JP7001081B2 - A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery. - Google Patents

A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery. Download PDF

Info

Publication number
JP7001081B2
JP7001081B2 JP2019119021A JP2019119021A JP7001081B2 JP 7001081 B2 JP7001081 B2 JP 7001081B2 JP 2019119021 A JP2019119021 A JP 2019119021A JP 2019119021 A JP2019119021 A JP 2019119021A JP 7001081 B2 JP7001081 B2 JP 7001081B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119021A
Other languages
Japanese (ja)
Other versions
JP2019186220A (en
Inventor
治輝 金田
正徳 高木
寛子 大下
亮三 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2019186220A publication Critical patent/JP2019186220A/en
Application granted granted Critical
Publication of JP7001081B2 publication Critical patent/JP7001081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池に関するものである。 The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the same.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及にともない、高いエネル
ギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池の負極材料には、リチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられている。これらの材料は、リチウムを脱離・挿入することが可能な材料である。
In recent years, with the spread of portable electronic devices such as mobile phones and notebook personal computers, there is a strong demand for the development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density. As such a secondary battery, there is a lithium ion secondary battery. Lithium metal, lithium alloy, metal oxide, carbon or the like is used as the negative electrode material of the lithium ion secondary battery. These materials are materials capable of desorbing and inserting lithium.

このようなリチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。この中でも、リチウム遷移金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、実用化されている。このリチウムコバルト複合酸化物(LiCoO)を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 Currently, research and development of such lithium-ion secondary batteries is being actively carried out. Among these, the lithium ion secondary battery using the lithium transition metal composite oxide, particularly the lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as the positive electrode material is high because a high voltage of 4V class can be obtained. It is expected and put into practical use as a battery with energy density. In the lithium ion secondary battery using this lithium cobalt composite oxide (LiCoO 2 ), many developments have been made to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.

しかし、リチウムコバルト複合酸化物(LiCoO)は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となっている。このため、正極活物質としてリチウムコバルト複合酸化物(LiCoO)以外のものを用いることが望まれている。 However, the lithium cobalt composite oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, which causes an increase in battery cost. Therefore, it is desired to use a material other than the lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.

また、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池としてリチウムイオン二次電池を適用することへの期待も高まってきている。このため、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果が期待しており、リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 Recently, there are increasing expectations for the application of lithium-ion secondary batteries not only as small secondary batteries for portable electronic devices but also as large secondary batteries for power storage and electric vehicles. .. Therefore, reducing the cost of the active material and making it possible to manufacture a cheaper lithium-ion secondary battery is expected to have a great ripple effect in a wide range of fields, and is expected to have a large ripple effect on the positive-sided active material for the lithium-ion secondary battery. Examples of the newly proposed materials include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNi O 2 ) using nickel. can.

リチウムマンガン複合酸化物(LiMn)は原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物(LiCoO)の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物(LiCoO)のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点もあった。 Lithium-manganese composite oxide (LiMn 2 O 4 ) is a promising alternative to lithium cobalt composite oxide (LiCoO 2 ) because it is inexpensive as a raw material and has excellent thermal stability, especially safety against ignition. However, since the theoretical capacity is only about half that of the lithium cobalt composite oxide (LiCoO 2 ), it has the disadvantage that it is difficult to meet the increasing demand for higher capacity lithium ion secondary batteries. Further, at 45 ° C. or higher, there is a drawback that self-discharge is severe and the charge / discharge life is shortened.

一方、リチウムニッケル複合酸化物(LiNiO)は、リチウムコバルト複合酸化物(LiCoO)とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣っている。また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点も有している。さらに、満充電状態で高温環境下に放置しておくと、コバルト系複合酸化物に比べて低い温度から酸素を放出するという欠点を有している。 On the other hand, the lithium nickel composite oxide (LiNiO 2 ) has almost the same theoretical capacity as the lithium cobalt composite oxide (LiCoO 2 ), and exhibits a slightly lower battery voltage than the lithium cobalt composite oxide. For this reason, decomposition due to oxidation of the electrolytic solution is less likely to be a problem, and higher capacity can be expected, so that development is being actively carried out. However, when a lithium ion secondary battery is manufactured using a lithium nickel composite oxide composed purely of nickel without replacing nickel with another element as a positive electrode active material, the cycle is higher than that of the lithium cobalt composite oxide. The characteristics are inferior. It also has the disadvantage that the battery performance is relatively easily impaired when used or stored in a high temperature environment. Further, if it is left in a high temperature environment in a fully charged state, it has a drawback that oxygen is released from a lower temperature than that of a cobalt-based composite oxide.

このような欠点を解決するために、リチウムニッケル複合酸化物にニッケルよりも高価数の元素であるニオブを添加することが検討されてきた。例えば、特許文献1では、リチウムイオン二次電池の内部短絡時の熱安定性を改良することを目的として、LiNi1-x-y-zCoNb(ただし、MはMn、FeおよびAlよりからなる1種以上の元素、1.0≦a≦1.1、0.1≦x≦0.3、0≦y≦0.1、0.01≦z≦0.05、2≦b≦2.2)で示されるリチウムとニッケルとコバルトと元素Mとニオブと酸素からなる少なくとも二種類以上の化合物で構成される組成を有する粒子からなり、該粒子が略球形状であってその表面近傍または内部に上記組成よりもニオブ濃度の高い少なくとも一種類以上の化合物を含有する略球殻層を有し、初回放電時に正極電位が2Vから1.5Vの範囲内でα[mAh/g]の放電容量を示し、そのX線回折における層状結晶構造の(003)面の半値幅をβ[deg]としたとき、αおよびβがそれぞれ80≦α≦150および0.15≦β≦0.20の条件を同時に満たす非水系二次電池用正極活物質が提案されている。 In order to solve these drawbacks, it has been considered to add niobium, which is an element more expensive than nickel, to the lithium nickel composite oxide. For example, in Patent Document 1, for the purpose of improving the thermal stability of a lithium ion secondary battery at the time of internal short circuit, Li a Ni 1-x-y-z Co x My Nb z Ob (however, M). Is one or more elements composed of Mn, Fe and Al, 1.0 ≦ a ≦ 1.1, 0.1 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0 It is composed of particles having a composition composed of at least two kinds of compounds composed of lithium, nickel, cobalt, element M, niobium and oxygen represented by 0.05, 2 ≦ b ≦ 2.2), and the particles are substantially spheres. It has a substantially spherical shell layer having a shape and containing at least one kind of compound having a niobium concentration higher than the above composition in the vicinity of or inside the surface thereof, and the positive potential is within the range of 2 V to 1.5 V at the time of initial discharge. When the discharge capacity of α [mAh / g] is shown and the half-value width of the (003) plane of the layered crystal structure in the X-ray diffraction is β [deg], α and β are 80 ≦ α ≦ 150 and 0, respectively. A positive electrode active material for a non-aqueous secondary battery that simultaneously satisfies the condition of 15 ≦ β ≦ 0.20 has been proposed.

また、特許文献2では、熱安定性を向上させ、かつ充放電容量を高めることを目的として、Li1+zNi1-x-yCoNb(0.10≦x≦0.21、0.01≦y≦0.08、-0.05≦z≦0.10)で表され、エネルギー分散法による測定において、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの標準偏差が強度比INb/INiの平均値の1/2以内である非水系電解質二次電池用正極活物質が提案されている。 Further, in Patent Document 2, for the purpose of improving the thermal stability and increasing the charge / discharge capacity, Li 1 + z Ni 1-xy Co x Nby O 2 (0.10 ≦ x ≦ 0.21, 0.01 ≤ y ≤ 0.08, -0.05 ≤ z ≤ 0.10), and the peak intensity of the L line of Nb is the peak intensity of the L line of Nb and Ni in the measurement by the energy dispersion method. A positive electrode active material for a non-aqueous electrolyte secondary battery has been proposed in which the standard deviation of the intensity ratio I Nb / I Ni when I Ni is within 1/2 of the average value of the intensity ratio In Nb / I Ni . ..

さらに、特許文献3では、大容量を有し、かつ充電時の熱安定性を向上させることを目的として、組成式LiNiMnCoM1M2(ただし、M1は、Al、Ti及びMgからなる群から選択される少なくとも一種類以上の元素であり、M2は、Mo、W及びNbからなる群から選択される少なくとも一種類以上の元素であり、0.2≦x≦1.2、0.6≦a≦0.8、0.05≦b≦0.3、0.05≦c≦0.3、0.02≦d≦0.04、0.02≦e≦0.06、a+b+c+d+e=1.0である。)で表される正極活物質が提案されている。 Further, in Patent Document 3, for the purpose of having a large capacity and improving the thermal stability during charging, the composition formula Li x Ni a Mn b Co c M1 d M2 e O 2 (however, M1 is At least one element selected from the group consisting of Al, Ti and Mg, M2 is at least one element selected from the group consisting of Mo, W and Nb, 0.2 ≦ x. ≤1.2, 0.6≤a≤0.8, 0.05≤b≤0.3, 0.05≤c≤0.3, 0.02≤d≤0.04, 0.02≤e ≤0.06, a + b + c + d + e = 1.0), and a positive electrode active material has been proposed.

一方、特許文献4では、充放電容量と安全性を両立させ、サイクル特性の劣化を抑制するため、LiNi(1-y-z-a)CoMn(MはFe、V、Cr、Ti、Mg、Al、Ca、Nb及びZrからなる群より選ばれた少なくとも1種類の元素を示し、x、y、及びzは各々1.0≦x≦1.10、0.4≦y+z≦0.7、0.2≦z≦0.5、0≦a≦0.02である)で示されるリチウム複合酸化物の表面にAなる物質(AはTi、Sn、Mg、Zr、Al、Nb及びZnからなる群より選ばれた少なくとも1種類の元素からなる化合物)がコーティングされた構造を有する非水電解液二次電池用正極活物質が提案されている。 On the other hand, in Patent Document 4, in order to achieve both charge / discharge capacity and safety and suppress deterioration of cycle characteristics, Li x Ni (1-y-z-a) Coy Mn z M a O 2 (M is Fe). , V, Cr, Ti, Mg, Al, Ca, Nb and Zr represent at least one element selected from the group, x, y and z are 1.0 ≦ x ≦ 1.10 and 0, respectively. A substance (A is Ti, Sn, Mg) on the surface of the lithium composite oxide represented by (4 ≦ y + z ≦ 0.7, 0.2 ≦ z ≦ 0.5, 0 ≦ a ≦ 0.02). , Zr, Al, Nb and Zn) have been coated with a compound composed of at least one element selected from the group), and a positive electrode active material for a non-aqueous electrolytic solution secondary battery has been proposed.

特許文献5では、熱安定性に優れ、かつ高い充放電容量を得るために、Li1+zNi1-x-yCo(式中x、y、zは0.10≦x≦0.21、0.015≦y≦0.08、-0.05≦z≦0.10の要件を満たし、Mは、酸素との親和性がニッケルより優れたAl、Mn、Nb又はMoから選ばれる少なくとも2種の元素からなり、かつ平均価数が3を超える)で示される2種類のMが含浸あるいは付着している非水系電解質用二次電池用正極活物質が提案されている。
上記特許文献1~5に開示される提案は、いずれも熱安定性と充放電容量の両立を目的としたものであるが、ニオブの添加量が少ないと充放電容量は大きいものの、十分な熱安定性が得られず、ニオブの添加量が多いと熱安定性は良好であるものの、充放電容量を確保できないという問題があった。また、優れたサイクル特性を確保することが難しいという問題もあった。
In Patent Document 5, in order to obtain excellent thermal stability and high charge / discharge capacity, Li 1 + z Ni 1-xy Co x My O 2 (x, y, z in the formula is 0.10 ≦ x ≦). Satisfying the requirements of 0.21, 0.015 ≤ y ≤ 0.08, -0.05 ≤ z ≤ 0.10, M is from Al, Mn, Nb or Mo, which has better affinity for oxygen than nickel. A positive electrode active material for a secondary battery for a non-aqueous electrolyte, which is composed of at least two selected elements and is impregnated or adhered with two types of M represented by (with an average valence of more than 3), has been proposed.
The proposals disclosed in Patent Documents 1 to 5 are all aimed at achieving both thermal stability and charge / discharge capacity, but when the amount of niobium added is small, the charge / discharge capacity is large, but sufficient heat is obtained. Stability could not be obtained, and if the amount of niobium added was large, the thermal stability was good, but there was a problem that the charge / discharge capacity could not be secured. There is also a problem that it is difficult to secure excellent cycle characteristics.

近では携帯電子機器等の小型二次電池に対する高容量化の要求は年々高まる一方であり、安全性を確保するために容量を犠牲にすることは、リチウムニッケル複合酸化物の高容量のメリットを失うことになる。また、リチウムイオン二次電池を大型二次電池に用いる動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源、あるいは電力貯蔵用の定置式蓄電池としての期待が大きい。さらに、これらの電池では、高寿命化についても要求されており、優れたサイクル特性を有することが重要である。このような用途に
おいて、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消や安全性と高容量化・高寿命化の両立は大きな課題である。
Recently, the demand for higher capacity for small secondary batteries such as portable electronic devices has been increasing year by year, and sacrificing capacity to ensure safety has the advantage of high capacity of lithium nickel composite oxide. You will lose. In addition, there is a growing movement to use lithium-ion secondary batteries for large secondary batteries, and there are high expectations for them as power sources for hybrid vehicles and electric vehicles, or stationary storage batteries for power storage. Further, these batteries are also required to have a long life, and it is important to have excellent cycle characteristics. In such applications, solving the problem of lithium-nickel composite oxide, which is inferior in safety, and achieving both safety and high capacity and long life are major issues.

特開2002-151071号公報Japanese Unexamined Patent Publication No. 2002-151071 特開2006-147500号公報Japanese Unexamined Patent Publication No. 2006-147500 特開2012-014887号公報Japanese Unexamined Patent Publication No. 2012-014887 特開2008-153017号公報Japanese Unexamined Patent Publication No. 2008-153017 特開2008-181839号公報Japanese Unexamined Patent Publication No. 2008-181839

本発明は、上記問題点に鑑み、熱安定性と充放電容量およびサイクル特性を高次元で両立させることが可能な非水電解液二次電池用正極活物質と、該正極活物質を用いた安全性に優れ、かつ高容量で優れたサイクル特性を有する非水電解液二次電池を提供することを目的とする。
さらに、本発明では、上記非水電解液二次電池用正極活物質の工業的な製造方法を提供することを目的とする。
In view of the above problems, the present invention uses a positive electrode active material for a non-aqueous electrolytic solution secondary battery capable of achieving both thermal stability, charge / discharge capacity, and cycle characteristics at a high level, and the positive electrode active material. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having excellent safety, high capacity and excellent cycle characteristics.
Furthermore, it is an object of the present invention to provide an industrial method for producing a positive electrode active material for a non-aqueous electrolytic solution secondary battery.

本発明者らは、熱安定性を改善するためリチウム金属複合酸化物へのニオブの添加について鋭意検討したところ、所定の粒径にしたニオブ化合物をリチウム化合物、ニッケル含有水酸化物と混合し、焼成することで製造される非水系電解質二次電池用正極活物質は、ニオブを均一に添加することができ、熱安定性が良好で、かつ高い充放電容量をもつ正極活物質となるとの知見を得て、本発明を完成するに至った。 The present inventors diligently studied the addition of niobium to the lithium metal composite oxide in order to improve the thermal stability, and found that the niobium compound having a predetermined particle size was mixed with the lithium compound and the nickel-containing hydroxide. It was found that the positive electrode active material for non-aqueous electrolyte secondary batteries produced by firing can be a positive electrode active material that can uniformly add niobium, has good thermal stability, and has a high charge / discharge capacity. This led to the completion of the present invention.

すなわち、本発明に係る非水系電解質二次電池用正極活物質の製造方法は、一般式LiNi1-a-b-cCoaNb(但し、MはMn、V、Ti及びAlから選ばれる少なくとも1種の元素であり、0.03≦a≦0.35、0≦b≦0.10、0.001≦c≦0.05、0.95≦d≦1.20である。)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、少なくともニッケルとコバルトを含む混合水溶液にアルカリ水溶液を加えて晶析させ、一般式Ni1-a’-b’Coa’b’(OH)(但し、MはMn、V、Mg、Ti及びAlから選ばれる少なくとも1種の元素であり、0.03≦a’≦0.35、0≦b’≦0.10である。)で表されるニッケル含有水酸化物を得る晶析工程、得られたニッケル含有水酸化物とリチウム化合物と平均粒径が0.1~10μmのニオブ化合物とを混合してリチウム混合物を得る混合工程および該リチウム混合物を酸化雰囲気中700~840℃で焼成してリチウム遷移金属複合酸化物を得る焼成工程を含むことを特徴とする。
上記ニオブ化合物はニオブ酸または酸化ニオブが好ましい。
That is, the method for producing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is the general formula Lid Ni 1-abc Co a M b Nb c O 2 (where M is Mn, V, At least one element selected from Ti and Al, 0.03 ≦ a ≦ 0.35, 0 ≦ b ≦ 0.10, 0.001 ≦ c ≦ 0.05, 0.95 ≦ d ≦ 1. 20), which is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is composed of a lithium transition metal composite oxide composed of particles having a polycrystalline structure, and is a mixture containing at least nickel and cobalt. An alkaline aqueous solution is added to the aqueous solution to crystallize it, and the general formula Ni 1-a'-b'Co a'M b' ( OH) 2 (where M is at least 1 selected from Mn, V, Mg, Ti and Al. A crystallization step for obtaining a nickel-containing hydroxide represented by 0.03 ≤ a'≤ 0.35, 0 ≤ b'≤ 0.10, which is a seed element, and the obtained nickel-containing water. A mixing step of mixing an oxide, a lithium compound, and a niobium compound having an average particle size of 0.1 to 10 μm to obtain a lithium mixture, and firing the lithium mixture at 700 to 840 ° C. in an oxidizing atmosphere to oxidize a lithium transition metal composite. It is characterized by including a firing step of obtaining an object.
The niobium compound is preferably niobate acid or niobium oxide.

また、上記製造工程においては、混合工程の前に、105~800℃の温度でニッケル含有水酸化物を熱処理する熱処理工程を含むことが好ましい。また、上記焼成工程後に、リチウム遷移金属複合酸化物を、水1Lに対して100~2000g/Lの割合でスラリーとし、水洗する水洗工程を含むことが好ましい。また、上記リチウム遷移金属複合酸化物は、比表面積が0.9~3.0m/gであることが好ましい。また、リチウム遷移金属複合酸化物は、結晶子径が10~180nmであることが好ましい。 Further, it is preferable that the manufacturing step includes a heat treatment step of heat-treating the nickel-containing hydroxide at a temperature of 105 to 800 ° C. before the mixing step. Further, after the firing step, it is preferable to include a water washing step in which the lithium transition metal composite oxide is made into a slurry at a ratio of 100 to 2000 g / L with respect to 1 L of water and washed with water. Further, the lithium transition metal composite oxide preferably has a specific surface area of 0.9 to 3.0 m 2 / g. Further, the lithium transition metal composite oxide preferably has a crystallite diameter of 10 to 180 nm.

また、上記リチウム遷移金属複合酸化物は、ニオブが固溶し、リチウム以外のアルカリ金属含有量が20質量ppm以下であることが好ましい。 Further, it is preferable that the lithium transition metal composite oxide has niobium dissolved in it and has an alkali metal content other than lithium of 20% by mass or less.

本発明の非水系電解質二次電池の製造方法は、上記非水系電解質二次電池用正極活物質の製造方法で製造された非水系電解質二次電池用正極活物質を用いて正極を得ることと、前記正極、負極、及び、非水系電解質を用いて非水系電解質二次電池を得ることと、を備える。 The method for producing a non-aqueous electrolyte secondary battery of the present invention is to obtain a positive electrode by using the positive electrode active material for a non-aqueous electrolyte secondary battery produced by the above method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. , The positive electrode, the negative electrode, and the non-aqueous electrolyte secondary battery are obtained by using the non-aqueous electrolyte.

上記本発明の非水系電解質二次電池用正極活物質は、高い熱安定性と充放電容量および優れたサイクル特性の実現を可能とするものであり、該活物質を用いることによって、高い安全性と電池容量および優れたサイクル特性を有する非水系電解質二次電池を得ることができる。したがって、本発明による非水系電解質二次電池は、最近の携帯電子機器等の小型二次電池に対する高容量化・高寿命化の要求を満足するとともに、ハイブリッド自動車用、電気自動車用あるいは定置型蓄電池用の大型二次電池に用いられる電源用として好適である。
さらに、上記非水系電解質二次電池用正極活物質の製造方法は、容易で工業的規模での生産に適したものであり、工業上極めて有用である。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention enables high thermal stability, charge / discharge capacity, and excellent cycle characteristics, and by using the active material, high safety is achieved. And a non-aqueous electrolyte secondary battery with battery capacity and excellent cycle characteristics can be obtained. Therefore, the non-aqueous electrolyte secondary battery according to the present invention satisfies the recent demands for high capacity and long life for small secondary batteries such as portable electronic devices, and is a storage battery for hybrid vehicles, electric vehicles, or stationary storage batteries. It is suitable as a power source used for a large secondary battery for electric vehicles.
Further, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is easy and suitable for production on an industrial scale, and is extremely useful industrially.

電池評価に用いたコイン電池の断面図Cross-sectional view of the coin battery used for battery evaluation

1.非水系電解質二次電池用正極活物質の製造方法
本発明のリチウム遷移金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法は、(A)少なくともニッケルとコバルトを含む混合水溶液にアルカリ水溶液を加えて晶析させ、特定の一般式で表されるニッケル含有水酸化物を得る晶析工程、(B)ニオブ化合物とニッケル含有水酸化物とリチウム化合物と混合してリチウム混合物を得る混合工程、(C)該リチウム混合物を酸化雰囲気中700~840℃で焼成する焼成工程を含むものである。以下、工程ごとに詳細な説明をする。
1. 1. Method for Producing Positive Active Material for Non-Aqueous Electrolyte Secondary Battery The method for producing positive electrode active material for non-aqueous electrolyte secondary battery, which is composed of the lithium transition metal composite oxide of the present invention, is (A) a mixed aqueous solution containing at least nickel and cobalt. A crystallization step of adding an alkaline aqueous solution to the mixture to obtain a nickel-containing hydroxide represented by a specific general formula, (B) mixing a niobium compound, a nickel-containing hydroxide and a lithium compound to prepare a lithium mixture. It includes a mixing step of obtaining, and (C) a firing step of firing the lithium mixture at 700 to 840 ° C. in an oxidizing atmosphere. Hereinafter, each process will be described in detail.

(A)晶析工程
晶析工程は、一般式Ni1-a’-b’Coa’b’(OH)(但し、MはMn、V、Mg、Ti及びAlから選ばれる少なくとも1種の添加元素であり、0.03≦a’≦0.35、0≦b’≦0.10である。)で表され、一次粒子から構成された二次粒子からなるニッケル含有水酸化物を得るものである。
(A) Crystallization step The crystallization step is a general formula Ni 1-a'-b'Co a'M b' ( OH) 2 (where M is at least 1 selected from Mn, V, Mg, Ti and Al. It is an additive element of the seed, and is represented by 0.03 ≤ a'≤ 0.35, 0 ≤ b'≤ 0.10), and is a nickel-containing hydroxide composed of secondary particles composed of primary particles. To get.

コバルトの含有量を示すa’は、0.03≦a’≦0.35であり、0.05≦a’≦0.35であることが好ましく、0.07≦a’≦0.20であることがより好ましく、0.10≦a’≦0.20であることがさらに好ましい。
また、優れたサイクル特性を発現させるためには、Ni、Coだけでなく、Mが必ず含まれる範囲である0<b’≦0.10であることが好ましく、0.01≦b’≦0.07であることがより好ましい。
The a'indicating the cobalt content is 0.03 ≤ a'≤ 0.35, preferably 0.05 ≤ a'≤ 0.35, and 0.07 ≤ a'≤ 0.20. It is more preferable that there is, and it is further preferable that 0.10 ≦ a ′ ≦ 0.20.
Further, in order to exhibit excellent cycle characteristics, it is preferable that 0 <b'≤ 0.10, which is a range in which not only Ni and Co but also M are always included, and 0.01 ≤ b'≤ 0. It is more preferably .07.

ニッケル含有水酸化物を得る方法としては、下記製造方法によることが好ましい。
例えば、反応槽内の少なくともニッケルとコバルトを含む混合水溶液に、アルカリ溶液を加えて反応水溶液とし、一定速度にて撹拌して反応水溶液のpHを制御することにより
、反応槽内に上記一般式の原子比となるように水酸化物を共沈殿させ晶析させる。ここで、混合水溶液は、硫酸塩溶液、硝酸塩溶液、塩化物溶液を用いることができる。また、アルカリ溶液は、例えば、水酸化ナトリウム、水酸化カリウムなどを用いることができる。
As a method for obtaining a nickel-containing hydroxide, the following production method is preferable.
For example, an alkaline solution is added to a mixed aqueous solution containing at least nickel and cobalt in the reaction vessel to prepare a reaction aqueous solution, and the pH of the reaction aqueous solution is controlled by stirring at a constant rate to control the pH of the reaction aqueous solution. The hydroxide is co-precipitated and crystallized so as to have an atomic ratio. Here, as the mixed aqueous solution, a sulfate solution, a nitrate solution, or a chloride solution can be used. Further, as the alkaline solution, for example, sodium hydroxide, potassium hydroxide and the like can be used.

上記共沈殿におけるpH領域は、錯化剤無しの場合、pH=10~11を選択し、かつ混合水溶液の温度を、60℃を越えて80℃以下の範囲とする。錯化剤無しの場合、11を超えたpHで晶析すると細かい粒子となり、濾過性も悪くなり、球状粒子が得られない。また、pHが10よりも小さいと水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の混合水酸化物が得られなくなってしまう。そのため、pH=10~11とし、かつ混合水溶液の温度を60℃を越えて保つことによって、Niの沈殿量が目的組成からずれ、共沈にならない現象を、反応温度を上げ、Niの溶解度を上げることで回避している。この時、混合水溶液の温度が80℃を越えると、水の蒸発量が多いためにスラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等、正極材の充放電容量が低下する問題が出てきて好ましくない。 For the pH range in the co-precipitation, when no complexing agent is used, pH = 10 to 11 is selected, and the temperature of the mixed aqueous solution is in the range of more than 60 ° C and 80 ° C or less. In the case of no complexing agent, when crystallized at a pH exceeding 11, fine particles are formed, the filterability is deteriorated, and spherical particles cannot be obtained. Further, when the pH is smaller than 10, the rate of hydroxylation formation becomes significantly slow, Ni remains in the filtrate, the amount of Ni precipitate deviates from the target composition, and the desired ratio of mixed hydroxide cannot be obtained. It ends up. Therefore, by setting the pH to 10 to 11 and keeping the temperature of the mixed aqueous solution above 60 ° C., the phenomenon that the amount of Ni precipitation deviates from the target composition and does not coprecipitate is caused by raising the reaction temperature and increasing the solubility of Ni. It is avoided by raising it. At this time, if the temperature of the mixed aqueous solution exceeds 80 ° C., the slurry concentration becomes high due to the large amount of water evaporation, the solubility of Ni decreases, and crystals such as sodium sulfate are generated in the filtrate, resulting in an impurity concentration. It is not preferable because there is a problem that the charge / discharge capacity of the positive electrode material is lowered, such as an increase in the amount of water.

一方、アンモニアなどのアンモニウムイオン供給体を錯化剤として反応水溶液に加えて使用する場合、Niの溶解度が上昇するため、pH領域はpH10~12.5まで、温度領域も50℃~80℃まで広げることができる。反応槽内において、反応水溶液中のアンモニア濃度は、以下の問題を生じさせないために、好ましくは3~25g/Lの範囲内で一定値に保持する。まず、アンモニアは錯化剤として作用し、アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができないため、形状及び粒径が整った板状の水酸化物一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすい。一方、アンモニア濃度が25g/Lを越える濃度では、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれなどが起きる。また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な水酸化物粒子が形成されないため、一定値に保持することが好ましい。例えば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。なお、アンモニウムイオン供給体はとくに限定されないが、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。 On the other hand, when an ammonium ion feeder such as ammonia is used as a complexing agent in addition to the reaction aqueous solution, the solubility of Ni increases, so that the pH range is pH 10 to 12.5 and the temperature range is 50 ° C to 80 ° C. Can be expanded. In the reaction vessel, the ammonia concentration in the reaction aqueous solution is preferably kept constant within the range of 3 to 25 g / L in order not to cause the following problems. First, ammonia acts as a complexing agent, and if the ammonia concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, so plate-shaped hydroxide primary with a uniform shape and particle size. Since particles are not formed and gel-like nuclei are likely to be formed, the particle size distribution is likely to spread. On the other hand, when the ammonia concentration exceeds 25 g / L, the solubility of the metal ions becomes too large, the amount of the metal ions remaining in the reaction aqueous solution increases, and the composition shifts. Further, when the ammonia concentration fluctuates, the solubility of the metal ion fluctuates and uniform hydroxide particles are not formed. Therefore, it is preferable to keep the value constant. For example, the ammonia concentration is preferably maintained at a desired concentration with the upper and lower limits set to about 5 g / L. The ammonium ion feeder is not particularly limited, but for example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be used.

そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケル含有水酸化物を得る。あるいは、混合水溶液とアルカリ溶液、場合によってはアンモニウムイオン供給体を含む水溶液を連続的に供給して反応槽からオーバーフローさせて沈殿物を採取し、濾過、水洗してニッケル含有水酸化物を得ることもできる。 Then, after the steady state is reached, the precipitate is collected, filtered and washed with water to obtain a nickel-containing hydroxide. Alternatively, a mixed aqueous solution and an alkaline solution, and in some cases, an aqueous solution containing an ammonium ion feeder are continuously supplied and overflowed from the reaction vessel to collect a precipitate, which is then filtered and washed with water to obtain a nickel-containing hydroxide. You can also.

晶析後のニッケル含有水酸化物は、不純物、特にナトリウムなどのアルカリ金属の残留量を低減するため、十分に水洗しておくことが好ましい。 The nickel-containing hydroxide after crystallization is preferably washed thoroughly with water in order to reduce the residual amount of impurities, particularly alkali metals such as sodium.

前記ニッケル含有水酸化物に、M=Mn、V,Mg、Ti及びAlから選ばれる少なくとも1種の添加元素(以下、「添加元素M」ともいう。)を配合する方法としては、特に限定されず、従来公知の方法を用いることができるが、晶析工程の生産性を高める観点から、上記ニッケルとコバルトを含む混合水溶液に添加元素Mを含む水溶液を添加し、ニッケル含有水酸化物(添加元素Mを含む)を共沈させる方法が好ましい。
添加元素Mを含む水溶液としては、たとえば、硫酸アルミニウム、アルミン酸ナトリウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸マンガン、硫酸マグネシウム、塩化マグネシウム、硫酸バナジウム、バナジン酸アンモニウムなどを用いることができる。
金属元素Mは、Mn、V,Mg、Ti及びAlの中から選択される少なくとも1種の元
素であり、熱安定性や保存特性改善及び電池特性等を改善するために任意に添加することができる。
The method for blending at least one additive element selected from M = Mn, V, Mg, Ti and Al (hereinafter, also referred to as “additive element M”) with the nickel-containing hydroxide is particularly limited. Instead, a conventionally known method can be used, but from the viewpoint of increasing the productivity of the crystallization step, an aqueous solution containing the additive element M is added to the above-mentioned mixed aqueous solution containing nickel and cobalt, and a nickel-containing hydroxide (addition) is added. A method of co-precipitating (including element M) is preferable.
As the aqueous solution containing the additive element M, for example, aluminum sulfate, sodium aluminate, titanium sulfate, ammonium peroxotitanium, titanium potassium oxalate, manganese sulfate, magnesium sulfate, magnesium chloride, vanadium sulfate, ammonium vanadate and the like are used. Can be done.
The metal element M is at least one element selected from Mn, V, Mg, Ti and Al, and may be arbitrarily added in order to improve thermal stability, storage characteristics, battery characteristics and the like. can.

また、晶析条件を最適化して組成比の制御を容易にするため、少なくともニッケルとコバルトを含む混合水溶液に、アルカリ水溶液を加えて晶析させた後、Mを被覆する被覆工程を設けてもよい。
被覆方法としては、特に限定されず、従来公知の方法を用いることができるが、例えば、1)ニッケル及びコバルトを含む混合水溶液(ただし、添加元素Mを除く)にアルカリ水溶液を加えて晶析させたニッケル含有水酸化物に、添加元素Mを被覆する方法、または、2)ニッケル、コバルト及び添加元素Mの一部を含む混合水溶液を作製し、ニッケル含有水酸化物(添加元素Mを含む)を共沈させ、さらに共沈物に添加元素Mを被覆してMの含有量を調整する方法が挙げられる。
Further, in order to optimize the crystallization conditions and facilitate the control of the composition ratio, a coating step of coating M after adding an alkaline aqueous solution to a mixed aqueous solution containing at least nickel and cobalt may be provided. good.
The coating method is not particularly limited, and conventionally known methods can be used. For example, 1) an alkaline aqueous solution is added to a mixed aqueous solution containing nickel and cobalt (however, the additive element M is excluded) to crystallize the mixture. A method of coating the nickel-containing hydroxide with the additive element M, or 2) a mixed aqueous solution containing nickel, cobalt and a part of the additive element M is prepared, and the nickel-containing hydroxide (including the additive element M) is prepared. Then, the co-precipitate is coated with the additive element M to adjust the content of M.

(A)’熱処理工程
混合工程は、ニオブ化合物とニッケル含有水酸化物とリチウム化合物と混合してリチウム混合物を得る工程であるが、本発明の製造方法においては、リチウム化合物と混合する前に、例えば、上記ニッケル含有水酸化物を熱処理する熱処理工程を備えることができ、熱処理されたニッケル含有水酸化物をリチウム化合物と混合してもよい。また、この工程で元素Mを含む化合物を加えても良い。
(A)'Heat treatment step The mixing step is a step of mixing a niobium compound, a nickel-containing hydroxide and a lithium compound to obtain a lithium mixture, but in the production method of the present invention, before mixing with the lithium compound, For example, a heat treatment step for heat-treating the nickel-containing hydroxide can be provided, and the heat-treated nickel-containing hydroxide may be mixed with the lithium compound. Further, a compound containing the element M may be added in this step.

熱処理工程により、ニッケル含有水酸化物に含有されている水分を除去して、ニッケル含有水酸化物中に焼成工程まで残留している水分を減少させることができる。ニッケル含有水酸化物中に残留している水分を十分に除去することにより、製造される正極活物質中のリチウム以外の金属の原子数(Me)とリチウム(Li)の原子数の比(Li/Me)がばらつくことを防ぐことができる。なお、正極活物質のLi/Meにばらつきが生じない程度に水分が除去できればよいので、必ずしも全ての複合水酸化物を複合酸化物に転換する必要はない。しかしながら、Li/Meのばらつきをさらに低減させるためには、ニッケル含有水酸化物中の複合水酸化物を複合酸化物まで転換することが好ましい。熱処理工程においては、ニッケル含有水酸化物中の残留水分が除去される温度まで加熱されればよく、105~800℃とすることが好ましい。例えば、複合水酸化物を105℃以上に加熱すれば残留水分を除去することができる。なお、105℃未満では、残留水分を除去するために長時間を要するため工業的に適当でない。800℃を超えると、複合酸化物に転換された粒子が焼結して凝集することがある。複合水酸化物を複合酸化物まで転換する場合は、350~800℃の温度で加熱することが好ましい。 By the heat treatment step, the water content contained in the nickel-containing hydroxide can be removed, and the water content remaining in the nickel-containing hydroxide until the firing step can be reduced. The ratio of the number of atoms (Me) of metals other than lithium to the number of atoms of lithium (Li) (Li) in the positive electrode active material produced by sufficiently removing the water remaining in the nickel-containing hydroxide. / Me) can be prevented from fluctuating. It should be noted that it is not always necessary to convert all the composite hydroxides into composite oxides as long as the water can be removed to the extent that the Li / Me of the positive electrode active material does not vary. However, in order to further reduce the variation in Li / Me, it is preferable to convert the composite hydroxide in the nickel-containing hydroxide to the composite oxide. In the heat treatment step, the temperature may be such that residual water in the nickel-containing hydroxide is removed, and the temperature is preferably 105 to 800 ° C. For example, residual water can be removed by heating the composite hydroxide to 105 ° C. or higher. If the temperature is lower than 105 ° C, it takes a long time to remove the residual water, which is not industrially suitable. If the temperature exceeds 800 ° C., the particles converted into the composite oxide may be sintered and aggregated. When converting the composite hydroxide to the composite oxide, it is preferable to heat it at a temperature of 350 to 800 ° C.

熱処理を行う雰囲気は特に制限されるものではなく、簡易的に行える空気気流中において行うことが好ましい。また、熱処理時間はとくに制限されないが、1時間未満では複合水酸化物中の残留水分の除去が十分に行われない場合があるので、少なくとも1時間以上が好ましく、5~15時間がより好ましい。そして、熱処理に用いられる設備は特に限定されるものではなく、複合水酸化物を空気気流中で加熱できるものであれば良く、送風乾燥器、ガス発生がない電気炉が好適に使用できる。 The atmosphere in which the heat treatment is performed is not particularly limited, and it is preferable to perform the heat treatment in an air stream that can be easily performed. The heat treatment time is not particularly limited, but if it is less than 1 hour, the residual water in the composite hydroxide may not be sufficiently removed. Therefore, it is preferably at least 1 hour or more, and more preferably 5 to 15 hours. The equipment used for the heat treatment is not particularly limited as long as it can heat the composite hydroxide in an air stream, and a blower dryer and an electric furnace that does not generate gas can be preferably used.

(B)混合工程
混合工程においては、晶析工程で得られたニッケル含有水酸化物、または熱処理したニッケル含有水酸化物とリチウム化合物とニオブ化合物とを混合する。
従来、Nbを活物質に配合する場合、一般的には、上記ニッケル含有水酸化物にニオブを湿式の共沈・コートやスプレードライ等のコート方法により添加し、その後、リチウム化合物と焼成する方法が用いられてきた。しかし、湿式の共沈・コートやスプレードライ等のコート方法では、Nbを溶解させる溶液(例えばKOH溶液、シュウ酸溶液など)由来の不純物やコート時にpH調製する溶液(例えば、硫酸や塩酸、硝酸など)由来の不純
物がコートされたNbとともに残留してしまう。特に、溶液中に含まれるカリウムあるいはナトリウムなどのアルカリ金属は、電池容量やサイクル特性に悪影響を及ぼすため、十分に低減する必要がある。
(B) Mixing Step In the mixing step, the nickel-containing hydroxide obtained in the crystallization step or the heat-treated nickel-containing hydroxide is mixed with the lithium compound and the niobium compound.
Conventionally, when Nb is blended with an active material, generally, niobium is added to the nickel-containing hydroxide by a wet coprecipitation / coating method such as coating or spray drying, and then fired with a lithium compound. Has been used. However, in the coating method such as wet co-precipitation / coating or spray drying, impurities derived from the solution that dissolves Nb (for example, KOH solution, oxalic acid solution, etc.) and the solution that adjusts the pH at the time of coating (for example, sulfuric acid, hydrochloric acid, nitrate) Etc.) Derived impurities will remain together with the coated Nb. In particular, alkali metals such as potassium and sodium contained in the solution adversely affect the battery capacity and cycle characteristics, and therefore need to be sufficiently reduced.

本発明では、ニッケル含有水酸化物とリチウム化合物とを混合する混合工程において、ニオブ化合物を混合し、固相添加することを特徴とする。Nbの固相添加は、湿式工程でのNbを共沈・コートする方法と比較して、薬液などを必要としない負荷の低い、生産性に優れた工程である。また、湿式工程においてNbを共沈・コートする際には、pHの制御が必要であり、場合によっては狙いの形態や量のNbを添加できないことがあり、品質の安定という観点からも利点がある。また、Nbの固相添加であれば、添加するNb化合物にもよるが、リチウム遷移金属複合酸化物中に巻き込まれるリチウム以外のアルカリ金属(以下、単にアルカリ金属という。)、特にカリウムやナトリウムなどの不純物量を低減することができる。 The present invention is characterized in that, in the mixing step of mixing the nickel-containing hydroxide and the lithium compound, the niobium compound is mixed and solid-phase added. The solid phase addition of Nb is a process having a low load and excellent productivity, which does not require a chemical solution or the like, as compared with the method of coprecipitating and coating Nb in a wet process. In addition, when coprecipitating and coating Nb in the wet process, it is necessary to control the pH, and in some cases it may not be possible to add the desired form and amount of Nb, which is an advantage from the viewpoint of quality stability. be. Further, if Nb is added in a solid phase, an alkali metal other than lithium (hereinafter, simply referred to as an alkali metal) entrapped in the lithium transition metal composite oxide, particularly potassium or sodium, etc., depends on the Nb compound to be added. The amount of impurities can be reduced.

混合工程において、ニッケル含有水酸化物とリチウム化合物とニオブ化合物とは、リチウム混合物中の上記Li/Meが、0.95~1.20となるように、混合される。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるからである。 In the mixing step, the nickel-containing hydroxide, the lithium compound, and the niobium compound are mixed so that the Li / Me in the lithium mixture is 0.95 to 1.20. That is, the Li / Me in the lithium mixture is mixed so as to be the same as the Li / Me in the positive electrode active material of the present invention. This is because Li / Me does not change before and after the firing step, so that the Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material.

一方、後述のように焼成後に水洗を行う場合には、水洗によりLi/Meが減少する。したがって、水洗を行う場合には、Li/Meの減少分を見越してニッケル含有水酸化物とリチウム化合物とを混合することが好ましい。Li/Meの減少分は、焼成条件や水洗条件により変動するが、0.05~0.1程度であり、予備試験として少量の正極活物質を製造することにより減少分を確認することができる。リチウム化合物は特に限定されるものではないが、例えば、水酸化リチウム、硝酸リチウムまたは炭酸リチウム、もしくはその混合物は入手が容易であるという点で好ましい。とくに、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムを用いることがより好ましい。 On the other hand, when washing with water after firing as described later, Li / Me is reduced by washing with water. Therefore, when washing with water, it is preferable to mix the nickel-containing hydroxide and the lithium compound in anticipation of a decrease in Li / Me. The decrease in Li / Me varies depending on the firing conditions and washing conditions, but it is about 0.05 to 0.1, and the decrease can be confirmed by producing a small amount of positive electrode active material as a preliminary test. .. The lithium compound is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available. In particular, considering the ease of handling and the stability of quality, it is more preferable to use lithium hydroxide.

ニオブの含有量も焼成工程前後で変化しないため、正極活物質のニオブ添加量に相当するニオブ化合物を添加する。固相添加においては粒径により反応性が変化することから、添加するニオブ化合物の粒径が重要な要素の一つであり、前記ニオブ化合物の平均粒径を0.1~10μm、好ましくは0.5~8μmとする。平均粒径が0.1μmより小さいと、粉末の取扱が非常に困難になるという問題があり、平均粒径が10μmより大きいと焼成時の反応性が低下してリチウム遷移金属複合酸化物中へのNbの拡散が不足し、熱安定性を確保できないという問題があるためである。上記粒径を有するニオブ化合物を固相添加することにより、得られるリチウム遷移金属複合酸化物が多孔質構造を有するものとなると考えられる。すなわち、詳細は不明であるが、晶析によって得られるニッケル含有水酸化物は、一次粒子が凝集してなる二次粒子であり、二次粒子表面からニオブが拡散して反応する際に、一次粒子間でその速度が一様でないため、一次粒子の収縮が不均一となって微細な空隙が生じるものと推察される。 Since the content of niobium does not change before and after the firing step, a niobium compound corresponding to the amount of niobium added to the positive electrode active material is added. Since the reactivity changes depending on the particle size in solid phase addition, the particle size of the niobium compound to be added is one of the important factors, and the average particle size of the niobium compound is 0.1 to 10 μm, preferably 0. .5 to 8 μm. If the average particle size is smaller than 0.1 μm, there is a problem that it becomes very difficult to handle the powder. If the average particle size is larger than 10 μm, the reactivity at the time of firing is lowered and the powder is into the lithium transition metal composite oxide. This is because there is a problem that the diffusion of Nb is insufficient and thermal stability cannot be ensured. It is considered that the obtained lithium transition metal composite oxide has a porous structure by solid-phase addition of the niobium compound having the above particle size. That is, although the details are unknown, the nickel-containing hydroxide obtained by crystallization is a secondary particle formed by agglomeration of primary particles, and when niob is diffused from the surface of the secondary particle and reacts, it is primary. Since the velocity is not uniform among the particles, it is presumed that the shrinkage of the primary particles becomes non-uniform and fine voids are generated.

上記ニオブ化合物は、ニオブ酸、酸化ニオブ、硝酸ニオブ、五塩化ニオブ、硝酸ニオブなどを用いることができる。これらの中でも、入手のしやすさや焼成したリチウム遷移金属複合酸化物中に熱安定性や容量、サイクル特性の低下を招く不純物の混入を避けるという観点から、ニオブ酸または酸化ニオブが好ましい。
上記の平均粒径範囲を有するニオブ化合物を得るためには、ボールミル、遊星ボールミル、ジェットミル、ビーズミル、ピンミルなど各種粉砕機を用いて原料となるニオブ化合物を粉砕して得ることもできる。必要に応じて、乾式分級機や篩がけにより分級してもよい。
また、混合工程に用いるニッケル含有水酸化物の粒径としては、5~20μm程度が好ましく、10~15μmがより好ましい。
なお、平均粒径は、体積基準平均径(MV)として、レーザー散乱回折法により測定した値である。
As the niobium compound, niobium acid, niobium oxide, niobium nitrate, niobium pentachloride, niobium nitrate and the like can be used. Among these, niobium acid or niobium oxide is preferable from the viewpoint of easy availability and avoiding contamination of calcined lithium transition metal composite oxides with impurities that cause deterioration of thermal stability, capacity, and cycle characteristics.
In order to obtain a niobium compound having the above average particle size range, the niobium compound as a raw material can be pulverized using various pulverizers such as a ball mill, a planetary ball mill, a jet mill, a bead mill, and a pin mill. If necessary, the product may be classified by a dry classifier or a sieve.
The particle size of the nickel-containing hydroxide used in the mixing step is preferably about 5 to 20 μm, more preferably 10 to 15 μm.
The average particle size is a value measured by a laser scattering diffraction method as a volume reference average diameter (MV).

リチウム混合物は、焼成前に十分混合しておくことが好ましい。混合が十分でない場合には、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られない間等の問題が生じる可能性がある。また、混合には、一般的な混合機を使用することができ、例えばシェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができ、ニッケル含有水酸化物等の形骸が破壊されない程度で、ニッケル含有水酸化物とリチウム化合物とニオブ化合物とが十分に混合されればよい。 It is preferable that the lithium mixture is sufficiently mixed before firing. If the mixing is not sufficient, Li / Me may vary among the individual particles, and problems such as insufficient battery characteristics may occur. In addition, a general mixer can be used for mixing, for example, a shaker mixer, a Ladyge mixer, a Julia mixer, a V blender, or the like can be used, and the skeleton of nickel-containing hydroxide or the like is not destroyed. It suffices to sufficiently mix the nickel-containing hydroxide, the lithium compound, and the niobium compound.

(C)焼成工程
焼成工程は、前記混合工程で得られたリチウム混合物を酸化雰囲気中700~840℃、好ましくは700~830℃、より好ましくは700~800℃で焼成して、多結晶構造の粒子からなるリチウム遷移金属複合酸化物を形成する工程である。焼成工程においてリチウム混合物を焼成すると、ニッケル含有水酸化物にリチウム化合物中のリチウムとともにニオブ化合物中のニオブが拡散するので、リチウム遷移金属複合酸化物が形成される。焼成温度が700℃未満であると、ニッケル含有水酸化物中へのリチウムやニオブの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、十分な電池特性が得られないという問題が生じる。また、焼成温度が840℃を超えると、形成されたリチウム遷移金属複合酸化物粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性がある。異常粒成長が生じると、焼成後の粒子が粗大となってしまい粒子形態を保持できなくなる可能性があり、正極活物質を形成したときに、比表面積が低下して正極の抵抗が上昇して電池容量が低下するという問題が生じる。
(C) Firing step In the calcining step, the lithium mixture obtained in the mixing step is calcined in an oxidizing atmosphere at 700 to 840 ° C., preferably 700 to 830 ° C., more preferably 700 to 800 ° C. to have a polycrystalline structure. This is a step of forming a lithium transition metal composite oxide composed of particles. When the lithium mixture is calcined in the calcining step, niobium in the niobium compound is diffused together with lithium in the lithium compound in the nickel-containing hydroxide, so that a lithium transition metal composite oxide is formed. If the calcination temperature is less than 700 ° C., lithium and niob are not sufficiently diffused into the nickel-containing hydroxide, excess lithium and unreacted particles remain, and the crystal structure is not sufficiently arranged. Therefore, there arises a problem that sufficient battery characteristics cannot be obtained. Further, when the firing temperature exceeds 840 ° C., severe sintering occurs between the formed lithium transition metal composite oxide particles, and abnormal grain growth may occur. When abnormal grain growth occurs, the particles after firing may become coarse and the particle morphology may not be maintained, and when the positive electrode active material is formed, the specific surface area decreases and the resistance of the positive electrode increases. The problem of low battery capacity arises.

焼成時間は、少なくとも3時間以上とすることが好ましく、より好ましくは、6~24時間である。3時間未満では、リチウム遷移金属複合酸化物の生成が十分に行われないことがあるからである。また、焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、とくに、酸素濃度が18~100容量%の雰囲気とすることがより好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。これは、酸素濃度が18容量%未満であると、十分に酸化できず、リチウム遷移金属複合酸化物の結晶性が十分でない状態になる可能性があるからである。とくに電池特性を考慮すると、酸素気流中で行うことが好ましい。 The firing time is preferably at least 3 hours or more, more preferably 6 to 24 hours. This is because the formation of the lithium transition metal composite oxide may not be sufficiently performed in less than 3 hours. Further, the atmosphere at the time of firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18 to 100% by volume. That is, firing is preferably performed in the atmosphere or an oxygen stream. This is because if the oxygen concentration is less than 18% by volume, it cannot be sufficiently oxidized, and the crystallinity of the lithium transition metal composite oxide may be insufficient. In particular, considering the battery characteristics, it is preferable to perform the operation in an oxygen stream.

焼成工程においては、700~840℃の温度で焼成する前に、前記焼成温度より低い温度であって、リチウム化合物とニッケル含有水酸化物が反応し得る温度で仮焼することが好ましい。このような温度でリチウム混合物を保持することにより、ニッケル含有水酸化物へのリチウムとニオブの拡散が十分に行われ、均一なリチウム遷移金属複合酸化物を得ることができる。例えば、水酸化リチウムを使用する場合であれば、水酸化リチウムの融点以上である400~550℃の温度で1~10時間程度保持して仮焼することが好ましい。 In the firing step, before firing at a temperature of 700 to 840 ° C., it is preferable to perform calcining at a temperature lower than the firing temperature at which the lithium compound and the nickel-containing hydroxide can react. By holding the lithium mixture at such a temperature, lithium and niobium are sufficiently diffused into the nickel-containing hydroxide, and a uniform lithium transition metal composite oxide can be obtained. For example, when lithium hydroxide is used, it is preferable to hold it at a temperature of 400 to 550 ° C., which is higher than the melting point of lithium hydroxide, for about 1 to 10 hours for calcining.

焼成に用いられる炉は、特に限定されるものではなく、大気ないしは酸素気流中でリチウム混合物を焼成できるものであればよいが、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉をいずれも用いることができる。 The furnace used for firing is not particularly limited as long as it can fire a lithium mixture in the atmosphere or an oxygen stream, but an electric furnace that does not generate gas is preferable, and a batch type or continuous type furnace is used. Both can be used.

焼成によって得られたリチウム遷移金属複合酸化物は、粒子間の焼結は抑制されているが、弱い焼結や凝集により粗大な粒子を形成していることがある。このような場合には、
解砕により上記焼結や凝集を解消して粒度分布を調整することが好ましい。
The lithium transition metal composite oxide obtained by firing suppresses sintering between particles, but may form coarse particles due to weak sintering or aggregation. In such a case,
It is preferable to adjust the particle size distribution by eliminating the sintering and agglomeration by crushing.

(D)水洗工程
水洗工程は、上記リチウム遷移金属複合酸化物を水洗する工程である。また、水洗した後、濾過、乾燥することが好ましい。
上記焼成工程によって得られたリチウム遷移金属複合酸化物は、そのままの状態でも正極活物質として用いられるが、粒子表面の余剰リチウムを除去することにより、電解液と接触可能な表面積が増加して充放電容量を向上させることができるため、焼成後に水洗することが好ましい。また、粒子表面に形成された脆弱部も十分に除去されるため、電解液との接触が増加して充放電容量を向上させることができる。
(D) Water washing step The water washing step is a step of washing the lithium transition metal composite oxide with water. Further, it is preferable to wash with water, then filter and dry.
The lithium transition metal composite oxide obtained by the above firing step is used as a positive electrode active material as it is, but by removing excess lithium on the particle surface, the surface area that can be contacted with the electrolytic solution is increased and filled. Since the discharge capacity can be improved, it is preferable to wash with water after firing. Further, since the fragile portion formed on the particle surface is sufficiently removed, the contact with the electrolytic solution is increased and the charge / discharge capacity can be improved.

さらに、余剰リチウムは、非水系二次電池内において副反応を引き起こしガス発生による電池の膨張などの原因となるため、安全性向上の観点からも水洗することが好ましい。 Further, since the surplus lithium causes a side reaction in the non-aqueous secondary battery and causes the battery to expand due to gas generation, it is preferable to wash it with water from the viewpoint of improving safety.

水洗する際のスラリー濃度としては、スラリー中に含まれる水1Lに対する前記リチウム遷移金属複合酸化物の量(g)が100~2000g/Lであることが好ましい。すなわち、スラリー濃度が濃いほど粉末量が多くなり、2000g/Lを超えると、粘度も非常に高いため攪拌が困難となるばかりか、液中のアルカリが高いので平衡の関係から付着物の溶解速度が遅くなったり、剥離が起きても粉末からの分離が難しくなる。一方、スラリー濃度が100g/L未満では、希薄過ぎるためリチウムの溶出量が多く、表面のリチウム量は少なくなるが、正極活物質の結晶格子中からのリチウムの脱離も起きるようになり、結晶が崩れやすくなるばかりか、高pHの水溶液が大気中の炭酸ガスを吸収して炭酸リチウムを再析出する。 As the slurry concentration at the time of washing with water, the amount (g) of the lithium transition metal composite oxide with respect to 1 L of water contained in the slurry is preferably 100 to 2000 g / L. That is, the higher the slurry concentration, the larger the amount of powder, and if it exceeds 2000 g / L, not only is it difficult to stir because the viscosity is very high, but also because the alkali in the liquid is high, the dissolution rate of the deposits is due to equilibrium. Even if it slows down or peels off, it becomes difficult to separate it from the powder. On the other hand, when the slurry concentration is less than 100 g / L, the amount of lithium elution is large because it is too dilute, and the amount of lithium on the surface is small. Not only does it easily collapse, but the high-pH aqueous solution absorbs the carbon dioxide gas in the atmosphere and reprecipitates lithium carbonate.

使用される水としては、特に限定されるものではなく、純水が好ましい。純水を用いることにより、正極活物質への不純物の付着による電池性能の低下を防ぐことができる。
上記スラリーの固液分離時の粒子表面に残存する付着水は少ないことが好ましい。付着水が多いと液中に溶解したリチウムが再析出し、乾燥後リチウム遷移金属複合酸化物粒子の表面に存在するリチウム量が増加する。
The water used is not particularly limited, and pure water is preferable. By using pure water, it is possible to prevent deterioration of battery performance due to adhesion of impurities to the positive electrode active material.
It is preferable that the amount of water adhering to the particle surface during the solid-liquid separation of the slurry is small. When the amount of adhering water is large, the lithium dissolved in the liquid is reprecipitated, and the amount of lithium present on the surface of the lithium transition metal composite oxide particles after drying increases.

また、水洗工程は、水洗後に、濾過、乾燥する工程を含むことが好ましい。
濾過方法としては、通常用いられる方法でよく、例えば、吸引濾過機、フィルタープレース、遠心機等を用いることができる。
濾過後の乾燥の温度としては、特に限定されるものではなく、好ましくは80~350℃である。80℃未満では、水洗後の正極活物質の乾燥が遅くなるため、粒子表面と粒子内部とでリチウム濃度の勾配が起こり、電池特性が低下することがある。一方、正極活物質の表面付近では化学量論比にきわめて近いか、もしくは若干リチウムが脱離して充電状態に近い状態になっていることが予想されるので、350℃を超える温度では、充電状態に近い結晶構造が崩れる契機になり、電池特性の低下を招く恐れがある。
Further, the washing step preferably includes a step of filtering and drying after washing with water.
As the filtration method, a commonly used method may be used, and for example, a suction filter, a filter place, a centrifuge or the like can be used.
The drying temperature after filtration is not particularly limited, and is preferably 80 to 350 ° C. If the temperature is lower than 80 ° C., the drying of the positive electrode active material after washing with water is delayed, so that a gradient of lithium concentration occurs between the surface of the particles and the inside of the particles, which may deteriorate the battery characteristics. On the other hand, near the surface of the positive electrode active material, it is expected that the ratio is very close to the stoichiometric ratio, or that lithium is slightly desorbed and the state is close to the state of charge. There is a risk that the crystal structure close to that of the battery will collapse, leading to deterioration of battery characteristics.

2.非水系電解質二次電池用正極活物質
本発明に係る非水系電解質二次電池用正極活物質は、一般式LiNi1-a-b-cCoaNb(但し、0.03≦a≦0.35、0≦b≦0.10、0.001≦c≦0.05、0.95≦d≦1.20、MはMn、V、Mg、Ti及びAlから選ばれる少なくとも1種の元素)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなり、多孔質構造を有し、比表面積が0.8~3.0m/gであり、リチウム以外のアルカリ金属含有量が20質量ppm以下であることを特徴とするものである。
2. 2. Positive Active Material for Non-Aqueous Electrolyte Secondary Battery The positive positive active material for non-aqueous electrolyte secondary battery according to the present invention is the general formula Lid Ni 1-abc Co a M b Nb c O 2 (provided that 0). .03 ≦ a ≦ 0.35, 0 ≦ b ≦ 0.10, 0.001 ≦ c ≦ 0.05, 0.95 ≦ d ≦ 1.20, M is selected from Mn, V, Mg, Ti and Al. It is composed of a lithium transition metal composite oxide composed of particles having a polycrystalline structure, has a porous structure, and has a specific surface area of 0.8 to 3.0 m 2 / g. It is characterized by having an alkali metal content other than lithium of 20 mass ppm or less.

コバルトの含有量を示すaは、0.03≦a≦0.35であり、好ましくは0.05≦
a≦0.35、より好ましくは0.07≦a≦0.20であり、さらに好ましくは0.10≦a≦0.20である。コバルトはサイクル特性の向上に寄与する添加元素であるが、aの値が0.03未満になると、十分なサイクル特性を得ることはできず、容量維持率も低下してしまう。また、aの値が0.35を超えると、初期放電容量の低下が大きくなってしまう。
The a indicating the cobalt content is 0.03 ≦ a ≦ 0.35, preferably 0.05 ≦.
a ≦ 0.35, more preferably 0.07 ≦ a ≦ 0.20, still more preferably 0.10 ≦ a ≦ 0.20. Cobalt is an additive element that contributes to the improvement of cycle characteristics, but if the value of a is less than 0.03, sufficient cycle characteristics cannot be obtained and the capacity retention rate also decreases. Further, when the value of a exceeds 0.35, the decrease in the initial discharge capacity becomes large.

ニオブの添加量を示すcは、0.001≦c≦0.05、好ましくは0.001≦c≦0.02である。ニオブは、リチウム遷移金属複合酸化物の脱酸素による熱分解反応の抑制に寄与していると考えられ、安全性の改善に効果がある添加元素である。上記cの値が0.001未満になると、添加量が少なすぎて安全性の改善が不十分となる。一方、安全性は、添加量に応じて向上するが、結晶性が低下する傾向にあるため、cの値が0.05を超えると充放電容量が低下してしまう。また、サイクル特性についても、低下が見られる。また、上記範囲内で、cの値が0.005以上であると、得られる正極活物質の熱安定性がより良好となる。一方、上記範囲内で、cの値が0.01以下であると、得られる正極活物質の充放電容量がより大きくなる。
ニオブの存在形態は、リチウム遷移金属複合酸化物中に固溶しても、リチウム遷移金属複合酸化物の結晶粒界あるいは粒子表面にリチウムニオブ複合酸化物として存在してもいずれでもよいが、固溶していることが好ましい。ここで、固溶とは、透過型電子顕微鏡のEDX測定によりニオブ化合物がほとんど検出されない状態を意味する。
The c indicating the amount of niobium added is 0.001 ≦ c ≦ 0.05, preferably 0.001 ≦ c ≦ 0.02. Niobium is an additive element that is thought to contribute to the suppression of the thermal decomposition reaction due to deoxidation of the lithium transition metal composite oxide and is effective in improving safety. If the value of c is less than 0.001, the amount added is too small and the improvement in safety is insufficient. On the other hand, the safety is improved according to the addition amount, but the crystallinity tends to decrease, so that the charge / discharge capacity decreases when the value of c exceeds 0.05. In addition, the cycle characteristics are also reduced. Further, within the above range, when the value of c is 0.005 or more, the thermal stability of the obtained positive electrode active material becomes better. On the other hand, if the value of c is 0.01 or less within the above range, the charge / discharge capacity of the obtained positive electrode active material becomes larger.
The existence form of niob may be either solid solution in the lithium transition metal composite oxide or present as a lithium niobium composite oxide on the grain boundaries or the particle surface of the lithium transition metal composite oxide, but is solid. It is preferably melted. Here, the solid solution means a state in which niobium compounds are hardly detected by EDX measurement with a transmission electron microscope.

さらに、固溶している場合には、結晶粒界と粒内のNb濃度の比が4倍以下であることが好ましく、3倍以下であることがより好ましい。結晶粒界と粒内のNb濃度の比(結晶粒界/粒内)は、透過型電子顕微鏡のEDX測定結果より求めることができる。固溶することにより、少量添加でも上記熱分解反応の抑制効果を高めることができる。 Further, in the case of solid solution, the ratio of the grain boundary to the Nb concentration in the grain is preferably 4 times or less, and more preferably 3 times or less. The ratio of the grain boundary to the Nb concentration in the grain (grain boundary / intragrain) can be obtained from the EDX measurement result of the transmission electron microscope. By solid solution, the effect of suppressing the thermal decomposition reaction can be enhanced even if a small amount is added.

添加元素であるMは、Mn、V、Mg、Ti及びAlから選ばれる少なくとも1種の元素であり、サイクル特性や安全性などの電池特性の向上のために添加することができる。Mの添加量を示すbが0.10を超えると、電池特性はより向上するが、初期放電容量の低下が大きくなってしまうため、好ましくない。さらに、Ni、CoだけでなくMを必ず含む0<b≦0.10あることで、優れたサイクル特性を発現させることができるため、bはこの範囲であることが好ましく、0.01≦b≦0.07あることがより好ましい。 The additive element M is at least one element selected from Mn, V, Mg, Ti and Al, and can be added to improve battery characteristics such as cycle characteristics and safety. When b, which indicates the amount of M added, exceeds 0.10, the battery characteristics are further improved, but the initial discharge capacity is significantly reduced, which is not preferable. Further, since 0 <b ≦ 0.10 that always contains M as well as Ni and Co can exhibit excellent cycle characteristics, b is preferably in this range, and 0.01 ≦ b. It is more preferable that there is ≦ 0.07.

Li/Meを示すdは、0.95≦d≦1.20である。dの値が0.95未満になると充放電容量が低下する。一方、dの値が大きくなるに応じて充放電容量は増加するが、dが1.20を超えると、安全性が低下してしまう。 D indicating Li / Me is 0.95 ≦ d ≦ 1.20. When the value of d is less than 0.95, the charge / discharge capacity decreases. On the other hand, the charge / discharge capacity increases as the value of d increases, but if d exceeds 1.20, the safety deteriorates.

また、上記のリチウム遷移複合金属酸化物は、リチウム以外のアルカリ金属含有量が20質量ppm以下、好ましくは10質量ppm以下であることを特徴とする。リチウム以外のアルカリ金属含有量が20質量ppm以下で、かつニオブの添加量を示すcが0.001≦c≦0.05であることにより、優れたサイクル特性が得られる。リチウム以外のアルカリ金属含有量あるいはニオブの添加量のいずれか一方が前記範囲を超えても良好なサイクル特性は得られない。 The lithium transition composite metal oxide is characterized by having an alkali metal content other than lithium of 20% by mass or less, preferably 10% by mass or less. When the content of the alkali metal other than lithium is 20% by mass or less and c indicating the addition amount of niobium is 0.001 ≦ c ≦ 0.05, excellent cycle characteristics can be obtained. Even if either the content of an alkali metal other than lithium or the amount of niobium added exceeds the above range, good cycle characteristics cannot be obtained.

上記正極活物質は、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなり、多孔質構造を有している。
本明細書において、多孔質構造とは、走査型電子顕微鏡の任意断面(観察面)における正極活物質粒子の観察(倍率5000倍)により、空隙外縁の任意の2点間の距離が0.3μ以上である複数の空隙が正極活物質粒子の断面に存在するものをいう。
The positive electrode active material is made of a lithium transition metal composite oxide composed of particles having a polycrystalline structure and has a porous structure.
In the present specification, the porous structure means that the distance between any two points on the outer edge of the void is 0.3 μm by observing the positive electrode active material particles on an arbitrary cross section (observation surface) of a scanning electron microscope (magnification of 5000 times). The above-mentioned plurality of voids are present in the cross section of the positive electrode active material particles.

また、前記空隙は、走査型電子顕微鏡の断面観察により最大長さが前記粒子断面長径の
好ましくは50%以下、より好ましくは40%以下であり、少なくとも結晶粒界に存在することが好ましい。以上のような多孔質構造を有することにより、電池の正極に用いられた場合に電解液と接触できる粒子表面が大幅に増加し、ニオブ添加による充放電容量の低下を補って、安全性を確保しながら十分な充放電容量を得ることができる。
Further, the maximum length of the void is preferably 50% or less, more preferably 40% or less of the cross-sectional major axis of the particle by observing the cross section of the scanning electron microscope, and it is preferable that the void is present at least at the grain boundary. By having the above-mentioned porous structure, the particle surface that can come into contact with the electrolytic solution when used for the positive electrode of the battery is greatly increased, and the decrease in charge / discharge capacity due to the addition of niobium is compensated for to ensure safety. However, a sufficient charge / discharge capacity can be obtained.

さらに、上記断面観察における前記空隙の個数を、任意の20個以上の粒子について求め、空隙の個数の合計を該粒子の粒子断面長径(μm)の合計で除して得られる指標(以下、「空隙数」ともいう。)が0.2~10個/μmであることが好ましく、0.5~3個/μmであることがより好ましい。ここで、粒子断面長径は、粒子の観察面における粒子外周上の任意の2点間の最大距離である。また、上記断面観察において、後段の正極活物質の体積基準平均径(MV)の20%以下の粒径を有する粒子は、多孔質構造の判断から除外する。これは、平均粒径の20%以下の粒径を有する粒子は、正極活物質において量的に少なく充放電容量に対する影響が少ないこと、観察面が粒子端部の断面であり粒子の評価としては適当でない可能性があることによる。空隙数が0.2~10個/μmであることにより、電解液との過大な接触が抑制され熱安定性の低下を抑制しながら、接触面積を十分なものとして高い充放電容量を得ることができる。 Further, the number of the voids in the cross-sectional observation is obtained for any 20 or more particles, and the total number of voids is divided by the total particle cross-sectional major axis (μm) of the particles to obtain an index (hereinafter, “”. The number of voids (also referred to as)) is preferably 0.2 to 10 / μm, and more preferably 0.5 to 3 / μm. Here, the particle cross-sectional major axis is the maximum distance between any two points on the outer circumference of the particle on the observation surface of the particle. Further, in the cross-sectional observation, particles having a particle size of 20% or less of the volume standard average diameter (MV) of the positive electrode active material in the subsequent stage are excluded from the judgment of the porous structure. This is because particles having a particle size of 20% or less of the average particle size are small in quantity in the positive electrode active material and have little effect on the charge / discharge capacity, and the observation surface is a cross section of the particle end, which is an evaluation of the particles. Because it may not be suitable. When the number of voids is 0.2 to 10 / μm, excessive contact with the electrolytic solution is suppressed and deterioration of thermal stability is suppressed, and a high charge / discharge capacity is obtained with a sufficient contact area. Can be done.

また、上記正極活物質の比表面積は、比表面積が0.9~3.0m/g、好ましくは0.9~2.8m/gである。比表面積が0.8m/g未満になると、電解液と接触できる粒子表面が少なくなり、十分な充放電容量が得られない。一方、比表面積が3.0m/gを超えると、電解液と接触する粒子表面が多くなり過ぎて安全性が低下する。 The specific surface area of the positive electrode active material is 0.9 to 3.0 m 2 / g, preferably 0.9 to 2.8 m 2 / g. When the specific surface area is less than 0.8 m 2 / g, the number of particle surfaces that can come into contact with the electrolytic solution is reduced, and a sufficient charge / discharge capacity cannot be obtained. On the other hand, if the specific surface area exceeds 3.0 m 2 / g, the number of particle surfaces that come into contact with the electrolytic solution becomes too large, and the safety is lowered.

上記リチウム遷移金属酸化物の結晶子径は、10~180nmが好ましく、10~150nmがより好ましい。結晶子径が10nm未満になると、結晶粒界が多くなり過ぎて活物質の抵抗が増加するため、十分な充放電容量が得られないことがある。一方、結晶子径が150nmを越えると、結晶成長が進みすぎて、層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、充放電容量が減少する。 The crystallite diameter of the lithium transition metal oxide is preferably 10 to 180 nm, more preferably 10 to 150 nm. If the crystallite diameter is less than 10 nm, the crystal grain boundaries become too large and the resistance of the active material increases, so that a sufficient charge / discharge capacity may not be obtained. On the other hand, when the crystallite diameter exceeds 150 nm, crystal growth proceeds too much, and cation mixing in which nickel is mixed in the lithium layer of the lithium transition metal composite oxide which is a layered compound occurs, and the charge / discharge capacity decreases.

上記正極活物質の平均粒径は、レーザー散乱法測定による体積積算50%径であるD50として5~20μmであることが好ましく、10~15μmであることがより好ましい。5μm未満になると、電池の正極に用いた場合に充填密度が低下して体積当たりの充放電容量が十分に得られない場合がある。一方、20μmを超えると、電解液との接触面積が十分に得られず、充放電容量が低下することがある。 The average particle size of the positive electrode active material is preferably 5 to 20 μm, more preferably 10 to 15 μm, as D50 having a volume integrated 50% diameter measured by a laser scattering method. If it is less than 5 μm, the filling density may decrease when used for the positive electrode of a battery, and a sufficient charge / discharge capacity per volume may not be obtained. On the other hand, if it exceeds 20 μm, a sufficient contact area with the electrolytic solution may not be obtained, and the charge / discharge capacity may decrease.

3.非水系電解質二次電池
本発明に係るリチウムイオン二次電池の実施形態について、構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
3. 3. Non-aqueous electrolyte secondary battery An embodiment of the lithium ion secondary battery according to the present invention will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolytic solution. The embodiments described below are merely examples, and the non-aqueous electrolyte secondary battery of the present invention is carried out in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiments. can do. Further, the non-aqueous electrolyte secondary battery of the present invention is not particularly limited in its use.

(1)正極
正極を形成する正極合材およびそれを構成する各材料について説明する。本発明の粉末状の正極活物質と、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。
(1) Positive Electrode A positive electrode mixture forming a positive electrode and each material constituting the same material will be described. The powdery positive electrode active material of the present invention is mixed with a conductive material and a binder, and if necessary, activated carbon, a solvent for viscosity adjustment, etc. is added, and the mixture is kneaded to form a positive electrode mixture paste. To make. The mixing ratio of each in the positive electrode mixture is also an important factor in determining the performance of the lithium secondary battery.

溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60~95質量%、導電材の含有量を1~20質量%、結着剤の含有量を1~20質量%とすることが望ましい。 When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass and the conductive material is the same as the positive electrode of a general lithium secondary battery. It is desirable that the content is 1 to 20% by mass and the content of the binder is 1 to 20% by mass.

得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法に依ってもよい。 The obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like in order to increase the electrode density. In this way, a sheet-shaped positive electrode can be manufactured. The sheet-shaped positive electrode can be cut into an appropriate size according to the target battery and used for manufacturing the battery. However, the method for producing the positive electrode is not limited to the above-exemplified one, and other methods may be used.

前記正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN-メチル-2-ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。 In producing the positive electrode, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, and Ketjen black can be used as the conductive agent. The binder plays a role of binding the active material particles, and for example, a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, a thermoplastic resin such as polypropylene, or polyethylene can be used. If necessary, the positive electrode active material, the conductive material, and the activated carbon are dispersed, and a solvent for dissolving the binder is added to the positive electrode mixture. As the solvent, specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used. In addition, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(2)負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(2) Negative electrode For the negative electrode, a negative electrode mixture made into a paste by mixing a binder with a negative electrode active material that can occlude and desorb lithium ions, such as metallic lithium and lithium alloy, and adding an appropriate solvent. , Copper and other metal foils are applied to the surface of a current collector, dried, and if necessary, compressed to increase the electrode density.

負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN-メチル-2-ピロリドン等の有機溶剤を用いることができる。 As the negative electrode active material, for example, an organic compound fired body such as natural graphite, artificial graphite, or phenol resin, or a powdery body of a carbon substance such as coke can be used. In this case, as the negative electrode binder, a fluororesin such as polyvinylidene fluoride can be used as in the positive electrode, and as a solvent for dispersing these active substances and the binder, N-methyl-2-pyrrolidone or the like can be used. Organic solvents can be used.

(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is sandwiched between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode to retain the electrolyte, and a thin film such as polyethylene or polypropylene, which has a large number of minute holes, can be used.

(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(4) Non-aqueous electrolyte solution The non-aqueous electrolyte solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and moreover, tetrahydrofuran and 2-. One selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sulton, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. is used alone or in combination of two or more. be able to.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいても
よい。
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , etc., and a composite salt thereof can be used.
Further, the non-aqueous electrolyte solution may contain a radical catching agent, a surfactant, a flame retardant and the like.

(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極をセパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
(5) Shape and configuration of the battery The shape of the lithium secondary battery according to the present invention, which is composed of the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte solution described above, may be various, such as a cylindrical type and a laminated type. be able to.
Regardless of which shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolytic solution. The positive electrode current collector and the positive electrode terminal leading to the outside, and the negative electrode current collector and the negative electrode terminal leading to the outside are connected by using a current collector lead or the like. The battery can be completed by sealing the above configuration in a battery case.

(実施例1)
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加し、pHを液温25℃基準で11.8に、反応温度を50℃に、アンモニア濃度を10g/Lに保ち、共沈法によって球状の二次粒子からなるニッケルコバルトアルミニウム複合水酸化物を形成した。反応槽内が安定した後、オーバーフロー口から水酸化物スラリーを回収し、濾過、水洗後乾燥してニッケルコバルトアルミニウム複合水酸化物(ニッケル含有水酸化物:Ni0.815Co0.150Al0.035(OH))を得た。(晶析工程)
(Example 1)
A mixed aqueous solution of nickel sulfate and cobalt sulfate, an aqueous solution of sodium aluminate, a 25 mass% sodium hydroxide solution, and 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5. % Ammonia water was added to the reaction vessel at the same time, the pH was maintained at 11.8 based on the solution temperature of 25 ° C, the reaction temperature was maintained at 50 ° C, and the ammonia concentration was maintained at 10 g / L. Nickel-cobalt-aluminum composite hydroxide was formed. After the inside of the reaction tank becomes stable, the hydroxide slurry is collected from the overflow port, filtered, washed with water, and dried to dry nickel-cobalt-aluminum composite hydroxide (nickel-containing hydroxide: Ni 0.815 Co 0.150 Al 0 . .035 (OH) 2 ) was obtained. (Crystalization process)

次に、上記ニッケルコバルトアルミニウム複合水酸化物(ニッケル含有水酸化物)と、市販の水酸化リチウムと、ナノグラインディングミル(サンレックス工業株式会社製ナノグラインディングミル)で平均粒径0.6μmとなるように粉砕したニオブ酸(Nb・xHO)粉末とを、Li/Meが1.10になるように秤量した後、ニッケル含有水酸化物の形骸が維持される程度の強さでシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合してリチウム混合物を得た。なお、狙いのニオブ添加量c’は0.01とした。(混合工程) Next, the above nickel-cobalt-aluminum composite hydroxide (nickel-containing hydroxide), commercially available lithium hydroxide, and a nano-grinding mill (nano-grinding mill manufactured by Sunlex Industries, Ltd.) have an average particle size of 0.6 μm. After weighing the niobic acid (Nb 2 O 5 · xH 2 O) powder crushed so as to have a Li / Me of 1.10, the skeleton of the nickel-containing hydroxide is maintained. A lithium mixture was obtained by mixing sufficiently with a shaker mixer device (TURBULA Type T2C manufactured by Willy et Bacoffen (WAB)) at a strength. The target niobium addition amount c'was set to 0.01. (Mixing process)

このリチウム混合物をマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量6L/分の酸素気流中で昇温速度2.77℃/分で500℃まで昇温して500℃で3時間保持した。その後、同様の昇温速度で780℃まで昇温して12時間保持した後、室温まで炉冷し、リチウム遷移金属複合酸化物を得た。(焼成工程)
得られたリチウム遷移金属複合酸化物をスラリー濃度が1500g/Lとなるように純水と混合してスラリーを作製し、スターラーを用いて30分水洗した後にろ過した。ろ過後、真空乾燥機を用いて210℃で14時間保持して室温まで冷却して、正極活物質を得た。(水洗工程)
This lithium mixture is inserted into a magnesia baking vessel and heated to 500 ° C. at a heating rate of 2.77 ° C./min in an oxygen stream with a flow rate of 6 L / min using a closed electric furnace at 500 ° C. It was held for 3 hours. Then, the temperature was raised to 780 ° C. at the same heating rate and held for 12 hours, and then the mixture was cooled to room temperature to obtain a lithium transition metal composite oxide. (Baking process)
The obtained lithium transition metal composite oxide was mixed with pure water so that the slurry concentration became 1500 g / L to prepare a slurry, washed with water using a stirrer for 30 minutes, and then filtered. After filtration, the mixture was kept at 210 ° C. for 14 hours using a vacuum dryer and cooled to room temperature to obtain a positive electrode active material. (Washing process)

[正極活物質の評価]
ICP発光分析法による定量分析により得られた正極活物質の組成、正極活物質のXRD測定により得られた回折パターンにおける(003)面の2θおよび半値幅を用いてScerrerの式より算出された結晶子径、BET法により測定した比表面積、レーザー散乱回折法により測定した体積基準平均径(MV)、査型電子顕微鏡による粒子断面の観察により求めた多孔質に関する指標である空隙の個数をそれぞれ表1に示す。
また、リチウム以外のアルカリ金属量を、原子吸光分析法により測定し、あわせて表1に示す。
なお、得られた正極活物質の断面を透過型電子顕微鏡により観察したところ、異相は認められず、EDX分析により、ニオブは正極活物質粒子内に均一に分布しており、結晶粒界と粒内のNb濃度比は3倍以下であることが確認された。
[Evaluation of positive electrode active material]
Crystal calculated from Scatter's equation using the composition of the positive electrode active material obtained by quantitative analysis by the ICP emission analysis method, the 2θ of the (003) plane and the half-value width in the diffraction pattern obtained by the XRD measurement of the positive electrode active material. Tables show the child diameter, the specific surface area measured by the BET method, the volume-based average diameter (MV) measured by the laser scattering diffraction method, and the number of voids, which are indicators of porosity obtained by observing the particle cross section with an inspection electron microscope. Shown in 1.
The amount of alkali metals other than lithium was measured by atomic absorption spectroscopy and is also shown in Table 1.
When the cross section of the obtained positive electrode active material was observed with a transmission electron microscope, no heterogeneous phase was observed, and by EDX analysis, niobium was uniformly distributed in the positive electrode active material particles, and the crystal grain boundaries and grains were observed. It was confirmed that the Nb concentration ratio in the inside was 3 times or less.

[初期放電容量の評価]
得られた正極活物質の初期容量評価は以下のようにして行った。活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が-80℃に管理されたAr雰囲気のグローブボックス中で、図2に示すような2032型のコイン電池を作製した。
[Evaluation of initial discharge capacity]
The initial volume evaluation of the obtained positive electrode active material was performed as follows. 20% by mass of acetylene black and 10% by mass of PTFE were mixed with 70% by mass of the active material powder, and 150 mg was taken out from this to prepare pellets and used as a positive electrode. Lithium metal was used as the negative electrode, and an equal amount mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) having 1 M of LiClO 4 as a supporting salt (manufactured by Tomiyama Pure Chemical Industries, Ltd.) was used as the electrolytic solution. A 2032 type coin battery as shown in FIG. 2 was manufactured in a glove box having an Ar atmosphere with a dew point controlled at −80 ° C.

作製した電池は24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。 The prepared battery was left to stand for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) became stable, the current density with respect to the positive electrode was set to 0.5 mA / cm 2 and the battery was charged to a cutoff voltage of 4.3 V to obtain the initial charge capacity. The capacity when discharged to a cutoff voltage of 3.0 V after a one-hour rest was defined as the initial discharge capacity.

[サイクル特性の評価]
サイクル特性の評価は次のようにして行った。各電池に対し、温度25℃ にて、1Cのレートで4.4Vまで(充電電圧は要確認)CC 充電し、10分間休止した後、同じレートで3.0V までCC 放電し、10分間休止する充放電サイクルを、200サイクル繰り返した。1サイクル目および200サイクル目の放電容量を測定し、200サイクル目2C放電容量の1サイクル目2C放電容量に対する百分率を容量維持率(%)として求めた。
[Evaluation of cycle characteristics]
The cycle characteristics were evaluated as follows. For each battery, CC charge to 4.4V at a rate of 1C at a temperature of 25 ° C (charge voltage must be confirmed), pause for 10 minutes, then CC discharge to 3.0V at the same rate and pause for 10 minutes. The charging / discharging cycle was repeated for 200 cycles. The discharge capacities of the 1st cycle and the 200th cycle were measured, and the percentage of the 200th cycle 2C discharge capacity with respect to the 1st cycle 2C discharge capacity was determined as the capacity retention rate (%).

[正極の安全性の評価]
正極の安全性の評価は、上記と同様な方法で作製した2032型のコイン電池をカット
オフ電圧4.5VまでCCCV充電(定電流-定電圧充電。まず、充電が、定電流で動作
し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電)し
た後、短絡しないように注意しながら解体して正極を取り出した。この電極を3.0mg
計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量
計(DSC)PTC-10A(Rigaku社製)を用いて昇温速度10℃/minで室
温から300℃まで発熱挙動を測定した。
正極活物質の初期容量、サイクル特性および安全性の評価結果を表1に示す。
なお、ニオブ酸(Nb ・xH O)は、水酸化ニオブともいい、表1中、ニオブ酸を水酸化ニオブと記載する。
[Evaluation of positive electrode safety]
To evaluate the safety of the positive electrode, a 2032 type coin battery manufactured by the same method as above is charged with CCCV up to a cutoff voltage of 4.5V (constant current-constant voltage charging. First, the charging operates at a constant current. Then, after charging using the two-phase charging process of ending charging at a constant voltage), the positive electrode was taken out by disassembling while being careful not to short-circuit. 3.0 mg of this electrode
Weigh, add 1.3 mg of electrolyte, seal in an aluminum measuring container, and use a differential scanning calorimeter (DSC) PTC-10A (manufactured by Rigaku) at a heating rate of 10 ° C / min from room temperature to 300 ° C. The heat generation behavior was measured up to.
Table 1 shows the evaluation results of the initial capacity, cycle characteristics and safety of the positive electrode active material.
Niobium acid (Nb 2 O 5 · xH 2 O) is also referred to as niobium hydroxide, and niobate is described as niobium hydroxide in Table 1.

(実施例2)
ニオブ酸の平均粒径を8μmとした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the average particle size of niobic acid was 8 μm. Table 1 shows the evaluation results of the obtained positive electrode active material.

(実施例3)
ニオブ化合物を酸化ニオブとし、ニオブ化合物の平均粒径を1μmとした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 3)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the niobium compound was niobium oxide and the average particle size of the niobium compound was 1 μm. Table 1 shows the evaluation results of the obtained positive electrode active material.

(実施例4)
狙いのニオブ添加量c’を0.05としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(実施例5)
狙いのニオブ添加量c’を0.005としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(実施例6)
狙いのニオブ添加量c’を0.001としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 4)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c'was 0.05. Table 1 shows the evaluation results of the obtained positive electrode active material.
(Example 5)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c'was 0.005. Table 1 shows the evaluation results of the obtained positive electrode active material.
(Example 6)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c'was 0.001. Table 1 shows the evaluation results of the obtained positive electrode active material.

(実施例7)
焼成温度を700℃とした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 7)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the firing temperature was 700 ° C. Table 1 shows the evaluation results of the obtained positive electrode active material.

(実施例8)
焼成温度を830℃とした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 8)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the firing temperature was set to 830 ° C. Table 1 shows the evaluation results of the obtained positive electrode active material.

(実施例9)
ニッケルコバルトアルミニウム複合水酸化物を700℃で6時間熱処理して複合酸化物とした後、水酸化リチウムおよびニオブ酸と混合した以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Example 9)
A nickel-cobalt-aluminum composite hydroxide was heat-treated at 700 ° C. for 6 hours to obtain a composite oxide, and then a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that it was mixed with lithium hydroxide and niobic acid. Table 1 shows the evaluation results of the obtained positive electrode active material.

(比較例1)
ニオブ酸の平均粒径を15μmとした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質を走査型電子顕微鏡で観察したところ、未反応のニオブ化合物が確認されたため、100g/Lの水酸化カリウム水溶液に正極活物質を加え、80℃で10分間撹拌して未反応のニオブ化合物を溶解し、ろ過して、ニオブ化合物を除去した後、正極活物質の組成を実施例1と同様に分析した。Nb含有量は分析下限以下であった。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Comparative Example 1)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the average particle size of niobic acid was 15 μm. When the obtained positive electrode active material was observed with a scanning electron microscope, an unreacted niobium compound was confirmed. Therefore, the positive electrode active material was added to a 100 g / L potassium hydroxide aqueous solution, and the mixture was stirred at 80 ° C. for 10 minutes and not yet. After dissolving the niobium compound in the reaction and filtering to remove the niobium compound, the composition of the positive electrode active material was analyzed in the same manner as in Example 1. The Nb content was below the lower limit of analysis. Table 1 shows the evaluation results of the obtained positive electrode active material.

(比較例2)
狙いのニオブ添加量c’を0.07とした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Comparative Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c'was 0.07. Table 1 shows the evaluation results of the obtained positive electrode active material.

(比較例3)
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加したこと、混合工程の際にニオブ化合物を添加しなかったこと、焼成温度を740℃としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Comparative Example 3)
A mixed aqueous solution of nickel sulfate and cobalt sulfate, an aqueous solution of sodium aluminate, a 25 mass% sodium hydroxide solution, and 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5. % Ammonia water was added to the reaction vessel at the same time, the niob compound was not added during the mixing step, and the firing temperature was set to 740 ° C. did. Table 1 shows the evaluation results of the obtained positive electrode active material.

(比較例4)
焼成温度を850℃とした以外は実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Comparative Example 4)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the firing temperature was set to 850 ° C. Table 1 shows the evaluation results of the obtained positive electrode active material.

(比較例5)
晶析工程で得られたニッケルコバルトアルミニウム複合水酸化物を純水と混合したスラリーに、ニオブ酸(Nb・xHO)を苛性カリに溶解させて作製したニオブ塩溶液(30g/L)を、硫酸とともにpHを10.0に調製しながら滴下することにより、Nbコートのニッケルコバルトアルミニウム複合水酸化物(以下、「Nbコートの水酸化ニッケル」ともいう。)を調製し、混合工程においてニオブ化合物を混合せず、上記Nbコートの水酸化ニッケル(Nb量c’は0.01)を用いたこと以外は、実施例1と同様にして正極活物質を得るとともに評価した。得られた正極活物質の評価結果を表1にそれぞれ示す。
(Comparative Example 5)
A niobium salt solution (30 g / L) prepared by dissolving niobium acid (Nb 2 O 5 · xH 2 O) in caustic potash in a slurry obtained by mixing nickel cobalt aluminum composite hydroxide obtained in the crystallization step with pure water. ) Is added dropwise together with sulfuric acid while adjusting the pH to 10.0 to prepare an Nb-coated nickel-cobalt-aluminum composite hydroxide (hereinafter, also referred to as “Nb-coated nickel hydroxide”) and a mixing step. The positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the niobium compound was not mixed and the Nb-coated nickel hydroxide (Nb amount c'was 0.01) was used. Table 1 shows the evaluation results of the obtained positive electrode active material.

Figure 0007001081000001
Figure 0007001081000001

(評価)
表1に示すように、本発明の実施例1~9では、得られた正極活物質の初期放電容量がおおむね185mAh/gを超え、正極活物質として使用可能な材料であることがわかる。容量維持率についても、85%以上であり、優れたサイクル特性を有していることがわかる。実施例4は、ニオブ添加量が多いため、サイクル特性が他の実施例よりやや低い結
果となっている。
また、DSC測定による最大発熱ピーク高さは4.0cal/sec/g以下であり、比較例3のニオブを加えていない従来の正極活物質と比較して発熱量が大幅に抑制されていることがわかる。
ニオブ化合物の平均粒径を15μmとした比較例1ではニオブ化合物の反応性が低いため、未反応のニオブ化合物が多くなり正極活物質中にNbが含有されなかった。そのために最大発熱ピーク高さが7.1cal/sec/gと非常に高くなっており、熱安定性が良くなかった。
比較例2はニオブ添加量が0.07と高いために、初期放電容量が182.6mAh/gと大幅に低下した。サイクル特性についても、低くなっている。
比較例3は、ニオブを添加していない従来の正極活物質であり、初期放電容量は高く、サイクル特性も優れているものの、最大発熱ピーク高さが7.0cal/sec/gと非常に高くなっており、熱安定性が良くなかった。
比較例4では、高温で焼成したために層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こるとともに、比表面積の小さくなっているので、初期放電容量が大幅に低下した。また、最大発熱ピーク高さが高くなっている。
比較例5は、コート法によりニオブを添加したため、不純物としてのアルカリ金属含有量が高いため、サイクル特性が実施例より低下している。
(evaluation)
As shown in Table 1, in Examples 1 to 9 of the present invention, the initial discharge capacity of the obtained positive electrode active material exceeds approximately 185 mAh / g, and it can be seen that the material can be used as the positive electrode active material. The capacity retention rate is also 85% or more, and it can be seen that it has excellent cycle characteristics. In Example 4, since the amount of niobium added is large, the cycle characteristics are slightly lower than those in the other examples.
In addition, the maximum exothermic peak height measured by DSC is 4.0 cal / sec / g or less, and the calorific value is significantly suppressed as compared with the conventional positive electrode active material to which niobium is not added in Comparative Example 3. I understand.
In Comparative Example 1 in which the average particle size of the niobium compound was 15 μm, the reactivity of the niobium compound was low, so that the amount of unreacted niobium compound increased and Nb was not contained in the positive electrode active material. Therefore, the maximum heat generation peak height was as high as 7.1 cal / sec / g, and the thermal stability was not good.
In Comparative Example 2, since the amount of niobium added was as high as 0.07, the initial discharge capacity was significantly reduced to 182.6 mAh / g. The cycle characteristics are also low.
Comparative Example 3 is a conventional positive electrode active material to which niobium is not added, and although the initial discharge capacity is high and the cycle characteristics are excellent, the maximum heat generation peak height is as high as 7.0 cal / sec / g. The thermal stability was not good.
In Comparative Example 4, nickel is mixed in the lithium layer of the lithium transition metal composite oxide, which is a layered compound, due to firing at a high temperature, and cation mixing occurs, and the specific surface area is small, so that the initial discharge capacity is significantly reduced. did. In addition, the maximum heat generation peak height is high.
In Comparative Example 5, since niobium was added by the coating method, the content of the alkali metal as an impurity was high, and therefore the cycle characteristics were lower than those of the examples.

安全性に優れていながら高い初期容量および優れたサイクル特性を有しているという本発明の非水系電解質二次電池のメリットを活かすためには、常に高容量・高寿命を要求される小型携帯電子機器の電源としての用途に好適である。また、電気自動車用の電源や定置型蓄電池においては、電池の大型化による安全性の確保の難しさと、より高度な安全性を確保するための高価な保護回路の装着は必要不可欠であるが、本発明のリチウムイオン二次電池は、優れた安全性を有しているために安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできるという点において、電気自動車用の電源や定置型蓄電池として好適である。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源として用い得る。 Small portable electronics that always require high capacity and long life in order to take advantage of the non-aqueous electrolyte secondary battery of the present invention, which has excellent safety, high initial capacity, and excellent cycle characteristics. It is suitable for use as a power source for equipment. In addition, in power supplies for electric vehicles and stationary storage batteries, it is indispensable to install an expensive protection circuit to ensure higher safety and difficulty in ensuring safety due to the increase in size of the battery. Since the lithium ion secondary battery of the present invention has excellent safety, not only the safety can be easily ensured, but also the expensive protection circuit can be simplified and the cost can be reduced. It is suitable as a power source for electric vehicles and a stationary storage battery. The power source for an electric vehicle can be used not only as a power source for an electric vehicle driven by purely electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal negative electrode 2 Separator (impregnated with electrolyte)
3 Positive electrode (evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (8)

一般式LiNi1-a-b-cCoaNb(但し、MはMn、V、Ti及びAlから選ばれる少なくとも1種の元素であり、0.03≦a≦0.35、0≦b≦0.10、0.001≦c≦0.05、0.95≦d≦1.20である。)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
少なくともニッケルとコバルトを含む混合水溶液にアルカリ水溶液を加えて晶析させ、一般式Ni1-a’-b’Coa’b’(OH)(但し、MはMn、V、Mg、Ti及びAlから選ばれる少なくとも1種の元素であり、0.03≦a’≦0.35、0≦b’≦0.10である。)で表されるニッケル含有水酸化物を得る晶析工程、
得られたニッケル含有水酸化物とリチウム化合物と平均粒径が0.1~10μmのニオブ化合物とを混合してリチウム混合物を得る混合工程および
該リチウム混合物を酸化雰囲気中700~840℃で焼成してリチウム遷移金属複合酸化物を得る焼成工程
を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。
General formula Li d Ni 1-ab-c Co a M b Nb c O 2 (where M is at least one element selected from Mn, V, Ti and Al, 0.03 ≦ a ≦ 0 .35, 0 ≦ b ≦ 0.10, 0.001 ≦ c ≦ 0.05, 0.95 ≦ d ≦ 1.20), and a lithium transition metal composed of particles having a polycrystalline structure. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery made of a composite oxide.
An alkaline aqueous solution is added to a mixed aqueous solution containing at least nickel and cobalt for crystallization, and the general formula Ni 1-a'-b'Co a'M b' ( OH) 2 (where M is Mn, V, Mg, Ti). And Al, which is at least one element and is represented by 0.03 ≤ a'≤ 0.35, 0 ≤ b'≤ 0.10), a crystallization step for obtaining a nickel-containing hydroxide. ,
A mixing step of mixing the obtained nickel-containing hydroxide, a lithium compound, and a niobium compound having an average particle size of 0.1 to 10 μm to obtain a lithium mixture, and firing the lithium mixture in an oxidizing atmosphere at 700 to 840 ° C. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises a firing step of obtaining a lithium transition metal composite oxide.
前記ニオブ化合物がニオブ酸または酸化ニオブであることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the niobium compound is niobium acid or niobium oxide. 前記混合工程の前に、105~800℃の温度でニッケル含有水酸化物を熱処理する熱処理工程を含むことを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質の製造方法。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the mixing step includes a heat treatment step of heat-treating the nickel-containing hydroxide at a temperature of 105 to 800 ° C. Production method. 前記焼成工程後に、リチウム遷移金属複合酸化物を、水1Lに対して100~2000g/Lの割合でスラリーとし、水洗する水洗工程を含むことを特徴とする請求項1~3のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 The invention according to any one of claims 1 to 3, wherein after the firing step, the lithium transition metal composite oxide is made into a slurry at a ratio of 100 to 2000 g / L with respect to 1 L of water, and the washing step is included. A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery. 前記リチウム遷移金属複合酸化物は、比表面積が0.9~3.0m/gであることを特徴とする請求項1~4のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the lithium transition metal composite oxide has a specific surface area of 0.9 to 3.0 m 2 / g. Manufacturing method. 前記リチウム遷移金属複合酸化物は、結晶子径が10~180nmであることを特徴とする請求項1~5のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the lithium transition metal composite oxide has a crystallite diameter of 10 to 180 nm. 前記リチウム遷移金属複合酸化物は、ニオブが固溶し、リチウム以外のアルカリ金属含有量が20質量ppm以下であることを特徴とする請求項1~6のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法The secondary non-aqueous electrolyte according to any one of claims 1 to 6, wherein the lithium transition metal composite oxide has a solid solution of niobium and a content of an alkali metal other than lithium of 20% by mass or less. A method for manufacturing a positive electrode active material for a battery. 請求項1~7のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法で製造された非水系電解質二次電池用正極活物質用いて正極を得ることと、
前記正極、負極、及び、非水系電解質を用いて非水系電解質二次電池を得ることと、
を備える、非水系電解質二次電池の製造方法。
Obtaining a positive electrode by using the positive electrode active material for a non-aqueous electrolyte secondary battery produced by the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7 .
Using the positive electrode, the negative electrode, and the non-aqueous electrolyte to obtain a non-aqueous electrolyte secondary battery,
A method for manufacturing a non-aqueous electrolyte secondary battery.
JP2019119021A 2013-11-22 2019-06-26 A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery. Active JP7001081B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013241871 2013-11-22
JP2013241871 2013-11-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014157345A Division JP6578634B2 (en) 2013-11-22 2014-08-01 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2019186220A JP2019186220A (en) 2019-10-24
JP7001081B2 true JP7001081B2 (en) 2022-01-19

Family

ID=53533738

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014157345A Active JP6578634B2 (en) 2013-11-22 2014-08-01 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2019119021A Active JP7001081B2 (en) 2013-11-22 2019-06-26 A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014157345A Active JP6578634B2 (en) 2013-11-22 2014-08-01 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (2) JP6578634B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578634B2 (en) * 2013-11-22 2019-09-25 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6200533B2 (en) * 2016-02-25 2017-09-20 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery
JP2017199591A (en) * 2016-04-28 2017-11-02 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
KR102446217B1 (en) 2016-08-31 2022-09-22 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US11735726B2 (en) 2016-12-26 2023-08-22 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6996198B2 (en) 2017-09-28 2022-01-17 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR102178876B1 (en) * 2017-10-20 2020-11-13 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery and secondary battery using the same
JP7110611B2 (en) 2018-02-06 2022-08-02 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6888588B2 (en) 2018-06-26 2021-06-16 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7354611B2 (en) 2019-06-25 2023-10-03 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN113994508B (en) * 2019-06-28 2024-10-18 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
US20220231292A1 (en) * 2019-06-28 2022-07-21 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
JPWO2021019943A1 (en) * 2019-07-30 2021-02-04
US12119492B2 (en) 2020-07-30 2024-10-15 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for all-solid-state lithium ion secondary battery and method for manufacturing the same
JP7157219B1 (en) 2021-08-03 2022-10-19 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323143A (en) 1999-04-30 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and lithium secondary battery using it
WO2001092158A1 (en) 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
JP2003068298A (en) 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2005339970A (en) 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2006151707A (en) 2004-11-25 2006-06-15 Mitsubishi Chemicals Corp Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP2009140787A (en) 2007-12-07 2009-06-25 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery employing the same
JP2011082150A (en) 2009-09-09 2011-04-21 Hitachi Maxell Ltd Electrode for electrochemical element and electrochemical element using the same
JP2011187435A (en) 2010-02-09 2011-09-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013026199A (en) 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the same
JP2013134822A (en) 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Positive electrode active material for nonaqueous secondary battery and nonaqueous lithium secondary battery
JP2015122298A (en) 2013-11-22 2015-07-02 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233352B2 (en) * 1998-12-24 2001-11-26 株式会社東芝 Manufacturing method of non-aqueous solvent secondary battery
JP2006127923A (en) * 2004-10-29 2006-05-18 Shin Kobe Electric Mach Co Ltd Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5061437B2 (en) * 2005-08-26 2012-10-31 ソニー株式会社 Lithium ion secondary battery
JP5730676B2 (en) * 2011-06-06 2015-06-10 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same, and nickel cobalt manganese composite hydroxide and method for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323143A (en) 1999-04-30 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and lithium secondary battery using it
WO2001092158A1 (en) 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
JP2003068298A (en) 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2005339970A (en) 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2006151707A (en) 2004-11-25 2006-06-15 Mitsubishi Chemicals Corp Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP2009140787A (en) 2007-12-07 2009-06-25 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery employing the same
JP2011082150A (en) 2009-09-09 2011-04-21 Hitachi Maxell Ltd Electrode for electrochemical element and electrochemical element using the same
JP2011187435A (en) 2010-02-09 2011-09-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013026199A (en) 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the same
JP2013134822A (en) 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Positive electrode active material for nonaqueous secondary battery and nonaqueous lithium secondary battery
JP2015122298A (en) 2013-11-22 2015-07-02 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof

Also Published As

Publication number Publication date
JP2015122298A (en) 2015-07-02
JP6578634B2 (en) 2019-09-25
JP2019186220A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7001081B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP7001082B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP7070418B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP7176412B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7135856B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7135855B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2011116580A5 (en)
JP6996198B2 (en) Manufacturing method of positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2019155919A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for preparing same, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020027158A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6536658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP2019021610A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP7197825B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5354112B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7001081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150