JP2017199591A - Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof - Google Patents
Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof Download PDFInfo
- Publication number
- JP2017199591A JP2017199591A JP2016090194A JP2016090194A JP2017199591A JP 2017199591 A JP2017199591 A JP 2017199591A JP 2016090194 A JP2016090194 A JP 2016090194A JP 2016090194 A JP2016090194 A JP 2016090194A JP 2017199591 A JP2017199591 A JP 2017199591A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- compound
- material particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解質二次電池用の正極活物質粒子及びその製造方法、並びにそれを用いた非水電解質二次電池に関し、特に、繰り返しの充放電に対して、劣化が少ない安定な充放電を行うことができる正極活物質粒子及びその製造方法、並びにそれを用いた非水電解質二次電池に関する。 The present invention relates to positive electrode active material particles for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same, and more particularly to stable charging with little deterioration against repeated charge and discharge. The present invention relates to positive electrode active material particles capable of discharging, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same.
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型電源の用途のために耐久特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、繰り返しの充放電寿命及び出力特性に優れるリチウムイオン二次電池が注目されている。 In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put to practical use, and there is an increasing demand for lithium ion secondary batteries having excellent durability characteristics for large power supply applications. Under such circumstances, a lithium ion secondary battery having excellent repeated charge / discharge life and output characteristics has been attracting attention.
このような要求を満たすために、通常、充放電中のLiイオンの挿入脱離に伴う、電極活物質と電解液の界面反応を制御する手段が採られている。その一例が活物質の各種表面処理であり、その効果は実証されている。 In order to satisfy such a requirement, means for controlling the interfacial reaction between the electrode active material and the electrolytic solution that accompanies insertion / extraction of Li ions during charging / discharging is usually employed. One example is various surface treatments of the active material, and its effect has been proven.
また、活物質の出力や耐久性を向上させる目的で、活物質の結晶子を微細化し、且つ、それらの凝集体を挙動単位とした二次粒子状の粒子設計が主流となり、それによる効果も実証されている。しかしながら、このような二次粒子を挙動単位とする活物質に特有な問題として、充放電中の凝集形態の崩壊、すなわち粒界を起点とした挙動粒子の割れを挙げることができる。このような割れは導電パスの減少や電極密度の低下を招き、ひいては電池特性の急激な低下を招くものである。したがって、より一層の性能向上のためには、このような結晶界面の剥離等により、徐々にその特性が損なわれるという問題を解決する必要がある。 In addition, for the purpose of improving the output and durability of the active material, secondary particle design with finer crystallites of the active material and a behavioral unit of those aggregates has become the mainstream, and the effect of this is also the mainstream. Proven. However, a problem peculiar to an active material having such secondary particles as a behavioral unit is the collapse of aggregated forms during charge and discharge, that is, cracking of behavioral particles starting from grain boundaries. Such cracks lead to a decrease in conductive paths and a decrease in electrode density, which in turn leads to a rapid decrease in battery characteristics. Therefore, in order to further improve the performance, it is necessary to solve the problem that the characteristics are gradually impaired due to such peeling of the crystal interface.
このような問題を解決するために、二次粒子を挙動単位とする粒子において、元素のドーピングや、挙動単位の内部に形成される結晶粒界の組成制御に着目し報告されている。 In order to solve such a problem, it has been reported focusing on elemental doping and composition control of crystal grain boundaries formed inside the behavior unit in the particles having secondary particles as the behavior unit.
例えば、Niを有する層状酸化物正極活物質の例としては、粒界にTiを存在させるもの(特許文献1)、粒界にNbを存在させるもの(特許文献2)、Ti、Zr、Hf、Si、Ge、Snの少なくとも一種の元素を含む化合物をドーピングさせるもの(特許文献3)などが挙げられる。 For example, examples of the layered oxide positive electrode active material having Ni include those in which Ti is present at the grain boundaries (Patent Document 1), those in which Nb is present at the grain boundaries (Patent Document 2), Ti, Zr, Hf, Examples thereof include a material doped with a compound containing at least one element of Si, Ge, and Sn (Patent Document 3).
しかしながら、前記特許文献1〜3は、電池寿命の改善を目的として、粒界の割れを抑制することを開示するものではなく、また、たとえ該特許文献1〜3に記載の方法を用いてもこれらの方法のみでは、正極活物質の性能を十分に向上することができず、繰り返しの充放電に対して、劣化が少ない安定な充放電を十分に行うことができる正極を得ることは困難である。
本発明は、前記の問題に鑑みてなされたものであり、その目的は、上記のような粒界の割れやその成長を抑制できるようにして、繰り返しの充放電に対してより劣化の少ない安定な充放電を行うことができる正極活物質粒子を得て、電池の長寿命化を可能とすることにある。
However, Patent Documents 1 to 3 do not disclose suppression of grain boundary cracking for the purpose of improving battery life, and even if the methods described in Patent Documents 1 to 3 are used. These methods alone cannot sufficiently improve the performance of the positive electrode active material, and it is difficult to obtain a positive electrode that can sufficiently perform stable charge and discharge with little deterioration against repeated charge and discharge. is there.
The present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the above-described grain boundary cracking and growth, and to reduce stability with respect to repeated charge and discharge. It is to obtain positive electrode active material particles that can be charged and discharged and to extend the life of the battery.
前記の目的を達成するために、本発明者らは、鋭意研究した結果、正極活物質粒子を用いて組んだ電池において、正極活物質粒子の結晶面に関するWilliamson−Hallプロットの傾きが4.3V初期充電前後で変化が小さいほど、サイクル試験を行った際に粒子割れが起こり難いことを見出して本発明に至った。 In order to achieve the above object, the present inventors have conducted intensive research. As a result, in the battery assembled using the positive electrode active material particles, the slope of the Williamson-Hall plot with respect to the crystal plane of the positive electrode active material particles is 4.3 V. It was found that the smaller the change before and after the initial charge, the less likely the particle cracking occurred when the cycle test was performed, and the present invention was reached.
具体的に、本発明に係る正極活物質粒子は、層状岩塩構造を有し、一般式が、Lia(NixCoyAlzMn1−x―y―zMb)O2(1.0≦a≦1.15、0<x≦1、0<y≦1、0<x+y≦1、0≦z≦0.05、0≦b≦0.05、MはMg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、Nb又はW)で表されるリチウム遷移金属層状酸化物からなる正極活物質粒子であって、該正極活物質粒子を正極に用いて、負極をLiとして2032サイズのコインセルを組んで、初期充電前の前記正極活物質粒子におけるXRD回折により得られた結晶面に関するWilliamson−Hallプロットの傾きをaとし、4.3Vまで初期充電をした後の前記傾きをbとしたときに、(b−a)/aで算出される変化量が10.5以下であることを特徴とする。 Specifically, the positive electrode active material particles according to the present invention has a layered rock salt structure, general formula, Li a (Ni x Co y Al z Mn 1-x-y-z M b) O 2 (1. 0 ≦ a ≦ 1.15, 0 <x ≦ 1, 0 <y ≦ 1, 0 <x + y ≦ 1, 0 ≦ z ≦ 0.05, 0 ≦ b ≦ 0.05, M is Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb or W) positive electrode active material particles made of a lithium transition metal layered oxide, the positive electrode active material particles being used as a positive electrode Using a 2032 size coin cell with Li as the negative electrode, the initial charge up to 4.3V, assuming the slope of the Williamson-Hall plot for the crystal plane obtained by XRD diffraction in the positive electrode active material particles before initial charge as a. (B−a) / a where b is the inclination after The amount of change calculated in (1) is 10.5 or less.
本発明に係る正極活物質粒子によると、該粒子のWilliamson−Hallプロットの傾きが4.3Vまでの初期充電前後でその変化量が10.5以下と小さいため、上述のとおり、正極活物質粒子において粒子割れが起こり難く、そのため繰り返しの充放電に対してより劣化の少ない安定な充放電を行うことができる。その結果、電池の長寿命化を可能にする。 According to the positive electrode active material particles according to the present invention, since the change amount of the Williamson-Hall plot of the particles before and after the initial charge up to 4.3 V is as small as 10.5 or less, as described above, the positive electrode active material particles In this case, particle cracking is difficult to occur, and therefore stable charge / discharge with less deterioration can be performed with respect to repeated charge / discharge. As a result, the battery life can be extended.
本発明に係る非水電解質二次電池は、上記正極活物質粒子を用いていることを特徴とする。 The nonaqueous electrolyte secondary battery according to the present invention is characterized by using the positive electrode active material particles.
本発明に係る非水電解質二次電池によると、上記本発明に係る正極活物質粒子を用いているため、サイクル試験に対してより劣化の少なく安定であり、電池の長寿命化を可能にする。 According to the non-aqueous electrolyte secondary battery according to the present invention, since the positive electrode active material particles according to the present invention are used, the deterioration is more stable with respect to the cycle test, and the battery life can be extended. .
本発明に係る正極活物質粒子の製造方法は、上記正極活物質粒子を製造する方法であって、Ni化合物とCo化合物と、任意にAl化合物及びMn化合物の少なくとも一方とM元素を同時に共沈させることによりNiとCoと、任意にAl及びMnの少なくとも一方とを主成分とする複合化合物前駆体を得るステップと、前駆体にリチウム化合物をLi/(Ni+Co+Al+Mn+M)のモル比率が1.00以上1.15以下の範囲となるように混合して混合物を得るステップと、混合物を酸化性雰囲気において700℃以上950℃以下で焼成するステップとを備えていることを特徴とする。 A method for producing positive electrode active material particles according to the present invention is a method for producing the positive electrode active material particles, wherein a Ni compound and a Co compound, optionally at least one of an Al compound and a Mn compound, and an M element are co-precipitated simultaneously. A step of obtaining a composite compound precursor comprising Ni and Co and optionally at least one of Al and Mn as main components, and a lithium compound as a precursor having a molar ratio of Li / (Ni + Co + Al + Mn + M) of 1.00 or more 1. A step of mixing to obtain a range of 1.15 or less to obtain a mixture, and a step of baking the mixture at 700 ° C. to 950 ° C. in an oxidizing atmosphere.
本発明に係る正極活物質粒子の製造方法によると、上述のような、4.3Vまでの初期充電前後のWilliamson−Hallプロットの傾きの変化量が10.5以下である正極活物質粒子を得ることができる。すなわち、繰り返しの充放電に対してより劣化の少ない安定な充放電を行うことができる。その結果、電池の長寿命化を可能にする正極活物質粒子を得ることができる。 According to the method for producing positive electrode active material particles according to the present invention, positive electrode active material particles having a change amount of the slope of the Williamson-Hall plot before and after initial charging up to 4.3 V as described above are 10.5 or less. be able to. That is, stable charge / discharge with less deterioration can be performed with respect to repeated charge / discharge. As a result, positive electrode active material particles that can extend the life of the battery can be obtained.
本発明に係る正極活物質粒子の製造方法は、前駆体を得るステップにおいて、Mg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、Nb及びWのうちの複数、若しくはいずれかの金属成分を含む化合物を、前記Ni化合物とCo化合物と、任意にAl化合物及びMn化合物の少なくとも一方と共に、共沈反応させて複合化合物前駆体を得てもよい。 The positive electrode active material particle manufacturing method according to the present invention includes Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, and W in the step of obtaining a precursor. A composite compound precursor may be obtained by co-precipitation of a compound containing a plurality of or any one of the metal components together with the Ni compound, the Co compound, and optionally at least one of the Al compound and the Mn compound.
また、この代わりに、混合物を得るステップにおいて、前記前駆体に前記リチウム化合物と共にMg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、Nb及びWのうちの複数、若しくはいずれかの金属成分を含む化合物を混合してもよい。 Alternatively, in the step of obtaining a mixture, the precursor includes Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb and W together with the lithium compound. A compound containing a plurality of or any metal component may be mixed.
これらの方法を用いることにより、サイクル特性による粒界の割れを抑制でき、結果、繰り返しの充放電に対して劣化が少なく、より安定な充放電が可能な正極活物質粒子を得ることができる。 By using these methods, it is possible to suppress grain boundary cracking due to cycle characteristics, and as a result, it is possible to obtain positive electrode active material particles that are less susceptible to repeated charge / discharge and can be more stably charged / discharged.
本発明に係る正極活物質粒子及びその製造方法によると、その粒子における粒界の割れやその成長を抑制できるため、繰り返しの充放電に対して劣化が少ない安定な充放電を行うことを可能とする正極活物質粒子を得ることができる。また、本発明に係る非水電解質二次電池によると、上記本発明に係る正極活物質粒子を用いているため、長寿命化を可能とする。 According to the positive electrode active material particle and the method for producing the same according to the present invention, it is possible to perform stable charge and discharge with little deterioration with respect to repeated charge and discharge because cracks and growth of grain boundaries in the particle can be suppressed. Positive electrode active material particles can be obtained. Moreover, according to the nonaqueous electrolyte secondary battery according to the present invention, since the positive electrode active material particles according to the present invention are used, it is possible to extend the life.
更に、本発明にあるWilliamson−hallプロットの変化量を見ることにより、サイクル試験を行わずとも、サイクル特性の優劣を見定めることができ、測定方法としても有用である。 Furthermore, by looking at the amount of change in the Williamson-hall plot in the present invention, it is possible to determine the superiority or inferiority of the cycle characteristics without performing a cycle test, which is also useful as a measurement method.
以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。 Hereinafter, modes for carrying out the present invention will be described. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its method of application, or its application.
まず、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子について説明する。 First, the positive electrode active material particles for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described.
本実施形態に係る正極活物質粒子は、Lia(NixCoyAlzMn1−x―y―zMb)O2(1.0≦a≦1.15、0<x≦1、0<y≦1、0<x+y≦1、0≦z≦0.05、0≦b≦0.05、MはMg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、Nb又はW)で表されるリチウム遷移金属層状酸化物からなる。 The positive electrode active material particles according to the present embodiment include Li a (Ni x Co y Al z Mn 1-xyz M b ) O 2 (1.0 ≦ a ≦ 1.15, 0 <x ≦ 1, 0 <y ≦ 1, 0 <x + y ≦ 1, 0 ≦ z ≦ 0.05, 0 ≦ b ≦ 0.05, M is Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, It consists of a lithium transition metal layered oxide represented by Mo, Sc, Nb or W).
本実施形態に係る正極活物質粒子のより好ましい組成は、Lia(NixCoyAlzMn1−x―y―zMb)O2において、aの範囲は1.00≦a≦1.10であり、xの範囲が0.05≦x≦0.5、yの範囲が0.1≦y≦0.4である。 A more preferable composition of the positive electrode active material particles according to the present embodiment is Li a (Ni x Co y Al z Mn 1-xyz M b ) O 2 , and the range of a is 1.00 ≦ a ≦ 1. .10, the range of x is 0.05 ≦ x ≦ 0.5, and the range of y is 0.1 ≦ y ≦ 0.4.
上記リチウム遷移金属層状酸化物は、例えばLiMn2O4スピネル酸化物のような全率固溶体とは異なり、Liの固溶領域が極めて小さい。このため、当該層状酸化物の合成直後の結晶中におけるLiと遷移元素との比(Li/Me)は1.0から大きく外れることはない。また、本実施形態において、正極活物質粒子は、例えば結晶子サイズが100nm〜600nmであり、一次粒子の集合体である凝集二次粒子によって形成されるため、粒子内には結晶粒界が存在する。 The lithium transition metal layered oxide has a very small solid solution region of Li unlike a full solid solution such as LiMn 2 O 4 spinel oxide. For this reason, the ratio of Li to the transition element (Li / Me) in the crystal immediately after the synthesis of the layered oxide does not greatly deviate from 1.0. Further, in the present embodiment, the positive electrode active material particles have a crystallite size of, for example, 100 nm to 600 nm and are formed by aggregated secondary particles that are aggregates of primary particles, and therefore there are crystal grain boundaries in the particles. To do.
本実施形態に係る正極活物質粒子は、上述のとおり、Mg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、Nb及びWの異種金属を含有することが好ましいが、その含有形態は結晶格子における主要元素と置換して存在していてもよく、また、二次粒子の粒界に存在していてもよい。 As described above, the positive electrode active material particles according to the present embodiment contain different kinds of metals such as Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, Nb, and W. Although preferable, the inclusion form may exist by substituting for the main element in the crystal lattice, or may exist at the grain boundary of the secondary particles.
また、本実施形態に係る正極活物質粒子は、該正極活物質粒子を正極に用いて、負極をLiとして2032サイズのコインセルを組んで、25℃の恒温槽内において、カットオフ電圧を4.3Vとしたときの初期充電を充電レート0.1C(CC−CV)の条件で充電をした。該充電前の正極活物質粒子粉末の電極のXRD回折によるWilliamson−Hallプロットの傾きをaとし、4.3Vまで充電を行った後に、該正極活物質粒子粉末を用いた電池を分解して、DMCで洗浄した電極のXRD回折におけるWilliamson−Hallプロットの傾きをbとしたときに、(b−a)/aで算出される変化量が10.5以下である。Williamson−Hallプロットとは、粒子に対するXRD回折において、各ピークにおける半値幅βとピークが見られる2θ/θについて横軸にsinθ、縦軸にβcosθとしたグラフにプロットし、得られた直線の傾きが結晶歪みを表し、切片が結晶子サイズを表す手法をいう。特に本発明では、例えば(101)面、(102)面、(104)面、(105)面、(107)面等についてプロットし、それらの点について、最小二乗法を用いて、近似直線を導出し、該直線の傾きを算出する。 In addition, the positive electrode active material particles according to the present embodiment are formed by using a positive electrode active material particle as a positive electrode, assembling a 2032 size coin cell with Li as a negative electrode, and a cutoff voltage of 4. The initial charge when set to 3 V was charged under the condition of a charge rate of 0.1 C (CC-CV). The slope of the Williamson-Hall plot by XRD diffraction of the electrode of the positive electrode active material particle powder before charging is a, and after charging to 4.3 V, the battery using the positive electrode active material particle powder is disassembled, When the slope of the Williamson-Hall plot in the XRD diffraction of the electrode cleaned with DMC is b, the amount of change calculated by (b−a) / a is 10.5 or less. The Williamson-Hall plot is the slope of the straight line obtained by plotting the full width at half maximum at each peak and 2θ / θ in which XRD diffraction is observed on a particle with sin θ on the horizontal axis and β cos θ on the vertical axis. Represents a crystal strain and a section represents a crystallite size. In particular, in the present invention, for example, the (101) plane, the (102) plane, the (104) plane, the (105) plane, the (107) plane, etc. are plotted, and an approximate straight line is obtained for these points using the least square method. Deriving and calculating the slope of the straight line.
本発明者らは、Willamson−Hollプロットにより得られる結晶歪みを示す上記傾き値(以下WH値という)が正極活物質粒子の特性悪化の指標となることを見出した。具体的に、正極活物質粒子を用いた電池に対して4.3V初期充電前後でのWH値の変化量が大きくなり、その大きさが大きいほど、サイクル試験を行った際に正極活物質粒子における凝集粒子内の粒界に割れができ、その結果サイクル特性が悪化することを見出した(図2)。そのためWH値の変化量が顕著に大きくならない正極活物質粒子を得ることは、高サイクル特性である正極活物質粒子得ることと同義となる。特に本実施形態に係る正極活物質粒子において、初期のWH値(a)と4.3Vの初期充電後のWH値(b)の変化量(b−a)/aは10.5以下であり、好ましくは10.0以下である。 The inventors of the present invention have found that the slope value (hereinafter referred to as WH value) indicating the crystal distortion obtained by the Willamson-Holl plot is an indicator of deterioration of the characteristics of the positive electrode active material particles. Specifically, the amount of change in the WH value before and after 4.3 V initial charging is larger with respect to the battery using the positive electrode active material particles, and the larger the magnitude, the higher the positive electrode active material particles in the cycle test. It was found that cracks were formed at the grain boundaries in the agglomerated particles, and as a result, the cycle characteristics deteriorated (FIG. 2). Therefore, obtaining positive electrode active material particles whose change in WH value is not significantly increased is synonymous with obtaining positive electrode active material particles having high cycle characteristics. In particular, in the positive electrode active material particles according to the present embodiment, the amount of change (ba) / a between the initial WH value (a) and the WH value (b) after the initial charge of 4.3 V is 10.5 or less. , Preferably 10.0 or less.
また、本実施形態に係る正極活物質粒子の平均二次粒子径は3.0μm〜20μmが好ましい。上限値が20μmを超える場合、充放電に伴うLiの拡散が阻害され電池の入出力低下の要因となる。下限値は3.0μmが好ましい。これを下回る場合、活物質と電解液界面が増加し、好ましくない副反応の増加につながる。より好ましい平均二次粒子径は4.0μm〜19μmである。 Moreover, the average secondary particle diameter of the positive electrode active material particles according to the present embodiment is preferably 3.0 μm to 20 μm. When the upper limit exceeds 20 μm, the diffusion of Li accompanying charge / discharge is hindered, causing a decrease in input / output of the battery. The lower limit is preferably 3.0 μm. Below this, the active material / electrolyte interface increases, leading to an increase in undesirable side reactions. A more preferable average secondary particle diameter is 4.0 μm to 19 μm.
次に、本発明の一実施形態に係る正極活物質粒子の製造方法について述べる。 Next, the manufacturing method of the positive electrode active material particle which concerns on one Embodiment of this invention is described.
まず、最適なpH値に調整した水溶液にコバルト、ニッケル、マンガンの混合硫酸水溶液を、連続的に供給することで湿式共沈反応させて、前駆体としての球状のニッケル・コバルト・マンガン系複合化合物粒子を得る。このニッケル・コバルト・マンガン系複合化合物粒子は複合化合物であることが好ましい。次いで、この前駆体とリチウム化合物とを、モル比でLi/(Ni+Co+Mn)を所定の範囲、例えば1.00〜1.15程度とした混合物を得、これを酸化性雰囲気下で600℃〜950℃にて焼成する。尚、この焼成後の冷却途中、もしくは一旦冷却した後に酸化性雰囲気下で500℃〜750℃にてアニールを行うことが好ましい。このアニールを行うことで結晶構造の歪みを小さくすることができる。 First, a spherical nickel-cobalt-manganese composite compound as a precursor is prepared by a wet coprecipitation reaction by continuously supplying a mixed sulfuric acid aqueous solution of cobalt, nickel, and manganese to an aqueous solution adjusted to an optimum pH value. Get particles. The nickel / cobalt / manganese composite compound particles are preferably a composite compound. Next, a mixture in which the precursor and the lithium compound have a molar ratio of Li / (Ni + Co + Mn) in a predetermined range, for example, about 1.00 to 1.15, is obtained, and this mixture is obtained at 600 ° C. to 950 in an oxidizing atmosphere. Bake at ℃. In addition, it is preferable to anneal at 500 ° C. to 750 ° C. in an oxidizing atmosphere during the cooling after the firing or after the cooling. By performing this annealing, the distortion of the crystal structure can be reduced.
本実施形態に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、及び酸化リチウムなどが挙げられる。 The lithium compound used in the present embodiment is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, Examples include lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide.
本実施形態では、Mg、P、Ca、Ti、Y、Sn、Bi、Ce、Zr、La、Mo、Sc、W等の異種金属を添加してもよく、その添加時期については上記湿式共沈反応時であってもよく、又はその後の乾式混合によって添加してもよく、特に制限されない。 In the present embodiment, different metals such as Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Mo, Sc, and W may be added. It may be at the time of reaction or may be added by subsequent dry mixing, and is not particularly limited.
得られた該複合化合物粒子は、結晶子サイズが100nm〜600nm、平均二次粒子径が3μm〜20μm、BET法による比表面積が0.15m2/g〜1.0m2/gとなるように調製されることが好ましく、場合によっては粉砕等の処理を行っても構わない。 It obtained the complex compound particles, crystallite size 100 nm to 600 nm, as an average secondary particle size 3Myuemu~20myuemu, the specific surface area by the BET method becomes 0.15m 2 /g~1.0m 2 / g It is preferable to be prepared, and in some cases, a treatment such as pulverization may be performed.
本実施形態において、前駆体とLi化合物との混合物におけるLi/(Ni+Co+Mn)比は、モル比で1.00〜1.15である。Li/(Ni+Co+Mn)比が1.00よりも小さい場合、結晶構造のLiサイトにNiが混入し、単一結晶相が得られず、電池性能の低下要因になる。Li/(Ni+Co+Mn)比が1.15よりも大きい場合には、量論組成よりも過剰分のLiが抵抗成分の要因となり電池性能の低下を引き起こす。より好ましいLi/(Ni+Co+Mn)比はモル比で1.02〜1.12であり、更により好ましくは1.02〜1.08である。 In this embodiment, the Li / (Ni + Co + Mn) ratio in the mixture of the precursor and the Li compound is 1.00 to 1.15 in molar ratio. When the Li / (Ni + Co + Mn) ratio is smaller than 1.00, Ni is mixed into the Li site of the crystal structure, and a single crystal phase cannot be obtained, which causes a decrease in battery performance. When the Li / (Ni + Co + Mn) ratio is larger than 1.15, an excess amount of Li than the stoichiometric composition becomes a factor of the resistance component and causes a decrease in battery performance. A more preferable Li / (Ni + Co + Mn) ratio is 1.02-1.12 in terms of molar ratio, and even more preferably 1.02-1.08.
混合物を焼成する際の雰囲気は酸化性雰囲気であり、好ましい酸素含有量は20vol%以上である。酸素含有量が前記範囲を下回る場合、Liイオンが遷移金属サイトに混入し、電池性能の低下につながる。酸素含有率の上限は特に制限されない。 The atmosphere for firing the mixture is an oxidizing atmosphere, and the preferred oxygen content is 20 vol% or more. When the oxygen content is below the above range, Li ions are mixed into the transition metal site, leading to a decrease in battery performance. The upper limit of the oxygen content is not particularly limited.
焼成温度は700℃〜950℃が好ましい。焼成温度が700℃を下回る場合、元素の拡散エネルギーが不足するため、目的とする熱平衡状態の結晶構造に到達することが出来ず、単層を得ることが出来ない。また、焼成温度が950℃を上回る場合、遷移金属の還元による結晶の酸素欠損が生じ、目的とする結晶構造の単層を得ることが出来ない。 The firing temperature is preferably 700 ° C to 950 ° C. When the firing temperature is lower than 700 ° C., the diffusion energy of the element is insufficient, so that the target crystal structure in a thermal equilibrium state cannot be reached and a single layer cannot be obtained. On the other hand, when the firing temperature exceeds 950 ° C., oxygen vacancies in the crystal due to reduction of the transition metal occur, and a single layer having the target crystal structure cannot be obtained.
焼成後にアニール処理する際には500℃〜750℃の温度範囲が好ましく、雰囲気は酸化性雰囲気が好ましい。アニール温度が500℃未満の場合には、元素の拡散エネルギーが不足するため、粒界の余剰リチウムを結晶内に拡散することが出来ないため、目的とする組成変動を低減できない。アニール温度が750℃を超える場合には、酸素の活性が不足し、不純物相である遷移金属の岩塩構造酸化物が生成する。より好ましいアニール温度は550℃〜730℃、更により好ましくは580℃〜700℃である。アニールを行うことで、該正極活物質粒子の結晶構造の歪みを小さくすることができる。 When annealing after firing, a temperature range of 500 ° C. to 750 ° C. is preferable, and the atmosphere is preferably an oxidizing atmosphere. When the annealing temperature is less than 500 ° C., the diffusion energy of the element is insufficient, so that excess lithium at the grain boundary cannot be diffused into the crystal, so that the intended composition variation cannot be reduced. When the annealing temperature exceeds 750 ° C., the oxygen activity is insufficient, and a transition metal rock salt structure oxide which is an impurity phase is generated. A more preferable annealing temperature is 550 ° C to 730 ° C, and still more preferably 580 ° C to 700 ° C. By performing the annealing, the distortion of the crystal structure of the positive electrode active material particles can be reduced.
なお、以上では、z=0の場合、すなわちAlが含まれていない場合について説明したが、当然にAlやM元素を追加して複合酸化物を製造しても構わない。その場合、AlやM元素もNi、Co及びMnと同時に共沈させることが出来る。 In the above description, the case where z = 0, that is, the case where Al is not included has been described. Naturally, a complex oxide may be manufactured by adding Al or M element. In that case, Al and M elements can be coprecipitated simultaneously with Ni, Co and Mn.
上記本実施形態の製造方法によると、Ni化合物とCo化合物と、任意にAl化合物及びMn化合物の少なくとも一方とM元素とを同時に共沈させて、所定の原料組成比の前駆体を得た後に、所定の原料組成比を有するLiを含む混合物を所定の条件で焼成、熱処理することによって、電池に用いた場合に該電池の上記4.3Vまでの初期充電前後のWH値の変化量が10.5以下の正極活物質粒子を得ることができる。
若しくは、Ni化合物とCo化合物と、任意にAl化合物及びMn化合物の少なくとも一方を同時に共沈させて、所定の原料組成比の前駆体を得た後に、所定の原料組成比を有するLiとM元素を含む混合物を所定の条件で焼成、熱処理することによって、電池に用いた場合に該電池の上記初期充電前後のWH値の変化量が10.5以下の正極活物質粒子を得ることができる。
According to the manufacturing method of the present embodiment, after a Ni compound, a Co compound, and optionally at least one of an Al compound and a Mn compound, and an M element are simultaneously coprecipitated, a precursor having a predetermined raw material composition ratio is obtained. When the mixture containing Li having a predetermined raw material composition ratio is fired and heat-treated under predetermined conditions, the amount of change in the WH value before and after the initial charge of the battery up to 4.3 V is 10 when the battery is used. The positive electrode active material particles of .5 or less can be obtained.
Alternatively, at least one of an Ni compound, a Co compound, and optionally an Al compound and an Mn compound is simultaneously coprecipitated to obtain a precursor having a predetermined raw material composition ratio, and then Li and M elements having a predetermined raw material composition ratio When the mixture containing is baked and heat-treated under predetermined conditions, positive electrode active material particles having a change in WH value before and after the initial charge of the battery of 10.5 or less can be obtained.
次に、本発明の一実施形態に係る非水電解質二次電池について述べる。 Next, a nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described.
本発明に係る非水電解質二次電池は、前記正極合剤を含む正極、負極及び電解質から構成される。 The nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode including the positive electrode mixture, a negative electrode, and an electrolyte.
本発明における正極合剤としては、特に限定されるものではないが、たとえば活物質:導電剤:バインダーの比率が90:6:4で混練することで得られる。 Although it does not specifically limit as a positive electrode mixture in this invention, For example, it can obtain by knead | mixing by the ratio of active material: conductive agent: binder 90: 6: 4.
負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、ケイ素、ケイ素/カーボン複合体、グラファイト等を用いることができる。 As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, silicon, silicon / carbon composite, graphite, or the like can be used.
また、電解液の溶媒としては、炭酸エチレン(EC)と炭酸ジエチル(DEC)の組み合わせ以外に、炭酸プロピレン(PC)、炭酸ジメチル(DMC)等を基本構造としたカーボネート類や、ジメトキシエタン(DME)等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。 In addition to the combination of ethylene carbonate (EC) and diethyl carbonate (DEC), the solvent for the electrolyte solution includes carbonates having a basic structure of propylene carbonate (PC), dimethyl carbonate (DMC), etc., and dimethoxyethane (DME). An organic solvent containing at least one kind of ether such as) can be used.
さらに、電解質としては、六フッ化リン酸リチウム(LiPF6)以外に、過塩素酸リチウム(LiClO4)、四フッ化ホウ酸リチウム(LiBF4)等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。 Further, as the electrolyte, in addition to lithium hexafluorophosphate (LiPF 6 ), at least one lithium salt such as lithium perchlorate (LiClO 4 ) or lithium tetrafluoroborate (LiBF 4 ) is used as the solvent. It can be used by dissolving.
<作用>
本発明において重要なことは、本発明に係る正極活物質を用いた非水電解質二次電池は、低温から高温までのサイクル特性において、容量劣化が少ない安定な充放電を行うことができるという点である。
<Action>
What is important in the present invention is that the nonaqueous electrolyte secondary battery using the positive electrode active material according to the present invention can perform stable charge and discharge with little capacity deterioration in cycle characteristics from low temperature to high temperature. It is.
本発明においては、凝集二次粒子を挙動単位とするリチウム遷移金属酸化物である正極活物質粒子は、繰り返し充放電において、該粒子の結晶歪みが小さいことを特徴とする。具体的に本発明の正極活物質粒子では、4.3Vまで初期充電を行った後のWH値と充電前のWH値との変化量が小さく、すなわち結晶歪みの発生を抑制できることが分かる。その結果、粒界での割れが抑制され、サイクル特性による電池容量劣化の低減ができることや、凝集粒子内での粒界の割れが小さくなることにより、電子電導パスやイオン電導パスが十分に機能し、電池特性の劣化を抑制できることがサイクル特性試験を行う前に判定することも出来る。
このように、本発明にかかる正極活物質粒子は、充電前後でのWH法による変化量が小さく、凝集粒子内に割れが少ないため、高安定性を有し、高サイクル特性である電池材料とすることできる。
In the present invention, positive electrode active material particles that are lithium transition metal oxides having aggregated secondary particles as behavioral units are characterized in that the crystal distortion of the particles is small during repeated charge and discharge. Specifically, it can be seen that in the positive electrode active material particles of the present invention, the amount of change between the WH value after initial charging to 4.3 V and the WH value before charging is small, that is, the occurrence of crystal distortion can be suppressed. As a result, cracks at the grain boundaries are suppressed, battery capacity deterioration due to cycle characteristics can be reduced, and cracks at the grain boundaries within the aggregated particles are reduced, so that the electron conduction path and ion conduction path function sufficiently. In addition, it can be determined before the cycle characteristic test that the deterioration of the battery characteristic can be suppressed.
Thus, since the positive electrode active material particles according to the present invention have a small amount of change by the WH method before and after charging and few cracks in the aggregated particles, the battery material has high stability and high cycle characteristics. Can do.
本発明の代表的な実施の形態は次の通りである。まず、本実施例における正極活物質粒子に対する各種測定方法について述べる。 A typical embodiment of the present invention is as follows. First, various measurement methods for the positive electrode active material particles in this example will be described.
正極活物質粒子の組成は、1.0gの試料を25mlの20%塩酸溶液中で加熱溶解させ、冷却後100mlメスフラスコに移し、純水を入れ調整液を作製し、測定にはICAP[Optima8300 (株)パーキンエルマー製]を用いて各元素を定量して決定した。 The composition of the positive electrode active material particles was prepared by dissolving 1.0 g of a sample in 25 ml of a 20% hydrochloric acid solution by heating, transferring to a 100 ml volumetric flask after cooling, preparing pure water by adding pure water, and measuring the ICAP [Optima 8300. Each element was quantified and determined using Perkin Elmer Co., Ltd.].
Williamson−Hallプロットによる傾きを算出するための手法は、上記した電極作製方法により作製された電極の使用と、後述するサイクル特性試験が終了したコインセル内の電極をX線回折装置[SmartLab (株)リガク製]にて、2θ/θが10°〜120°の範囲を、0.02°刻みで1.2°/minステップスキャンで行った。 The technique for calculating the slope according to the Williamson-Hall plot is based on the use of an electrode produced by the above-described electrode production method, and an electrode in a coin cell after completion of a cycle characteristic test described later using an X-ray diffractometer [SmartLab Co., Ltd. Made by Rigaku], 2θ / θ was in the range of 10 ° to 120 ° by a step scan of 1.2 ° / min in increments of 0.02 °.
本発明に係る正極合剤の繰り返し充放電特性測定(サイクル特性試験)については、2032サイズのコインセルを用い、60℃の恒温槽内で、電圧が3.0V−4.3Vの範囲で充電レート1.0C(CC−CV)、放電レート1.0C(CC)の条件で501サイクル行い、1サイクル目と501サイクル目の電池容量の比を算出した。 For repeated charge / discharge characteristic measurement (cycle characteristic test) of the positive electrode material mixture according to the present invention, a charge rate in a range of 3.0V-4.3V in a constant temperature bath at 60 ° C. using a 2032 size coin cell. 501 cycles were performed under the conditions of 1.0 C (CC-CV) and a discharge rate of 1.0 C (CC), and the ratio of the battery capacity between the first cycle and the 501 cycle was calculated.
電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を90重量%、導電剤としてカーボンブラックを6重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し110℃にて乾燥した。このシートをφ16mmに打ち抜いた後、3.0t/cm2で圧着したものを正極に用いた。負極には金属リチウム箔を用いた。電解液には、ECとDMCを体積比1:2で混合した溶媒に1mol/LのLiPF6を溶解したものを用い、上記サイズのコインセルを作製した。 For coin cells related to battery evaluation, 90% by weight of composite oxide as positive electrode active material powder, 6% by weight of carbon black as conductive agent, and 4% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as binder are mixed. Then, it was applied to an Al metal foil and dried at 110 ° C. The sheet was punched to φ16 mm, and then pressure-bonded at 3.0 t / cm 2 was used for the positive electrode. Metal lithium foil was used for the negative electrode. As the electrolytic solution, a coin cell of the above size was prepared by using 1 mol / L LiPF 6 dissolved in a solvent in which EC and DMC were mixed at a volume ratio of 1: 2.
また、4.3Vまでの初期充電は、上述のように負極をLiとしたコインセルを組み立てた後、25℃の恒温槽内で、4.3V(CC−CV)で充電を行った。 Moreover, the initial charge to 4.3V performed the charge by 4.3V (CC-CV) in a 25 degreeC thermostat after assembling the coin cell which used the negative electrode as Li as mentioned above.
SEM像については、クロスセクションポリッシャ(SEM用断面試料作製装置 SM−09010)[日本電子データム(株)]により断面SEMを観察するように加工したサンプルを、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察した。 For SEM images, a cross-section polisher (SEM cross-section sample preparation device SM-09010) [JEOL Datum Co., Ltd.] processed sample to observe cross-section SEM, scanning electron with energy dispersive X-ray analyzer Observation was performed using a microscope SEM-EDX [manufactured by Hitachi High-Technologies Corporation].
実施例1
羽根型攪拌機を具備した反応器内に、pH=12.0となるような水酸化ナトリウム水溶液を調製した。ここにアンモニア濃度が0.80mol/lとなるようにアンモニア水溶液を滴下した。硫酸コバルト、硫酸ニッケル、アルミン酸ナトリウム混合水溶液をCo:Ni:Al=80:15:5のモル比で、連続的に反応器に供給した。この間、反応溶液のpHが12、アンモニア濃度が0.8mol/lとなるように水酸化ナトリウム水溶液およびアンモニア水溶液を連続的に供給して、目標平均二次粒子径まで成長させた。この間、懸濁液に機械的なせん断力を加えることで球状の複合遷移金属の沈殿物を得た。
Example 1
An aqueous sodium hydroxide solution having a pH of 12.0 was prepared in a reactor equipped with a blade-type stirrer. An aqueous ammonia solution was added dropwise so that the ammonia concentration was 0.80 mol / l. A mixed aqueous solution of cobalt sulfate, nickel sulfate and sodium aluminate was continuously fed to the reactor at a molar ratio of Co: Ni: Al = 80: 15: 5. During this time, an aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied so that the reaction solution had a pH of 12 and an ammonia concentration of 0.8 mol / l, and was grown to the target average secondary particle size. During this time, a spherical composite transition metal precipitate was obtained by applying mechanical shearing force to the suspension.
反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、80℃で12時間乾燥を行い、ニッケル・コバルト・アルミニウム系化合物粒子(ニッケル・コバルト・アルミニウム複合化合物粒子)を得た。その後、水酸化リチウムと該遷移金属混合球状化合物を酸化性雰囲気下、760℃にて10時間焼成した(Li/Ni+Co+Al=1.01とした。)。これを解砕して正極活物質粉末を得た。 After the reaction, the suspension taken out was washed with water using a filter press and then dried at 80 ° C. for 12 hours to obtain nickel / cobalt / aluminum compound particles (nickel / cobalt / aluminum composite compound particles). It was. Thereafter, lithium hydroxide and the transition metal mixed spherical compound were calcined at 760 ° C. for 10 hours in an oxidizing atmosphere (Li / Ni + Co + Al = 1.01). This was pulverized to obtain a positive electrode active material powder.
得られた正極活物質粒子で上記の通り2032コインセルを作製し、4.3V初期充電前後のWH値の変化量を算出した結果9.25であった。なお、本実施例におけるWilliamson−Hallプロットの結果を図1に示す。また、本実施例における正極活物質粒子のサイクル特性試験終了後の断面SEM像を図2に示す。 It was 9.25 as a result of producing 2032 coin cell as above-mentioned with the obtained positive electrode active material particle, and calculating the variation | change_quantity of the WH value before and behind 4.3V initial charge. In addition, the result of the Williamson-Hall plot in a present Example is shown in FIG. Further, FIG. 2 shows a cross-sectional SEM image after the end of the cycle characteristic test of the positive electrode active material particles in this example.
実施例2
羽根型攪拌機を具備した反応器内に、pH=12.0となるような水酸化ナトリウム水溶液を調製した。ここにアンモニア濃度が0.80mol/lとなるようにアンモニア水溶液を滴下した。硫酸コバルト、硫酸ニッケル、硫酸マンガン、アルミン酸ナトリウム混合水溶液をCo:Ni:Mn:Al=90:5:2:3のモル比で、連続的に反応器に供給した。この間、反応溶液のpHが12、アンモニア濃度が0.8mol/lとなるように水酸化ナトリウム水溶液およびアンモニア水溶液を連続的に供給して、目標平均二次粒子径まで成長させた。この間、懸濁液に機械的なせん断力を加えることで球状の複合遷移金属の沈殿物を得た。
Example 2
An aqueous sodium hydroxide solution having a pH of 12.0 was prepared in a reactor equipped with a blade-type stirrer. An aqueous ammonia solution was added dropwise so that the ammonia concentration was 0.80 mol / l. A mixed aqueous solution of cobalt sulfate, nickel sulfate, manganese sulfate, and sodium aluminate was continuously fed to the reactor at a molar ratio of Co: Ni: Mn: Al = 90: 5: 2: 3. During this time, an aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied so that the reaction solution had a pH of 12 and an ammonia concentration of 0.8 mol / l, and was grown to the target average secondary particle size. During this time, a spherical composite transition metal precipitate was obtained by applying mechanical shearing force to the suspension.
反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、80℃で12時間乾燥を行い、ニッケル・コバルト・アルミニウム・マグネシウム系化合物粒子(ニッケル・コバルト・アルミニウム・マグネシウム複合化合物粒子)を得た。その後、水酸化リチウムと該遷移金属混合球状化合物を混合し、酸化性雰囲気下、750℃にて10時間焼成した(Li/Ni+Co+Al+Mn=1.00とした)。これを解砕して正極活物質粉末を得た。 After the reaction, the suspension taken out was washed with water using a filter press and then dried at 80 ° C. for 12 hours to obtain nickel / cobalt / aluminum / magnesium compound particles (nickel / cobalt / aluminum / magnesium composite compound). Particles). Thereafter, lithium hydroxide and the transition metal mixed spherical compound were mixed and baked in an oxidizing atmosphere at 750 ° C. for 10 hours (Li / Ni + Co + Al + Mn = 1.00). This was pulverized to obtain a positive electrode active material powder.
得られた正極活物質粒子で上記の通り2032コインセルを作製し、4.3V初期充電前後のWH値の変化量を算出した結果9.56であった。 It was 9.56 as a result of producing 2032 coin cell as above-mentioned with the obtained positive electrode active material particle, and calculating the variation | change_quantity of WH value before and behind 4.3V initial charge.
比較例1
羽根型攪拌機を具備した反応器内に、pH=12.0となるような水酸化ナトリウム水溶液を調製した。ここにアンモニア濃度が0.80mol/lとなるようにアンモニア水溶液を滴下した。硫酸コバルト、硫酸ニッケル混合水溶液をモル比でCo:Ni=80:15となるように、連続的に反応器に供給した。この間、反応溶液のpHが11.8、アンモニア濃度が0.8mol/lとなるように水酸化ナトリウム水溶液およびアンモニア水溶液を連続的に供給して、目標平均二次粒子径まで成長させた。この間、懸濁液に機械的なせん断力を加えることで球状の複合遷移金属の沈殿物を得た。
Comparative Example 1
An aqueous sodium hydroxide solution having a pH of 12.0 was prepared in a reactor equipped with a blade-type stirrer. An aqueous ammonia solution was added dropwise so that the ammonia concentration was 0.80 mol / l. A mixed aqueous solution of cobalt sulfate and nickel sulfate was continuously supplied to the reactor so that the molar ratio was Co: Ni = 80: 15. During this time, an aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied so that the pH of the reaction solution was 11.8 and the ammonia concentration was 0.8 mol / l, and the reaction solution was grown to the target average secondary particle size. During this time, a spherical composite transition metal precipitate was obtained by applying mechanical shearing force to the suspension.
反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、80℃で12時間乾燥を行い、ニッケル・コバルト系化合物粒子(ニッケル・コバルト複合化合物粒子)を得た。その後、水酸化アルミニウムと水酸化リチウムとを該遷移金属混合球状化合物を混合し、酸化性雰囲気下、750℃にて10時間焼成した(Ni:Co:Al=0.80:0.15:0.05であり、Li/Ni+Co+Al=1.01とした)。これを解砕して正極活物質粉末を得た。 After the reaction, the suspension taken out was washed with a filter press and then dried at 80 ° C. for 12 hours to obtain nickel / cobalt compound particles (nickel / cobalt composite compound particles). Thereafter, the transition metal mixed spherical compound was mixed with aluminum hydroxide and lithium hydroxide and fired at 750 ° C. for 10 hours in an oxidizing atmosphere (Ni: Co: Al = 0.80: 0.15: 0). .05, and Li / Ni + Co + Al = 1.01). This was pulverized to obtain a positive electrode active material powder.
得られた正極活物質粒子で上記の通り2032コインセルを作製し、4.3V初期充電前後のWH値の変化量を算出した結果、11.07であった。なお、本比較例におけるWilliamson−Hallプロットの結果を図1に示す。また、本比較例における正極活物質粒子のサイクル特性試験終了後の断面SEM像を図2に示す。 A 2032 coin cell was produced with the obtained positive electrode active material particles as described above, and the amount of change in the WH value before and after 4.3V initial charge was calculated to be 11.07. In addition, the result of the Williamson-Hall plot in this comparative example is shown in FIG. Moreover, the cross-sectional SEM image after the completion of the cycle characteristic test of the positive electrode active material particles in this comparative example is shown in FIG.
比較例2
羽根型攪拌機を具備した反応器内に、pH=12.0となるような水酸化ナトリウム水溶液を調製した。ここにアンモニア濃度が0.80mol/lとなるようにアンモニア水溶液を滴下した。硫酸コバルト、硫酸ニッケル混合水溶液をモル比でCo:Ni=85:12となるように、連続的に反応器に供給した。この間、反応溶液のpHが11.8、アンモニア濃度が0.8mol/lとなるように水酸化ナトリウム水溶液およびアンモニア水溶液を連続的に供給して、目標平均二次粒子径まで成長させた。この間、懸濁液に機械的なせん断力を加えることで球状の複合遷移金属の沈殿物を得た。
Comparative Example 2
An aqueous sodium hydroxide solution having a pH of 12.0 was prepared in a reactor equipped with a blade-type stirrer. An aqueous ammonia solution was added dropwise so that the ammonia concentration was 0.80 mol / l. Cobalt sulfate and nickel sulfate mixed aqueous solution was continuously supplied to the reactor so that the molar ratio was Co: Ni = 85: 12. During this time, an aqueous sodium hydroxide solution and an aqueous ammonia solution were continuously supplied so that the pH of the reaction solution was 11.8 and the ammonia concentration was 0.8 mol / l, and the reaction solution was grown to the target average secondary particle size. During this time, a spherical composite transition metal precipitate was obtained by applying mechanical shearing force to the suspension.
反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、80℃で12時間乾燥を行い、ニッケル・コバルト系化合物粒子(ニッケル・コバルト複合化合物粒子)を得た。その後、該前駆体の組成比について、水酸化アルミニウムと水酸化リチウムと該遷移金属混合球状化合物とを混合し、酸化性雰囲気下、740℃にて10時間焼成した(Ni:Co:Al=0.80:0.12:0.03であり、Li/Ni+Co+Al=1.01とした)。これを解砕して正極活物質粉末を得た。 After the reaction, the suspension taken out was washed with a filter press and then dried at 80 ° C. for 12 hours to obtain nickel / cobalt compound particles (nickel / cobalt composite compound particles). Thereafter, with respect to the composition ratio of the precursor, aluminum hydroxide, lithium hydroxide and the transition metal mixed spherical compound were mixed and baked at 740 ° C. for 10 hours in an oxidizing atmosphere (Ni: Co: Al = 0). 80: 0.12: 0.03, and Li / Ni + Co + Al = 1.01). This was pulverized to obtain a positive electrode active material powder.
得られた正極活物質粒子で上記の通り2032コインセルを作製し、4.3V初期充電前後のWH値の変化量を算出した結果、12.31であった。 As a result of producing a 2032 coin cell with the obtained positive electrode active material particles as described above and calculating the amount of change in the WH value before and after 4.3 V initial charge, it was 12.31.
以下の表1に、実施例1及び2、並びに比較例1及び2における電池の各特性について示す。 Table 1 below shows the characteristics of the batteries in Examples 1 and 2 and Comparative Examples 1 and 2.
以上、表1、図1及び図2に示す結果から、本発明に係る正極活物質粒子粉末を用いて作製した二次電池(実施例1、2)は、4.3V初期充電を行った後のWH値と充電前のWH値との変化量が小さく、すなわち結晶歪みの発生を抑制できており、サイクル特性における粒界での割れが抑制され、電池容量劣化の低減ができることが出来る。また、凝集粒子内での粒界の割れが小さくなることにより、電子電導パスやイオン電導パスが十分に機能し、電池特性の劣化を抑制できる。このように、本発明にかかる正極活物質粒子は、繰り返し充放電特性に優れることが明らかとなった。 As described above, from the results shown in Table 1, FIG. 1 and FIG. 2, the secondary batteries (Examples 1 and 2) produced using the positive electrode active material particle powder according to the present invention were subjected to 4.3V initial charging. The amount of change between the WH value and the WH value before charging is small, that is, the occurrence of crystal distortion can be suppressed, cracks at the grain boundaries in the cycle characteristics can be suppressed, and battery capacity deterioration can be reduced. Further, since the grain boundary cracks in the agglomerated particles are reduced, the electron conduction path and the ion conduction path sufficiently function, and the deterioration of the battery characteristics can be suppressed. Thus, it became clear that the positive electrode active material particles according to the present invention are excellent in repeated charge / discharge characteristics.
本発明に係る正極活物質粒子粉末は、サイクル特性に優れているので、非水電解質二次電池用の正極活物質粒子粉末として好適である。 Since the positive electrode active material particle powder according to the present invention is excellent in cycle characteristics, it is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery.
Claims (5)
該正極活物質粒子を正極に用いて、負極をLiとして2032サイズのコインセルを組んで、充電前の前記正極活物質粒子におけるXRD回折により得られた結晶面に関するWilliamson−Hallプロットの傾きをaとし、4.3V初期充電を行った後の前記傾きをbとしたときに、(b−a)/aで算出される変化量が10.5以下である非水電解質二次電池用の正極活物質粒子。 Having a layered rock salt structure, general formula, Li a (Ni x Co y Al z Mn 1-x-y-z M b) O 2 (1.0 ≦ a ≦ 1.15,0 <x ≦ 1, 0 <y ≦ 1, 0 <x + y ≦ 1, 0 ≦ z ≦ 0.05, 0 ≦ b ≦ 0.05, M is Mg, P, Ca, Ti, Y, Sn, Bi, Ce, Zr, La, Positive electrode active material particles comprising a lithium transition metal layered oxide represented by Mo, Sc, Nb or W),
The positive electrode active material particles are used as the positive electrode, the negative electrode is Li, a 2032 size coin cell is assembled, and the slope of the Williamson-Hall plot for the crystal plane obtained by XRD diffraction in the positive electrode active material particles before charging is defined as a. The positive electrode active for a non-aqueous electrolyte secondary battery in which the amount of change calculated by (ba) / a is 10.5 or less, where b is the slope after performing 4.3V initial charging. Substance particles.
Ni化合物とCo化合物と、任意にAl化合物及びMn化合物の少なくとも一方とを同時に共沈させることによりNiとCoと、任意にAl及びMnの少なくとも一方とを主成分とする複合化合物前駆体を得るステップと、
前記前駆体にリチウム化合物をLi/(Ni+Co+Al+Mn)のモル比率が1.00以上1.15以下の範囲となるように混合して混合物を得るステップと、
前記混合物を酸化性雰囲気において700℃以上950℃以下で焼成するステップとを備えていることを特徴とする正極活物質粒子の製造方法。 A method for producing the positive electrode active material particles according to claim 1,
By simultaneously co-precipitating Ni compound and Co compound and optionally at least one of Al compound and Mn compound, a composite compound precursor mainly comprising Ni and Co and optionally at least one of Al and Mn is obtained. Steps,
Mixing the lithium compound with the precursor so that the molar ratio of Li / (Ni + Co + Al + Mn) is in the range of 1.00 or more and 1.15 or less to obtain a mixture;
Calcining the mixture at 700 ° C. or higher and 950 ° C. or lower in an oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016090194A JP2017199591A (en) | 2016-04-28 | 2016-04-28 | Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016090194A JP2017199591A (en) | 2016-04-28 | 2016-04-28 | Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017199591A true JP2017199591A (en) | 2017-11-02 |
Family
ID=60238061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016090194A Pending JP2017199591A (en) | 2016-04-28 | 2016-04-28 | Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017199591A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114041226A (en) * | 2020-03-27 | 2022-02-11 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
US11637282B2 (en) | 2020-08-13 | 2023-04-25 | Sk On Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
WO2023122926A1 (en) * | 2021-12-28 | 2023-07-06 | 宁德时代新能源科技股份有限公司 | Ternary precursor material, preparation method therefor and use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007091573A (en) * | 2005-06-10 | 2007-04-12 | Tosoh Corp | Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide |
JP2015122298A (en) * | 2013-11-22 | 2015-07-02 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof |
WO2015115088A1 (en) * | 2014-01-31 | 2015-08-06 | 三洋電機株式会社 | Nonaqueous-electrolyte secondary-battery positive-electrode active material, nonaqueous-electrolyte secondary battery using same, and method for manufacturing nonaqueous-electrolyte secondary-battery positive-electrode active material |
JP2017014092A (en) * | 2015-06-30 | 2017-01-19 | 旭硝子株式会社 | Lithium-containing compound oxide, cathode active material, cathode for lithium ion secondary battery and lithium ion secondary battery |
-
2016
- 2016-04-28 JP JP2016090194A patent/JP2017199591A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007091573A (en) * | 2005-06-10 | 2007-04-12 | Tosoh Corp | Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide |
JP2015122298A (en) * | 2013-11-22 | 2015-07-02 | 住友金属鉱山株式会社 | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof |
WO2015115088A1 (en) * | 2014-01-31 | 2015-08-06 | 三洋電機株式会社 | Nonaqueous-electrolyte secondary-battery positive-electrode active material, nonaqueous-electrolyte secondary battery using same, and method for manufacturing nonaqueous-electrolyte secondary-battery positive-electrode active material |
JP2017014092A (en) * | 2015-06-30 | 2017-01-19 | 旭硝子株式会社 | Lithium-containing compound oxide, cathode active material, cathode for lithium ion secondary battery and lithium ion secondary battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114041226A (en) * | 2020-03-27 | 2022-02-11 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
EP4131540A4 (en) * | 2020-03-27 | 2023-05-17 | Ningde Amperex Technology Limited | Electrochemical device, and electronic device comprising same |
US11637282B2 (en) | 2020-08-13 | 2023-04-25 | Sk On Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
WO2023122926A1 (en) * | 2021-12-28 | 2023-07-06 | 宁德时代新能源科技股份有限公司 | Ternary precursor material, preparation method therefor and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6665060B2 (en) | Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP6462250B2 (en) | Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery including the same | |
JP2023523667A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP5817143B2 (en) | Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery | |
JP5903956B2 (en) | Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
WO2017170548A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same | |
JP6167822B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
KR102636863B1 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries | |
JP2017188428A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same | |
JP5737513B2 (en) | Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP5716923B2 (en) | Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery | |
TW201240200A (en) | Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery | |
JP6408097B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
JP2004292264A (en) | Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method | |
JP2023523668A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP6417888B2 (en) | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2023505185A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
KR102447292B1 (en) | Positive electrode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JP2023509595A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP2004087492A (en) | Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method | |
JP5720900B2 (en) | Active material powder for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP6343951B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP6826447B2 (en) | Method for reducing the amount of residual lithium in the positive electrode active material particles | |
JP6341095B2 (en) | Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2017199591A (en) | Positive electrode active material particles for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20160502 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201201 |