JP6237229B2 - Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same - Google Patents

Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP6237229B2
JP6237229B2 JP2013272929A JP2013272929A JP6237229B2 JP 6237229 B2 JP6237229 B2 JP 6237229B2 JP 2013272929 A JP2013272929 A JP 2013272929A JP 2013272929 A JP2013272929 A JP 2013272929A JP 6237229 B2 JP6237229 B2 JP 6237229B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013272929A
Other languages
Japanese (ja)
Other versions
JP2015128004A (en
Inventor
朋子 中山
朋子 中山
広将 戸屋
広将 戸屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013272929A priority Critical patent/JP6237229B2/en
Publication of JP2015128004A publication Critical patent/JP2015128004A/en
Application granted granted Critical
Publication of JP6237229B2 publication Critical patent/JP6237229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は非水系電解質二次電池用正極活物質の前駆体とその製造方法及び非水電解質二次電池用正極活物質とその製造方法に関するものである。より詳しくは、電池の高容量化が可能となる非水系電解質二次電池の正極活物質に関する。   The present invention relates to a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same. More specifically, the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery that can increase the capacity of the battery.

近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の開発が強く望まれている。このようなものとしてリチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。   In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries with high energy density is strongly desired. As such a lithium ion secondary battery using lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode, research and development are actively performed.

リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。 A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material has a high energy density because a high voltage of 4V can be obtained. Is expected to be put to practical use. A battery using a lithium cobalt composite oxide has been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.

しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となる。活物質のコストを下げ、より安価なリチウムイオン二次電池の製造が可能となることは、現在普及している携帯機器の軽量、小型化において工業的に大きな意義を持ち、コバルト化合物を代替するより安価な活物質材料が望まれている。   However, since the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it increases the cost of the active material and further the battery. Lowering the cost of active materials and making it possible to manufacture cheaper lithium-ion secondary batteries has significant industrial significance in reducing the weight and size of portable devices that are currently in widespread use, replacing cobalt compounds. A cheaper active material is desired.

リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。
リチウムマンガン複合酸化物は原料が安価である上、熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。
New materials for the positive electrode active material for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel. ).
Lithium-manganese composite oxide is an inexpensive alternative and has excellent thermal stability, so it can be said to be a powerful alternative to lithium-cobalt composite oxide, but its theoretical capacity is only about half that of lithium-cobalt composite oxide. Therefore, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year.

一方、リチウムニッケル複合酸化物はリチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、リチウムニッケル複合酸化物は、純粋にニッケルのみで合成した材料を正極活物質としてリチウムイオン二次電池を作製した場合、コバルト系に比べサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。   On the other hand, since lithium nickel composite oxide has a lower electrochemical potential than lithium cobalt composite oxide, decomposition due to oxidation of the electrolytic solution is less likely to be a problem, and higher capacity can be expected. Therefore, development is actively conducted. However, when a lithium-ion secondary oxide is produced using a material synthesized purely of nickel alone as the positive electrode active material, the lithium-nickel composite oxide is inferior to the cobalt type in cycle characteristics and is used in a high-temperature environment. When stored, the battery performance is relatively easily lost.

このような欠点を解決するために、ニッケルの一部をコバルト等で置換したリチウムニッケル複合酸化物も提案されている。例えば、特許文献1では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiNiCo(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウム含有複合酸化物が提案され、また、特許文献2では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiNiCo(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウム含有複合酸化物等が提案されている。 In order to solve such a drawback, a lithium nickel composite oxide in which a part of nickel is substituted with cobalt or the like has also been proposed. For example, Patent Document 1, in order to improve the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2,0. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu and A lithium-containing composite oxide represented by at least one element selected from Zn), and Patent Document 2 discloses a positive electrode capable of maintaining good battery performance during storage and use in a high-temperature environment. As the active material, Li w Ni x Co y B z O 2 (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) Lithium-containing composite oxides and the like that have been proposed have been proposed.

特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015 特開平8−045509号公報JP-A-8-045509

しかしながら、従来の製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されているが、1回目の充放電に限り、充電容量に比べて放電容量が小さく、両者の差で定義される、いわゆる不可逆容量がコバルト系複合酸化物に比べてかなり大きいという問題がある。   However, in the lithium nickel composite oxide obtained by the conventional manufacturing method, both the charge capacity and the discharge capacity are higher than those of the lithium cobalt composite oxide, and the cycle characteristics are improved, but only for the first charge / discharge, There is a problem that the discharge capacity is small compared to the charge capacity, and the so-called irreversible capacity defined by the difference between the two is considerably large compared to the cobalt-based composite oxide.

不可逆容量が大きくなる原因の一つとして、従来のリチウムニッケル複合酸化物では、原料由来の硫酸根(SO 2−)やClなどの充放電反応に寄与しない不純物を含むことが挙げられる。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たりおよび体積当たりの容量が小さくなるうえ、不可逆容量として負極に余分なリチウムが蓄積され、安全性の面からも問題となっている。 One of the reasons for the increase in the irreversible capacity is that the conventional lithium nickel composite oxide contains impurities that do not contribute to the charge / discharge reaction such as sulfate radicals (SO 4 2− ) and Cl derived from raw materials. Since these impurities do not contribute to the charge / discharge reaction, when the battery is constructed, the negative electrode material must be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode material. The capacity per weight and volume is reduced, and excess lithium is accumulated in the negative electrode as an irreversible capacity, which is a problem in terms of safety.

そこで、本発明の目的は、充放電反応に寄与しない不純物量を低減させることで、高容量かつ不可逆容量が少なく、クーロン効率および反応抵抗に優れた非水系電解質二次電池を得ることが可能な正極活物質の前駆体とその製造方法を提供することにある。   Accordingly, an object of the present invention is to reduce the amount of impurities that do not contribute to the charge / discharge reaction, thereby making it possible to obtain a non-aqueous electrolyte secondary battery that has high capacity, low irreversible capacity, and excellent coulomb efficiency and reaction resistance. The object is to provide a precursor of a positive electrode active material and a method for producing the same.

上記課題を解決するため、発明者らがさらに研究を深めた結果、ニッケル複合水酸化物を炭酸塩水溶液で洗浄することで、不純物の少ないニッケル複合水酸化物を得ることができ、該ニッケル複合水酸化物から製造したリチウムニッケル複合酸化物を正極材料として用いることで、上記問題を回避できることを見出し、本発明を完成するに至った。   As a result of further research by the inventors to solve the above problems, a nickel composite hydroxide with less impurities can be obtained by washing the nickel composite hydroxide with an aqueous carbonate solution. It has been found that the above problem can be avoided by using a lithium nickel composite oxide produced from a hydroxide as a positive electrode material, and the present invention has been completed.

すなわち、本発明の非水電解質二次電池用正極活物質の前駆体の製造方法は、下記一般式(1)で表されるニッケル複合水酸化物からなる非水電解質二次電池用正極活物質の前駆体の製造方法であって、前記ニッケル複合水酸化物を濃度0.06mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、xは0<x≦0.20、yは0<y≦0.07である。)
That is, the method for producing a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is a positive electrode active material for a nonaqueous electrolyte secondary battery comprising a nickel composite hydroxide represented by the following general formula (1). The precursor composite manufacturing method is characterized in that the nickel composite hydroxide is washed with a carbonate aqueous solution having a concentration of 0.06 mol / L or more.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Al, Ti, Mn, and W, x is 0 <x ≦ 0.20, and y is 0 <y ≦ 0.07.)

また、前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウムから選ばれる少なくとも1種の水溶液であり、炭酸塩水溶液のpHが11以上であることが好ましい。   The carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate and sodium carbonate, and the pH of the carbonate aqueous solution is preferably 11 or more.

また、前記洗浄は、液温度10〜50℃の範囲で行うことが好ましい。   Moreover, it is preferable to perform the said washing | cleaning in the range of 10-50 degreeC of liquid temperature.

また、前記ニッケル複合水酸化物は、加温した反応槽中に、ニッケルおよびコバルト並びにAl、Ti、MnおよびWから選ばれる少なくとも1種の元素を含む金属化合物の水溶液と、アンモニウムイオン供給体を含む水溶液と、を供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析により得ることが好ましい。   In addition, the nickel composite hydroxide contains an aqueous solution of a metal compound containing nickel and cobalt and at least one element selected from Al, Ti, Mn and W in a heated reaction vessel, and an ammonium ion supplier. It is preferable to obtain by neutralization crystallization by supplying an appropriate amount of an aqueous solution of an alkali metal hydroxide sufficient to keep the reaction solution alkaline.

また、洗浄後に得られる前駆体は、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることが好ましい
Further, the precursor obtained after washing, 0.1% by weight sulfate ion content less and a Na content of 0.01 mass% or less.

また、洗浄後に得られる前駆体は、塩素含有量が0.1質量%以下であることが好ましい。
Moreover, it is preferable that the precursor obtained after washing | cleaning has a chlorine content of 0.1 mass% or less.

本発明の非水電解質二次電池用正極活物質の製造方法は、下記の一般式(2)で表されるリチウムニッケル複合酸化物からなる非水電解質二次電池用正極活物質の製造方法であって、前記非水電解質二次電池用正極活物質の前駆体を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程と、前記ニッケル複合酸化物とリチウム化合物を混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成してリチウムニッケル複合酸化物得る焼成工程と、を含むことを特徴とする。
一般式:LiNi1−x’−y’Cox’y’・・・(2)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05であり、x’は0<x’≦0.20、y’は0<y’≦0.07である。)
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of this invention is a manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which consists of lithium nickel complex oxide represented by following General formula (2). A roasting step of obtaining a nickel composite oxide by oxidizing and calcining a precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery in an oxidizing atmosphere at 400 to 800 ° C .; and the nickel composite oxide and lithium A mixing step of mixing a compound to obtain a lithium mixture; and a baking step of baking the lithium mixture in an oxygen atmosphere in a range of 650 to 850 ° C. to obtain a lithium nickel composite oxide.
General formula: Li a Ni 1-x′-y ′ Co x ′ M y ′ O 2 (2)
(In the formula, M represents at least one element selected from Al, Ti, Mn and W, a is 0.85 ≦ a ≦ 1.05, and x ′ is 0 <x ′ ≦ 0.20. , Y ′ is 0 <y ′ ≦ 0.07.)

前記焼成工程後に、前記リチウムニッケル複合酸化物を、10〜40℃の温度で、かつ、前記リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理した後、濾過、乾燥する水洗工程を含むことが好ましい。   After the firing step, the lithium nickel composite oxide is 0.10% by mass with respect to the total amount of lithium compound present at a temperature of 10 to 40 ° C. and on the surface of the lithium nickel composite oxide. It is preferable to include a water washing step of filtering and drying after washing with water at a slurry concentration sufficient to become the following.

前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることが好ましい。   The lithium compound is preferably at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate, and halide.

また、正極活物質は、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることが好ましい
Also, the positive electrode active material, 0.1% by weight sulfate ion content less and a Na content of 0.01 mass% or less.

本発明により、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質を得ることが可能な前駆体とその製造方法が提供される。また、本発明の製造方法は、容易で生産性が高く、その工業的価値は極めて大きい。
さらに、本発明の前駆体を用いた正極活物質の製造方法により、高容量であり、不可逆容量が小さく、クーロン効率および反応抵抗に優れた非水系電解質二次電池用正極活物質が提供される。
The present invention provides a precursor capable of obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance, and a method for producing the same. Further, the production method of the present invention is easy and has high productivity, and its industrial value is extremely large.
Furthermore, the method for producing a positive electrode active material using the precursor of the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high capacity, a small irreversible capacity, and excellent coulomb efficiency and reaction resistance. .

図1は、電池評価に用いたコイン電池の断面図である。FIG. 1 is a cross-sectional view of a coin battery used for battery evaluation.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.非水電解質二次電池用正極活物質の前駆体の製造方法
本発明の非水電解質二次電池用正極活物質の前駆体(以下、単に「前駆体」ともいう)の製造方法は、下記一般式(1)で表されるニッケル複合水酸化物を濃度0.1mol/L以上の炭酸塩水溶液で洗浄することを特徴とする。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、xは0<x≦0.20、yは0<y≦0.07である。)
1. Method for Producing Precursor of Positive Electrode Active Material for Nonaqueous Electrolyte Secondary Battery A method for producing a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention (hereinafter also simply referred to as “precursor”) is described below. The nickel composite hydroxide represented by the formula (1) is washed with a carbonate aqueous solution having a concentration of 0.1 mol / L or more.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Al, Ti, Mn, and W, x is 0 <x ≦ 0.20, and y is 0 <y ≦ 0.07.)

ニッケル複合水酸化物中のコバルトの含有量を示すxは、0<x≦0.20であり、好ましくは0.03≦x≦0.20、より好ましくは0.10≦x≦0.20である。コバルトの含有量が上記範囲であることにより、優れた放電容量、サイクル特性、熱安定性が得られる。
また、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素Mの含有量を示すyは、0<y≦0.07であり、好ましくは、0.01≦y≦0.05である。Mの含有量が上記範囲であることにより、優れたサイクル特性、熱安定性が得られる。
X indicating the content of cobalt in the nickel composite hydroxide is 0 <x ≦ 0.20, preferably 0.03 ≦ x ≦ 0.20, more preferably 0.10 ≦ x ≦ 0.20. It is. When the cobalt content is in the above range, excellent discharge capacity, cycle characteristics, and thermal stability can be obtained.
Further, y indicating the content of at least one element M selected from Al, Ti, Mn and W is 0 <y ≦ 0.07, and preferably 0.01 ≦ y ≦ 0.05. . When the content of M is in the above range, excellent cycle characteristics and thermal stability can be obtained.

(1)ニッケル複合水酸化物の製造方法
本発明に用いられるニッケル複合水酸化物を製造する方法としては、上記式(1)を満たすものが得られれば特に限定されず、従来公知の方法を用いることができ、例えば、ニッケルおよびコバルトと、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素Mとを含む金属化合物の水溶液及びアルカリ金属水酸化物の水溶液を適宜混合し、晶析する等が挙げられる。
(1) Method for producing nickel composite hydroxide The method for producing the nickel composite hydroxide used in the present invention is not particularly limited as long as a material satisfying the above formula (1) is obtained. For example, an aqueous solution of a metal compound and an aqueous solution of an alkali metal hydroxide containing nickel and cobalt and at least one element M selected from Al, Ti, Mn, and W are appropriately mixed, and crystallized. And so on.

中でも、加温した反応槽中に、ニッケルおよびコバルト並びにAl、Ti、MnおよびWから選ばれる少なくとも1種の元素を含む金属化合物の水溶液と、アンモニウムイオン供給体を含む水溶液と、を供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析によりニッケル複合水酸化物を得ることが、生産性、粒径安定性等の観点から好ましい。   Among them, an aqueous solution of a metal compound containing nickel and cobalt and at least one element selected from Al, Ti, Mn and W and an aqueous solution containing an ammonium ion supplier are supplied into a heated reaction vessel, In that case, it is possible to obtain a nickel composite hydroxide by neutralized crystallization by appropriately supplying an aqueous solution of an alkali metal hydroxide sufficient to keep the reaction solution alkaline. From the viewpoint of properties and the like.

ニッケル、コバルトを含む金属化合物としては、特に限定されないが、例えば、ニッケルまたはコバルトの硫酸塩、硝酸物、塩化物などを用いることができ、この中でも、排水処理の容易性、環境負荷の観点からニッケルまたはコバルトの硫酸塩、塩化物が好ましい。
Al、Ti、MnおよびWから選ばれる少なくとも1種の元素Mを含む金属化合物としては、特に限定されないが、例えば、硫酸アルミニウム、アルミン酸ナトリウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸マンガン、タングステン酸アンモニウム等を用いることができる。
また、アルカリ金属水酸化物としては、特に限定されず、公知の例えば、水酸化ナトリウム、水酸化カリウムなどを用いることができる。
Although it does not specifically limit as a metal compound containing nickel and cobalt, For example, a sulfate , nitrate, chloride, etc. of nickel or cobalt can be used, From the viewpoint of the ease of waste water treatment, and an environmental burden among these. Nickel or cobalt sulfate and chloride are preferred.
The metal compound containing at least one element M selected from Al, Ti, Mn and W is not particularly limited, and examples thereof include aluminum sulfate, sodium aluminate, titanium sulfate, ammonium peroxotitanate, potassium oxalate titanium, Manganese sulfate, ammonium tungstate, or the like can be used.
Moreover, it does not specifically limit as an alkali metal hydroxide, For example, well-known sodium hydroxide, potassium hydroxide, etc. can be used.

アンモニウムイオン供給体としては、特に限定されないが、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。   Although it does not specifically limit as an ammonium ion supplier, For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride etc. can be used.

反応槽中の温度としては、40〜60℃が好ましく、また、pHとしては10〜14であることが好ましい。晶析時の温度が60℃を超えるか、又はpHが14を超えると、液中で核生成の優先度が高まり結晶成長が進まずに微細な粉末しか得られない。一方、温度が40℃未満、又はpHが10未満では、液中で核の発生が少なく、粒子の結晶成長が優先的となるため、電極作製時に凹凸が発生するほどの非常に大きい粒子が生成するか、又は反応液中の金属イオンの残存量が高く反応効率が非常に悪いという問題が発生することがある。   The temperature in the reaction vessel is preferably 40 to 60 ° C., and the pH is preferably 10 to 14. When the temperature at the time of crystallization exceeds 60 ° C. or the pH exceeds 14, the priority of nucleation increases in the liquid, and crystal growth does not proceed and only a fine powder can be obtained. On the other hand, when the temperature is less than 40 ° C. or pH is less than 10, the generation of nuclei in the liquid is small, and the crystal growth of the particles becomes preferential, so that very large particles are generated so that irregularities are generated during electrode production. Or the remaining amount of metal ions in the reaction solution may be high and the reaction efficiency may be very poor.

(2)炭酸塩水溶液による洗浄
本発明の前駆体の製造方法は、前記ニッケル複合水酸化物を濃度0.06mol/L以上、好ましくは0.08〜1.00mol/L、より好ましくは0.10〜0.60mol/Lの炭酸塩水溶液で洗浄することを特徴とする。洗浄する際に濃度0.06mol/L以上の炭酸塩水溶液用いることで、ニッケル複合水酸化物中の不純物、特に硫酸根や塩素などを、炭酸塩水溶液中の炭酸とのイオン交換作用により、効率よく除去することができる。
(2) Washing with aqueous carbonate solution In the method for producing a precursor of the present invention, the nickel composite hydroxide has a concentration of 0.06 mol / L or more, preferably 0.08 to 1.00 mol / L, more preferably 0.8. It is characterized by washing with 10 to 0.60 mol / L carbonate aqueous solution. By using a carbonate aqueous solution with a concentration of 0.06 mol / L or more when washing, impurities in the nickel composite hydroxide, particularly sulfate radicals and chlorine, are efficiently exchanged with carbonic acid in the carbonate aqueous solution. Can be removed well.

その際、pHは25℃基準で11以上であることが好ましい。pHを11以上とすることで、酸を形成する硫酸根や塩素をさらに効率よく除去することができる。pHの上限は特に限定されないが、炭酸塩水溶液を用いるため、25℃基準のpHで12.5程度が上限となる。   In that case, it is preferable that pH is 11 or more on a 25 degreeC reference | standard. By setting the pH to 11 or more, sulfate radicals and chlorine that form acids can be more efficiently removed. Although the upper limit of pH is not specifically limited, since carbonate aqueous solution is used, about 12.5 becomes an upper limit by pH of 25 degreeC reference | standard.

炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウム(NaCO)から選ばれる少なくとも1種の水溶液が好ましい。炭酸リチウム、炭酸カルシウム、炭酸バリウムは水への溶解度が低いため、十分な量が溶解した水溶液を得られないことがある。 The carbonate aqueous solution is preferably at least one aqueous solution selected from potassium carbonate and sodium carbonate (Na 2 CO 3 ). Since lithium carbonate, calcium carbonate, and barium carbonate have low solubility in water, an aqueous solution in which a sufficient amount is dissolved may not be obtained.

また、例えば、炭酸塩として炭酸ナトリウムを使用する場合、水溶液濃度は0.2mol/L以上が好ましく、0.25〜0.60mol/Lがより好ましい。炭酸ナトリウムは水への溶解度が高いため、その水溶液濃度を0.2mol/L以上とすることで、硫酸根や塩素などの不純物の除去をより効率的に行うことができる。   For example, when sodium carbonate is used as the carbonate, the aqueous solution concentration is preferably 0.2 mol / L or more, and more preferably 0.25 to 0.60 mol / L. Since sodium carbonate has high solubility in water, impurities such as sulfate radicals and chlorine can be more efficiently removed by setting the concentration of the aqueous solution to 0.2 mol / L or more.

炭酸塩水溶液の水温は、10℃〜50℃が好ましい。水温が上記範囲であることにより、イオン交換反応が活発となり不純物除去が効率的に進む。
また、炭酸ナトリウム水溶液量は、ニッケル複合水酸化物1000gに対して1000mL以上が好ましく、2000〜5000mLがより好ましい。1000mL以下では、不純物イオンと炭酸イオンが十分に置換されず洗浄効果が十分に得られないことがある。
炭酸塩水溶液による洗浄時間としては、ニッケル複合水酸化物の硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下となるように、十分洗浄できれば、特に限定されないが、通常、0.5〜2時間である。
The water temperature of the carbonate aqueous solution is preferably 10 ° C to 50 ° C. When the water temperature is in the above range, the ion exchange reaction becomes active and the impurity removal proceeds efficiently.
Moreover, 1000 mL or more is preferable with respect to 1000 g of nickel composite hydroxide, and, as for the amount of sodium carbonate aqueous solution, 2000-5000 mL is more preferable. If it is 1000 mL or less, the impurity ions and carbonate ions may not be sufficiently substituted, and the cleaning effect may not be sufficiently obtained.
The washing time with the carbonate aqueous solution is not particularly limited as long as it can be sufficiently washed so that the sulfate content of the nickel composite hydroxide is 0.1% by mass or less and the Na content is 0.01% by mass or less. Usually, 0.5 to 2 hours.

洗浄方法としては、炭酸塩水溶液にニッケル複合水酸化物を添加し、スラリー化して洗浄した後、ろ過する、通常行われる洗浄方法、あるいは、中和晶析により生成したニッケル複合水酸化物を含むスラリーを、フィルタープレスなどのろ過機に供給し、炭酸塩水溶液を通液する、通水洗浄により行うことができる。通水洗浄は、不純物の除去効率が高く、また、ろ過と洗浄を同一の設備で連続的に行うことが可能で生産性が高いため、好ましい。   As a cleaning method, a nickel composite hydroxide is added to a carbonate aqueous solution, and after slurrying and cleaning, filtration is performed, or a normal cleaning method or nickel composite hydroxide generated by neutralization crystallization is included. The slurry can be supplied to a filter such as a filter press and subjected to washing with water through which an aqueous carbonate solution is passed. Washing with water is preferable because it has high impurity removal efficiency, and filtration and washing can be performed continuously in the same facility and productivity is high.

炭酸塩水溶液による洗浄後、その後必要に応じて純水で洗浄を行う。ナトリウムなどのカチオン不純物を除去するため、純水による洗浄を行うことが好ましい。
純水による洗浄は、通常行われる方法を用いることができるが、炭酸塩水溶液の通水洗浄を行った際には、炭酸塩水溶液による通水洗浄後に、純水による通水洗浄を連続的に行うことが好ましい。
After washing with an aqueous carbonate solution, washing is then performed with pure water as necessary. In order to remove cationic impurities such as sodium, it is preferable to perform washing with pure water.
For washing with pure water, a method that is usually performed can be used. However, when washing with a carbonate aqueous solution is performed, water washing with pure water is continuously performed after washing with the carbonate aqueous solution. Preferably it is done.

2.非水電解質二次電池用正極活物質の前駆体
本発明の非水電解質二次電池用正極活物質の前駆体は、下記一般式(1)で表されるニッケル複合水酸化物からなり、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることを特徴とする。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、xは0<x≦0.20、yは0<y≦0.07である。)
2. Precursor of positive electrode active material for non-aqueous electrolyte secondary battery The precursor of the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention comprises a nickel composite hydroxide represented by the following general formula (1), and sulfuric acid. The root content is 0.1% by mass or less, and the Na content is 0.01% by mass or less.
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Al, Ti, Mn, and W, x is 0 <x ≦ 0.20, and y is 0 <y ≦ 0.07.)

硫酸根は正極活物質の製造における焼成工程においても減少せず、正極活物質に残存するため、前駆体において十分に低減しておく必要がある。硫酸根含有量を0.1質量%以下、好ましくは0.08質量%以下とすることにより、得られる正極活物質の硫酸根含有量も0.1質量%以下にすることができ、得られる正極活物質を不可逆容量が小さく高容量なものとすることができる。
Na含有量についても同様に、0.01質量%以下、好ましくは0.008質量%以下、より好ましくは0.005質量%以下となるように、前駆体において十分に低減しておく必要がある。
The sulfate radical does not decrease in the firing step in the production of the positive electrode active material, and remains in the positive electrode active material, so that it needs to be sufficiently reduced in the precursor. By setting the sulfate group content to 0.1% by mass or less, preferably 0.08% by mass or less, the sulfate group content of the obtained positive electrode active material can also be set to 0.1% by mass or less. The positive electrode active material can have a small irreversible capacity and a high capacity.
Similarly, the Na content needs to be sufficiently reduced in the precursor so as to be 0.01% by mass or less, preferably 0.008% by mass or less, more preferably 0.005% by mass or less. .

さらに、塩素含有量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。塩素は、硫酸根より正極活物質に対する影響が少ないものの、正極活物質製造時の焼成炉などに悪影響を及ぼすため、前駆体において十分に低減しておくことが好ましい。   Furthermore, the chlorine content is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.01% by mass or less. Although chlorine has less influence on the positive electrode active material than sulfate radical, it is preferable to sufficiently reduce it in the precursor because it adversely affects the firing furnace during the production of the positive electrode active material.

前駆体中の硫酸根、Na、塩素含有量は、ニッケル複合水酸化物を炭酸塩水溶液で洗浄する際の炭酸塩水溶液の濃度、炭酸塩水溶液量、温度等を適宜調製することで、上記範囲とすることができる。   The sulfate radical, Na, and chlorine contents in the precursor are within the above ranges by appropriately adjusting the concentration of carbonate aqueous solution, the amount of carbonate aqueous solution, the temperature, etc. when washing the nickel composite hydroxide with the carbonate aqueous solution. It can be.

3.非水電解質二次電池用の正極活物質の製造方法
本発明の非水電解質二次電池用の正極活物質の製造方法は、1)上記前駆体用ニッケル複合水酸化物を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程と、2)前記ニッケル複合酸化物とリチウム化合物を混合してリチウム混合物を得る混合工程と、3)前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成して、下記一般式(2)で表されるリチウムニッケル複合酸化物得る焼成工程とを含む。
一般式:LiNi1−x’−y’Cox’y’・・・(2)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05であり、x’は0<x’≦0.20、y’は0<y’≦0.07である。)
また、前記焼成工程後に、4)前記リチウムニッケル複合酸化物を、水洗処理した後、濾過、乾燥する水洗工程を含むことが好ましい。
以下、各工程について説明する。
3. Method for Producing Positive Electrode Active Material for Nonaqueous Electrolyte Secondary Battery The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is as follows: 1) The nickel composite hydroxide for precursor in an oxidizing atmosphere 400 A roasting step of oxidative roasting at ˜800 ° C. to obtain a nickel composite oxide, 2) a mixing step of mixing the nickel composite oxide and a lithium compound to obtain a lithium mixture, and 3) oxygenation of the lithium mixture. And firing in a range of 650 to 850 ° C. in an atmosphere to obtain a lithium nickel composite oxide represented by the following general formula (2).
General formula: Li a Ni 1-x′-y ′ Co x ′ M y ′ O 2 (2)
(In the formula, M represents at least one element selected from Al, Ti, Mn and W, a is 0.85 ≦ a ≦ 1.05, and x ′ is 0 <x ′ ≦ 0.20. , Y ′ is 0 <y ′ ≦ 0.07.)
Moreover, it is preferable to include the water washing process which filters and dries after performing the water washing process of the said lithium nickel composite oxide after the said baking process.
Hereinafter, each step will be described.

(1)焙焼工程
焙焼工程は、ニッケル複合水酸化物を焙焼してニッケル複合酸化物を得る工程である。これにより、リチウムとリチウム以外の金属元素の比を容易に制御することができる。酸化性雰囲気中400〜800℃、より好ましくは500〜720℃の温度で焙焼する。
(1) Roasting step The roasting step is a step of roasting nickel composite hydroxide to obtain nickel composite oxide. As a result, the ratio of lithium to a metal element other than lithium can be easily controlled. Roasting is performed at a temperature of 400 to 800 ° C., more preferably 500 to 720 ° C. in an oxidizing atmosphere.

このとき、焙焼温度が400℃未満では、これを用いて得られるリチウムニッケル複合酸化物の品位の安定が難しく、合成時に組成の不均一化が起こりやすい。一方、焙焼温度が800℃を超えると、粒子を構成する一次粒子が急激に粒成長を起こし、後続のリチウムニッケル複合酸化物の製造においてニッケル化合物側の反応面積が小さすぎることから、リチウムと反応することができずに下層の比重の大きなニッケル化合物と上層の溶融状態のリチウム化合物に比重分離してしまう問題が生ずる。   At this time, if the roasting temperature is less than 400 ° C., it is difficult to stabilize the quality of the lithium nickel composite oxide obtained by using this, and the composition tends to be non-uniform during synthesis. On the other hand, when the roasting temperature exceeds 800 ° C., the primary particles constituting the particles rapidly grow and the reaction area on the nickel compound side is too small in the subsequent production of the lithium nickel composite oxide. There is a problem that the specific gravity separation between the nickel compound having a large specific gravity in the lower layer and the lithium compound in the molten state in the upper layer is caused without being able to react.

(2)混合工程
前記ニッケル複合酸化物とリチウム化合物の混合比としては、リチウム(Li)とリチウム以外の金属元素(Me)がモル比(Li/Me)で0.85〜1.05、好ましくは0.95〜1.04になるように調整することが好ましい。つまり、リチウム混合物におけるモル比(Li/Me)が、本発明の正極活物質におけるモル比(Li/Me)と同じになるように混合される。これは、焼成工程前後で、モル比(Li/Me)は変化しないので、この混合工程で混合するLi/Meが正極活物質におけるモル比(Li/Me)となるからである。
得られる正極活物質のモル比(Li/Me)が0.85未満となると、充放電サイクル時の電池容量の大きな低下を引き起こす要因となり、一方、1.05を超えると、電池としたときの正極の内部抵抗が大きくなってしまう。
(2) Mixing step As a mixing ratio of the nickel composite oxide and the lithium compound, a molar ratio (Li / Me) of metal elements (Me) other than lithium (Li) and lithium is preferably 0.85 to 1.05. Is preferably adjusted to 0.95 to 1.04. That is, mixing is performed so that the molar ratio (Li / Me) in the lithium mixture is the same as the molar ratio (Li / Me) in the positive electrode active material of the present invention. This is because the molar ratio (Li / Me) does not change before and after the firing step, and thus Li / Me mixed in this mixing step becomes the molar ratio (Li / Me) in the positive electrode active material.
When the molar ratio (Li / Me) of the obtained positive electrode active material is less than 0.85, it causes a large decrease in the battery capacity during the charge / discharge cycle. The internal resistance of the positive electrode will increase.

また、後述するように、焼成工程後にリチウムニッケル複合酸化物を水洗する場合は、モル比(Li/Me)を0.95〜1.13とすることが好ましい。
すなわち、上記モル比が0.95未満では、得られる焼成粉末のモル比も0.95未満となり、結晶性が非常に悪く、また、水洗した際にはリチウムとリチウム以外の金属とのモル比(Li/Me)が0.85未満となる。一方、モル比が1.13を超えると得られる焼成粉末のモル比も1.13を超え、表面に余剰のリチウム化合物が多量に存在し、これを水洗で除去するのが難しくなる。このため、これを正極活物質として用いると、電池の充電時にガスが多量に発生されるばかりでなく、高pHを示す粉末であるため電極作製時に使用する有機溶剤などの材料と反応してスラリーがゲル化して不具合を起こす要因となる。また、水洗後のモル比(Li/Me)が1.05を超える。
As will be described later, when the lithium nickel composite oxide is washed with water after the firing step, the molar ratio (Li / Me) is preferably 0.95 to 1.13.
That is, when the molar ratio is less than 0.95, the molar ratio of the obtained fired powder is also less than 0.95, the crystallinity is very poor, and the molar ratio between lithium and a metal other than lithium when washed with water. (Li / Me) is less than 0.85. On the other hand, if the molar ratio exceeds 1.13, the molar ratio of the calcined powder obtained also exceeds 1.13, and a large amount of excess lithium compound is present on the surface, which is difficult to remove by washing with water. For this reason, when this is used as a positive electrode active material, not only a large amount of gas is generated during charging of the battery, but also a slurry that reacts with a material such as an organic solvent used in electrode preparation because it is a powder exhibiting a high pH. Causes gelation and causes problems. Moreover, the molar ratio (Li / Me) after washing exceeds 1.05.

上記混合には、Vブレンダー等の乾式混合機又は混合造粒装置等が用いられ、また、上記焼成には、酸素雰囲気、除湿及び除炭酸処理を施した乾燥空気雰囲気等の酸素濃度20質量%以上のガス雰囲気に調整した電気炉、キルン、管状炉、プッシャー炉等の焼成炉が用いられる。   For the mixing, a dry blender such as a V blender or a mixing granulator is used, and for the firing, an oxygen concentration of 20% by mass in an oxygen atmosphere, a dry air atmosphere subjected to dehumidification and decarboxylation, or the like. A firing furnace such as an electric furnace, kiln, tubular furnace or pusher furnace adjusted to the above gas atmosphere is used.

上記リチウム化合物としては、特に限定されるものではなく、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種が用いられる。   The lithium compound is not particularly limited, and at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide is used.

(3)焼成工程
前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成する工程である。焼成温度としては、650〜800℃℃の範囲、好ましくは730〜790℃の範囲が用いられる。すなわち、500℃を超えるような温度で熱処理すればニッケル酸リチウムが生成されるが、650℃未満ではその結晶が未発達で構造的に不安定であり充放電による相転移などにより容易に構造が破壊されてしまう。一方、800℃を超えると、カチオンミキシングが生じやすくなり層状構造が崩れ、リチウムイオンの挿入、脱離が困難となったり、さらには分解により酸化ニッケルなどが生成されてしまう。さらに、リチウム化合物の結晶水などを取り除いた上で、結晶成長が進む温度領域で均一に反応させるためにも、400〜600℃の温度で1時間以上、続いて650〜800℃の温度で3時間以上の2段階で焼成することが特に好ましい。
(3) Firing step In this step, the lithium mixture is baked in an oxygen atmosphere in the range of 650 to 850 ° C. As a calcination temperature, the range of 650-800 degreeC, Preferably the range of 730-790 degreeC is used. In other words, lithium nickelate is produced if heat treatment is performed at a temperature exceeding 500 ° C., but if the temperature is lower than 650 ° C., the crystal is undeveloped and structurally unstable, and the structure is easily formed by phase transition due to charge / discharge. It will be destroyed. On the other hand, when the temperature exceeds 800 ° C., cation mixing is likely to occur, the layered structure is destroyed, lithium ion insertion or desorption becomes difficult, and nickel oxide or the like is generated by decomposition. Further, in order to remove the crystallization water of the lithium compound and perform a uniform reaction in the temperature range in which crystal growth proceeds, the reaction is performed at a temperature of 400 to 600 ° C for 1 hour or longer, and subsequently at a temperature of 650 to 800 ° C. It is particularly preferable to calcinate in two stages over time.

(4)水洗工程
上記焼成工程によって得られたリチウム遷移金属複合酸化物は、そのままの状態でも正極活物質として用いられるが、粒子表面の余剰リチウムを除去することにより、電解液と接触可能な表面積が増加して充放電容量を向上させることができるため、焼成後に水洗工程を行うことが好ましい。また、粒子表面に形成された脆弱部も十分に除去されるため、電解液との接触が増加して充放電容量を向上させることができる。
(4) Rinsing step The lithium transition metal composite oxide obtained by the firing step is used as the positive electrode active material as it is, but the surface area that can be brought into contact with the electrolytic solution by removing excess lithium on the particle surface. It is preferable to perform a water washing step after firing since the increase in charge / discharge capacity can be achieved. Moreover, since the weak part formed in the particle | grain surface is fully removed, a contact with electrolyte solution can increase and charge / discharge capacity can be improved.

水洗する際は、10〜40℃の温度で、かつ、リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理し、その後、濾過、乾燥することが好ましい。   When washing with water, the slurry concentration is sufficient so that the lithium amount of the lithium compound existing on the surface of the lithium nickel composite oxide is 0.10% by mass or less with respect to the total amount at a temperature of 10 to 40 ° C. Then, it is preferable to wash with water, and then filter and dry.

水洗処理において、温度を10〜40℃とすることで、リチウムニッケル複合酸化物粉末の表面に存在するリチウム量を0.10質量%以下とすることができ、高温保持時のガス発生を抑制することができる。また、高容量と高出力を達成することができる正極活物質が得られるとともに高い安全性も両立させることができる。   In the water washing treatment, by setting the temperature to 10 to 40 ° C., the amount of lithium existing on the surface of the lithium nickel composite oxide powder can be reduced to 0.10% by mass or less, and gas generation at the time of holding at a high temperature is suppressed. be able to. In addition, a positive electrode active material capable of achieving high capacity and high output can be obtained, and high safety can be achieved at the same time.

なお、リチウムニッケル複合酸化物の表面に存在するリチウム量は、リチウムニッケル複合酸化物粉末10gに超純水を100mlまで添加し攪拌した後、1mol/リットルの塩酸で滴定し第二中和点まで測定し、塩酸で中和されたアルカリ分として求める。   The amount of lithium present on the surface of the lithium nickel composite oxide was determined by adding ultrapure water to 10 g of lithium nickel composite oxide powder up to 100 ml and stirring, followed by titration with 1 mol / liter hydrochloric acid until the second neutralization point. Measure and obtain as alkali content neutralized with hydrochloric acid.

また、水洗時間としては、特に限定されないが、リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が全量に対して0.10質量%以下になるに十分な時間であることが必要であり、水洗温度によって一概に言えないが、通常は20分〜2時間である。   Further, the washing time is not particularly limited, but it is necessary that the washing time is sufficient for the lithium amount of the lithium compound present on the surface of the lithium nickel composite oxide to be 0.10% by mass or less based on the total amount. Yes, depending on the washing temperature, it is generally not 20 minutes to 2 hours.

水洗する際のスラリー濃度としては、スラリー中に含まれる水1Lに対する前記焼成粉末の量(g)が500〜2000g/Lであることが好ましい。すなわち、スラリー濃度が濃いほど粉末量が多くなり、2000g/Lを超えると、粘度も非常に高いため攪拌が困難となるばかりか、液中のアルカリが高いので平衡の関係から付着物の溶解速度が遅くなったり、剥離が起きても粉末からの分離が難しくなる。一方、スラリー濃度が500g/L未満では、希薄過ぎるためリチウムの溶出量が多く、表面のリチウム量は少なくなるが、正極活物質の結晶格子中からのリチウムの脱離も起きるようになり、結晶が崩れやすくなるばかりか、高pHの水溶液が大気中の炭酸ガスを吸収して炭酸リチウムを再析出する。また、工業的な観点から生産性を考慮すると、設備の能力や作業性の点で、スラリー濃度が上記範囲であることが望ましい。   As the slurry concentration when washing with water, the amount (g) of the calcined powder with respect to 1 L of water contained in the slurry is preferably 500 to 2000 g / L. That is, as the slurry concentration increases, the amount of powder increases. When the slurry concentration exceeds 2000 g / L, the viscosity is very high and stirring becomes difficult. However, it becomes difficult to separate the powder from the powder even when peeling occurs. On the other hand, if the slurry concentration is less than 500 g / L, the amount of lithium elution is large and the amount of lithium on the surface is small because the solution is too dilute, but lithium is desorbed from the crystal lattice of the positive electrode active material. Not only tends to collapse, but the aqueous solution having a high pH absorbs carbon dioxide in the atmosphere and reprecipitates lithium carbonate. In consideration of productivity from an industrial point of view, the slurry concentration is preferably in the above range from the viewpoint of facility capacity and workability.

水洗後の濾過方法としては、通常用いられる方法でよく、例えば、吸引濾過機、フィルタープレス、遠心機等を用いることができる。   The filtration method after washing with water may be a commonly used method, and for example, a suction filter, a filter press, a centrifuge, or the like can be used.

濾過後の乾燥の温度としては、特に限定されるものではなく、好ましくは80〜350℃である。80℃未満では、水洗後の正極活物質の乾燥が遅くなるため、粒子表面と粒子内部とでリチウム濃度の勾配が起こり、電池特性が低下することがある。一方、正極活物質の表面付近では化学量論比にきわめて近いか、もしくは若干リチウムが脱離して充電状態に近い状態になっていることが予想されるので、350℃を超える温度では、充電状態に近い結晶構造が崩れる契機になり、電池特性の低下を招く恐れがある。
乾燥の時間としては、特に限定されないが、好ましくは2〜24時間である。
The drying temperature after filtration is not particularly limited and is preferably 80 to 350 ° C. If the temperature is less than 80 ° C., the drying of the positive electrode active material after washing with water becomes slow, so that a gradient of lithium concentration occurs between the particle surface and the inside of the particle, and the battery characteristics may deteriorate. On the other hand, near the surface of the positive electrode active material, it is expected that it is very close to the stoichiometric ratio, or slightly desorbed lithium and close to the charged state. As a result, the crystal structure close to 1 may be destroyed, and the battery characteristics may be deteriorated.
Although it does not specifically limit as drying time, Preferably it is 2 to 24 hours.

4.非水電解質二次電池用正極活物質
本発明の非水電解質二次電池用正極活物質は、下記の一般式(2)で表されるリチウムニッケル複合酸化物からなり、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることを特徴とする。
一般式:LiNi1−x’−y’Cox’y’・・・(2)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05、x’は0<x’≦0.20、y’は0<y’≦0.07である。)
4). Positive electrode active material for nonaqueous electrolyte secondary battery The positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention comprises a lithium nickel composite oxide represented by the following general formula (2), and has a sulfate group content of 0. .1 mass% or less, Na content is 0.01 mass% or less.
General formula: Li a Ni 1-x′-y ′ Co x ′ M y ′ O 2 (2)
(In the formula, M represents at least one element selected from Al, Ti, Mn and W, a is 0.85 ≦ a ≦ 1.05, x ′ is 0 <x ′ ≦ 0.20, y 'Is 0 <y' ≦ 0.07.)

本発明の正極活物質において、硫酸根含有量を0.1質量%以下、好ましくは0.08質量%以下、より好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下とすることにより、得られる正極活物質を不可逆容量が小さく高容量なものとすることができる。
Na含有量についても同様に、0.01質量%以下、好ましくは0.008質量%以下、より好ましくは0.006質量%以下とすることにより良好な電池特性を得ることができる。
さらに、塩素含有量は、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。
In the positive electrode active material of the present invention, the sulfate group content is 0.1% by mass or less, preferably 0.08% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.01% by mass or less. Thus, the obtained positive electrode active material can have a small irreversible capacity and a high capacity.
Similarly, good battery characteristics can be obtained by setting the Na content to 0.01% by mass or less, preferably 0.008% by mass or less, and more preferably 0.006% by mass or less.
Furthermore, the chlorine content is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.01% by mass or less.

正極活物質中の硫酸根、Na、塩素含有量は、ニッケル複合水酸化物を炭酸塩水溶液で洗浄する際の炭酸塩水溶液の濃度、炭酸塩水溶液量、温度等を適宜調製したり、焼成後に水洗工程を行うことにより、上記範囲とすることができる。   The sulfate radical, Na, and chlorine content in the positive electrode active material can be adjusted as appropriate by adjusting the concentration of carbonate aqueous solution, the amount of carbonate aqueous solution, the temperature, etc. when washing the nickel composite hydroxide with the carbonate aqueous solution. By performing the water washing step, the above range can be obtained.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたリチウムニッケル複合酸化物の金属の分析方法及び比表面積の評価方法は、以下の通りである。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal analysis method and the specific surface area evaluation method of the lithium nickel composite oxide used in the examples and comparative examples are as follows.

1.分析、評価方法
(1)組成の分析:ICP発光分析法で測定した。
(2)硫酸根含有量:ICP発光分析法により硫黄を定量分析し、硫黄は全て酸化して硫酸根(SO 2−)になるものとして係数を乗じることによって求めた。
(3)Na、Cl含有量:原子吸光分析法で測定した。
(4)充放電容量、不可逆容量、クーロン効率:
充放電容量は、コイン型電池を作製してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を放電容量、このときの充電容量と放電容量との差(充電容量−放電容量)を不可逆容量とした。また、充電容量に対する放電容量の比率(放電容量/充電容量)をクーロン効率(%)とした。
(5)反応抵抗:
反応抵抗は、コイン型電池を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法ナイキストプロットを作成し、等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
1. Analysis and evaluation method (1) Composition analysis: Measured by ICP emission spectrometry.
(2) Sulfate radical content: Sulfur was quantitatively analyzed by an ICP emission analysis method, and the sulfur content was determined by multiplying a coefficient by assuming that all sulfur was oxidized to become sulfate radicals (SO 4 2− ).
(3) Na, Cl content: measured by atomic absorption spectrometry.
(4) Charge / discharge capacity, irreversible capacity, coulomb efficiency:
The charge / discharge capacity is allowed to stand for about 24 hours after the coin-type battery is produced, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and the cut-off voltage is 4. The capacity when charging up to 3V, after 1 hour of rest and discharging up to a cutoff voltage of 3.0V is the discharge capacity, and the difference between the charge capacity and the discharge capacity at this time (charge capacity-discharge capacity) is the irreversible capacity. . The ratio of the discharge capacity to the charge capacity (discharge capacity / charge capacity) was defined as the coulomb efficiency (%).
(5) Reaction resistance:
For the reaction resistance, a coin-type battery was charged at a charging potential of 4.1 V, an AC impedance method Nyquist plot was created using a frequency response analyzer and a potento-galvanostat (manufactured by Solartron, 1255B), and fitting was performed using an equivalent circuit. The value of the positive electrode resistance was calculated by calculation.

2.実施例及び比較例
(実施例1)
[ニッケル複合水酸化物の製造]
ニッケルとコバルトとアルミニウムのモル比が82:15:3となるように、硫酸ニッケル、硫酸コバルト及びアルミン酸ソーダを含む水溶液と、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加し、pHを25℃基準で12.8に、アンモニア濃度を10g/Lに保ち、共沈法によって、ニッケル複合水酸化物を製造した。
得られたニッケル複合水酸化物は、1μm以下の一次粒子が複数集合して球状の二次粒子から成り、ニッケルとコバルトとアルミニウムとが固溶してなる。得られたニッケル複合水酸化物を、フィルタープレスろ過機により固液分離した。その後、20℃、pH11.5(25℃基準)の0.28mol/Lの炭酸ナトリウム水溶液を、ニッケル複合酸化物1000gに対して3000mLの割合で該フィルタープレスろ過機に通液することにより洗浄し、さらに、純水を通液して洗浄した。洗浄後のニッケル複合水酸化物(前駆体)の組成、不純物量等の結果を表1に示す。
2. Examples and Comparative Examples (Example 1)
[Production of nickel composite hydroxide]
An aqueous solution containing nickel sulfate, cobalt sulfate, and sodium aluminate, a 25 mass% sodium hydroxide solution, and 25 mass% aqueous ammonia are added to the reaction vessel so that the molar ratio of nickel, cobalt, and aluminum is 82: 15: 3. At the same time, a nickel composite hydroxide was produced by a coprecipitation method while maintaining the pH at 12.8 based on 25 ° C. and the ammonia concentration at 10 g / L.
The obtained nickel composite hydroxide is composed of spherical secondary particles in which a plurality of primary particles of 1 μm or less are aggregated, and nickel, cobalt, and aluminum are dissolved. The obtained nickel composite hydroxide was subjected to solid-liquid separation with a filter press filter. Thereafter, a 0.28 mol / L sodium carbonate aqueous solution at 20 ° C. and pH 11.5 (25 ° C. standard) was washed by passing through the filter press filter at a rate of 3000 mL with respect to 1000 g of the nickel composite oxide. Further, pure water was passed through and washed. Table 1 shows the results of the composition, impurity amount, etc. of the nickel composite hydroxide (precursor) after washing.

[リチウムニッケル複合酸化物の製造]
得られたニッケル複合水酸化物を電気炉を用いて大気雰囲気で700℃で焙焼してニッケル複合酸化物を得た。リチウムニッケル複合酸化物の各金属成分のモル比が、Ni:Co:Al:Li=0.85:0.12:0.03:1.03となるように、リチウムニッケル複合水酸化物と水酸化リチウム一水和物(和光純薬製)を秤量し、混合した。得られた混合物を、電気炉を用いて酸素濃度30%以上の雰囲気中で500℃で3時間仮焼した後、750℃で20時間、本焼成した。その後、室温まで炉内で冷却した後、解砕処理を行い一次粒子が凝集した球状焼成粉末を得た。
得られた球状焼成粉末をスラリー濃度が1500g/Lとなるように純水と混合したスラリーを製作し、スターラーを用いて、室温で30分水洗した後に濾過した。濾過後、真空乾燥機を用いて190℃、14時間保持して室温まで冷却して、レーザー回折散乱法による体積基準の平均粒径が10.8μmの正極活物質を得た。得られた正極活物質の組成、不純物量を表2に示す。
[Production of lithium nickel composite oxide]
The obtained nickel composite hydroxide was roasted at 700 ° C. in an air atmosphere using an electric furnace to obtain a nickel composite oxide. Lithium nickel composite hydroxide and water so that the molar ratio of each metal component of the lithium nickel composite oxide is Ni: Co: Al: Li = 0.85: 0.12: 0.03: 1.03. Lithium oxide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed and mixed. The obtained mixture was calcined at 500 ° C. for 3 hours in an atmosphere having an oxygen concentration of 30% or more using an electric furnace, and then main-fired at 750 ° C. for 20 hours. Then, after cooling in a furnace to room temperature, pulverization was performed to obtain a spherical fired powder in which primary particles were aggregated.
A slurry was prepared by mixing the obtained spherical calcined powder with pure water so that the slurry concentration was 1500 g / L, and the mixture was washed with water at room temperature for 30 minutes using a stirrer and then filtered. After filtration, it was kept at 190 ° C. for 14 hours using a vacuum dryer and cooled to room temperature to obtain a positive electrode active material having a volume-based average particle diameter of 10.8 μm by laser diffraction scattering method. Table 2 shows the composition and impurity amount of the obtained positive electrode active material.

[電池の作製]
上記で得られた球状焼成粉末(正極活物質粉末)90重量部にアセチレンブラック5重量部及びポリ沸化ビニリデン5重量部を混合し、n−メチルピロリドンを加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cmなるように塗布し、120℃で真空乾燥を行い、その後、これより直径1cmの円板状に打ち抜いて正極とした。
負極としてリチウム金属を、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。また、ポリエチレンからなるセパレーターに電解液を染み込ませ、露点が−80℃に管理されたArガス雰囲気のグローブボックス中で、2032型のコイン電池を作製した。図1に2032型のコイン電池の概略構造を示す。ここで、コイン電池は、正極缶5中の正極(評価用電極)1、負極缶6中のリチウム金属負極3、電解液含浸のセパレーター2及びガスケット4から構成される。
得られた電池の各特性(放電容量、不可逆容量、クーロン効率、反応抵抗)を表2に示す。
[Production of battery]
90 parts by weight of the spherical fired powder (positive electrode active material powder) obtained above was mixed with 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride, and added with n-methylpyrrolidone to form a paste. This was applied to a 20 μm-thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then punched into a disk shape having a diameter of 1 cm. did.
Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used as the electrolyte. Further, a 2032 type coin battery was manufactured in a glove box in an Ar gas atmosphere in which a separator made of polyethylene was impregnated with an electrolytic solution and the dew point was controlled at −80 ° C. FIG. 1 shows a schematic structure of a 2032 type coin battery. Here, the coin battery includes a positive electrode (evaluation electrode) 1 in a positive electrode can 5, a lithium metal negative electrode 3 in a negative electrode can 6, an electrolyte-impregnated separator 2, and a gasket 4.
Table 2 shows the characteristics of the obtained battery (discharge capacity, irreversible capacity, coulomb efficiency, reaction resistance).

(実施例2)
実施例1の炭酸ナトリウム水溶液を0.47mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
(Example 2)
A positive electrode active material was produced in the same manner as in Example 1 except that the sodium carbonate aqueous solution of Example 1 was changed to 0.47 mol / L and washed, and a battery was produced using the obtained positive electrode active material. did. The results are shown in Table 1.

(実施例3)
実施例1の炭酸ナトリウム水溶液を0.09mol/Lに変更して洗浄したこと以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
(Example 3)
A positive electrode active material was produced in the same manner as in Example 1, except that the sodium carbonate aqueous solution of Example 1 was changed to 0.09 mol / L and washed, and a battery was produced using the obtained positive electrode active material. did. The results are shown in Table 1.

(実施例4)
焼成後に球状焼成粉末を水洗し真空乾燥しなかったこと以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
(比較例1)
実施例1の炭酸ナトリウム水溶液を1.6mol/Lの水酸化ナトリウム水溶液で洗浄したこと、焼成後に球状焼成粉末を水洗し真空乾燥しなかった以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
Example 4
A positive electrode active material was produced in the same manner as in Example 1 except that the spherical fired powder was washed with water and not vacuum dried after firing, and a battery was fabricated using the obtained positive electrode active material. The results are shown in Table 1.
(Comparative Example 1)
The positive electrode active material was prepared in the same manner as in Example 1 except that the sodium carbonate aqueous solution of Example 1 was washed with 1.6 mol / L sodium hydroxide aqueous solution, and the spherical fired powder was washed with water and not vacuum dried after firing. A battery was produced using the positive electrode active material obtained. The results are shown in Table 1.

(比較例2)
実施例1の炭酸ナトリウム水溶液を3.39mol/Lの水酸化ナトリウム水溶液で洗浄したこと、焼成後に球状焼成粉末を水洗し真空乾燥しなかった以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
(Comparative Example 2)
A positive electrode active material was prepared in the same manner as in Example 1 except that the sodium carbonate aqueous solution of Example 1 was washed with a 3.39 mol / L sodium hydroxide aqueous solution, and the spherical fired powder was washed with water and not vacuum dried after firing. A battery was produced using the positive electrode active material obtained. The results are shown in Table 1.

(比較例3)
炭酸ナトリウム水溶液による洗浄を行わず、純水による通水洗浄のみを行ったこと、焼成後に球状焼成粉末を水洗し真空乾燥しなかった以外は、実施例1と同様に行い、正極活物質を製造し、得られた正極活物質を用いて電池を作製した。結果を表1に示す。
(Comparative Example 3)
A positive electrode active material was produced in the same manner as in Example 1 except that washing with an aqueous solution of sodium carbonate was not performed, only washing with pure water was performed, and that the spherical fired powder was washed with water and not vacuum dried after firing. And the battery was produced using the obtained positive electrode active material. The results are shown in Table 1.

Figure 0006237229
Figure 0006237229

Figure 0006237229
Figure 0006237229

表1及び2より、本発明の要件をすべて満たす実施例1〜4では、得られた水酸化物の不純物量が低く、また正極活物質は高容量であることがわかる。
これに対して、本発明の要件の一部又はすべてを満たしていない比較例1では、水酸化物の不純物量が多く、容量が低下している。また、比較例2では、水酸化ナトリウム溶液の濃度を高くすることで硫酸根(SO)量は低下したもののナトリウム根が残り結果、容量が低下している。さらに、比較例3では、ニッケル複合水酸化物を純水のみで洗浄したため、硫酸根量が高く、放電容量とクーロン効率が低下している
From Tables 1 and 2, it can be seen that in Examples 1 to 4, which satisfy all the requirements of the present invention, the amount of impurities in the obtained hydroxide is low, and the positive electrode active material has a high capacity.
On the other hand, in Comparative Example 1 that does not satisfy some or all of the requirements of the present invention, the amount of hydroxide impurities is large and the capacity is reduced. In Comparative Example 2, the concentration of the sodium hydroxide solution was increased, but the amount of sulfate radical (SO 4 ) was reduced, but the sodium root remained, resulting in a reduction in capacity. Furthermore, in Comparative Example 3, since the nickel composite hydroxide was washed with pure water only, the amount of sulfate radicals was high, and the discharge capacity and coulomb efficiency were reduced.

以上より明らかなように、本発明によって得られる非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池は、不可逆容量が少なく高容量であり、特に小型電子機器分野で利用される充放電可能な二次電池として好適であるので、その産業上の利用可能性は極めて大きい。   As is clear from the above, the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the present invention and the non-aqueous electrolyte secondary battery using the same have a low irreversible capacity and a high capacity, particularly in the field of small electronic devices. Since it is suitable as a chargeable / dischargeable secondary battery, its industrial applicability is extremely large.

1 正極(評価用電極)
2 セパレーター(電解液含浸)
3 リチウム金属負極
4 ガスケット
5 正極缶
6 負極缶
1 Positive electrode (Evaluation electrode)
2 Separator (electrolyte impregnation)
3 Lithium metal negative electrode 4 Gasket 5 Positive electrode can 6 Negative electrode can

Claims (9)

下記一般式(1)で表されるニッケル複合水酸化物からなる非水電解質二次電池用正極活物質の前駆体の製造方法であって、
加温した反応槽中に、ニッケルおよびコバルト並びにAl、Ti、MnおよびWから選ばれる少なくとも1種の元素を含む金属化合物の水溶液と、アンモニウムイオン供給体を含む水溶液と、を供給し、その際、反応溶液をアルカリ性に保持するのに十分な量のアルカリ金属水酸化物の水溶液を適宜供給して、中和晶析によりニッケル複合水酸化物を得ることと、
前記ニッケル複合水酸化物を濃度0.06mol/L以上の炭酸塩水溶液で洗浄すること、を備え、
前記ニッケルおよびコバルトを含む金属化合物は、硫酸塩及び塩化物の少なくとも一方を含む、ことを特徴とする非水電解質二次電池用正極活物質の前駆体の製造方法。
一般式:Ni1―x―yCo(OH)・・・(1)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、xは0<x≦0.20、yは0<y≦0.07である。)
A method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a nickel composite hydroxide represented by the following general formula (1):
An aqueous solution of a metal compound containing nickel and cobalt and at least one element selected from Al, Ti, Mn and W and an aqueous solution containing an ammonium ion supplier are supplied into a heated reaction vessel. Supplying an aqueous solution of an alkali metal hydroxide sufficient to keep the reaction solution alkaline, and obtaining a nickel composite hydroxide by neutralization crystallization;
Washing the nickel composite hydroxide with an aqueous carbonate solution having a concentration of 0.06 mol / L or more ,
The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the metal compound containing nickel and cobalt contains at least one of sulfate and chloride .
The general formula: Ni 1-x-y Co x M y (OH) 2 ··· (1)
(In the formula, M represents at least one element selected from Al, Ti, Mn, and W, x is 0 <x ≦ 0.20, and y is 0 <y ≦ 0.07.)
前記炭酸塩水溶液は、炭酸カリウム、炭酸ナトリウムから選ばれる少なくとも1種の水溶液であり、前記炭酸塩水溶液のpHが11以上であることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonate aqueous solution is at least one aqueous solution selected from potassium carbonate and sodium carbonate, and the pH of the carbonate aqueous solution is 11 or more. For producing a precursor of a positive electrode active material for use. 前記洗浄は、液温度10〜50℃の範囲で行うことを特徴とする請求項1または2に記載の非水電解質二次電池用正極活物質の前駆体の製造方法。   The said washing | cleaning is performed in the range of 10-50 degreeC of liquid temperature, The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 1 or 2 characterized by the above-mentioned. 前記洗浄後に得られる前駆体は、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることを特徴とする請求項1〜請求項3のいずれかに記載の非水電解質二次電池用正極活物質の前駆体の製造方法 The precursor obtained after washing, according to one of claims 1 to 3, wherein the sulfate ion content of 0.1 wt% or less, Na content of 0.01 mass% or less The manufacturing method of the precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries. 前記洗浄後に得られる前駆体は、塩素含有量が0.1質量%以下であることを特徴とする請求項に記載の非水電解質二次電池用正極活物質の前駆体の製造方法 The method for producing a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4 , wherein the precursor obtained after the washing has a chlorine content of 0.1% by mass or less. 下記の一般式(2)で表されるリチウムニッケル複合酸化物からなる非水電解質二次電池用正極活物質の製造方法であって、
請求項またはに記載の非水電解質二次電池用正極活物質の前駆体を酸化性雰囲気中400〜800℃で酸化焙焼してニッケル複合酸化物を得る焙焼工程と、
前記ニッケル複合酸化物とリチウム化合物を混合してリチウム混合物を得る混合工程と、
前記リチウム混合物を、酸素雰囲気中650〜850℃の範囲で焼成してリチウムニッケル複合酸化物得る焼成工程と、
を含むことを特徴とする非水電解質二次電池用正極活物質の製造方法。
一般式:LiNi1−x’−y’Cox’y’・・・(2)
(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、aは0.85≦a≦1.05、x’は0<x’≦0.20、y’は0<y’≦0.07である。)
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide represented by the following general formula (2):
A roasting step of obtaining a nickel composite oxide by oxidizing and baking the precursor of the positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 4 or 5 in an oxidizing atmosphere at 400 to 800 ° C;
A mixing step of mixing the nickel composite oxide and the lithium compound to obtain a lithium mixture;
A baking step of baking the lithium mixture in an oxygen atmosphere in a range of 650 to 850 ° C. to obtain a lithium nickel composite oxide;
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries characterized by including this.
General formula: Li a Ni 1-x′-y ′ Co x ′ M y ′ O 2 (2)
(In the formula, M represents at least one element selected from Al, Ti, Mn and W, a is 0.85 ≦ a ≦ 1.05, x ′ is 0 <x ′ ≦ 0.20, y 'Is 0 <y' ≦ 0.07.)
前記焼成工程後に、前記リチウムニッケル複合酸化物を、10〜40℃の温度で、かつ、前記リチウムニッケル複合酸化物の表面に存在するリチウム化合物のリチウム量が、全量に対して0.10質量%以下になるのに十分なスラリー濃度で、水洗処理した後、濾過、乾燥する水洗工程を含むことを特徴とする請求項に記載の非水電解質二次電池用正極活物質の製造方法。 After the firing step, the lithium nickel composite oxide is 0.10% by mass with respect to the total amount of lithium compound present at a temperature of 10 to 40 ° C. and on the surface of the lithium nickel composite oxide. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6 , further comprising a water washing step of filtering and drying after washing with water at a slurry concentration sufficient to become: 前記リチウム化合物は、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種であることを特徴とする請求項またはに記載の非水電解質二次電池用正極活物質の製造方法。 The lithium compound, a hydroxide of lithium, oxyhydroxide, oxide, carbonate, according to claim 6 or 7, characterized in that at least one selected from the group consisting of nitrates and halides A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. 前記正極活物質は、硫酸根含有量が0.1質量%以下、Na含有量が0.01質量%以下であることを特徴とする請求項6〜請求項8のいずれかに記載の非水電解質二次電池用正極活物質の製造方法
9. The non-aqueous solution according to claim 6 , wherein the positive electrode active material has a sulfate radical content of 0.1% by mass or less and an Na content of 0.01% by mass or less. A method for producing a positive electrode active material for an electrolyte secondary battery.
JP2013272929A 2013-12-27 2013-12-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same Active JP6237229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013272929A JP6237229B2 (en) 2013-12-27 2013-12-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272929A JP6237229B2 (en) 2013-12-27 2013-12-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015128004A JP2015128004A (en) 2015-07-09
JP6237229B2 true JP6237229B2 (en) 2017-11-29

Family

ID=53837930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272929A Active JP6237229B2 (en) 2013-12-27 2013-12-27 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6237229B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287970B2 (en) 2014-10-30 2018-03-07 住友金属鉱山株式会社 Nickel composite hydroxide and production method thereof
WO2016067960A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel composite hydroxide and method for preparing same
JP7124307B2 (en) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 Method for producing nickel-cobalt-aluminum composite hydroxide
JP7210957B2 (en) * 2018-09-20 2023-01-24 住友金属鉱山株式会社 Nickel composite compound particles, method for producing same, and method for producing positive electrode active material for lithium ion secondary battery
WO2020152770A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, and lithium-nickel-cobalt-aluminum composite oxide
WO2020153095A1 (en) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 Nickel-cobalt-aluminum composite hydroxide, production method for nickel-cobalt-aluminum composite hydroxide, lithium-nickel-cobalt-aluminum composite oxide, and lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974396B2 (en) * 2001-12-21 2007-09-12 Agcセイミケミカル株式会社 Method for producing positive electrode active material for lithium secondary battery
KR101556028B1 (en) * 2008-03-31 2015-09-25 도다 고교 가부시끼가이샤 Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer comprising the particulate powder of hydrotalcite type compound, and chlorinated-resin composition
JP4941617B2 (en) * 2009-12-02 2012-05-30 住友金属鉱山株式会社 Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
EP2619140B1 (en) * 2010-09-22 2016-05-11 Freeport Cobalt Oy Mixed metal oxidized hydroxide and method for production
US9630842B2 (en) * 2011-01-10 2017-04-25 Basf Se Process for preparing transition metal hydroxides

Also Published As

Publication number Publication date
JP2015128004A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP6323117B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US11742479B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
JP7001082B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP6344007B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7001081B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP5008328B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6237330B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6237229B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP7118129B2 (en) METHOD FOR PRODUCING POSITIVE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
CN111954947A (en) Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JPWO2019004148A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2020017525A (en) Precursor of positive electrode active material for nonaqueous secondary battery and method of producing the same, and positive electrode active material for nonaqueous secondary battery and method of producing the same
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150