this invention is the positive electrode active material for nonaqueous electrolyte secondary batteries which consists of lithium nickel cobalt manganese complex oxide particle represented by following General formula (2). A manufacturing method comprising mixing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery with a lithium compound to obtain a lithium mixture; and the lithium mixture in an oxidizing atmosphere in a range of 800 to 1100 ° C. And firing to obtain lithium nickel cobalt manganese composite oxide particles.
General formula: Li a Ni x Co y Mn z M t O 2 (2)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, x + y + z + t = 1, a is 0.95 ≦ a ≦ 1.20 is there.)
The lithium compound is preferably at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide.

本発明により、残留不純物量が少なく、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質を得ることが可能な前駆体とその製造方法が提供される。本発明の製造方法は、容易で生産性が高いものであり、また、前駆体の不純物品位を低くできることから、焼成時に揮発する成分による製造設備に与える腐食などの損傷を低減でき、金属異物の混入を抑制することができるものである。
さらに、本発明の前駆体を用いた正極活物質の製造方法は、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質を容易に得ることを可能とするものであり、その工業的価値は極めて大きい。
According to the present invention, a precursor capable of obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery having a small amount of residual impurities, a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance, and a method for producing the same Is provided. The production method of the present invention is easy and highly productive, and can reduce the impurity quality of the precursor. Therefore, it is possible to reduce damage such as corrosion on the production equipment due to components that volatilize during firing, and to reduce the amount of metallic foreign matter. Mixing can be suppressed.
Furthermore, the method for producing a positive electrode active material using the precursor of the present invention easily obtains a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance. And its industrial value is extremely high.

図1は、電池評価に用いたコイン電池の断面図である。FIG. 1 is a cross-sectional view of a coin battery used for battery evaluation.

以下、本発明の非水電解質二次電池用正極活物質の前駆体とその製造方法、及びその前駆体を用いた非水電解質二次電池用正極活物質の製造方法を詳細に説明する。なお、以下で説明する実施形態は例示に過ぎず、本発明は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。   Hereinafter, a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a method for producing the same, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery using the precursor will be described in detail. The embodiments described below are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiments.

1.非水電解質二次電池用正極活物質の前駆体の製造方法
本発明の非水電解質二次電池用正極活物質の前駆体(以下、単に「前駆体」ともいう)の製造方法は、下記一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子を濃度0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:NiCoMn(OH)・・・(1)
(式中、Mは、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
1. Method for Producing Precursor of Positive Electrode Active Material for Nonaqueous Electrolyte Secondary Battery A method for producing a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as “precursor”) is described below. The nickel cobalt manganese composite hydroxide particles represented by the formula (1) are washed with an aqueous carbonate solution having a concentration of 0.1 mol / L or more.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, and 0.3 ≦ x ≦ 0 .4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)

前駆体中のニッケルの含有量を示すxは、0.3≦x≦0.4であり、好ましくは0.32≦x≦0.4、より好ましくは0.33≦x≦0.4である。ニッケルの含有量が上記範囲である前駆体から得られる正極活物質を用いることにより、優れた放電容量を有する二次電池が得られる。   X indicating the content of nickel in the precursor is 0.3 ≦ x ≦ 0.4, preferably 0.32 ≦ x ≦ 0.4, more preferably 0.33 ≦ x ≦ 0.4. is there. By using a positive electrode active material obtained from a precursor having a nickel content in the above range, a secondary battery having an excellent discharge capacity can be obtained.

前駆体中のコバルトの含有量を示すyは、0.3≦y≦0.4であり、好ましくは0.3≦y≦0.35、より好ましくは0.3≦y≦0.34である。コバルトの含有量が上記範囲である前駆体から得られる正極活物質を用いることにより、優れた放電容量、サイクル特性を有する二次電池が得られる。   Y indicating the content of cobalt in the precursor is 0.3 ≦ y ≦ 0.4, preferably 0.3 ≦ y ≦ 0.35, more preferably 0.3 ≦ y ≦ 0.34. is there. By using a positive electrode active material obtained from a precursor having a cobalt content in the above range, a secondary battery having excellent discharge capacity and cycle characteristics can be obtained.

前駆体中のマンガンの含有量を示すzは、0.3≦z≦0.4、好ましくは0.3≦y≦0.35、より好ましくは0.3≦y≦0.34である。マンガンの含有量が上記範囲である前駆体から得られる正極活物質を用いることにより、優れたサイクル特性、熱安定性を有する二次電池が得られる。   Z indicating the content of manganese in the precursor is 0.3 ≦ z ≦ 0.4, preferably 0.3 ≦ y ≦ 0.35, more preferably 0.3 ≦ y ≦ 0.34. By using a positive electrode active material obtained from a precursor having a manganese content in the above range, a secondary battery having excellent cycle characteristics and thermal stability can be obtained.

また、前駆体中の元素Mの含有量を示すtは、0≦t≦0.1であり、好ましくは0≦t≦0.07、より好ましくは0≦t≦0.05である。Mの含有量が上記範囲である前駆体から得られる正極活物質を用いることにより、放電容量を確保しながらサイクル特性、熱安定性に優れた二次電池を得ることができる。
なお、前駆体中のニッケル、コバルト、マンガン及び元素Mの組成比は、後述するリチウムニッケルマンガン複合酸化物粒子(正極活物質)中においても維持される。
Further, t indicating the content of the element M in the precursor is 0 ≦ t ≦ 0.1, preferably 0 ≦ t ≦ 0.07, and more preferably 0 ≦ t ≦ 0.05. By using a positive electrode active material obtained from a precursor whose M content is in the above range, a secondary battery excellent in cycle characteristics and thermal stability can be obtained while ensuring a discharge capacity.
In addition, the composition ratio of nickel, cobalt, manganese, and element M in the precursor is maintained in lithium nickel manganese composite oxide particles (positive electrode active material) described later.

(1)ニッケルコバルトマンガン複合水酸化物粒子の製造方法
本発明に用いられるニッケルコバルトマンガン複合水酸化物粒子(以下、単に「複合水酸化物粒子」ともいう)を製造する方法としては、上記式(1)を満たすものが得られれば特に限定されず、従来公知の方法を用いることができ、例えば、ニッケル、コバルトおよびマンガンと、必要に応じてCa、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素Mと、を含む金属化合物の混合水溶液及びアルカリ金属水酸化物の水溶液を適宜混合し、晶析する等が挙げられる。
(1) Method for Producing Nickel Cobalt Manganese Composite Hydroxide Particles As a method for producing nickel cobalt manganese composite hydroxide particles (hereinafter also simply referred to as “composite hydroxide particles”) used in the present invention, the above formula is used. If what satisfy | fills (1) is obtained, it will not specifically limit, A conventionally well-known method can be used, for example, nickel, cobalt, and manganese, and Ca, Ba, Sr, Al, Ti, V, as needed. A mixed aqueous solution of a metal compound containing at least one element M selected from Cr, Zr, Nb, Mo, Hf, Ta, and W and an aqueous solution of an alkali metal hydroxide are appropriately mixed and crystallized. It is done.

中でも、加温した反応槽中に、ニッケル、コバルトおよびマンガンと、必要に応じてCa、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素と、を含む金属化合物の混合水溶液と、アンモニウムイオン供給体を含む水溶液と、を供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析によりニッケルコバルトマンガン複合水酸化物粒子を得ることが、生産性、粒径安定性等の観点から好ましい。   Among them, in the heated reaction vessel, at least selected from nickel, cobalt and manganese and, if necessary, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W A mixed aqueous solution of a metal compound containing one element and an aqueous solution containing an ammonium ion supplier are supplied, and at that time, an alkali metal hydroxide in an amount sufficient to keep the reaction solution alkaline. It is preferable from the viewpoint of productivity, particle size stability, and the like to appropriately supply an aqueous solution and obtain nickel cobalt manganese composite hydroxide particles by neutralization crystallization.

ニッケル、コバルトおよびマンガンを、含む金属化合物としては、特に限定されないが、例えば、それぞれの金属の硫化物、硝酸物、塩化物などを用いることができ、この中でも、排水処理の容易性、環境負荷の観点から硫化物、塩化物が好ましく、中でも、少なくとも1種の金属塩化物を含むことが好ましい。   The metal compound containing nickel, cobalt, and manganese is not particularly limited. For example, sulfides, nitrates, and chlorides of the respective metals can be used. In view of the above, sulfides and chlorides are preferable, and among them, it is preferable to include at least one metal chloride.

Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素Mを含む金属化合物としては、特に限定されず、公知のものを用いることができるが、例えば、硫酸マグネシウム、硫酸カルシウム、アルミン酸ナトリウム、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。   The metal compound containing at least one element M selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W is not particularly limited and is publicly known. Can be used, for example, magnesium sulfate, calcium sulfate, sodium aluminate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, potassium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, Zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, and the like can be used.

また、アルカリ金属水酸化物としては、特に限定されず、例えば、水酸化ナトリウム、水酸化カリウムなどを用いることができる。
アンモニウムイオン供給体としては、特に限定されないが、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。
Moreover, it does not specifically limit as an alkali metal hydroxide, For example, sodium hydroxide, potassium hydroxide, etc. can be used.
Although it does not specifically limit as an ammonium ion supplier, For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride etc. can be used.

反応槽中の反応溶液の温度としては、40〜60℃が好ましく、また、pHとしては10〜14であることが好ましい。晶析時の温度が60℃を超えるか、又はpHが14を超えると、液中で核生成の優先度が高まり結晶成長が進まずに微細な粉末しか得られない。一方、温度が40℃未満、又はpHが10未満では、液中で核の発生が少なく、粒子の結晶成長が優先的となるため、電極作製時に凹凸が発生するほどの非常に大きい粒子が生成するか、又は反応液中の金属イオンの残存量が高く反応効率が非常に悪いという問題が発生することがある。   The temperature of the reaction solution in the reaction vessel is preferably 40 to 60 ° C., and the pH is preferably 10 to 14. When the temperature at the time of crystallization exceeds 60 ° C. or the pH exceeds 14, the priority of nucleation increases in the liquid, and crystal growth does not proceed and only a fine powder can be obtained. On the other hand, when the temperature is less than 40 ° C. or pH is less than 10, the generation of nuclei in the liquid is small, and the crystal growth of the particles becomes preferential, so that very large particles are generated so that irregularities are generated during electrode production. Or the remaining amount of metal ions in the reaction solution may be high and the reaction efficiency may be very poor.

(2)炭酸塩水溶液による洗浄
本発明の前駆体の製造方法は、前記複合水酸化物粒子を濃度0.1mol/L以上、好ましくは0.15〜2.00mol/L、より好ましくは0.20〜1.50mol/Lの炭酸塩水溶液で洗浄することを特徴とする。洗浄する際に濃度0.1mol/L以上の炭酸塩水溶液用いることで、複合水酸化物粒子中の不純物、特に硫酸根や塩素などを、炭酸塩水溶液中の炭酸とのイオン交換作用により、効率よく除去することができる。
その際、pHは25℃基準で11以上であることが好ましい。pHを11以上とすることで、酸を形成する硫酸根や塩素をさらに効率よく除去することができる。pHの上限は特に限定されないが、炭酸塩水溶液を用いるため、25℃基準のpHで12.5程度が上限となる。
(2) Cleaning with carbonate aqueous solution In the method for producing a precursor of the present invention, the concentration of the composite hydroxide particles is 0.1 mol / L or more, preferably 0.15 to 2.00 mol / L, more preferably 0.8. It is characterized by washing with 20 to 1.50 mol / L carbonate aqueous solution. By using a carbonate aqueous solution having a concentration of 0.1 mol / L or more when washing, impurities in the composite hydroxide particles, particularly sulfate radicals and chlorine, are efficiently exchanged with carbonic acid in the carbonate aqueous solution. Can be removed well.
In that case, it is preferable that pH is 11 or more on a 25 degreeC reference | standard. By setting the pH to 11 or more, sulfate radicals and chlorine that form acids can be more efficiently removed. Although the upper limit of pH is not specifically limited, since carbonate aqueous solution is used, about 12.5 becomes an upper limit by pH of 25 degreeC reference | standard.

炭酸塩水溶液は、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸水素カリウム、炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液が好ましい。炭酸リチウム、炭酸カルシウム、炭酸バリウムは水への溶解度が低いため、十分な量が溶解した水溶液を得られないことがある。
また、例えば、炭酸塩として炭酸ナトリウムを使用する場合、水溶液濃度は0.2mol/L以上が好ましく、0.25〜1.50mol/Lがより好ましい。炭酸ナトリウムは水への溶解度が高いため、その水溶液濃度を0.2mol/L以上とすることで、硫酸根や塩素などの不純物の除去をより効率的に行うことができる。
The carbonate aqueous solution is preferably at least one aqueous solution selected from potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium hydrogen carbonate, and sodium hydrogen carbonate. Since lithium carbonate, calcium carbonate, and barium carbonate have low solubility in water, an aqueous solution in which a sufficient amount is dissolved may not be obtained.
For example, when sodium carbonate is used as the carbonate, the aqueous solution concentration is preferably 0.2 mol / L or more, and more preferably 0.25 to 1.50 mol / L. Since sodium carbonate has high solubility in water, impurities such as sulfate radicals and chlorine can be more efficiently removed by setting the concentration of the aqueous solution to 0.2 mol / L or more.

炭酸塩水溶液の水温は、15℃〜50℃が好ましい。水温が上記範囲であることにより、イオン交換反応が活発となり不純物除去が効率的に進む。   The water temperature of the carbonate aqueous solution is preferably 15 ° C to 50 ° C. When the water temperature is in the above range, the ion exchange reaction becomes active and the impurity removal proceeds efficiently.

また、炭酸ナトリウム水溶液量は、複合水酸化物粒子1000gに対して1000mL以上が好ましく、2000〜5000mLがより好ましい。1000mL以下では、不純物イオンと炭酸イオンが十分に置換されず洗浄効果が十分に得られないことがある。
炭酸塩水溶液による洗浄時間としては、ニッケルコバルトマンガン複合水酸化物の硫酸根含有量が0.2質量%以下、ナトリウム含有量が0.018質量%以下となるように、十分洗浄できれば、特に限定されないが、通常、0.5〜2時間である。
Moreover, 1000 mL or more is preferable with respect to 1000 g of composite hydroxide particles, and, as for the amount of sodium carbonate aqueous solution, 2000-5000 mL is more preferable. If it is 1000 mL or less, the impurity ions and carbonate ions may not be sufficiently substituted, and the cleaning effect may not be sufficiently obtained.
The washing time with the carbonate aqueous solution is particularly limited as long as it can be sufficiently washed so that the sulfate content of the nickel cobalt manganese composite hydroxide is 0.2 mass% or less and the sodium content is 0.018 mass% or less. Although it is not, it is usually 0.5 to 2 hours.

洗浄方法としては、炭酸塩水溶液に複合水酸化物粒子を添加し、スラリー化して洗浄した後、ろ過する、通常行われる洗浄方法、あるいは、中和晶析により生成した複合水酸化物粒子を含むスラリーを、フィルタープレスなどのろ過機に供給し、炭酸塩水溶液を通液する、通水洗浄により行うことができる。通水洗浄は、不純物の除去効率が高く、また、ろ過と洗浄を同一の設備で連続的に行うことが可能で生産性が高いため、好ましい。
炭酸塩水溶液による洗浄後、その後必要に応じて純水で洗浄を行う。ナトリウムなどのカチオン不純物を除去するため、純水による洗浄を行うことが好ましい。
純水による洗浄は、通常行われる方法を用いることができるが、炭酸塩水溶液の通水洗浄を行った際には、炭酸塩水溶液による通水洗浄後に、純水による通水洗浄を連続的に行うことが好ましい。
The cleaning method includes adding the composite hydroxide particles to the carbonate aqueous solution, slurrying and cleaning, followed by filtration, or the usual cleaning method or composite hydroxide particles generated by neutralization crystallization. The slurry can be supplied to a filter such as a filter press and subjected to washing with water through which an aqueous carbonate solution is passed. Washing with water is preferable because it has high impurity removal efficiency, and filtration and washing can be performed continuously in the same facility and productivity is high.
After washing with an aqueous carbonate solution, washing is then performed with pure water as necessary. In order to remove cationic impurities such as sodium, it is preferable to perform washing with pure water.
For washing with pure water, a method that is usually performed can be used. However, when washing with a carbonate aqueous solution is performed, water washing with pure water is continuously performed after washing with the carbonate aqueous solution. Preferably it is done.

2.非水電解質二次電池用正極活物質の前駆体
本発明の非水電解質二次電池用正極活物質の前駆体は、下記一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子からなり、硫酸根含有量が0.20質量%以下、Na含有量が0.018質量%以下であることを特徴とする。
一般式:NiCoMn(OH)・・・(1)
(Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
2. Precursor of positive electrode active material for non-aqueous electrolyte secondary battery The precursor of the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention is derived from nickel cobalt manganese composite hydroxide particles represented by the following general formula (1). The sulfate radical content is 0.20% by mass or less, and the Na content is 0.018% by mass or less.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0. 4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)

硫酸根は正極活物質の製造における焼成工程においても減少量が僅かであり、正極活物質に残存するため、前駆体において十分に低減しておく必要がある。硫酸根含有量を0.20質量%以下、好ましくは0.15質量%以下、より好ましくは0.10質量%以下とすることにより、得られる正極活物質の硫酸根含有量も0.20質量%以下、好ましくは0.15質量%以下、より好ましくは0.10質量%以下、にすることができ、得られる正極活物質を不可逆容量が小さく高容量なものとすることができる。また、焼成工程での揮発による焼成炉などの設備の損傷を抑制することができる。   Sulfate radicals are slightly reduced in the firing step in the production of the positive electrode active material, and remain in the positive electrode active material, so it is necessary to sufficiently reduce it in the precursor. By making the sulfate radical content 0.20% by mass or less, preferably 0.15% by mass or less, more preferably 0.10% by mass or less, the resulting positive electrode active material also has a sulfate radical content of 0.20% by mass. % Or less, preferably 0.15% by mass or less, more preferably 0.10% by mass or less, and the positive electrode active material obtained can have a small irreversible capacity and a high capacity. Moreover, damage to equipment such as a firing furnace due to volatilization in the firing step can be suppressed.

ナトリウム含有量についても焼成工程において減少せず、むしろ混合原料であるリチウム塩により増加するため、0.018質量%以下、好ましくは0.015質量%以下、より好ましくは0.012質量%以下となるように、前駆体において十分に低減しておく必要がある。   The sodium content also does not decrease in the firing step, but rather increases due to the lithium salt that is the mixed raw material, so 0.018% by mass or less, preferably 0.015% by mass or less, more preferably 0.012% by mass or less. Thus, it is necessary to sufficiently reduce the precursor.

さらに、塩素含有量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましい。塩素は焼成工程において減少しやすく、硫酸根より正極活物質に対する影響が少ないものの、正極活物質製造時の焼成炉などに悪影響を及ぼすため、前駆体において十分に低減しておくことが好ましい。   Furthermore, the chlorine content is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.02% by mass or less. Although chlorine tends to decrease in the firing step and has less influence on the positive electrode active material than sulfate radicals, it is preferable to reduce it sufficiently in the precursor because it adversely affects the firing furnace during the production of the positive electrode active material.

前駆体中の硫酸根、ナトリウム、塩素含有量は、複合水酸化物粒子を炭酸塩水溶液で洗浄する際の炭酸塩水溶液の濃度、炭酸塩水溶液量、温度等を適宜調製することで、上記範囲とすることができる。   The sulfate, sodium, and chlorine contents in the precursor are within the above ranges by appropriately adjusting the concentration of the carbonate aqueous solution, the amount of the carbonate aqueous solution, the temperature, and the like when the composite hydroxide particles are washed with the carbonate aqueous solution. It can be.

3.非水電解質二次電池用の正極活物質の製造方法
本発明の非水電解質二次電池用の正極活物質の製造方法は、1)上記前駆体とリチウム化合物を混合してリチウム混合物を得る混合工程と、2)前記リチウム混合物を、酸化性雰囲気中850〜1050℃の範囲で焼成して、下記一般式(2)で表されるリチウムニッケルコバルトマンガン複合酸化物粒子(以下、単に「リチウム複合酸化物粒子」ともいう)を得る焼成工程とを含む。
一般式:LiNiCoMn・・・(2)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1であり、aは、0.95≦a≦1.20である。)
3. Method for producing positive electrode active material for non-aqueous electrolyte secondary battery The method for producing a positive electrode active material for non-aqueous electrolyte secondary battery according to the present invention is as follows: 1) Mixing to obtain a lithium mixture by mixing the precursor and lithium compound Step 2) The lithium mixture is fired in an oxidizing atmosphere in the range of 850 to 1050 ° C., and lithium nickel cobalt manganese composite oxide particles represented by the following general formula (2) (hereinafter simply referred to as “lithium composite”). And a firing step for obtaining “oxide particles”.
General formula: Li a Ni x Co y Mn z M t O 2 (2)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, x + y + z + t = 1, and a is 0.95 ≦ a ≦ 1. 20)

以下、各工程について説明する。
(1)混合工程
前記前駆体とリチウム化合物の混合比としては、リチウム(Li)とリチウム以外の金属元素(Me)がモル比(Li/Me)で0.95〜1.20、好ましくは1.00〜1.15になるように調整することが好ましい。つまり、リチウム混合物におけるモル比(Li/Me)が、本発明の正極活物質におけるモル比(Li/Me)と同じになるように混合される。これは、焼成工程前後で、モル比(Li/Me)は変化しないので、この混合工程で混合するLi/Meが正極活物質におけるモル比(Li/Me)となるからである。
Hereinafter, each step will be described.
(1) Mixing Step As a mixing ratio of the precursor and the lithium compound, lithium (Li) and a metal element (Me) other than lithium are 0.95 to 1.20 in molar ratio (Li / Me), preferably 1 It is preferable to adjust so that it may become 0.00-1.15. That is, mixing is performed so that the molar ratio (Li / Me) in the lithium mixture is the same as the molar ratio (Li / Me) in the positive electrode active material of the present invention. This is because the molar ratio (Li / Me) does not change before and after the firing step, and thus Li / Me mixed in this mixing step becomes the molar ratio (Li / Me) in the positive electrode active material.

得られる正極活物質のモル比(Li/Me)が0.95未満となると、充放電サイクル時の電池容量の大きな低下を引き起こす要因となり、一方、1.20を超えると、電池としたときの正極の内部抵抗が大きくなってしまう。
上記混合には、Vブレンダー等の乾式混合機又は混合造粒装置等が用いられ、また、上記焼成には、酸素雰囲気、除湿及び除炭酸処理を施した乾燥空気雰囲気等の酸素濃度20質量%以上のガス雰囲気に調整した電気炉、キルン、管状炉、プッシャー炉等の焼成炉が用いられる。
When the molar ratio (Li / Me) of the obtained positive electrode active material is less than 0.95, it causes a large decrease in the battery capacity during the charge / discharge cycle. The internal resistance of the positive electrode will increase.
For the mixing, a dry blender such as a V blender or a mixing granulator is used, and for the firing, an oxygen concentration of 20% by mass in an oxygen atmosphere, a dry air atmosphere subjected to dehumidification and decarboxylation, or the like. A firing furnace such as an electric furnace, kiln, tubular furnace or pusher furnace adjusted to the above gas atmosphere is used.

上記リチウム化合物としては、特に限定されるものではなく、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種が用いられ、水酸化物および炭酸塩がより好ましく用いられる。   The lithium compound is not particularly limited, and at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide is used. And carbonates are more preferably used.

前記前駆体は、水酸化物の状態でリチウム化合物と混合することができるが、焙焼工程を混合工程の前に追加して前駆体の残留水分を除去してもよく、さらに水酸化物を酸化物の形態に転換してもよい。   The precursor can be mixed with a lithium compound in a hydroxide state, but a roasting step may be added before the mixing step to remove residual moisture from the precursor, and It may be converted to an oxide form.

焙焼工程により、リチウムとリチウム以外の金属元素の比をさらに容易に制御することができ、得られるリチウム複合酸化物粒子の組成を安定させ、焼成時の組成の不均一化を抑制することができる。すなわち、焙焼工程は、酸化性雰囲気中において、150〜1000℃、好ましくは酸化物の形態とするために400〜900℃、より好ましくは400〜800℃の温度で焙焼するものである。   By the roasting process, the ratio of lithium and metal elements other than lithium can be controlled more easily, the composition of the obtained lithium composite oxide particles can be stabilized, and the composition nonuniformity during firing can be suppressed. it can. That is, the roasting step is performed in an oxidizing atmosphere at a temperature of 150 to 1000 ° C., preferably 400 to 900 ° C., more preferably 400 to 800 ° C. in order to obtain an oxide form.

このとき、焙焼温度が150℃未満では、前駆体中の残留水分が十分に除去できないことがある。一方、焙焼温度が1000℃を超えると、粒子を構成する一次粒子が急激に粒成長を起こし、後続のリチウム複合酸化物粒子の製造において焙焼後の前駆体側の反応面積が小さすぎることから、リチウムとの反応性が低下して、リチウム複合酸化物粒子の結晶性が低下することがある。焙焼温度が300℃以下の場合は、ニッケルコバルトマンガン複合水酸化物粒子を得る晶析工程における乾燥と兼ねて実施することができる。   At this time, if the roasting temperature is less than 150 ° C., residual moisture in the precursor may not be sufficiently removed. On the other hand, when the roasting temperature exceeds 1000 ° C., the primary particles constituting the particles rapidly grow and the reaction area on the precursor side after roasting is too small in the production of the subsequent lithium composite oxide particles. The reactivity with lithium may decrease, and the crystallinity of the lithium composite oxide particles may decrease. When the roasting temperature is 300 ° C. or lower, it can be carried out in combination with drying in the crystallization step for obtaining nickel cobalt manganese composite hydroxide particles.

(2)焼成工程
前記リチウム混合物を、酸化性雰囲気中800〜1100℃の範囲、好ましくは850〜1050℃の範囲、さらに好ましくは900〜1000℃の範囲で焼成する工程である。すなわち、800℃を超えるような温度で熱処理すればニッケルコバルトマンガン酸リチウムが生成されるが、800℃未満ではその結晶が未発達で構造的に不安定であり充放電による相転移などにより容易に構造が破壊されてしまう。一方、1100℃を超えると、異常粒成長が生じ、層状構造の崩壊、比表面積の低下を招じるため、リチウムイオンの挿入、脱離が困難となってしまう。なお、ニッケルコバルトマンガン化合物とリチウム化合物は700℃程度で概ね反応が終了することから、700℃までの焼成と700℃以上の焼成を異なる設備、工程に分けても良い。2つに分けることでニッケルコバルトマンガン化合物とリチウム化合物との反応で生じる水蒸気、二酸化炭素等のガス成分を、結晶性を高めるための700℃以上の焼成に持ち込ませないことができ、より高結晶性のリチウム複合酸化物粒子を得ることができる。また、リチウム化合物の結晶水などを取り除いた上で、結晶成長が進む温度領域で均一に反応させるため、600〜900℃、焼成温度より低い温度で、1時間以上保持して仮焼してもよい。
(2) Firing step In the oxidizing step, the lithium mixture is calcined in the range of 800 to 1100 ° C, preferably in the range of 850 to 1050 ° C, more preferably in the range of 900 to 1000 ° C. That is, nickel cobalt lithium manganate is produced when heat-treated at a temperature exceeding 800 ° C., but below 800 ° C., the crystal is undeveloped and structurally unstable, and is easily caused by phase transition due to charge / discharge. The structure will be destroyed. On the other hand, when the temperature exceeds 1100 ° C., abnormal grain growth occurs, causing the layered structure to collapse and the specific surface area to decrease, making it difficult to insert and desorb lithium ions. In addition, since the reaction of the nickel cobalt manganese compound and the lithium compound is almost completed at about 700 ° C., baking up to 700 ° C. and baking at 700 ° C. or more may be divided into different facilities and processes. By dividing into two, gas components such as water vapor and carbon dioxide generated by the reaction between the nickel cobalt manganese compound and the lithium compound can be prevented from being brought into firing at 700 ° C. or higher for improving crystallinity, and higher crystallinity. Lithium composite oxide particles can be obtained. Moreover, in order to make it react uniformly in the temperature range which crystal growth advances after removing the crystal water etc. of a lithium compound, even if it hold | maintains at 600-900 degreeC and temperature lower than a calcination temperature for 1 hour or more, Good.

本発明の前駆体を原料とし、上記製造方法を用いることにより、硫酸根含有量が0.2質量%以下、好ましくは0.15質量%以下、より好ましくは0.10質量%以下、ナトリウム含有量が0.025質量%以下、好ましくは0.020質量%以下、塩素含有量が好ましくは0.01質量%以下のリチウム複合酸化物粒子からなる非水電解質二次電池用正極活物質を得ることができる。   By using the precursor of the present invention as a raw material and using the above production method, the sulfate radical content is 0.2% by mass or less, preferably 0.15% by mass or less, more preferably 0.10% by mass or less, containing sodium. A positive electrode active material for a non-aqueous electrolyte secondary battery comprising lithium composite oxide particles having an amount of 0.025% by mass or less, preferably 0.020% by mass or less, and a chlorine content of preferably 0.01% by mass or less is obtained. be able to.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたリチウムニッケル複合酸化物の金属の分析方法及び評価方法は、以下の通りである。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method and evaluation method of the metal of lithium nickel complex oxide used by the Example and the comparative example are as follows.

1.分析、評価方法
(1)組成の分析:ICP発光分析法で測定した。
(2)硫酸根含有量:ICP発光分析法により硫黄を定量分析し、硫黄は全て酸化して硫酸根(SO 2−)になるものとして係数を乗じることによって求めた。
(3)Na、Cl含有量:原子吸光分析法で測定した。
(4)充放電容量、不可逆容量、クーロン効率:
充放電容量は、コイン型電池を作製してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を放電容量、このときの充電容量に対する放電容量の比率(放電容量/充電容量)をクーロン効率(%)とした。
(5)反応抵抗:
反応抵抗は、コイン型電池を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法ナイキストプロットを作成し、等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
1. Analysis and evaluation method (1) Composition analysis: Measured by ICP emission spectrometry.
(2) Sulfate radical content: Sulfur was quantitatively analyzed by an ICP emission analysis method, and the sulfur content was determined by multiplying a coefficient by assuming that all sulfur was oxidized to become sulfate radicals (SO 4 2− ).
(3) Na, Cl content: measured by atomic absorption spectrometry.
(4) Charge / discharge capacity, irreversible capacity, coulomb efficiency:
The charge / discharge capacity is allowed to stand for about 24 hours after the coin-type battery is produced, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and the cut-off voltage is 4. Charge to 3V, after 1 hour of rest, discharge capacity to 3.0V cut-off voltage, discharge capacity, ratio of discharge capacity to charge capacity (discharge capacity / charge capacity) at this time Coulomb efficiency (%) It was.
(5) Reaction resistance:
For the reaction resistance, a coin-type battery was charged at a charging potential of 4.1 V, an AC impedance method Nyquist plot was created using a frequency response analyzer and a potento-galvanostat (manufactured by Solartron, 1255B), and fitting was performed using an equivalent circuit. The value of the positive electrode resistance was calculated by calculation.

(実施例1)
反応槽内の温度を40℃に設定し、反応槽の硫酸ニッケル、塩化コバルト、硫酸マンガンを含む混合水溶液に、25質量%アンモニア水を添加し、反応溶液を得た。20質量%水酸化ナトリウム溶液により、反応溶液を液温25℃基準でpH11.5に保持することにより(中和晶析法)、1μm以下の一次粒子が複数集合して球状の二次粒子から成り、ニッケルとコバルトとマンガンのモル比が40:30:30で固溶してなるニッケルコバルトマンガン複合水酸化物粒子を製造した。
この複合水酸化物粒子をサンプリングし、水洗し乾燥した後の不純物含有量は、硫酸根含有量が0.73質量%、Na含有量が0.013質量%、塩素含有量が0.35質量%であった(参考例)。
得られた複合水酸化物粒子を、フィルタープレスろ過機により固液分離し、25℃、pH11.5(25℃基準)の0.28mol/Lの炭酸ナトリウム水溶液を、ニッケルコバルトマンガン複合酸化物1000gに対して3000mLの割合で該フィルタープレスろ過機に通液することにより洗浄し、さらに、純水を通液して洗浄した。洗浄後のニッケルコバルトマンガン複合水酸化物粒子(前駆体)の組成、洗浄条件、不純物量等の評価結果を表1に示す。
得られた複合水酸化物粒子(前駆体)をリチウム化合物と、リチウムニッケル複合酸化物の各金属成分のモル比がNi:Co:Mn:Li=0.40:0.30:0.30:1.08となるように、複合水酸化物粒子と水酸化リチウム一水和物(和光純薬製)を秤量し、混合した。得られた混合物を、電気炉を用いて大気雰囲気中で920℃で9時間焼成した。その後、室温まで炉内で冷却した後、解砕処理を行い、一次粒子が凝集した球状のリチウムニッケルコバルトマンガン複合酸化物粒子からなる正極活物質を得た。得られた正極活物質の組成、不純物量の評価結果を表2に示す。
Example 1
The temperature in the reaction vessel was set to 40 ° C., and 25 mass% ammonia water was added to the mixed aqueous solution containing nickel sulfate, cobalt chloride, and manganese sulfate in the reaction vessel to obtain a reaction solution. By maintaining the reaction solution at a pH of 11.5 based on a liquid temperature of 25 ° C. with a 20 mass% sodium hydroxide solution (neutralization crystallization method), a plurality of primary particles of 1 μm or less are aggregated to form spherical secondary particles. Thus, nickel-cobalt-manganese composite hydroxide particles formed by solid solution with a molar ratio of nickel, cobalt and manganese of 40:30:30 were produced.
The impurity content after sampling, washing and drying the composite hydroxide particles is 0.73% by mass for sulfate radical, 0.013% by mass for Na, and 0.35% by mass for chlorine. % (Reference example).
The obtained composite hydroxide particles are subjected to solid-liquid separation using a filter press filter, and 0.28 mol / L sodium carbonate aqueous solution at 25 ° C. and pH 11.5 (25 ° C. standard) is added to 1000 g of nickel cobalt manganese composite oxide. Washing was conducted by passing through the filter press filter at a rate of 3000 mL, and pure water was passed through for washing. Table 1 shows the evaluation results of the composition, the cleaning conditions, the amount of impurities, etc. of the nickel cobalt manganese composite hydroxide particles (precursor) after the cleaning.
In the obtained composite hydroxide particles (precursor), the molar ratio of each metal component of the lithium compound to the lithium nickel composite oxide is Ni: Co: Mn: Li = 0.40: 0.30: 0.30: The composite hydroxide particles and lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were weighed and mixed so as to be 1.08. The obtained mixture was baked at 920 ° C. for 9 hours in an air atmosphere using an electric furnace. Then, after cooling in a furnace to room temperature, pulverization treatment was performed to obtain a positive electrode active material composed of spherical lithium nickel cobalt manganese composite oxide particles in which primary particles were aggregated. Table 2 shows the evaluation results of the composition and impurity amount of the obtained positive electrode active material.

[電池の作製方法]
正極活物質粉末90重量部にアセチレンブラック5重量部及びポリ沸化ビニリデン5重量部を混合し、n−メチルピロリドンを加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cmなるように塗布し、120℃で真空乾燥を行い、その後、これより直径1cmの円板状に打ち抜いて正極とした。
負極としてリチウム金属を、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。また、ポリエチレンからなるセパレーターに電解液を染み込ませ、露点が−80℃に管理されたArガス雰囲気のグローブボックス中で、2032型のコイン電池を作製した。図1に2032型のコイン電池の概略構造を示す。ここで、コイン電池は、正極缶5中の正極(評価用電極)1、負極缶6中のリチウム金属負極3、電解液含浸のセパレーター2及びガスケット4から構成される。得られた電池の各特性(放電容量、クーロン効率、反応抵抗)の評価結果を表2に示す。
[Battery preparation method]
90 parts by weight of the positive electrode active material powder was mixed with 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride, and n-methylpyrrolidone was added to form a paste. The paste was applied to the active material weight after drying in an aluminum foil of 20μm thickness is 0.05 g / cm 2, and vacuum dried at 120 ° C., then the positive electrode and punched than this into a disk form having a diameter of 1cm did.
Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used as the electrolyte. Further, a 2032 type coin battery was manufactured in a glove box in an Ar gas atmosphere in which a separator made of polyethylene was impregnated with an electrolytic solution and the dew point was controlled at −80 ° C. FIG. 1 shows a schematic structure of a 2032 type coin battery. Here, the coin battery includes a positive electrode (evaluation electrode) 1 in a positive electrode can 5, a lithium metal negative electrode 3 in a negative electrode can 6, an electrolyte-impregnated separator 2, and a gasket 4. Table 2 shows the evaluation results of each characteristic (discharge capacity, coulomb efficiency, reaction resistance) of the obtained battery.

(実施例2)
炭酸ナトリウム水溶液を0.47mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Example 2)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the sodium carbonate aqueous solution was changed to 0.47 mol / L and washed. The evaluation results are shown in Tables 1 and 2.

(実施例3)
炭酸ナトリウム水溶液を1.12mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Example 3)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the aqueous sodium carbonate solution was changed to 1.12 mol / L and washed. The evaluation results are shown in Tables 1 and 2.

(実施例4)
Ni:Co:Mn:Li=0.34:0.33:0.33とした以外は実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
Example 4
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that Ni: Co: Mn: Li = 0.34: 0.33: 0.33. The evaluation results are shown in Tables 1 and 2.

(比較例1)
炭酸ナトリウム水溶液を0.09mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 1)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the aqueous sodium carbonate solution was changed to 0.09 mol / L and washed. The evaluation results are shown in Tables 1 and 2.

(比較例2)
炭酸ナトリウム水溶液を1.60mol/Lの水酸化ナトリウム水溶液に変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 2)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the aqueous sodium carbonate solution was changed to a 1.60 mol / L sodium hydroxide aqueous solution and washed. The evaluation results are shown in Tables 1 and 2.

(比較例3)
水酸化ナトリウム水溶液を3.39mol/Lの水酸化ナトリウム水溶液に変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 3)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the sodium hydroxide aqueous solution was changed to a 3.39 mol / L sodium hydroxide aqueous solution and washed. The evaluation results are shown in Tables 1 and 2.

Figure 2015162322
Figure 2015162322

Figure 2015162322
Figure 2015162322

表1より、本発明の要件をすべて満たす実施例1〜4では、得られた水酸化物の不純物量が低く、また正極活物質は高容量であり、クーロン効率、反応抵抗に優れていることがわかる。
これに対して、本発明の要件の一部又はすべてを満たしていない比較例1〜3では、水酸化物の不純物量が多くなり、反応抵抗が高くなっている。また、水酸化ナトリウム溶液による洗浄を行っている比較例2、3では、水酸化ナトリウム溶液の濃度を高くすることで、水洗のみより硫酸根量は低下したもののナトリウムが残った結果、反応抵抗が高くなっている。
From Table 1, in Examples 1 to 4 that satisfy all the requirements of the present invention, the amount of impurities of the obtained hydroxide is low, the positive electrode active material has a high capacity, and is excellent in Coulomb efficiency and reaction resistance. I understand.
On the other hand, in Comparative Examples 1 to 3 that do not satisfy some or all of the requirements of the present invention, the amount of hydroxide impurities increases and the reaction resistance increases. Moreover, in Comparative Examples 2 and 3 in which washing with a sodium hydroxide solution is performed, the concentration of the sodium hydroxide solution is increased, so that the amount of sulfate radicals is reduced but the sodium remains, so that the reaction resistance is reduced. It is high.

以上より明らかなように、本発明の非水電解質二次電池用の正極活物質は、高容量であり、不純物が非常に低減されたリチウムニッケルコバルトマンガン複合酸化物からなり、これを用いることにより高容量、かつ、電池特性に優れた非水電解質二次電池が得られ、特に小型電子機器分野で利用される充放電可能な二次電池として好適であるので、その産業上の利用可能性は極めて大きい。   As is clear from the above, the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention is composed of a lithium nickel cobalt manganese composite oxide having a high capacity and extremely reduced impurities. A non-aqueous electrolyte secondary battery having a high capacity and excellent battery characteristics can be obtained, and is particularly suitable as a chargeable / dischargeable secondary battery used in the field of small electronic devices. Very large.

1 正極(評価用電極)
2 セパレーター(電解液含浸)
3 リチウム金属負極
4 ガスケット
5 正極缶
6 負極缶
1 Positive electrode (Evaluation electrode)
2 Separator (electrolyte impregnation)
3 Lithium metal negative electrode 4 Gasket 5 Positive electrode can 6 Negative electrode can

Claims (9)

下記の一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子からなる非水電解質二次電池用正極活物質の前駆体の製造方法であって、
前記ニッケルコバルトマンガン複合水酸化物粒子を、炭酸塩濃度が0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする非水電解質二次電池用正極活物質の前駆体の製造方法。
一般式:NiCoMn(OH)・・・(1)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery comprising nickel cobalt manganese composite hydroxide particles represented by the following general formula (1):
A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the nickel cobalt manganese composite hydroxide particles are washed with a carbonate aqueous solution having a carbonate concentration of 0.1 mol / L or more.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)
前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液であり、前記炭酸塩水溶液のpHが11以上であることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   2. The carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate, and the pH of the carbonate aqueous solution is 11 or more. The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries as described. 前記洗浄は、液温度15〜50℃の範囲で行うことを特徴とする請求項1または2に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the washing is performed in a liquid temperature range of 15 to 50 ° C. 前記ニッケルコバルトマンガン複合水酸化物粒子は、加温した反応槽中に、ニッケル、コバルト及びマンガン並びに必要に応じて前記元素Mを含む金属化合物の混合水溶液と、アンモニウムイオン供給体を含む水溶液と、を供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析により得ることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   In the heated reaction vessel, the nickel cobalt manganese composite hydroxide particles are mixed with an aqueous solution of a metal compound containing nickel, cobalt and manganese and, if necessary, the element M, an aqueous solution containing an ammonium ion supplier, In that case, an aqueous solution of an alkali metal hydroxide sufficient to keep the reaction solution alkaline is appropriately supplied and obtained by neutralization crystallization. The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries in any one. 前記金属化合物の混合水溶液は、少なくとも1種の金属塩化物を含むことを特徴とする請求項4に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the mixed aqueous solution of the metal compound contains at least one metal chloride. 下記の一般式(1)で表されるニッケルコバルトマンガン複合水酸化物粒子からなり、硫酸根含有量が0.20質量%以下、ナトリウム含有量が0.018質量%以下であることを特徴とする非水電解質二次電池用正極活物質の前駆体。
一般式:NiCoMn(OH)・・・(1)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1である。)
It consists of nickel cobalt manganese composite hydroxide particles represented by the following general formula (1), characterized in that the sulfate radical content is 0.20 mass% or less and the sodium content is 0.018 mass% or less. A precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery.
General formula: Ni x Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, and x + y + z + t = 1.)
塩素含有量が0.1質量%以下であることを特徴とする請求項6に記載の非水電解質二次電池用正極活物質の前駆体。   The precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6, wherein the chlorine content is 0.1% by mass or less. 下記の一般式(2)で表されるリチウムニッケルコバルトマンガン複合酸化物粒子からなる非水電解質二次電池用正極活物質の製造方法であって、
請求項6または7に記載の非水電解質二次電池用正極活物質の前駆体をリチウム化合物と混合してリチウム混合物を得る混合工程と、
前記リチウム混合物を、酸化性雰囲気中800〜1100℃の範囲で焼成して、リチウムニッケルコバルトマンガン複合酸化物粒子を得る焼成工程と、
を含むことを特徴とする非水電解質二次電池用正極活物質の製造方法。
一般式:LiNiCoMn・・・(2)
(式中、Mは、Mg、Ca、Ba、Sr、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、TaおよびWから選ばれる少なくとも1種の元素を示し、0.3≦x≦0.4、0.3≦y≦0.4、0.3≦z≦0.4、0≦t≦0.1、x+y+z+t=1、aは、0.95≦a≦1.20である。)
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising lithium nickel cobalt manganese composite oxide particles represented by the following general formula (2):
A mixing step of mixing the precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6 or 7 with a lithium compound to obtain a lithium mixture;
A firing step of firing the lithium mixture in an oxidizing atmosphere in the range of 800 to 1100 ° C. to obtain lithium nickel cobalt manganese composite oxide particles;
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries characterized by including this.
General formula: Li a Ni x Co y Mn z M t O 2 (2)
(In the formula, M represents at least one element selected from Mg, Ca, Ba, Sr, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and 0.3 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 0.4, 0.3 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, x + y + z + t = 1, a is 0.95 ≦ a ≦ 1.20 is there.)
前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることを特徴とする請求項8に記載の非水電解質二次電池用正極活物質の製造方法。   The non-aqueous composition according to claim 8, wherein the lithium compound is at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate, and halide. A method for producing a positive electrode active material for an electrolyte secondary battery.
JP2014036201A 2014-02-27 2014-02-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery Active JP6237330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036201A JP6237330B2 (en) 2014-02-27 2014-02-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036201A JP6237330B2 (en) 2014-02-27 2014-02-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015162322A true JP2015162322A (en) 2015-09-07
JP6237330B2 JP6237330B2 (en) 2017-11-29

Family

ID=54185308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036201A Active JP6237330B2 (en) 2014-02-27 2014-02-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6237330B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106241A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2019106238A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
CN110931768A (en) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method
JP2020510981A (en) * 2017-03-14 2020-04-09 ユミコア Precursor of cathode material with improved secondary battery performance and method of preparing the precursor
WO2020152883A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
WO2020153096A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
CN112186170A (en) * 2020-08-26 2021-01-05 南通金通储能动力新材料有限公司 Method for reducing calcium content in nickel-cobalt-manganese ternary precursor
JP2022116213A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063033A (en) * 2005-08-29 2007-03-15 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same and use
JP2009263221A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer using the particulate powder of hydrotalcite type compound, and chlorinated-resin composition
WO2010053174A1 (en) * 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション Positive electrode for lithium secondary battery, and lithium secondary battery
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
WO2012037975A1 (en) * 2010-09-22 2012-03-29 Omg Kokkola Chemicals Oy Mixed metal oxidized hydroxide and method for production
US20120175568A1 (en) * 2011-01-10 2012-07-12 Basf Se Process for preparing transition metal hydroxides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063033A (en) * 2005-08-29 2007-03-15 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same and use
JP2009263221A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer using the particulate powder of hydrotalcite type compound, and chlorinated-resin composition
WO2010053174A1 (en) * 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション Positive electrode for lithium secondary battery, and lithium secondary battery
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
WO2012037975A1 (en) * 2010-09-22 2012-03-29 Omg Kokkola Chemicals Oy Mixed metal oxidized hydroxide and method for production
US20120175568A1 (en) * 2011-01-10 2012-07-12 Basf Se Process for preparing transition metal hydroxides

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510981A (en) * 2017-03-14 2020-04-09 ユミコア Precursor of cathode material with improved secondary battery performance and method of preparing the precursor
US11476461B2 (en) 2017-03-14 2022-10-18 Umicore Precursors for cathode material with improved secondary battery performance and method to prepare the precursors
JP2022116213A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP2019106241A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
JP2022116212A (en) * 2017-12-08 2022-08-09 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP7124308B2 (en) 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-manganese-cobalt composite hydroxide
JP7124305B2 (en) 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-manganese-cobalt composite hydroxide
JP2019106238A (en) * 2017-12-08 2019-06-27 住友金属鉱山株式会社 Nickel manganese cobalt composite hydroxide, method for manufacturing the same, and lithium nickel manganese cobalt composite oxide
WO2020152883A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
WO2020152771A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, and lithium-nickel-manganese-cobalt composite oxide
WO2020153096A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
CN113330607A (en) * 2019-01-22 2021-08-31 住友金属矿山株式会社 Nickel-manganese-cobalt composite hydroxide, method for producing nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
CN110931768A (en) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method
CN112186170A (en) * 2020-08-26 2021-01-05 南通金通储能动力新材料有限公司 Method for reducing calcium content in nickel-cobalt-manganese ternary precursor

Also Published As

Publication number Publication date
JP6237330B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6344007B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6323117B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US20230369580A1 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
JP6237330B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101694086B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP6331983B2 (en) Method for producing transition metal composite hydroxide particles and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2017061633A1 (en) Lithium-nickel-containing composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7118129B2 (en) METHOD FOR PRODUCING POSITIVE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY
JP6237229B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP7224754B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JPWO2019087503A1 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7135354B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN111954947A (en) Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2019177017A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery and production method therefor, and non-aqueous electrolyte secondary battery
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
JP7313112B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7119302B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
WO2020218592A1 (en) Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150