JP6323117B2 - Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6323117B2
JP6323117B2 JP2014069643A JP2014069643A JP6323117B2 JP 6323117 B2 JP6323117 B2 JP 6323117B2 JP 2014069643 A JP2014069643 A JP 2014069643A JP 2014069643 A JP2014069643 A JP 2014069643A JP 6323117 B2 JP6323117 B2 JP 6323117B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069643A
Other languages
Japanese (ja)
Other versions
JP2015191848A (en
Inventor
朋子 中山
朋子 中山
広将 戸屋
広将 戸屋
相田 平
平 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014069643A priority Critical patent/JP6323117B2/en
Publication of JP2015191848A publication Critical patent/JP2015191848A/en
Application granted granted Critical
Publication of JP6323117B2 publication Critical patent/JP6323117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法に関するものである。   The present invention relates to a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery and a manufacturing method thereof, and a positive electrode active material for a non-aqueous electrolyte secondary battery and a manufacturing method thereof.

近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の開発が強く望まれている。このようなものとしてリチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。   In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries with high energy density is strongly desired. As such a lithium ion secondary battery using lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode, research and development are actively performed.

リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。 A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material has a high energy density because a high voltage of 4V can be obtained. Is expected to be put to practical use. A battery using a lithium cobalt composite oxide has been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.

しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となる。活物質のコストを下げ、より安価なリチウムイオン二次電池の製造が可能となることは、現在普及している携帯機器の軽量、小型化において工業的に大きな意義を持ち、コバルト化合物を代替するより安価な活物質材料が望まれている。   However, since the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it increases the cost of the active material and further the battery. Lowering the cost of active materials and making it possible to manufacture cheaper lithium-ion secondary batteries has significant industrial significance in reducing the weight and size of portable devices that are currently in widespread use, replacing cobalt compounds. A cheaper active material is desired.

リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。
リチウムマンガン複合酸化物は原料が安価である上、熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえるが、理論容量がLiCoOのおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。
New materials for the positive electrode active material for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel. ).
Lithium-manganese composite oxides are inexpensive materials and have excellent thermal stability, so they can be said to be a powerful alternative to lithium-cobalt composite oxides, but the theoretical capacity is only about half that of LiCoO 2 , It has the disadvantage that it is difficult to meet the increasing demand for higher capacity lithium ion secondary batteries.

一方、リチウムニッケル複合酸化物はリチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、リチウムニッケル複合酸化物は、リチウム以外の金属として、純粋にニッケルのみで合成した材料を正極活物質に用いてリチウムイオン二次電池を作製した場合、コバルト系に比べサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。   On the other hand, since lithium nickel composite oxide has a lower electrochemical potential than lithium cobalt composite oxide, decomposition due to oxidation of the electrolytic solution is less likely to be a problem, and higher capacity can be expected. Therefore, development is actively conducted. However, the lithium-nickel composite oxide, when a lithium ion secondary battery is manufactured using a material synthesized purely of nickel as a metal other than lithium as the positive electrode active material, is inferior in cycle characteristics compared to the cobalt type, and When used or stored in a high temperature environment, the battery performance is relatively easily lost.

このような欠点を解決するために、ニッケルの一部をコバルト等で置換したリチウムニッケル複合酸化物も提案されている。例えば、特許文献1では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiNiCo(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウム含有複合酸化物が提案され、また、特許文献2では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiNiCo(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウム含有複合酸化物が提案されている。そして、これらのリチウム含有複合酸化物は、従来のリチウムコバルト複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されることが記載されている。 In order to solve such a drawback, a lithium nickel composite oxide in which a part of nickel is substituted with cobalt or the like has also been proposed. For example, Patent Document 1, in order to improve the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2,0. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu and A lithium-containing composite oxide represented by at least one element selected from Zn), and Patent Document 2 discloses a positive electrode capable of maintaining good battery performance during storage and use in a high-temperature environment. As the active material, Li w Ni x Co y B z O 2 (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) Lithium-containing composite oxides have been proposed. It is described that these lithium-containing composite oxides have higher charge capacity and discharge capacity than conventional lithium cobalt composite oxides, and the cycle characteristics are also improved.

また、リチウムニッケル複合酸化物のより高出力化を図るため、リチウムニッケル複合酸化物粒子の粒子構造を制御し、比表面積を大きくすることが提案されている。例えば、特許文献3では、一般式:LiNi1−x−yCo(式中、0.95≦t≦1.15、0≦x≦0.22、0≦y≦0.15、x+y<0.3、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素を示す)で表されるリチウムニッケル複合酸化物からなり、平均粒径が2〜8μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.65以下であって、反応面積の大きさを示す指標である〔比表面積×平均粒径〕が5.5以上である非水系電解質二次電池用正極活物質が提案されている。そして、この非水系電解質二次電池用正極活物質は、中空構造を有し、小粒径で粒径が均一でありかつ比表面積が大きいリチウムニッケル複合酸化物粒子からなるため、サイクル特性に優れ、高出力を有することが記載されている。 In order to increase the output of the lithium nickel composite oxide, it has been proposed to increase the specific surface area by controlling the particle structure of the lithium nickel composite oxide particles. For example, Patent Document 3, the general formula: Li t Ni 1-x-y Co x M y O 2 ( wherein, 0.95 ≦ t ≦ 1.15,0 ≦ x ≦ 0.22,0 ≦ y ≦ 0.15, x + y <0.3, M represents at least one element selected from the group consisting of Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo and W ), The average particle diameter is 2 to 8 μm, and the index ((d90-d10) / average particle diameter) indicating the spread of the particle size distribution is 0.65 or less. Thus, a positive electrode active material for a non-aqueous electrolyte secondary battery having [specific surface area × average particle diameter], which is an index indicating the size of the reaction area, is 5.5 or more. And this positive electrode active material for non-aqueous electrolyte secondary battery has a hollow structure, and is composed of lithium nickel composite oxide particles having a small particle size, a uniform particle size, and a large specific surface area. Have a high output.

特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015 特開平8−045509号公報JP-A-8-045509 国際公開第2012/131779号International Publication No. 2012/131799

しかしながら、従来の製造方法によって得られたリチウムニッケル複合酸化物では、1回目の充放電に限り、充電容量に比べて放電容量が小さく、両者の差で定義される、いわゆる不可逆容量がコバルト系複合酸化物に比べてかなり大きくなり、クーロン効率が低いという問題がある。   However, in the lithium nickel composite oxide obtained by the conventional manufacturing method, the discharge capacity is smaller than the charge capacity only in the first charge / discharge, and the so-called irreversible capacity defined by the difference between the two is a cobalt-based composite oxide. There is a problem that it is considerably larger than an oxide and the Coulomb efficiency is low.

不可逆容量が大きくなる原因の一つとして、従来のリチウムニッケル複合酸化物では、原料由来の硫酸根(SO 2−)や塩素などの充放電反応に寄与しない不純物を含むことが挙げられる。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たりおよび体積当たりの容量が小さくなるうえ、不可逆容量として負極に余分なリチウムが蓄積され、安全性の面からも問題となっている。 One of the causes for the increase in irreversible capacity is that the conventional lithium nickel composite oxide contains impurities that do not contribute to the charge / discharge reaction such as sulfate radicals (SO 4 2− ) and chlorine derived from raw materials. Since these impurities do not contribute to the charge / discharge reaction, when the battery is constructed, the negative electrode material must be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode material. The capacity per weight and volume is reduced, and excess lithium is accumulated in the negative electrode as an irreversible capacity, which is a problem in terms of safety.

さらに、不純物として残留する塩素は、焼成工程で揮発し、焼成炉および周辺設備を腐食し、電池の短絡につながる製品への金属異物のコンタミを生じる可能性があり、できる限り低くすることが求められる。   Furthermore, residual chlorine as impurities may volatilize during the firing process, corrode the firing furnace and surrounding equipment, and may cause contamination of metal foreign objects to the product leading to a short circuit of the battery. It is done.

また、特許文献3に開示される非水系電解質二次電池用正極活物質では、粒径分布や比表面積を制御することにより、放電容量が高く、サイクル特性も改善されているが、その製造工程において、粒子の核を生成する核生成工程と、生成した核を成長させる粒子成長工程と、を含むニッケル複合水酸化物の中和晶析を行っており、該粒子成長工程は、比較的低いpH値で晶析を行うため、硫酸根や塩素など不純物が残留しやすくなるという問題がある。また、核生成工程では微細な粒子が晶析するため、その後の粒子成長工程において、粒子成長をさせても、高い緻密性が得られず、不純物が粒子内部に残留しやすくなる。   Further, in the positive electrode active material for a non-aqueous electrolyte secondary battery disclosed in Patent Document 3, the discharge capacity is high and the cycle characteristics are improved by controlling the particle size distribution and the specific surface area. , A neutralization crystallization of nickel composite hydroxide including a nucleation step of generating particle nuclei and a particle growth step of growing the generated nuclei is performed, and the particle growth step is relatively low Since crystallization is performed at a pH value, there is a problem that impurities such as sulfate radicals and chlorine easily remain. In addition, since fine particles are crystallized in the nucleation step, high density cannot be obtained even if particle growth is performed in the subsequent particle growth step, and impurities tend to remain inside the particles.

本発明の目的は、上記従来技術の問題点に鑑み、不純物量が低減され、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池を得ることが可能な正極活物質の前駆体とその製造方法及び非水系電解質二次電池用正極活物質とその製造方法を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that has a reduced amount of impurities, a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance in view of the above-mentioned problems of the prior art. An object of the present invention is to provide a precursor for a positive electrode active material, a method for producing the same, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.

本発明者は、上記課題を解決するため、不純物量の低減に関して研究を深めた結果、特定の組成と構造を有するニッケル複合水酸化物を炭酸塩水溶液で水洗することで、不純物の少ないニッケル複合水酸化物を得ることができ、該ニッケル複合水酸化物から製造したリチウムニッケル複合酸化物を正極材料として用いることで、上記クーロン効率の低下等の問題を回避しつつ、優れた電池特性を示す非水系電解質二次電池を得ることができることを見出し、本発明を完成するに至った。   As a result of deepening research on the reduction of the amount of impurities in order to solve the above problems, the present inventor washed nickel composite hydroxide having a specific composition and structure with a carbonate aqueous solution, thereby reducing the amount of impurities in the nickel composite. A hydroxide can be obtained, and by using a lithium nickel composite oxide produced from the nickel composite hydroxide as a positive electrode material, excellent battery characteristics are exhibited while avoiding problems such as a decrease in coulomb efficiency. The present inventors have found that a non-aqueous electrolyte secondary battery can be obtained and have completed the present invention.

すなわち、本発明の非水電解質二次電池用正極活物質の前駆体の製造方法は、下記の一般式(1)で表されるニッケル複合水酸化物粒子からなり、中空構造または多孔質構造を有する非水電解質二次電池用正極活物質の前駆体の製造方法であって、粒子内部に空隙構造を有する前記ニッケル複合水酸化物粒子を、炭酸塩濃度が0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、0<x≦0.20、0<y≦0.07である。)
That is, the method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention comprises nickel composite hydroxide particles represented by the following general formula (1), and has a hollow structure or a porous structure. A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the nickel composite hydroxide particles having a void structure inside the particles are mixed with a carbonate having a carbonate concentration of 0.1 mol / L or more. It is characterized by washing with an aqueous solution.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and 0 <x ≦ 0.20, 0 <y ≦ 0. .07.)

前記ニッケル複合水酸化物粒子は、断面観察において計測される空隙率が15%以上であることが好ましい。   The nickel composite hydroxide particles preferably have a porosity measured in cross-sectional observation of 15% or more.

前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウムおよび炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液であり、前記炭酸塩水溶液のpHが11.2以上であることが好ましい。
前記洗浄は、液温度10〜50℃の範囲で行うことが好ましい。
The carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate, sodium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate, and the pH of the carbonate aqueous solution is preferably 11.2 or more.
The washing is preferably performed at a liquid temperature of 10 to 50 ° C.

前記ニッケル複合水酸化物粒子は、加温した反応槽中に、ニッケルおよびコバルト、並びに必要に応じて前記元素Mを含む金属化合物の混合水溶液と、アンモニウムイオン供給体を含む水溶液とを供給し、その際、反応溶液に、アルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析することにより得られ、前記中和晶析において、前記反応溶液のpH値を制御することにより、核を生成させる核生成工程と、前記生成された核を成長させる粒子成長工程とを分離して行うことが好ましく、前記核生成工程におけるpH値を、液温25℃基準で11.5〜13.2となるように制御し、前記粒子成長工程におけるpH値を、液温25℃基準で9.5〜12.0、かつ、核生成工程のpH値より低い値となるように制御することが好ましい。   The nickel composite hydroxide particles are supplied in a heated reaction tank with a mixed aqueous solution of nickel and cobalt, and optionally a metal compound containing the element M, and an aqueous solution containing an ammonium ion supplier, In that case, the reaction solution is obtained by appropriately supplying a sufficient amount of an aqueous solution of alkali metal hydroxide to maintain alkalinity, and neutralized crystallization. In the neutralized crystallization, the reaction solution It is preferable to separate the nucleation step for generating nuclei and the particle growth step for growing the generated nuclei by controlling the pH value of the nucleation step. It is controlled to be 11.5 to 13.2 on the basis of 25 ° C., and the pH value in the particle growth step is 9.5 to 12.0 on the basis of the liquid temperature 25 ° C., and the pH value in the nucleation step Low value and It is preferably controlled to so that.

また、前記混合水溶液は、ニッケルおよびコバルトのいずれか少なくとも1種の塩化物を含むことが好ましい。   The mixed aqueous solution preferably contains at least one chloride of nickel and cobalt.

本発明の非水電解質二次電池用正極活物質の製造方法は、下記の一般式(2)で表され、中空構造または多孔質構造を有するリチウムニッケル複合酸化物からなる非水電解質二次電池用正極活物質の製造方法であって、前記非水電解質二次電池用正極活物質の前駆体をリチウム化合物と混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成して、リチウムニッケル複合酸化物を得る焼成工程と、を含むことを特徴とする。
一般式:LiNi1−x−yCo・・・(2)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05、0<x≦0.20、0<y≦0.07である。)
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is represented by the following general formula (2), and is a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide having a hollow structure or a porous structure. A method for producing a positive electrode active material for a non-aqueous electrolyte, comprising: mixing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery with a lithium compound to obtain a lithium mixture; And firing in a range of 850 ° C. to obtain a lithium nickel composite oxide.
General formula: Li a Ni 1-x- y Co x M y O 2 ··· (2)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and a is 0.85 ≦ a ≦ 1.05, 0. <X ≦ 0.20 and 0 <y ≦ 0.07.)

前記前駆体を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程をさらに備え、前記混合工程において、該ニッケル複合酸化物をリチウム化合物と混合してリチウム混合物を得ることが好ましい。   The method further comprises a roasting step in which the precursor is oxidized and roasted at 400 to 800 ° C. in an oxidizing atmosphere to obtain a nickel composite oxide. In the mixing step, the nickel composite oxide is mixed with a lithium compound to form a lithium mixture. It is preferable to obtain

前記焼成工程後に、前記リチウムニッケル複合酸化物を、10〜40℃の温度で、かつ、前記リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理した後、濾過、乾燥する水洗工程を含むことが好ましい。   After the firing step, the lithium nickel composite oxide is 0.10% by mass with respect to the total amount of lithium compound present at a temperature of 10 to 40 ° C. and on the surface of the lithium nickel composite oxide. It is preferable to include a water washing step of filtering and drying after washing with water at a slurry concentration sufficient to become the following.

前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることが好ましい。   The lithium compound is preferably at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate, and halide.

本発明により、残留不純物量が少なく、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質を得ることが可能な前駆体とその製造方法が提供される。また、本発明の製造方法は、容易で生産性が高く、焼成炉および周辺設備等を腐食させる不純物量が少ないため、製造設備に与える損傷を低減できるものである。
さらに、本発明の前駆体を用いた正極活物質の製造方法は、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質を容易に得ることを可能とするものであり、その工業的価値は極めて大きい。
According to the present invention, a precursor capable of obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery having a small amount of residual impurities, a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance, and a method for producing the same Is provided. In addition, the manufacturing method of the present invention is easy and high in productivity, and can reduce damage to the manufacturing equipment because the amount of impurities that corrode the firing furnace and peripheral equipment is small.
Furthermore, the method for producing a positive electrode active material using the precursor of the present invention easily obtains a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance. And its industrial value is extremely high.

図1は、電池評価に用いたコイン電池の断面図である。FIG. 1 is a cross-sectional view of a coin battery used for battery evaluation.

以下、本発明の非水電解質二次電池用正極活物質の前駆体とその製造方法及びその前駆体を用いた非水電解質二次電池用正極活物質とその製造方法を詳細に説明する。なお、以下で説明する実施形態は例示に過ぎず、本発明は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。   Hereinafter, a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention, a manufacturing method thereof, a positive electrode active material for a nonaqueous electrolyte secondary battery using the precursor, and a manufacturing method thereof will be described in detail. The embodiments described below are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiments.

1.非水電解質二次電池用正極活物質の前駆体の製造方法
(1)ニッケル複合水酸化物粒子の組成
本発明の非水電解質二次電池用正極活物質の前駆体(以下、単に「前駆体」ともいう)の製造方法は、下記一般式(1)で表され、粒子内部に空隙構造を有することにより、中空構造または多孔質構造を有する正極活物質を得ることのできるニッケル複合水酸化物粒子を、炭酸塩濃度が0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、0<x≦0.20、0<y≦0.07である。)
1. Method for producing precursor of positive electrode active material for nonaqueous electrolyte secondary battery (1) Composition of nickel composite hydroxide particles Precursor of positive electrode active material for nonaqueous electrolyte secondary battery of the present invention (hereinafter simply referred to as “precursor”) The nickel composite hydroxide represented by the following general formula (1) and having a void structure inside the particles, whereby a positive electrode active material having a hollow structure or a porous structure can be obtained. The particles are washed with a carbonate aqueous solution having a carbonate concentration of 0.1 mol / L or more.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and 0 <x ≦ 0.20, 0 <y ≦ 0. .07.)

ニッケル複合水酸化物粒子中のコバルトの含有量を示すxは、0<x≦0.20であり、好ましくは0.03≦x≦0.20、より好ましくは0.10≦x≦0.20である。コバルトの含有量が上記範囲であるニッケル複合水酸化物粒子を正極活物質の前駆体として用いることにより、優れた放電容量、サイクル特性、熱安定性を有する二次電池が得られる。   X indicating the content of cobalt in the nickel composite hydroxide particles is 0 <x ≦ 0.20, preferably 0.03 ≦ x ≦ 0.20, more preferably 0.10 ≦ x ≦ 0. 20. By using nickel composite hydroxide particles having a cobalt content in the above range as a precursor of the positive electrode active material, a secondary battery having excellent discharge capacity, cycle characteristics, and thermal stability can be obtained.

また、ニッケル複合水酸化物粒子中のMg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素Mの含有量を示すyは、0<y≦0.07であり、好ましくは、0.01≦y≦0.05である。Mの含有量が上記範囲であるニッケル複合水酸化物粒子を正極活物質の前駆体として用いることにより、優れたサイクル特性、熱安定性を有する二次電池が得られる。   The y indicating the content of at least one element M selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W in the nickel composite hydroxide particles is 0 <y ≦ 0.07, and preferably 0.01 ≦ y ≦ 0.05. By using nickel composite hydroxide particles having an M content in the above range as a positive electrode active material precursor, a secondary battery having excellent cycle characteristics and thermal stability can be obtained.

なお、ニッケル複合水酸化物粒子(前駆体)中のニッケル、コバルト及び元素Mの組成比は、後述するリチウムニッケル複合水酸化物粒子(正極活物質)中においても維持される。   The composition ratio of nickel, cobalt, and element M in the nickel composite hydroxide particles (precursor) is also maintained in lithium nickel composite hydroxide particles (positive electrode active material) described later.

(2)ニッケル複合水酸化物粒子の内部構造
本発明に用いられるニッケル複合水酸化物粒子(以下、単に「複合水酸化物粒子」ともいう)は、粒子内部に空隙構造を有することにより、中空構造または多孔質構造を有するリチウムニッケル複合酸化物粒子(以下、単に「複合酸化物粒子」ともいう。)を得ることができる。中空構造または多孔質構造を有する複合酸化物粒子からなる正極活物質は、電解液との接触面積が増加するため、出力特性に優れる。
(2) Internal structure of nickel composite hydroxide particles The nickel composite hydroxide particles used in the present invention (hereinafter also simply referred to as “composite hydroxide particles”) are hollow by having a void structure inside the particles. Lithium nickel composite oxide particles having a structure or a porous structure (hereinafter also simply referred to as “composite oxide particles”) can be obtained. A positive electrode active material composed of composite oxide particles having a hollow structure or a porous structure is excellent in output characteristics because the contact area with the electrolytic solution is increased.

ここで、「粒子内部に空隙構造を有する複合水酸化物粒子」とは、二次粒子を構成する一次粒子の間に空隙を多く含む構造を有する粒子をいい、焼成工程後に、中空構造または多孔質構造を有する正極活物質を得ることができる複合水酸化物粒子をいう。例えば、特許文献3に開示されるような、粒子の中心部が微細な空隙を多数含む低密度部からなり、外殻部が中心部より緻密な高密度部からなる構造を有する複合水酸化物粒子などが挙げられる。また、粒子中に空間、あるいは微細な空隙を多数含む低密度部が複数存在してもよく、複合水酸化物粒子全体が一次粒子間に空隙を多く含む構造であってもよい。一方、正極活物質の「中空構造または多孔質構造」とは、粒子の中心部の空間からなる中空部とその外側の外殻部で構成される構造、または粒子中の空隙が粒子全体にわたって分散している構造をいう。
上記空隙構造、中空構造または多孔質構造は、複合水酸化物粒子/複合酸化物粒子の走査型電子顕微鏡を用いた断面観察により確認される。
Here, the “composite hydroxide particle having a void structure inside the particle” means a particle having a structure including a large amount of voids between primary particles constituting the secondary particle. The composite hydroxide particle which can obtain the positive electrode active material which has a porous structure is said. For example, as disclosed in Patent Document 3, a composite hydroxide having a structure in which the center part of a particle is composed of a low density part including many fine voids and the outer shell part is composed of a dense part denser than the center part And particles. In addition, a plurality of low density portions including many spaces or fine voids may exist in the particles, and the entire composite hydroxide particle may have a structure including many voids between primary particles. On the other hand, the “hollow structure or porous structure” of the positive electrode active material is a structure composed of a hollow part composed of a space in the center of the particle and an outer shell part outside the particle, or voids in the particle are dispersed throughout the particle. Refers to the structure.
The void structure, hollow structure or porous structure is confirmed by cross-sectional observation of the composite hydroxide particles / composite oxide particles using a scanning electron microscope.

また、上記空隙構造、中空構造または多孔質構造を有する複合水酸化物粒子/複合酸化物粒子は、該粒子の断面観察において計測される空隙率が5%以上であり、15%以上であることが好ましく、15〜85%であることがより好ましい。これにより、得られる正極活物質のかさ密度を低下させ過ぎることなく、正極活物質の電解液との接触面積を十分なものとすることができる。
ここで、空隙率は、複合水酸化物粒子/複合酸化物粒子の任意断面を、走査型電子顕微鏡を用いて観察し、画像解析することによって測定できる。例えば、複数の複合水酸化物粒子/複合酸化物粒子を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより該粒子の断面観察が可能な状態とした後、画像解析ソフト:WinRoof 6.1.1等により、上記二次粒子中の空隙部(中空構造の中空部もしくは多孔質構造の空隙部)を黒として測定し、二次粒子輪郭内の緻密部(中空構造の外殻部や空隙構造/多孔質構造を形成する一次粒子断面)を白として測定し、任意の20個以上の粒子に対して、[黒部分/(黒部分+白部分)]の面積を計算することで空隙率を求めることができる。
Further, the composite hydroxide particles / composite oxide particles having the above-mentioned void structure, hollow structure or porous structure have a porosity measured in cross-sectional observation of the particles of 5% or more and 15% or more. Is preferable, and it is more preferable that it is 15 to 85%. Thereby, the contact area with the electrolyte solution of a positive electrode active material can be made sufficient, without reducing the bulk density of the positive electrode active material obtained too much.
Here, the porosity can be measured by observing an arbitrary cross section of the composite hydroxide particles / composite oxide particles using a scanning electron microscope and analyzing the image. For example, after embedding a plurality of composite hydroxide particles / composite oxide particles in a resin or the like and making the section of the particles observable by cross-section polisher processing or the like, image analysis software: WinRoof 6.1.1 or the like To measure the voids in the secondary particles (hollow part of the hollow structure or voids of the porous structure) as black, and dense parts (outer shell part of the hollow structure or void structure / porous) in the secondary particle outline Measure the void ratio by measuring the area of [black part / (black part + white part)] for any 20 or more particles, measuring the cross section of the primary particle forming the texture structure as white. Can do.

(3)ニッケル複合水酸化物粒子の製造方法
本発明に用いられるニッケル複合水酸化物粒子を製造する方法としては、上記式(1)を満たし、かつ空隙構造を有する複合水酸化物粒子が得られれば特に限定されず、従来公知の方法を用いることができる。
(3) Method for Producing Nickel Composite Hydroxide Particles As a method for producing nickel composite hydroxide particles used in the present invention, composite hydroxide particles satisfying the above formula (1) and having a void structure are obtained. The method is not particularly limited, and a conventionally known method can be used.

例えば、加温した反応槽中に、ニッケル及びコバルト並びに必要に応じて元素MとしてMg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWからから選ばれる少なくとも1種の元素Mとを含む金属化合物の混合水溶液と、必要に応じてアンモニウムイオン供給体を含む水溶液とを供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析する方法が挙げられる。また、元素Mは、中和晶析によって得られたニッケル複合水酸化物粒子の粒子表面に元素Mの化合物を付着させることで添加してもよい。   For example, at least one element M selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W as nickel and cobalt and, if necessary, element M in a heated reaction vessel A mixed aqueous solution of a metal compound containing, and if necessary, an aqueous solution containing an ammonium ion supplier, and at that time, an aqueous solution of an alkali metal hydroxide in an amount sufficient to keep the reaction solution alkaline. A method of appropriately supplying and neutralizing crystallization may be mentioned. The element M may be added by adhering a compound of the element M to the surface of the nickel composite hydroxide particles obtained by neutralization crystallization.

また、中和晶析する際、反応溶液のpH値を制御することにより、核を生成させる核生成工程と前記生成された核を成長させる粒子成長工程とに分離して行うことが好ましい。これにより、一次粒子が凝集した二次粒子からなり、空隙構造を有するニッケルコバルトマンガン複合水酸化物粒子が得られる。
ここで、核生成工程と粒子成長工程とを分離して行うとは、従来の連続晶析法のように、核生成反応と粒子成長反応とが同じ層内で同時期に進行するのではなく、主として核生成反応(核生成工程)が生じる時期と、主として粒子成長反応(粒子成長工程)が生じる時期とが明確に分離されていることをいう。
Moreover, when carrying out neutralization crystallization, it is preferable to perform the separation separately into a nucleation step for generating nuclei and a particle growth step for growing the generated nuclei by controlling the pH value of the reaction solution. Thereby, the nickel cobalt manganese composite hydroxide particle which consists of the secondary particle which the primary particle aggregated and has a void structure is obtained.
Here, the separation of the nucleation step and the particle growth step means that the nucleation reaction and the particle growth reaction do not proceed simultaneously in the same layer as in the conventional continuous crystallization method. The time when the nucleation reaction (nucleation process) mainly occurs and the time when the particle growth reaction (particle growth process) mainly occurs are clearly separated.

核生成工程におけるpH値を、液温25℃基準で11.5〜13.2となるように制御し、また、粒子成長工程におけるpH値を、液温25℃基準で9.5〜12.0、かつ核生成工程のpH値より低い値となるように制御することが、粒径の均一性、安定性等の観点から好ましく、粒子成長工程におけるpH値を核生成工程のpH値より0.5以上低い値となるように制御することがより好ましい。   The pH value in the nucleation step is controlled to be 11.5 to 13.2 on the basis of the liquid temperature 25 ° C., and the pH value in the particle growth step is 9.5 to 12.2. It is preferable from the viewpoint of particle size uniformity, stability, etc. that the pH is controlled to be 0 and lower than the pH value of the nucleation step, and the pH value in the particle growth step is 0 from the pH value of the nucleation step. It is more preferable to control the value to be lower by 5 or more.

また、核生成工程及び粒子成長工程における雰囲気は、核を安定して生成させるため、少なくとも核生成工程における雰囲気を大気雰囲気より酸素濃度が低い雰囲気とすることが好ましい。   The atmosphere in the nucleation step and the particle growth step is preferably an atmosphere having an oxygen concentration lower than that in the air atmosphere at least in the nucleation step in order to stably generate nuclei.

さらに、反応溶液中のアンモニウムイオン濃度を調整することにより、得られる正極活物質の粒子構造を制御することもできる。
例えば、核生成工程においてアンモニウムイオン濃度を0.1g/L以下とすることで、微細一次粒子からなり微細な空隙を多数含む核(中心部)が形成され、その後、pHが核生成工程より低い粒子成長工程において、該中心部の外側に該微細一次粒子よりも大きな板状一次粒子からなる外殻部を有する粒子構造を形成することができる。このような粒子構造を有する複合水酸化物粒子は、正極活物質を得る際の焼成工程において、中心部の微細一次粒子が外殻部に吸収されて中空構造を有するリチウムニッケル複合酸化物粒子(正極活物質)となる。
また、必要に応じてアンモニウムイオン供給体を含む水溶液を供給し、核生成工程および粒子成長工程においてアンモニウムイオン濃度を3〜25g/とすることで、核生成工程で形成された一次粒子が成長して一次粒子間に空隙を有する複合水酸化物粒子を得ることができ、正極活物質を得る際の焼成工程において、多孔質構造を有するリチウムニッケル複合酸化物粒子(正極活物質)となる。
Furthermore, the particle structure of the positive electrode active material obtained can be controlled by adjusting the ammonium ion concentration in the reaction solution.
For example, by setting the ammonium ion concentration to 0.1 g / L or less in the nucleation step, a nucleus (center portion) made of fine primary particles and including many fine voids is formed, and then the pH is lower than in the nucleation step. In the particle growth step, a particle structure having an outer shell portion made of plate-like primary particles larger than the fine primary particles can be formed outside the center portion. The composite hydroxide particles having such a particle structure are lithium nickel composite oxide particles having a hollow structure in which fine primary particles at the center are absorbed by the outer shell in the firing step when obtaining the positive electrode active material ( Cathode active material).
Moreover, the primary particle formed in the nucleation process grows by supplying an aqueous solution containing an ammonium ion supplier as necessary, and adjusting the ammonium ion concentration to 3 to 25 g / in the nucleation process and the particle growth process. Thus, composite hydroxide particles having voids between primary particles can be obtained, and in the firing step when obtaining the positive electrode active material, lithium nickel composite oxide particles (positive electrode active material) having a porous structure are obtained.

ニッケルおよびコバルトを、それぞれ含む金属化合物としては、特に限定されず、公知の化合物を用いることができ、例えば、硫酸塩、硝酸物、塩化物などを用いることができる。この中でも、排水処理の容易性、環境負荷の観点から硫酸塩、塩化物を用いることが好ましい。また、特に環境負荷の観点から、ニッケルおよびコバルトのいずれか少なくとも1種の塩化物を用いることが好ましい。 The metal compound containing nickel and cobalt is not particularly limited, and a known compound can be used. For example, sulfate , nitrate, chloride, and the like can be used. Among these, it is preferable to use a sulfate and a chloride from the viewpoint of easy drainage treatment and environmental load. In particular, from the viewpoint of environmental load, it is preferable to use at least one chloride of nickel and cobalt.

Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素Mを含む金属化合物としては、特に限定されず、公知の化合物を用いることができ、例えば、硫酸マグネシウム、硫酸カルシウム、アルミン酸ナトリウム、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸マンガン、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。   The metal compound containing at least one element M selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W is not particularly limited, and a known compound can be used. , Magnesium sulfate, calcium sulfate, sodium aluminate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, manganese sulfate, zirconium sulfate, zirconium nitrate, Niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, or the like can be used.

また、アルカリ金属水酸化物としては、特に限定されず、公知の物質を用いることができ、例えば、水酸化ナトリウム、水酸化カリウムなどを用いることができる。   Moreover, it does not specifically limit as an alkali metal hydroxide, A well-known substance can be used, For example, sodium hydroxide, potassium hydroxide, etc. can be used.

アンモニウムイオン供給体としては、特に限定されないが、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。   Although it does not specifically limit as an ammonium ion supplier, For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride etc. can be used.

(4)炭酸塩水溶液による洗浄
本発明の前駆体の製造方法は、ニッケル複合水酸化物粒子を濃度0.10mol/L以上、好ましくは0.10〜2.00mol/L、より好ましくは0.10〜1.50mol/Lの炭酸塩水溶液で洗浄することを特徴とする。
濃度0.10mol/L以上の炭酸塩水溶液を用いて洗浄することで、ニッケル複合水酸化物粒子中の不純物、特に硫酸根や塩素などを、炭酸塩水溶液中の炭酸とのイオン交換作用により、効率よく除去することができる。特に、上述した空隙構造を有するニッケル複合水酸化物粒子の場合、従来用いられてきた水や水酸化ナトリウムなどのアルカリ金属水溶液による洗浄では、粒子内部の不純物を除去することが困難であり、炭酸塩水溶液による洗浄が効果的である。
(4) Washing with aqueous carbonate solution In the method for producing a precursor of the present invention, the concentration of nickel composite hydroxide particles is 0.10 mol / L or more, preferably 0.10 to 2.00 mol / L, more preferably 0.8. It is characterized by washing with 10 to 1.50 mol / L carbonate aqueous solution.
By washing with a carbonate aqueous solution having a concentration of 0.10 mol / L or more, impurities in the nickel composite hydroxide particles, particularly sulfate radicals and chlorine, are ion-exchanged with carbonic acid in the carbonate aqueous solution. It can be removed efficiently. In particular, in the case of nickel composite hydroxide particles having the above-described void structure, it is difficult to remove impurities inside the particles by washing with an aqueous alkali metal solution such as water or sodium hydroxide, which has been conventionally used. Washing with an aqueous salt solution is effective.

洗浄する際、pHは25℃基準で11.2以上であることが好ましく、11.5以上であることがより好ましい。pHを11.2以上とすることで、酸を形成する硫酸根や塩素をさらに効率よく除去することができる。pHの上限は特に限定されないが、炭酸塩水溶液を用いるため、25℃基準のpHで12.5程度が上限となる。   When washing, the pH is preferably 11.2 or more, more preferably 11.5 or more, on a 25 ° C. basis. By adjusting the pH to 11.2 or higher, sulfate radicals and chlorine that form acids can be more efficiently removed. Although the upper limit of pH is not specifically limited, since carbonate aqueous solution is used, about 12.5 becomes an upper limit by pH of 25 degreeC reference | standard.

炭酸塩水溶液は、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸水素カリウムおよび炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液であることが好ましい。炭酸リチウム、炭酸カルシウム、炭酸バリウムは水への溶解度が低いため、十分な量が溶解した水溶液を得られないことがある。 The carbonate aqueous solution is preferably at least one aqueous solution selected from potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium hydrogen carbonate and sodium hydrogen carbonate. Since lithium carbonate, calcium carbonate, and barium carbonate have low solubility in water, an aqueous solution in which a sufficient amount is dissolved may not be obtained.

また、例えば、炭酸塩として炭酸ナトリウムを使用する場合、水溶液濃度は0.2mol/L以上が好ましく、0.25〜0.60mol/Lがより好ましい。炭酸ナトリウムは水への溶解度が高いため、その水溶液濃度を0.2mol/L以上とすることで、硫酸根や塩素などの不純物の除去をより効率的に行うことができる。   For example, when sodium carbonate is used as the carbonate, the aqueous solution concentration is preferably 0.2 mol / L or more, and more preferably 0.25 to 0.60 mol / L. Since sodium carbonate has high solubility in water, impurities such as sulfate radicals and chlorine can be more efficiently removed by setting the concentration of the aqueous solution to 0.2 mol / L or more.

炭酸塩水溶液の水温は、10℃〜50℃が好ましい。水温が上記範囲であることにより、イオン交換反応が活発となり不純物除去が効率的に進む。   The water temperature of the carbonate aqueous solution is preferably 10 ° C to 50 ° C. When the water temperature is in the above range, the ion exchange reaction becomes active and the impurity removal proceeds efficiently.

洗浄に用いる炭酸塩水溶液の液量としては、ニッケル複合水酸化物粒子の硫酸根含有量が0.5質量%以下、ナトリウム含有量が0.020質量%以下となるように、十分洗浄できれば、特に限定されないが、例えば、炭酸ナトリウム水溶液を使用する場合の液量は、ニッケル複合水酸化物1000gに対して1000mL以上が好ましく、2000〜5000mLがより好ましい。1000mL以下では、不純物イオンと炭酸イオンが十分に置換されず洗浄効果が十分に得られないことがある。   As the amount of carbonate aqueous solution used for washing, the sulfate content of the nickel composite hydroxide particles is 0.5% by mass or less, and the sodium content is 0.020% by mass or less, if it can be sufficiently washed, Although it does not specifically limit, 1000 mL or more is preferable with respect to 1000 g of nickel composite hydroxide, and, as for the liquid volume in the case of using sodium carbonate aqueous solution, for example, 2000-5000 mL is more preferable. If it is 1000 mL or less, impurity ions and carbonate ions may not be sufficiently substituted, and a cleaning effect may not be sufficiently obtained.

炭酸塩水溶液による洗浄時間としては、複合水酸化物粒子の硫酸根含有量が0.5質量%以下、ナトリウム含有量が0.020質量%以下となるように、十分洗浄できれば、特に限定されないが、通常、0.5〜2時間である。   The washing time with the carbonate aqueous solution is not particularly limited as long as it can be sufficiently washed so that the sulfate content of the composite hydroxide particles is 0.5% by mass or less and the sodium content is 0.020% by mass or less. Usually, 0.5 to 2 hours.

洗浄方法としては、炭酸塩水溶液にニッケル複合水酸化物粒子を添加し、スラリー化して洗浄した後、ろ過する、という通常行われる洗浄方法、あるいは、中和晶析により生成したニッケル複合水酸化物粒子を含むスラリーを、フィルタープレスなどのろ過機に供給し、炭酸塩水溶液を通液する、通水洗浄により行うことができる。通水洗浄は、不純物の除去効率が高く、また、ろ過と洗浄を同一の設備で連続的に行うことが可能で生産性が高いため、好ましい。   As a cleaning method, nickel composite hydroxide particles are added to an aqueous carbonate solution, and the slurry is washed and then filtered, or a normal cleaning method in which filtration is performed, or nickel composite hydroxide generated by neutralization crystallization. The slurry containing the particles can be supplied to a filter such as a filter press, and can be performed by water flow washing in which an aqueous carbonate solution is passed. Washing with water is preferable because it has high impurity removal efficiency, and filtration and washing can be performed continuously in the same facility and productivity is high.

炭酸塩水溶液による洗浄後、その後必要に応じて純水で洗浄を行うことが好ましい。純水による洗浄により、ナトリウムなどのカチオン不純物を除去することができる。   After washing with an aqueous carbonate solution, washing with pure water is preferably performed as necessary. By washing with pure water, cation impurities such as sodium can be removed.

純水による洗浄は、通常行われる方法を用いることができるが、炭酸塩水溶液の通水洗浄を行う場合、炭酸塩水溶液による通水洗浄後に、純水による通水洗浄を連続的に行うことが好ましい。   For cleaning with pure water, a method that is usually performed can be used. However, when water carbonate cleaning is performed, water cleaning with pure water is continuously performed after water carbonate cleaning with a carbonate aqueous solution. preferable.

2.非水電解質二次電池用正極活物質の前駆体
本発明の非水電解質二次電池用正極活物質の前駆体は、下記一般式(1)で表され、空隙構造を有するニッケル複合水酸化物粒子からなり、硫酸根含有量が0.5質量%以下、ナトリウム含有量が0.020質量%以下であることを特徴とする。
一般式:Ni1―x―yCoMn(OH)・・・(1)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、0<x≦0.20、0<y≦0.07である。)
2. Precursor of positive electrode active material for nonaqueous electrolyte secondary battery The precursor of the positive electrode active material for nonaqueous electrolyte secondary battery of the present invention is represented by the following general formula (1), and is a nickel composite hydroxide having a void structure It consists of particle | grains, A sulfate radical content is 0.5 mass% or less, Sodium content is 0.020 mass% or less, It is characterized by the above-mentioned.
General formula: Ni 1-xy Co y Mn z M t (OH) 2 (1)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and 0 <x ≦ 0.20, 0 <y ≦ 0. .07.)

前駆体中の硫酸根の含有量は、正極活物質を製造する際に行う焼成工程においても減少せず、正極活物質に残存するため、前駆体において十分に低減しておく必要がある。硫酸根含有量を0.5質量%以下、好ましくは0.4質量%以下、より好ましくは0.3質量%以下とすることにより、得られる正極活物質の硫酸根含有量も0.4質量%以下、好ましくは0.3質量%以下、にすることができる。   The content of sulfate radicals in the precursor does not decrease even in the firing step performed when the positive electrode active material is manufactured, and remains in the positive electrode active material. Therefore, it is necessary to sufficiently reduce the content of the precursor. By making the sulfate radical content 0.5 mass% or less, preferably 0.4 mass% or less, more preferably 0.3 mass% or less, the sulfate radical content of the positive electrode active material obtained is also 0.4 mass. % Or less, preferably 0.3% by mass or less.

前駆体中のナトリウムの含有量については、正極活物質を製造する際に行う焼成工程においても減少せず、むしろ混合原料であるリチウム塩により増加することがある。一方、焼成後に水洗するとある程度除去されるが、正極活物質のナトリウムの含有量を十分に低減するため、0.020質量%以下、好ましくは0.017質量%以下、より好ましくは0.015質量%以下となるように、前駆体においてナトリウムの含有量を十分に低減しておく必要がある。   The content of sodium in the precursor does not decrease even in the firing step performed when the positive electrode active material is manufactured, but may increase due to the lithium salt as a mixed raw material. On the other hand, it is removed to some extent when washed with water after firing, but in order to sufficiently reduce the sodium content of the positive electrode active material, it is 0.020% by mass or less, preferably 0.017% by mass or less, more preferably 0.015% by mass. It is necessary to sufficiently reduce the sodium content in the precursor so as to be not more than%.

さらに、前駆体中の塩素含有量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましい。塩素は焼成工程において減少しやすく、硫酸根と比較して、正極活物質に対する影響が少ないものの、残存した塩素は、正極活物質製造時の焼成炉などに悪影響を及ぼすため、前駆体において十分に低減しておくことが好ましい。   Furthermore, the chlorine content in the precursor is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.02% by mass or less. Chlorine is easy to decrease in the firing process and has less influence on the positive electrode active material compared to the sulfate radical, but the remaining chlorine has an adverse effect on the firing furnace during the production of the positive electrode active material, so it is sufficient in the precursor. It is preferable to reduce it.

前駆体中の硫酸根、ナトリウムおよび塩素の含有量は、ニッケル複合水酸化物粒子を炭酸塩水溶液で洗浄する際の炭酸塩水溶液の濃度、炭酸塩水溶液量、温度等を適宜調製することで、上記範囲とすることができる。   The contents of sulfate radical, sodium and chlorine in the precursor are adjusted appropriately by adjusting the concentration of the carbonate aqueous solution, the amount of carbonate aqueous solution, the temperature, etc. when washing the nickel composite hydroxide particles with the carbonate aqueous solution, It can be set as the said range.

3.非水電解質二次電池用正極活物質の製造方法
本発明の非水電解質二次電池用の正極活物質の製造方法は、上記前駆体をリチウム化合物と混合してリチウム混合物を得る混合工程(b)と、前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成して、下記一般式(2)で表されるリチウムニッケル複合酸化物粒子(以下、単に「リチウム複合酸化物粒子」ともいう)を得る焼成工程(c)とを含む。
一般式:LiNi1−x−yCo・・・(2)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05、0<x≦0.20、0<y≦0.07である。)
また、混合工程(b)の前に、前記前駆体を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程(a)を含むことが好ましく、焼成工程(c)後に、前記リチウムニッケル複合酸化物を、水洗処理した後、濾過、乾燥する水洗工程(d)を含むことが好ましい。
以下、各工程について説明する。
3. Method for Producing Positive Electrode Active Material for Nonaqueous Electrolyte Secondary Battery The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention comprises a mixing step (b) of mixing the precursor with a lithium compound to obtain a lithium mixture. ) And the lithium mixture in an oxygen atmosphere in the range of 650 to 850 ° C., and the lithium nickel composite oxide particles represented by the following general formula (2) (hereinafter simply referred to as “lithium composite oxide particles”) A firing step (c).
General formula: Li a Ni 1-x- y Co x M y O 2 ··· (2)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and a is 0.85 ≦ a ≦ 1.05, 0. <X ≦ 0.20 and 0 <y ≦ 0.07.)
Moreover, before the mixing step (b), it is preferable to include a roasting step (a) in which the precursor is oxidized and roasted at 400 to 800 ° C. in an oxidizing atmosphere to obtain a nickel composite oxide. After c), it is preferable to include a water washing step (d) in which the lithium nickel composite oxide is filtered and dried after being washed with water.
Hereinafter, each step will be described.

(1)焙焼工程(a)
焙焼工程(a)は、ニッケル複合水酸化物を焙焼してニッケル複合酸化物を得る工程である。これにより、リチウムとリチウム以外の金属元素の比を容易に制御することができる。酸化性雰囲気中400〜800℃、より好ましくは500〜700℃の温度で焙焼する。
焙焼温度を400〜800℃とすることで、これを用いて得られるリチウムニッケル複合酸化物の品位を安定させ、合成時の組成をさらに均一化することができる。また、粒子を構成する一次粒子の急激な粒成長を抑制し、後続のリチウムニッケル複合酸化物の製造工程においてニッケル複合酸化物側の十分な反応面積を確保することができる。これにより、リチウム化合物とニッケル複合酸化物が十分に反応することができず、下層の比重の大きなニッケル化合物と上層の溶融状態のリチウム化合物とに比重分離するという問題を防ぐことが容易になる。
(1) Roasting process (a)
The roasting step (a) is a step of roasting the nickel composite hydroxide to obtain the nickel composite oxide. As a result, the ratio of lithium to a metal element other than lithium can be easily controlled. Roasting is performed at a temperature of 400 to 800 ° C., more preferably 500 to 700 ° C. in an oxidizing atmosphere.
By setting the roasting temperature to 400 to 800 ° C., the quality of the lithium nickel composite oxide obtained using this can be stabilized, and the composition at the time of synthesis can be made more uniform. Moreover, the rapid grain growth of the primary particle which comprises particle | grains can be suppressed, and sufficient reaction area by the side of nickel composite oxide can be ensured in the manufacturing process of subsequent lithium nickel composite oxide. As a result, the lithium compound and the nickel composite oxide cannot sufficiently react, and it becomes easy to prevent the problem of specific gravity separation between the nickel compound having a large specific gravity in the lower layer and the lithium compound in the molten state in the upper layer.

(2)混合工程(b)
混合工程(b)は、前駆体をリチウム化合物と混合してリチウム混合物を得る工程である。
前駆体とリチウム化合物の混合比は、水洗工程(d)を含まない場合、リチウム(Li)とリチウム以外の金属元素(Me)とのモル比(以下、Li/Meという)が、0.85〜1.05、好ましくは0.95〜1.04となるように調整することが好ましい。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程(c)前後で、Li/Meは変化しないので、混合工程(b)で混合するLi/Meが、正極活物質におけるLi/Meとなるからである。
得られる正極活物質のLi/Meが0.85未満となると、充放電サイクル時の電池容量の大きな低下を引き起こす要因となり、一方、Li/Meが1.05を超えると、電池としたときの正極の内部抵抗が大きくなってしまう。
(2) Mixing step (b)
The mixing step (b) is a step of obtaining a lithium mixture by mixing the precursor with a lithium compound.
When the mixing ratio of the precursor and the lithium compound does not include the water washing step (d), the molar ratio between lithium (Li) and a metal element (Me) other than lithium (hereinafter referred to as Li / Me) is 0.85. It is preferable to adjust so that it may become -1.05, Preferably it is 0.95-1.04. That is, it mixes so that Li / Me in a lithium mixture may become the same as Li / Me in the positive electrode active material of this invention. This is because Li / Me does not change before and after the firing step (c), and thus Li / Me mixed in the mixing step (b) becomes Li / Me in the positive electrode active material.
When Li / Me of the obtained positive electrode active material is less than 0.85, it causes a large decrease in battery capacity during charge / discharge cycles. On the other hand, when Li / Me exceeds 1.05, a battery is obtained. The internal resistance of the positive electrode will increase.

また、水洗工程(d)を含む場合、前駆体とリチウム化合物の混合比は、Li/Meが0.95〜1.13とすることが好ましい。
すなわち、Li/Meが0.95未満では、得られる焼成粉末のモル比も0.95未満となり、結晶性が非常に悪く、また、水洗した際にはリチウムとリチウム以外の金属とのモル比(Li/Me)が0.85未満となることがある。一方、モル比が1.13を超えると得られる焼成粉末のモル比も1.13を超え、表面に余剰のリチウム化合物が多量に存在し、これを水洗で除去するのが難しくなる。このため、これを正極活物質として用いると、電池の充電時にガスが多量に発生されるばかりでなく、高pHを示す粉末であるため電極作製時に使用する有機溶剤などの材料と反応してスラリーがゲル化して不具合を起こす要因となる。また、水洗後の正極活物質のモル比(Li/Me)が1.05を超えることがある。
Moreover, when a water washing process (d) is included, it is preferable that Li / Me is 0.95-1.13 about the mixing ratio of a precursor and a lithium compound.
That is, when Li / Me is less than 0.95, the molar ratio of the fired powder obtained is also less than 0.95, the crystallinity is very poor, and when washed with water, the molar ratio of lithium to a metal other than lithium (Li / Me) may be less than 0.85. On the other hand, if the molar ratio exceeds 1.13, the molar ratio of the calcined powder obtained also exceeds 1.13, and a large amount of excess lithium compound is present on the surface, which is difficult to remove by washing with water. For this reason, when this is used as a positive electrode active material, not only a large amount of gas is generated during charging of the battery, but also a slurry that reacts with a material such as an organic solvent used in electrode preparation because it is a powder exhibiting a high pH. Causes gelation and causes problems. Moreover, the molar ratio (Li / Me) of the positive electrode active material after washing with water may exceed 1.05.

上記リチウム化合物としては、特に限定されるものではなく、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種が用いられ、好ましくはリチウムの水酸化物および/または炭酸塩が用いられる。   The lithium compound is not particularly limited, and at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide is preferably used. Lithium hydroxide and / or carbonate is used.

前駆体とリチウム化合物との混合には、一般的な混合機を用いることができ、例えば、Vブレンダー等の乾式混合機又は混合造粒装置等が用いられる。   For mixing the precursor and the lithium compound, a general mixer can be used. For example, a dry mixer such as a V blender or a mixing granulator is used.

(3)焼成工程(c)
焼成工程(c)は、前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成する工程である。焼成温度としては、650〜800℃℃の範囲、好ましくは730〜790℃の範囲が用いられる。すなわち、500℃を超えるような温度で熱処理すればニッケル酸リチウムが生成されるが、650℃未満ではその結晶が未発達で構造的に不安定であり充放電による相転移などにより容易に構造が破壊されてしまう。一方、800℃を超えると、カチオンミキシングが生じやすくなり層状構造が崩れ、リチウムイオンの挿入、脱離が困難となったり、さらには分解により酸化ニッケルなどが生成されてしまう。
さらに、リチウム化合物に含まれる結晶水などを取り除いた上で、結晶成長が進む温度領域で均一に反応させるためにも、400〜600℃の温度で1時間以上仮焼し、続いて650〜800℃の温度で3時間以上で焼成することが特に好ましい。
(3) Firing step (c)
A baking process (c) is a process of baking the said lithium mixture in the range of 650-850 degreeC in oxygen atmosphere. As a calcination temperature, the range of 650-800 degreeC, Preferably the range of 730-790 degreeC is used. In other words, lithium nickelate is produced if heat treatment is performed at a temperature exceeding 500 ° C., but if the temperature is lower than 650 ° C., the crystal is undeveloped and structurally unstable, and the structure is easily formed by phase transition due to charge / discharge. It will be destroyed. On the other hand, when the temperature exceeds 800 ° C., cation mixing is likely to occur, the layered structure is destroyed, lithium ion insertion or desorption becomes difficult, and nickel oxide or the like is generated by decomposition.
Further, after removing crystal water and the like contained in the lithium compound, calcining is performed at a temperature of 400 to 600 ° C. for 1 hour or more in order to cause a uniform reaction in a temperature range in which crystal growth proceeds, and subsequently 650 to 800. It is particularly preferable to bake at a temperature of 3 ° C. for 3 hours or more.

リチウム混合物の焼成には、酸素雰囲気、除湿及び除炭酸処理を施した乾燥空気雰囲気等の酸素濃度20質量%以上のガス雰囲気に調整した電気炉、キルン、管状炉、プッシャー炉等の焼成炉が用いられる。   For the firing of the lithium mixture, a firing furnace such as an electric furnace, a kiln, a tubular furnace, or a pusher furnace adjusted to a gas atmosphere having an oxygen concentration of 20% by mass or more such as an oxygen atmosphere, a dehumidified and decarbonized dry air atmosphere or the like is used. Used.

(4)水洗工程(d)
水洗工程(d)は、焼成工程(c)により得られたリチウムニッケル複合酸化物を、水洗処理した後、濾過、乾燥する工程である。
焼成工程(c)後のリチウムニッケル複合酸化物は、そのままの状態でも正極活物質として用いられるが、粒子表面の余剰リチウムを除去することにより、電解液と接触可能な表面積が増加して充放電容量を向上させることができるため、焼成後に水洗工程(d)を行うことが好ましい。また、粒子表面に形成された脆弱部も十分に除去されるため、電解液との接触が増加して充放電容量を向上させることができる。
(4) Water washing step (d)
The water washing step (d) is a step of filtering and drying the lithium nickel composite oxide obtained in the firing step (c) after washing with water.
The lithium nickel composite oxide after the firing step (c) is used as a positive electrode active material as it is, but by removing excess lithium on the surface of the particles, the surface area that can be contacted with the electrolytic solution is increased and charge / discharge is performed. Since a capacity | capacitance can be improved, it is preferable to perform a water-washing process (d) after baking. Moreover, since the weak part formed in the particle | grain surface is fully removed, a contact with electrolyte solution can increase and charge / discharge capacity can be improved.

水洗する際は、10〜40℃の温度で、かつ、リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理し、その後、濾過、乾燥することが好ましい。
水洗処理において、温度を10〜40℃とすることで、リチウムニッケル複合酸化物粉末の表面に存在するリチウム量を0.10質量%以下とすることができ、高温保持時のガス発生を抑制することができる。また、高容量と高出力を達成することができる正極活物質が得られるとともに高い安全性も両立させることができる。
When washing with water, the slurry concentration is sufficient so that the lithium amount of the lithium compound existing on the surface of the lithium nickel composite oxide is 0.10% by mass or less with respect to the total amount at a temperature of 10 to 40 ° C. Then, it is preferable to wash with water, and then filter and dry.
In the water washing treatment, by setting the temperature to 10 to 40 ° C., the amount of lithium existing on the surface of the lithium nickel composite oxide powder can be reduced to 0.10% by mass or less, and gas generation at the time of holding at a high temperature is suppressed. be able to. In addition, a positive electrode active material capable of achieving high capacity and high output can be obtained, and high safety can be achieved at the same time.

なお、リチウムニッケル複合酸化物の表面に存在するリチウム量は、リチウムニッケル複合酸化物粉末10gに超純水を100mlまで添加し攪拌した後、1mol/リットルの塩酸で滴定し第二中和点まで測定し、塩酸で中和されたアルカリ分として求める。   The amount of lithium present on the surface of the lithium nickel composite oxide was determined by adding ultrapure water to 10 g of lithium nickel composite oxide powder up to 100 ml and stirring, followed by titration with 1 mol / liter hydrochloric acid until the second neutralization point. Measure and obtain as alkali content neutralized with hydrochloric acid.

また、水洗時間としては、特に限定されないが、リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が全量に対して0.10質量%以下になるに十分な時間であることが必要であり、水洗温度によって一概に言えないが、通常は20分〜2時間である。   Further, the washing time is not particularly limited, but it is necessary that the washing time is sufficient for the lithium amount of the lithium compound present on the surface of the lithium nickel composite oxide to be 0.10% by mass or less based on the total amount. Yes, depending on the washing temperature, it is generally not 20 minutes to 2 hours.

水洗する際のスラリー濃度としては、スラリー中に含まれる水1Lに対する前記焼成粉末の量(g)が500〜2000g/Lであることが好ましい。すなわち、スラリー濃度が濃いほど粉末量が多くなり、2000g/Lを超えると、粘度も非常に高いため攪拌が困難となるばかりか、液中のアルカリが高いので平衡の関係から付着物の溶解速度が遅くなったり、剥離が起きても粉末からの分離が難しくなる。一方、スラリー濃度が500g/L未満では、希薄過ぎるためリチウムの溶出量が多く、表面のリチウム量は少なくなるが、正極活物質の結晶格子中からのリチウムの脱離も起きるようになり、結晶が崩れやすくなるばかりか、高pHの水溶液が大気中の炭酸ガスを吸収して炭酸リチウムを再析出する。また、工業的な観点から生産性を考慮すると、設備の能力や作業性の点で、スラリー濃度が上記範囲であることが望ましい。   As the slurry concentration when washing with water, the amount (g) of the calcined powder with respect to 1 L of water contained in the slurry is preferably 500 to 2000 g / L. That is, as the slurry concentration increases, the amount of powder increases. When the slurry concentration exceeds 2000 g / L, the viscosity is very high and stirring becomes difficult. However, it becomes difficult to separate the powder from the powder even when peeling occurs. On the other hand, if the slurry concentration is less than 500 g / L, the amount of lithium elution is large and the amount of lithium on the surface is small because the solution is too dilute, but lithium is desorbed from the crystal lattice of the positive electrode active material. Not only tends to collapse, but the aqueous solution having a high pH absorbs carbon dioxide in the atmosphere and reprecipitates lithium carbonate. In consideration of productivity from an industrial point of view, the slurry concentration is preferably in the above range from the viewpoint of facility capacity and workability.

水洗後の濾過方法としては、通常用いられる方法でよく、例えば、吸引濾過機、フィルタープレス、遠心機等を用いることができる。   The filtration method after washing with water may be a commonly used method, and for example, a suction filter, a filter press, a centrifuge, or the like can be used.

濾過後の乾燥の温度としては、特に限定されるものではなく、好ましくは80〜350℃である。80℃未満では、水洗後の正極活物質の乾燥が遅くなるため、粒子表面と粒子内部とでリチウム濃度の勾配が起こり、電池特性が低下することがある。一方、正極活物質の表面付近では化学量論比にきわめて近いか、もしくは若干リチウムが脱離して充電状態に近い状態になっていることが予想されるので、350℃を超える温度では、充電状態に近い結晶構造が崩れる契機になり、電池特性の低下を招く恐れがある。
乾燥の時間としては、特に限定されないが、好ましくは2〜24時間である。
The drying temperature after filtration is not particularly limited and is preferably 80 to 350 ° C. If the temperature is less than 80 ° C., the drying of the positive electrode active material after washing with water becomes slow, so that a gradient of lithium concentration occurs between the particle surface and the inside of the particle, and the battery characteristics may deteriorate. On the other hand, near the surface of the positive electrode active material, it is expected that it is very close to the stoichiometric ratio, or slightly desorbed lithium and close to the charged state. As a result, the crystal structure close to 1 may be destroyed, and the battery characteristics may be deteriorated.
Although it does not specifically limit as drying time, Preferably it is 2 to 24 hours.

4.非水電解質二次電池用正極活物質
本発明の非水電解質二次電池用正極活物質は、下記の一般式(2)で表され、中空構造または多孔質構造を有するリチウムニッケル複合酸化物からなり、硫酸根含有量が0.25質量%以下、Na含有量が0.020質量%以下であることを特徴とする。
一般式:LiNi1−x−yCo・・・(2)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05であり、0<x≦0.20、0<y≦0.07である。)
4). Positive electrode active material for nonaqueous electrolyte secondary battery The positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention is represented by the following general formula (2), and is a lithium nickel composite oxide having a hollow structure or a porous structure. The sulfate radical content is 0.25% by mass or less, and the Na content is 0.020% by mass or less.
General formula: Li a Ni 1-x- y Co x M y O 2 ··· (2)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and a is 0.85 ≦ a ≦ 1.05. 0 <x ≦ 0.20 and 0 <y ≦ 0.07.)

本発明の正極活物質において、硫酸根含有量は、0.25質量%以下、好ましくは0.20質量%以下、より好ましくは0.15質量%以下である。これにより、不可逆容量を小さくする、すなわちクーロン効率を高くすることができ、電池の正極活物質に用いた際に高容量が得られる。また、負極に蓄積される余分なリチウムも抑制することが可能であり、安全性も向上させることができる。   In the positive electrode active material of the present invention, the sulfate group content is 0.25% by mass or less, preferably 0.20% by mass or less, more preferably 0.15% by mass or less. Thereby, an irreversible capacity | capacitance can be made small, ie, coulomb efficiency can be made high, and a high capacity | capacitance is obtained when it uses for the positive electrode active material of a battery. In addition, excess lithium accumulated in the negative electrode can be suppressed, and safety can be improved.

ナトリウム含有量は、0.020質量%以下、好ましくは0.015質量%以下である。ナトリウムも硫酸根と同様に不可逆容量を大きくするものであり、含有量を0.020質量%以下とすることで、不可逆容量を小さくして高いクーロン効率を得ることができる。また、ナトリウムは正極活物質の抵抗値を上昇させるため、その含有量を上記範囲とすることで出力特性を向上させることができる。   Sodium content is 0.020 mass% or less, Preferably it is 0.015 mass% or less. Sodium also increases the irreversible capacity in the same manner as the sulfate radical, and by setting the content to 0.020% by mass or less, the irreversible capacity can be reduced and high Coulomb efficiency can be obtained. Moreover, since sodium raises the resistance value of a positive electrode active material, an output characteristic can be improved by making the content into the said range.

さらに塩素も不可逆容量を大きくするものであるため、塩素含有量は、0.05質量%以下であることが好ましく、0.02質量%以下であることがさらに好ましい。   Furthermore, since chlorine also increases the irreversible capacity, the chlorine content is preferably 0.05% by mass or less, and more preferably 0.02% by mass or less.

前記リチウムニッケル複合酸化物粒子は、中空構造もしくは多孔質構造を有することにより、電解液との接触面積を大きくすることが可能となる。これにより、出力特性に優れた正極活物質とすることができる。
さらに、出力特性を向上させるため、断面観察において計測されるリチウムニッケル複合酸化物粒子内部の空隙率が15%以上であることが好ましく、15〜85%であることがより好ましい。なお、粒子構造や空隙率は、前述したニッケル複合水酸化物粒子と同様の方法で確認され、求めることができる。
Since the lithium nickel composite oxide particles have a hollow structure or a porous structure, the contact area with the electrolytic solution can be increased. Thereby, it can be set as the positive electrode active material excellent in output characteristics.
Furthermore, in order to improve output characteristics, the porosity inside the lithium nickel composite oxide particles measured in cross-sectional observation is preferably 15% or more, and more preferably 15 to 85%. The particle structure and porosity can be confirmed and determined by the same method as that for the nickel composite hydroxide particles described above.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたニッケル複合水酸化物/リチウムニッケル複合酸化物の金属の分析方法及び評価方法は、以下の通りである。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal analysis method and evaluation method of nickel composite hydroxide / lithium nickel composite oxide used in Examples and Comparative Examples are as follows.

(1)組成の分析:ICP発光分析法で測定した。
(2)硫酸根含有量:ICP発光分析法により硫黄を定量分析し、硫黄は全て酸化して硫酸根(SO 2−)になるものとして係数を乗じることによって求めた。
(3)Na、Cl含有量:原子吸光分析法で測定した。
(4)充放電容量、クーロン効率:
充放電容量は、コイン型電池を作製してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を放電容量、このときの充電容量に対する放電容量の比率(放電容量/充電容量)をクーロン効率(%)とした。
(5)反応抵抗:
反応抵抗は、コイン型電池を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法ナイキストプロットを作成し、等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
(1) Composition analysis: Measured by ICP emission spectrometry.
(2) Sulfate radical content: Sulfur was quantitatively analyzed by an ICP emission analysis method, and the sulfur content was determined by multiplying a coefficient by assuming that all sulfur was oxidized to become sulfate radicals (SO 4 2− ).
(3) Na, Cl content: measured by atomic absorption spectrometry.
(4) Charge / discharge capacity, coulomb efficiency:
The charge / discharge capacity is allowed to stand for about 24 hours after the coin-type battery is produced, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and the cut-off voltage is 4. Charge to 3V, after 1 hour of rest, discharge capacity to 3.0V cut-off voltage, discharge capacity, ratio of discharge capacity to charge capacity (discharge capacity / charge capacity) at this time Coulomb efficiency (%) It was.
(5) Reaction resistance:
For the reaction resistance, a coin-type battery was charged at a charging potential of 4.1 V, an AC impedance method Nyquist plot was created using a frequency response analyzer and a potento-galvanostat (manufactured by Solartron, 1255B), and fitting was performed using an equivalent circuit. The value of the positive electrode resistance was calculated by calculation.

(実施例1)
[正極活物質の前駆体の製造]
(核生成工程)
反応槽(34L)内に、水を半分の量まで入れて傾斜パドルタイプの攪拌羽根を使用して500rpmで撹拌しながら、槽内温度を40℃に設定した。この反応槽内の水に、25質量%水酸化ナトリウム水溶液を適量加えて、液温25℃基準で、槽内の反応液のpH値が12.6となるように調整し反応前溶液とした。
次に、硫酸ニッケル、塩化コバルト、アルミン酸ソーダ(金属元素モル比でNi:Co:Al=82:15:3)を水に溶かして得た2.0mol/Lの混合水溶液を、反応槽内の反応前水溶液に88ml/分の割合で加えて、反応水溶液とした。同時に、25質量%水酸化ナトリウム水溶液も、この反応水溶液に一定速度で加え、反応水溶液(核生成用水溶液)のpH値を25℃基準で12.6(核生成pH値)に制御しながら、15秒間晶析(核生成)させた。
Example 1
[Production of cathode active material precursor]
(Nucleation process)
Into the reaction tank (34L), half the amount of water was added and the temperature in the tank was set to 40 ° C. while stirring at 500 rpm using an inclined paddle type stirring blade. An appropriate amount of a 25% by mass aqueous sodium hydroxide solution was added to the water in the reaction tank, and the pH value of the reaction liquid in the tank was adjusted to 12.6 based on the liquid temperature of 25 ° C. to obtain a pre-reaction solution. .
Next, a mixed aqueous solution of 2.0 mol / L obtained by dissolving nickel sulfate, cobalt chloride, sodium aluminate (metal element molar ratio Ni: Co: Al = 82: 15: 3) in water was added to the reaction vessel. Was added at a rate of 88 ml / min to the pre-reaction aqueous solution. At the same time, a 25% by mass aqueous sodium hydroxide solution is also added to the reaction aqueous solution at a constant rate, and the pH value of the reaction aqueous solution (nucleation aqueous solution) is controlled to 12.6 (nucleation pH value) on a 25 ° C. basis. Crystallization (nucleation) was performed for 15 seconds.

(粒子成長工程)
核生成終了後、反応水溶液のpH値が液温25℃基準で10.2になるまで、25質量%水酸化ナトリウム水溶液の供給のみを一時停止した。
反応水溶液のpH値が25℃基準で10.2に到達した後、反応水溶液(粒子成長用水溶液)に、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、pH値を10.2(粒子成長pH値)に制御しながら、粒子成長を行い、成長開始から2時間晶析を行った。
反応槽内が満液になったところで、晶析を停止するとともに、撹拌を止めて静置することで、生成物の沈殿を促した。その後、反応槽から上澄み液を半量抜き出した後、晶析を再開し、2時間晶析を行った後(粒子成長:計4時間)、晶析を終了させた。そして、生成物を水洗、濾過、乾燥させてニッケル複合水酸化物粒子を得た。
上記晶析において、pHは、pHコントローラにより水酸化ナトリウム水溶液の供給流量を調整することで制御され、変動幅は設定値の上下0.2の範囲内であった。
得られたニッケル複合水酸化物粒子は、空隙構造を有し、1μm以下の一次粒子が凝集した球状の平均粒径が9.3μmの二次粒子からなり、空隙率が49%であった。また、その組成はニッケルとコバルトとアルミニウムとのモル比が82:15:3であった。
(Particle growth process)
After the completion of the nucleation, only the supply of the 25 mass% sodium hydroxide aqueous solution was temporarily stopped until the pH value of the reaction aqueous solution reached 10.2 based on the liquid temperature of 25 ° C.
After the pH value of the aqueous reaction solution reached 10.2 on the basis of 25 ° C., the supply of the 25% by mass aqueous sodium hydroxide solution was resumed in the aqueous reaction solution (particle growth aqueous solution), and the pH value was 10.2 ( Particle growth was carried out while controlling the particle growth pH value), and crystallization was carried out for 2 hours from the start of growth.
When the reaction vessel became full, crystallization was stopped and stirring was stopped and the mixture was allowed to stand to promote precipitation of the product. Then, after extracting half amount of the supernatant from the reaction tank, crystallization was resumed, and after crystallization for 2 hours (particle growth: 4 hours in total), crystallization was terminated. The product was washed with water, filtered, and dried to obtain nickel composite hydroxide particles.
In the crystallization, the pH was controlled by adjusting the supply flow rate of the sodium hydroxide aqueous solution with a pH controller, and the fluctuation range was within the range of 0.2 above and below the set value.
The obtained nickel composite hydroxide particles had a void structure and consisted of secondary particles having a spherical average particle diameter of 9.3 μm in which primary particles of 1 μm or less were aggregated, and the porosity was 49%. Moreover, the composition had a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3.

(炭酸塩による洗浄)
得られた複合水酸化物粒子をフィルタープレスろ過機により固液分離し、25℃、pH11.5(25℃基準)の0.28mol/Lの炭酸ナトリウム水溶液を、複合水酸化物粒子1000gに対して3000mLの割合で該フィルタープレスろ過機に通液することにより洗浄し、さらに、純水を通液して洗浄した。洗浄後のニッケル複合水酸化物(前駆体)の組成、不純物量等の結果を表1に示す。
(Washing with carbonate)
The obtained composite hydroxide particles were solid-liquid separated by a filter press filter, and 0.28 mol / L sodium carbonate aqueous solution at 25 ° C. and pH 11.5 (25 ° C. standard) was added to 1000 g of the composite hydroxide particles. Then, it was washed by passing through the filter press at a rate of 3000 mL, and pure water was passed through for washing. Table 1 shows the results of the composition, impurity amount, etc. of the nickel composite hydroxide (precursor) after washing.

[正極活物質の製造]
得られたニッケル複合水酸化物粒子を電気炉を用いて大気雰囲気で700℃で焙焼してニッケル複合酸化物粒子を得た(焙焼工程)。リチウムニッケル複合酸化物粒子の各金属成分のモル比が、Ni:Co:Al:Li=0.85:0.12:0.03:1.03となるように、ニッケル複合水酸化物と水酸化リチウム一水和物(和光純薬製)を秤量し、混合した(混合工程)。得られた混合物を、電気炉を用いて酸素濃度30%以上の雰囲気中で500℃で3時間仮焼した後、750℃で20時間、本焼成した(焼成工程)。その後、室温まで炉内で冷却した後、解砕処理を行い一次粒子が凝集した球状焼成粉末を得た。
得られた球状焼成粉末をスラリー濃度が1500g/Lとなるように純水と混合したスラリーを製作し、スターラーを用いて、室温で30分水洗した後に濾過した。濾過後、真空乾燥機を用いて190℃、14時間保持して室温まで冷却し(水洗工程)、レーザー回折散乱法による体積基準の平均粒径が9.3μmであるリチウムニッケル複合酸化物粒子(正極活物質)を得た。得られた正極活物質の組成、不純物量を表2に示す。
[Production of positive electrode active material]
The obtained nickel composite hydroxide particles were roasted at 700 ° C. in an air atmosphere using an electric furnace to obtain nickel composite oxide particles (roasting step). Nickel composite hydroxide and water so that the molar ratio of each metal component of the lithium nickel composite oxide particles is Ni: Co: Al: Li = 0.85: 0.12: 0.03: 1.03. Lithium oxide monohydrate (Wako Pure Chemical Industries, Ltd.) was weighed and mixed (mixing step). The obtained mixture was calcined at 500 ° C. for 3 hours in an atmosphere having an oxygen concentration of 30% or more using an electric furnace, and then finally calcined at 750 ° C. for 20 hours (firing step). Then, after cooling in a furnace to room temperature, pulverization was performed to obtain a spherical fired powder in which primary particles were aggregated.
A slurry was prepared by mixing the obtained spherical calcined powder with pure water so that the slurry concentration was 1500 g / L, and the mixture was washed with water at room temperature for 30 minutes using a stirrer and then filtered. After filtration, it is kept at 190 ° C. for 14 hours and cooled to room temperature using a vacuum dryer (water washing step), and lithium nickel composite oxide particles having a volume-based average particle diameter by laser diffraction scattering method of 9.3 μm ( A positive electrode active material) was obtained. Table 2 shows the composition and impurity amount of the obtained positive electrode active material.

[正極活物質の評価]
この正極活物質を、樹脂に埋め込み、クロスセクションポリッシャ加工を行ったものについて、倍率を5000倍としたSEMによる断面観察を行ったところ、一次粒子が焼結して構成された外殻部と、その内部に中空部を備える中空構造となっていることを確認した。この観察から求めた、正極活物質の空隙率は43%であった。この正極活物質を用いて、下記方法で電池を作製した。前駆体の物性結果を表1に、活物質の物性結果を表2に示す。得られた正極活物質の組成、不純物量を表2に示す。
[Evaluation of positive electrode active material]
About this positive electrode active material embedded in a resin and subjected to cross section polisher, cross-sectional observation by SEM with a magnification of 5000 times was performed, and an outer shell portion formed by sintering primary particles, It was confirmed that the hollow structure provided with a hollow portion therein. The porosity of the positive electrode active material determined from this observation was 43%. Using this positive electrode active material, a battery was produced by the following method. Table 1 shows the physical property results of the precursor, and Table 2 shows the physical property results of the active material. Table 2 shows the composition and impurity amount of the obtained positive electrode active material.

(電池の作製方法)
正極活物質粉末90重量部にアセチレンブラック5重量部及びポリ沸化ビニリデン5重量部を混合し、n−メチルピロリドンを加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cmなるように塗布し、120℃で真空乾燥を行い、その後、これより直径1cmの円板状に打ち抜いて正極とした。
負極としてリチウム金属を、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。また、ポリエチレンからなるセパレーターに電解液を染み込ませ、露点が−80℃に管理されたArガス雰囲気のグローブボックス中で、2032型のコイン電池を作製した。図1に2032型のコイン電池の概略構造を示す。ここで、コイン電池は、正極缶5中の正極(評価用電極)1、負極缶6中のリチウム金属負極3、電解液含浸のセパレーター2及びガスケット4から構成される。得られた電池の各特性(放電容量、クーロン効率、反応抵抗)を表2に示す。
(Battery preparation method)
90 parts by weight of the positive electrode active material powder was mixed with 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride, and n-methylpyrrolidone was added to form a paste. This was applied to a 20 μm-thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then punched into a disk shape having a diameter of 1 cm. did.
Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used as the electrolyte. Further, a 2032 type coin battery was manufactured in a glove box in an Ar gas atmosphere in which a separator made of polyethylene was impregnated with an electrolytic solution and the dew point was controlled at −80 ° C. FIG. 1 shows a schematic structure of a 2032 type coin battery. Here, the coin battery includes a positive electrode (evaluation electrode) 1 in a positive electrode can 5, a lithium metal negative electrode 3 in a negative electrode can 6, an electrolyte-impregnated separator 2, and a gasket 4. Table 2 shows the characteristics (discharge capacity, coulomb efficiency, reaction resistance) of the obtained battery.

(実施例2)
炭酸ナトリウム水溶液をpH11.8(25℃基準)の0.47mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質リチウムニッケル複合酸化物を製造して評価した。評価結果を表1および2に示す。
(Example 2)
A positive electrode active material lithium-nickel composite oxide was produced and evaluated except that the aqueous sodium carbonate solution was washed with pH 11.8 (25 ° C. standard) changed to 0.47 mol / L and washed. . The evaluation results are shown in Tables 1 and 2.

(実施例3)
炭酸ナトリウム水溶液をpH12.0(25℃基準)の1.12mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Example 3)
A positive electrode active material was produced and evaluated in the same manner as in Example 1 except that the sodium carbonate aqueous solution was washed with a pH of 12.0 (based on 25 ° C.) of 1.12 mol / L. The evaluation results are shown in Tables 1 and 2.

(実施例4)
前駆体の製造時の核生成工程および粒子成長工程において、25質量%アンモニア水を供給して、該反応液中のアンモニア濃度を15g/Lに調節したこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
得られた複合水酸化物粒子は、空隙構造を有し、1μm以下の一次粒子が凝集した球状の平均粒径が9.8μmの二次粒子からなり、空隙率が26%であった。また、その組成はニッケルとコバルトとアルミニウムとのモル比が82:15:3であった。また、正極活物質は多孔質構造を有し、その空隙率は19%であった。
Example 4
The same procedure as in Example 1 was performed except that 25 mass% ammonia water was supplied and the ammonia concentration in the reaction solution was adjusted to 15 g / L in the nucleation step and particle growth step during the production of the precursor. The positive electrode active material was manufactured and evaluated. The evaluation results are shown in Tables 1 and 2.
The obtained composite hydroxide particles had a void structure, consisted of secondary particles having a spherical average particle diameter of 9.8 μm in which primary particles of 1 μm or less were aggregated, and the porosity was 26%. Moreover, the composition had a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3. Further, the positive electrode active material had a porous structure, and the porosity was 19%.

(実施例5)
実施例1で得られた前駆体を用い、焼成後に、水洗工程(球状焼成粉末を水洗し真空乾燥する)を行わなかった以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Example 5)
Using the precursor obtained in Example 1, the positive electrode active material was manufactured in the same manner as in Example 1 except that the water washing step (the spherical fired powder was washed with water and vacuum dried) was not performed after firing. evaluated. The evaluation results are shown in Tables 1 and 2.

(比較例1)
炭酸ナトリウム水溶液をpH11.0(25℃基準)の0.09mol/Lに変更して洗浄したこと、焼成後に球状焼成粉末を水洗し真空乾燥しなかったこと以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 1)
Performed in the same manner as in Example 1 except that the aqueous sodium carbonate solution was changed to 0.09 mol / L at pH 11.0 (25 ° C.) and washed, and the spherical fired powder was washed with water and not vacuum dried after firing. The positive electrode active material was manufactured and evaluated. The evaluation results are shown in Tables 1 and 2.

(比較例2)
炭酸ナトリウム水溶液をpH13.5(25℃基準)の1.60mol/L水酸化ナトリウム水溶液に変更して洗浄したこと、焼成後に水洗工程(球状焼成粉末を水洗し真空乾燥する)を行わなかった以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 2)
The sodium carbonate aqueous solution was changed to a 1.60 mol / L aqueous sodium hydroxide solution having a pH of 13.5 (based on 25 ° C.) and washed, and the water washing step (washing the spherical fired powder with water and vacuum drying) was not performed after firing. Was carried out in the same manner as in Example 1, and a positive electrode active material was produced and evaluated. The evaluation results are shown in Tables 1 and 2.

(比較例3)
炭酸ナトリウム水溶液をpH14.0(25℃基準)の3.39mol/L水酸化ナトリウム水溶液に変更して洗浄したこと、焼成後に水洗工程(球状焼成粉末を水洗し真空乾燥する)を行わなかった以外は、実施例1と同様に行い、正極活物質を製造して評価した。評価結果を表1および2に示す。
(Comparative Example 3)
The sodium carbonate aqueous solution was changed to a 3.39 mol / L sodium hydroxide aqueous solution having a pH of 14.0 (25 ° C. standard) and washed, and the water washing step (washing the spherical fired powder with water and vacuum drying) was not performed after firing. Was carried out in the same manner as in Example 1, and a positive electrode active material was produced and evaluated. The evaluation results are shown in Tables 1 and 2.

(比較例4)
上部にオーバーフロー用配管を備えた連続晶析用の反応槽を用いて、25℃におけるpHを11.6の一定値に保ちながら、実施例4と同様の混合水溶液とアンモニア水溶液および水酸化ナトリウム水溶液を一定流量で連続的に加えて、槽内の平均滞留時間を10時間としてオーバーフローするスラリーを連続的に回収する方法により晶析を行った。反応槽内が平衡状態になってからスラリーを回収して固液分離し、さらに生成物を水洗、濾過、乾燥させてニッケル複合水酸化物粒子を得たこと、焼成後に水洗工程を行わなかった以外は、実施例1と同様に行い、正極活物質リチウムニッケル複合酸化物を製造して評価した。評価結果を表1および2に示す。
得られた複合水酸化物粒子は、空隙構造が観察されず、緻密な粒子構造を有し、1μm以下の一次粒子が凝集した球状の平均粒径が8.5μmの二次粒子からなり、空隙率が3%であった。また、その組成はニッケルとコバルトとアルミニウムとのモル比が82:15:3であった。また、正極活物質は緻密な粒子構造を有し、その空隙率は4%であった。
(Comparative Example 4)
Using a reaction tank for continuous crystallization provided with an overflow pipe at the top, while maintaining the pH at 25 ° C. at a constant value of 11.6, a mixed aqueous solution, an aqueous ammonia solution, and an aqueous sodium hydroxide solution as in Example 4 Was continuously added at a constant flow rate, and crystallization was performed by a method of continuously recovering the overflowing slurry with an average residence time in the tank of 10 hours. After the reaction vessel was in an equilibrium state, the slurry was recovered and solid-liquid separated, and the product was washed with water, filtered and dried to obtain nickel composite hydroxide particles, and the washing step was not performed after firing. Except for this, the same procedure as in Example 1 was carried out, and a positive electrode active material lithium nickel composite oxide was produced and evaluated. The evaluation results are shown in Tables 1 and 2.
The obtained composite hydroxide particles were not observed to have a void structure, had a dense particle structure, and consisted of secondary particles having a spherical average particle size of 8.5 μm in which primary particles of 1 μm or less were aggregated. The rate was 3%. Moreover, the composition had a molar ratio of nickel, cobalt, and aluminum of 82: 15: 3. Further, the positive electrode active material had a dense particle structure, and the porosity was 4%.

Figure 0006323117
Figure 0006323117

Figure 0006323117
Figure 0006323117

表1、2より、本発明の要件をすべて満たす実施例1〜5においては、得られたニッケル複合水酸化物粒子及びリチウム複合酸化物粒子の粒子内不純物量が非常に低いことがわかる。また、実施例1〜5で得られた中空構造または多孔質構造を有するリチウム複合酸化物粒子を正極活物質として用いた二次電池は、高容量であり、クーロン効率が高く、反応抵抗が低いという、優れた電池特性を有する。
これに対して、本発明の要件を満たしていない比較例1〜3では、得られたニッケル複合水酸化物粒子及びリチウム複合酸化物粒子の不純物量が多く、得られたリチウム複合酸化物粒子を正極活物質として用いた二次電池は、実施例1〜5と比較して、放電容量が低い。また、水酸化ナトリウムで洗浄を行った比較例2および3では、水酸化ナトリウム溶液の濃度を高くすることで硫酸根(SO)量は低下したもののナトリウム根が残った結果、放電容量が低下し、反応抵抗も高い。
一方、比較例4では、緻密な粒子構造を有する複合水酸化物粒子を、炭酸ナトリウムにより十分な洗浄を行っているため、実施例と比較して、より不純物量は少ないが、得られた正極活物質は、空隙の少ない構造を有するため、電解液との接触面積が減少し、同様の組成比を有する実施例4と比較し、電池特性が低下している。
From Tables 1 and 2, it can be seen that in Examples 1 to 5 that satisfy all the requirements of the present invention, the amount of impurities in the particles of the obtained nickel composite hydroxide particles and lithium composite oxide particles is very low. Moreover, the secondary battery using the lithium composite oxide particles having a hollow structure or a porous structure obtained in Examples 1 to 5 as a positive electrode active material has a high capacity, high coulomb efficiency, and low reaction resistance. It has excellent battery characteristics.
On the other hand, in Comparative Examples 1 to 3 that do not satisfy the requirements of the present invention, the amount of impurities in the obtained nickel composite hydroxide particles and lithium composite oxide particles is large, and the obtained lithium composite oxide particles are The secondary battery used as the positive electrode active material has a lower discharge capacity than Examples 1-5. In Comparative Examples 2 and 3, which were washed with sodium hydroxide, the concentration of the sodium hydroxide solution was increased to decrease the sulfate radical (SO 4 ) amount, but the sodium root remained, resulting in a decrease in discharge capacity. And reaction resistance is high.
On the other hand, in Comparative Example 4, since the composite hydroxide particles having a dense particle structure were sufficiently washed with sodium carbonate, the amount of impurities was smaller than that of the Example, but the obtained positive electrode Since the active material has a structure with few voids, the contact area with the electrolytic solution is reduced, and the battery characteristics are degraded as compared with Example 4 having the same composition ratio.

本発明により得られる非水電解質二次電池用正極活物質の前駆体及び非水電解質二次電池用正極活物質は、不純物の含有量が非常に低減されており、これを用いた非水電解質二次電池は、高容量かつクーロン効率、反応抵抗に優れるため、特に小型電子機器分野で利用される充放電可能な二次電池として好適であり、その産業上の利用可能性は極めて大きい。   The precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery and the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the present invention have a very low impurity content, and a non-aqueous electrolyte using the same A secondary battery is suitable as a chargeable / dischargeable secondary battery particularly used in the field of small electronic devices because of its high capacity, excellent coulomb efficiency, and reaction resistance, and its industrial applicability is extremely large.

1 正極(評価用電極)
2 セパレーター(電解液含浸)
3 リチウム金属負極
4 ガスケット
5 正極缶
6 負極缶
1 Positive electrode (Evaluation electrode)
2 Separator (electrolyte impregnation)
3 Lithium metal negative electrode 4 Gasket 5 Positive electrode can 6 Negative electrode can

Claims (11)

下記の一般式(1)で表されるニッケル複合水酸化物粒子からなり、中空構造または多孔質構造を有する非水電解質二次電池用正極活物質の前駆体の製造方法であって、
加温した反応槽中に、ニッケルおよびコバルト、並びに必要に応じて前記元素Mを含む金属化合物の混合水溶液を供給し、その際、反応溶液に、アルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析することによりニッケル複合水酸化物粒子を得ることと、
粒子内部に空隙構造を有する前記ニッケル複合水酸化物粒子を、炭酸塩濃度が0.1mol/L以上の炭酸塩水溶液で洗浄することと、を備え、
前記ニッケルおよびコバルトを含む金属化合物は、硫酸塩及び塩化物の少なくとも一方を含む、ことを特徴とする非水電解質二次電池用正極活物質の前駆体の製造方法。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、0<x≦0.20、0<y≦0.07である。)
A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a nickel composite hydroxide particle represented by the following general formula (1) and having a hollow structure or a porous structure,
A mixed aqueous solution of nickel and cobalt and, if necessary, the metal compound containing the element M is supplied into a heated reaction vessel, and at that time, a sufficient amount of alkali metal to keep the reaction solution alkaline. Supplying an aqueous solution of hydroxide as appropriate, obtaining nickel composite hydroxide particles by neutralization crystallization,
Washing the nickel composite hydroxide particles having a void structure inside the particles with a carbonate aqueous solution having a carbonate concentration of 0.1 mol / L or more,
The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the metal compound containing nickel and cobalt contains at least one of sulfate and chloride.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and 0 <x ≦ 0.20, 0 <y ≦ 0. .07.)
前記ニッケル複合水酸化物粒子は、断面観察において計測される空隙率が15%以上であることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   2. The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the nickel composite hydroxide particles have a porosity measured in cross-sectional observation of 15% or more. . 前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウムおよび炭酸水素ナトリウムから選ばれる少なくとも1種の水溶液であり、前記炭酸塩水溶液のpHが11.2以上であることを特徴とする請求項1または2に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate, and the pH of the carbonate aqueous solution is 11.2 or more. A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to 1 or 2. 前記洗浄は、液温度10〜50℃の範囲で行うことを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The said washing | cleaning is performed in the range of 10-50 degreeC of liquid temperature, The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-3 characterized by the above-mentioned. 前記中和晶析において、前記反応溶液のpH値を制御することにより、核を生成させる核生成工程と、前記生成された核を成長させる粒子成長工程とを分離して行う
ことを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池用正極活物質の前駆体の製造方法。
In the neutralization crystallization, the nucleation step for generating nuclei and the particle growth step for growing the generated nuclei are performed separately by controlling the pH value of the reaction solution. The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-4.
前記核生成工程におけるpH値を、液温25℃基準で11.5〜13.2となるように制御し、前記粒子成長工程におけるpH値を、液温25℃基準で9.5〜12.0、かつ、核生成工程のpH値より低い値となるように制御することを特徴とする請求項5に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The pH value in the nucleation step is controlled to be 11.5 to 13.2 based on a liquid temperature of 25 ° C., and the pH value in the particle growth step is 9.5 to 12.2. 6. The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein control is performed so that the pH value is 0 and lower than a pH value in the nucleation step. 前記混合水溶液は、ニッケルおよびコバルトのいずれか少なくとも1種の塩化物を含むことを特徴とする請求項5又は6に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The method for producing a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 5 or 6, wherein the mixed aqueous solution contains at least one chloride of nickel and cobalt. 下記の一般式(2)で表され、中空構造または多孔質構造を有するリチウムニッケル複合酸化物からなる非水電解質二次電池用正極活物質の製造方法であって、
請求項1〜7のいずれかに記載の製造方法で得られた非水電解質二次電池用正極活物質の前駆体をリチウム化合物と混合してリチウム混合物を得る混合工程と、
前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成して、リチウムニッケル複合酸化物を得る焼成工程と、
を含むことを特徴とする非水電解質二次電池用正極活物質の製造方法。
一般式:LiNi1−x−yCo・・・(2)
(式中、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、MoおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05であり、0<x≦0.20、0<y≦0.07である。)
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery represented by the following general formula (2) and comprising a lithium nickel composite oxide having a hollow structure or a porous structure,
A mixing step of obtaining a lithium mixture precursor of the positive electrode active material for the resultant non-aqueous electrolyte secondary battery manufacturing method is mixed with a lithium compound according to claim 1,
A firing step of firing the lithium mixture in an oxygen atmosphere in a range of 650 to 850 ° C. to obtain a lithium nickel composite oxide;
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries characterized by including this.
General formula: Li a Ni 1-x- y Co x M y O 2 ··· (2)
(In the formula, M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Mo and W, and a is 0.85 ≦ a ≦ 1.05. 0 <x ≦ 0.20 and 0 <y ≦ 0.07.)
前記前駆体を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程をさらに備え、前記混合工程において、該ニッケル複合酸化物をリチウム化合物と混合してリチウム混合物を得ることを特徴とする請求項に記載の非水電解質二次電池用正極活物質の製造方法。 The method further comprises a roasting step in which the precursor is oxidized and roasted at 400 to 800 ° C. in an oxidizing atmosphere to obtain a nickel composite oxide. In the mixing step, the nickel composite oxide is mixed with a lithium compound to form a lithium mixture. The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 8 , wherein: 前記焼成工程後に、前記リチウムニッケル複合酸化物を、10〜40℃の温度で、かつ、前記リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理した後、濾過、乾燥する水洗工程を含むことを特徴とする請求項またはに記載の非水電解質二次電池用正極活物質の製造方法。 After the firing step, the lithium nickel composite oxide is 0.10% by mass with respect to the total amount of lithium compound present at a temperature of 10 to 40 ° C. and on the surface of the lithium nickel composite oxide. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 8 or 9 , further comprising a water washing step of filtering and drying after washing with water at a slurry concentration sufficient to become: . 前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることを特徴とする請求項10のいずれかに記載の非水電解質二次電池用正極活物質の製造方法。
The lithium compound, a hydroxide of lithium, oxyhydroxide, oxide, carbonate, any of claims 8 to 10, characterized in that at least one selected from the group consisting of nitrates and halides The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries as described in any one of.
JP2014069643A 2014-03-28 2014-03-28 Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery Active JP6323117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069643A JP6323117B2 (en) 2014-03-28 2014-03-28 Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069643A JP6323117B2 (en) 2014-03-28 2014-03-28 Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017247645A Division JP6876600B2 (en) 2017-12-25 2017-12-25 Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2015191848A JP2015191848A (en) 2015-11-02
JP6323117B2 true JP6323117B2 (en) 2018-05-16

Family

ID=54426173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069643A Active JP6323117B2 (en) 2014-03-28 2014-03-28 Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6323117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134774A1 (en) * 2018-12-27 2020-07-02 宁德时代新能源科技股份有限公司 Anti-compression positive electrode active material and electrochemical energy storage device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584160B (en) 2012-07-18 2018-03-23 印制能源技术有限公司 Energy accumulating device and the ink for printing film
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
JP6287970B2 (en) 2014-10-30 2018-03-07 住友金属鉱山株式会社 Nickel composite hydroxide and production method thereof
WO2016067960A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel composite hydroxide and method for preparing same
WO2016209655A1 (en) * 2015-06-22 2016-12-29 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
JP6616215B2 (en) * 2016-03-08 2019-12-04 ユミコア Method for producing positive electrode active material for lithium ion battery
JP6616216B2 (en) * 2016-03-08 2019-12-04 ユミコア Method for producing positive electrode active material for lithium ion battery
JP6616217B2 (en) * 2016-03-08 2019-12-04 ユミコア Method for producing positive electrode active material for lithium ion battery
JP6616218B2 (en) * 2016-03-08 2019-12-04 ユミコア Method for producing positive electrode active material for lithium ion battery
JP6988370B2 (en) * 2016-10-26 2022-01-05 住友金属鉱山株式会社 Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP6836369B2 (en) 2016-10-31 2021-03-03 住友化学株式会社 Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
WO2018097136A1 (en) * 2016-11-22 2018-05-31 住友金属鉱山株式会社 Transition metal-containing composite hydroxide and production method thereof, and production method of positive electrode active substance for non-aqueous electrolyte secondary battery
CN110214388A (en) * 2017-02-21 2019-09-06 松下电器产业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102176633B1 (en) 2017-02-28 2020-11-09 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP7124307B2 (en) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-cobalt-aluminum composite hydroxide
JP7091711B2 (en) * 2018-02-28 2022-06-28 住友金属鉱山株式会社 Method for Producing Transition Metal Composite Hydroxide Particles, Transition Metal Composite Hydroxide Particles, Method for Producing Positive Active Material for Non-Aqueous Electrolyte Secondary Battery, Positive Active Material for Non-Aqueous Electrolyte Secondary Battery
JP6523508B1 (en) * 2018-03-30 2019-06-05 住友化学株式会社 Lithium mixed metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium mixed metal compound
CN109205681B (en) * 2018-09-12 2021-04-09 嘉兴学院 Three-dimensional hierarchical structure metal oxide and preparation method thereof
WO2020153094A1 (en) 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
US20220106198A1 (en) 2019-01-22 2022-04-07 Sumitomo Metal Mining Co., Ltd. Nickel cobalt aluminum composite hydroxide, method for producing nickel cobalt aluminum composite hydroxide, lithium nickel cobalt aluminum composite oxide, and lithium ion secondary battery
US20220119274A1 (en) 2019-01-22 2022-04-21 Sumitomo Metal Mining Co., Ltd. Nickel manganese cobalt composite hydroxide, method for producing nickel manganese cobalt composite hydroxide, lithium nickel manganese cobalt composite oxide, and lithium ion secondary battery
WO2020153093A1 (en) 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-manganese-cobalt composite hydroxide, production method for nickel-manganese-cobalt composite hydroxide, lithium-nickel-manganese-cobalt composite oxide, and lithium ion secondary battery
WO2020152770A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, and lithium-nickel-cobalt-aluminum composite oxide
JP7547766B2 (en) 2019-04-16 2024-09-10 住友金属鉱山株式会社 Lithium nickel cobalt aluminum composite oxide, lithium ion secondary battery, and manufacturing method thereof
JP2020017525A (en) * 2019-08-07 2020-01-30 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous secondary battery and method of producing the same, and positive electrode active material for nonaqueous secondary battery and method of producing the same
CN115000377A (en) * 2022-06-24 2022-09-02 合肥融捷能源材料有限公司 Low-temperature high-power ternary cathode material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980963B (en) * 2008-03-31 2015-07-01 户田工业株式会社 Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer comprising the particulate powder of hydrotalcite type compound, and chlorinated-resin composition
JPWO2012020769A1 (en) * 2010-08-10 2013-10-28 Agcセイミケミカル株式会社 Method for producing nickel-containing composite compound
HUE030118T2 (en) * 2010-09-22 2017-04-28 Freeport Cobalt Oy Mixed metal oxidized hydroxide and method for production
US9630842B2 (en) * 2011-01-10 2017-04-25 Basf Se Process for preparing transition metal hydroxides
KR101345509B1 (en) * 2011-03-31 2013-12-27 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery
JP2014049410A (en) * 2012-09-04 2014-03-17 Ngk Insulators Ltd Manufacturing method of cathode active material for lithium-ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134774A1 (en) * 2018-12-27 2020-07-02 宁德时代新能源科技股份有限公司 Anti-compression positive electrode active material and electrochemical energy storage device

Also Published As

Publication number Publication date
JP2015191848A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6323117B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US12087943B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
JP6344007B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6159395B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolyte secondary battery
JP6237330B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2011116580A (en) Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery
JP2011116580A5 (en)
WO2017119451A1 (en) Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JP7224754B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method
JP6237229B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7272134B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2022161973A (en) Particle of transition metal complex hydroxide, positive pole active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7389376B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7135354B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JP7313112B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2019021426A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP7319026B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20171225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180105

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150