JP6303279B2 - Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6303279B2
JP6303279B2 JP2013075600A JP2013075600A JP6303279B2 JP 6303279 B2 JP6303279 B2 JP 6303279B2 JP 2013075600 A JP2013075600 A JP 2013075600A JP 2013075600 A JP2013075600 A JP 2013075600A JP 6303279 B2 JP6303279 B2 JP 6303279B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle powder
material particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075600A
Other languages
Japanese (ja)
Other versions
JP2014203509A (en
Inventor
学武 山本
学武 山本
大輔 西川
大輔 西川
佐々木 修
修 佐々木
貞村 英昭
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2013075600A priority Critical patent/JP6303279B2/en
Publication of JP2014203509A publication Critical patent/JP2014203509A/en
Application granted granted Critical
Publication of JP6303279B2 publication Critical patent/JP6303279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

初期効率が高く、レート特性及びサイクル特性に優れた非水電解質二次電池用正極活物質粒子粉末を提供する。   Provided is a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having high initial efficiency and excellent rate characteristics and cycle characteristics.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, a lithium ion secondary battery having an advantage of a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い充放電容量を有する電池として注目されてきたが、この材料は、充電時の熱安定性及びサイクル特性に劣るため、更なる特性改善が求められている。 Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiNiO 2 and the like are generally known. Among them, lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high charge / discharge capacity. Since the cycle characteristics are inferior, further improvement in characteristics is required.

近年、更なる高容量化の要望を受けて、より高容量のLiMnOを含む正極活物質が高い放電容量を示すことが見出されているが、この材料は初期効率及びレート特性が悪く、また高い電位で充電するためにサイクル特性が悪いという二次電池としては致命的な欠点があることが知られている(特許文献1)。 In recent years, in response to a demand for higher capacity, it has been found that a positive electrode active material containing a higher capacity Li 2 MnO 3 exhibits a higher discharge capacity, but this material has an initial efficiency and rate characteristics. It is known that the secondary battery is bad and has a fatal defect as a secondary battery having poor cycle characteristics because of being charged at a high potential (Patent Document 1).

サイクル特性については充放電方法で改善されたという報告(特許文献2)や、二次粒子に組成傾斜をつけることによって改善されたという報告(特許文献3)があるが、これらの方法では既存のNi、Co、Mn材料系の初期効率である90%程度が限度で、これ以上の改善には結びつかない。   There are reports that the cycle characteristics have been improved by the charge / discharge method (Patent Document 2) and reports that the composition has been improved by imparting a composition gradient to the secondary particles (Patent Document 3). The initial efficiency of the Ni, Co, and Mn material systems is limited to about 90%, and no further improvement is possible.

レート特性についてはZr等の添加物によって改善されたという報告(特許文献4)や、二次粒子に組成傾斜をつけることによって改善されたという報告(特許文献3)があるが、これらの方法では既存のNi、Co、Mn材料系の初期効率である90%程度が限度で、これ以上の改善には結びつかない。   There are reports that the rate characteristics have been improved by additives such as Zr (Patent Document 4) and reports that the composition has been improved by adding a composition gradient to secondary particles (Patent Document 3). The initial efficiency of the existing Ni, Co, and Mn material systems is limited to about 90%, and no further improvement is possible.

初期効率についてはLi吸蔵材を正極に混合する方法によって改善されたという報告(特許文献5)があるものの、混合するだけでは、根本的に正極材のサイクル特性の改善には結びつかず、未だ効果が不十分であり、また、これらの特性を高い水準で両立させなければ正極材料としては使用できない。   Although there is a report (Patent Document 5) that the initial efficiency has been improved by the method of mixing the Li storage material with the positive electrode, simply mixing does not fundamentally improve the cycle characteristics of the positive electrode material and is still effective. Is not sufficient, and it cannot be used as a positive electrode material unless these characteristics are compatible at a high level.

特開平9−55211号公報JP-A-9-55211 特開2008−270201号公報JP 2008-270201 A 特開2011−134670号公報JP 2011-134670 A 特開2012−138197号公報JP 2012-138197 A 国際公開2008/081839号International Publication No. 2008/081839

初期効率及びサイクル特性、レート特性に優れた非水電解質二次電池用の正極活物質は、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料は得られていない。   A positive electrode active material for a non-aqueous electrolyte secondary battery excellent in initial efficiency, cycle characteristics, and rate characteristics is currently most demanded, but a material that satisfies the necessary and sufficient requirements has not yet been obtained.

特に、電気自動車等では、軽量で大容量の二次電池が渇望されている。   In particular, in an electric vehicle or the like, a lightweight and large-capacity secondary battery is desired.

そこで、本発明の目的は、初期効率が高く、レート特性及びサイクル特性に優れた非水電解質二次電池用正極活物質粒子粉末の製造方法及び該正極活物質粒子粉末を含有する正極からなる非水電解質二次電池の製造方法を提供することである。 An object of the present invention is composed of a positive electrode initial efficiency is high, contains a positive electrode active method of manufacturing material particles Powder and positive electrode active material particles for rate characteristics and good non-aqueous electrolyte secondary battery in cycle characteristics It is providing the manufacturing method of a nonaqueous electrolyte secondary battery.

本発明は、以下に記載の正極活物質粒子粉末の製造方法であって、少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物を酸及びAlの塩の混合水溶液に浸して濾過、乾燥し、再焼成することを特徴とする正極活物質粒子粉末の製造方法である(本発明1)。
[正極活物質粒子粉末]
少なくともLi、Ni、Mn及びAlを含有するがBを含有しない複合酸化物からなる正極活物質粒子粉末であって、該複合酸化物のMn含有量はモル比(Mn/(Ni+Co+Mn))で0.5以上であり、Al含有量は0.03〜3重量%であり、該正極活物質粒子粉末のCu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.2であり、該正極活物質粒子粉末を用いた正極と金属リチウムからなる負極とを用いた二次電池において、上限電位をリチウム対極に換算して4.6V、下限電位をリチウム対極に換算して2.0Vとして、20mA/gの電流レートで充放電したときの初期効率が95%以上であり、初期放電容量が220mAh/g以上であることを特徴とする正極活物質粒子粉末。
The present invention provides a method for producing a positive electrode active material particle powder as described below, wherein a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound is fired, and the obtained intermediate fired product is converted into an acid. And a method for producing a positive electrode active material particle powder, wherein the powder is immersed in a mixed aqueous solution of Al and Al, filtered, dried, and refired (Invention 1).
[Positive electrode active material powder]
A positive electrode active material particle powder comprising a composite oxide containing at least Li, Ni, Mn and Al but not B, wherein the Mn content of the composite oxide is 0 in terms of molar ratio (Mn / (Ni + Co + Mn)). 0.5 or more, the Al content is 0.03 to 3% by weight, and the maximum at 2θ = 20.8 ± 1 ° of the powder X-ray diffraction diagram using Cu—Kα ray of the positive electrode active material particle powder. The relative intensity ratio (a) / (b) between the intensity (a) of the diffraction peak and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0.02 to 0.2, and the positive electrode In a secondary battery using a positive electrode using active material particle powder and a negative electrode made of metallic lithium, the upper limit potential is converted to a lithium counter electrode of 4.6 V, and the lower limit potential is converted to a lithium counter electrode of 2.0 V. First when charging / discharging at a current rate of 20 mA / g Efficiency is 95% or more, the positive electrode active material particles the initial discharge capacity is equal to or is 220 mAh / g or more.

本発明は、少なくともLi、Ni、Mn及びAlを含有する複合酸化物からなる正極活物質粒子粉末が、フッ素を含有する本発明1に記載の正極活物質粒子粉末の製造方法である(本発明2)。 This invention is a manufacturing method of the positive electrode active material particle powder of this invention 1 whose positive electrode active material particle powder which consists of complex oxide containing at least Li, Ni, Mn, and Al contains a fluorine (this invention) 2).

本発明は、少なくともLi、Ni、Mn及びAlを含有する複合酸化物からなる正極活物質粒子粉末が、Coを含有する本発明1又は2に記載の正極活物質粒子粉末の製造方法である(本発明3)。 This invention is a manufacturing method of the positive electrode active material particle powder of this invention 1 or 2 with which the positive electrode active material particle powder which consists of complex oxide containing at least Li, Ni, Mn, and Al contains Co ( Invention 3).

本発明は、Li/(Ni+Mn+Co)がモル比で1.25〜1.65である本発明1〜3のいずれかに記載の正極活物質粒子粉末の製造方法である(本発明4)。 This invention is a manufacturing method of the positive electrode active material particle powder in any one of this invention 1-3 whose Li / (Ni + Mn + Co) is 1.25-1.65 in molar ratio (invention 4).

本発明は、少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物をフッ化物水溶液に浸した後、さらに酸及びAlの塩の混合水溶液に浸して濾過、乾燥し、再焼成する本発明4に記載の正極活物質粒子粉末の製造方法である(本発明5)。 In the present invention, a mixture containing precursor powder containing at least Ni and Mn and a lithium compound is fired, and the obtained intermediate fired product is immersed in a fluoride aqueous solution, and then a mixed aqueous solution of acid and Al salt. It is the manufacturing method of the positive electrode active material particle powder of this invention 4 which dipped in, filtered, dried, and rebaked ( this invention 5 ).

本発明は、以下に記載の正極活物質粒子粉末の製造方法であって、少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物を酸、Alの塩、及びNi、Mn、Coから選ばれる少なくとも1種の元素の塩の混合水溶液に浸して濾過、乾燥し、再焼成する正極活物質粒子粉末の製造方法である(本発明6)。

[正極活物質粒子粉末]
少なくともLi、Ni、Mn及びAlを含有するがBを含有しない複合酸化物からなる正極活物質粒子粉末であって、該複合酸化物のMn含有量はモル比(Mn/(Ni+Co+Mn))で0.5以上であり、Al含有量は0.03〜3重量%であり、該正極活物質粒子粉末のCu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.2であり、該正極活物質粒子粉末を用いた正極と金属リチウムからなる負極とを用いた二次電池において、上限電位をリチウム対極に換算して4.6V、下限電位をリチウム対極に換算して2.0Vとして、20mA/gの電流レートで充放電したときの初期効率が95%以上であり、初期放電容量が220mAh/g以上であることを特徴とする正極活物質粒子粉末。
The present invention provides a method for producing a positive electrode active material particle powder as described below, wherein a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound is fired, and the obtained intermediate fired product is converted into an acid. , Al salt and at least one element salt selected from Ni, Mn, and Co, soaked in an aqueous solution, filtered, dried, and re-fired positive electrode active material particle powder manufacturing method ( Invention 6 ) .
.
[Positive electrode active material powder]
A positive electrode active material particle powder comprising a composite oxide containing at least Li, Ni, Mn and Al but not B, wherein the Mn content of the composite oxide is 0 in terms of molar ratio (Mn / (Ni + Co + Mn)). 0.5 or more, the Al content is 0.03 to 3% by weight, and the maximum at 2θ = 20.8 ± 1 ° of the powder X-ray diffraction diagram using Cu—Kα ray of the positive electrode active material particle powder. The relative intensity ratio (a) / (b) between the intensity (a) of the diffraction peak and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0.02 to 0.2, and the positive electrode In a secondary battery using a positive electrode using active material particle powder and a negative electrode made of metallic lithium, the upper limit potential is converted to a lithium counter electrode of 4.6 V, and the lower limit potential is converted to a lithium counter electrode of 2.0 V. First when charging / discharging at a current rate of 20 mA / g Efficiency is 95% or more, the positive electrode active material particles the initial discharge capacity is equal to or is 220 mAh / g or more.

本発明は、少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物をフッ化物水溶液に浸した後、さらに酸、Alの塩、及びNi、Mn、Coから選ばれる少なくとも1種の元素の塩の混合水溶液に浸して濾過、乾燥し、再焼成する本発明6に記載の正極活物質粒子粉末の製造方法である(本発明7)。 In the present invention, a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound is fired, and the obtained intermediate fired product is immersed in an aqueous fluoride solution, and then an acid, an Al salt, and Ni The method for producing positive electrode active material particle powder according to the sixth aspect of the present invention , wherein the positive electrode active material particle powder according to the sixth aspect of the present invention is soaked in a mixed aqueous solution of at least one element selected from Mn and Co, filtered, dried and refired ( Invention 7 ).

本発明は、非水電解質二次電池の製造方法であって、本発明1〜7のいずれかに記載の製造方法で正極活物質粒子粉末を得る工程と、得られた正極活物質粒子粉末を含有する正極を作成する工程とを含むことを特徴とする非水電解質二次電池の製造方法である(本発明8)。 The present invention is a method for producing a nonaqueous electrolyte secondary battery, the step of obtaining positive electrode active material particle powder by the production method according to any one of the present invention 1 to 7, and the obtained positive electrode active material particle powder A method for producing a non-aqueous electrolyte secondary battery, comprising the step of producing a positive electrode containing (invention 8).

本発明に係る正極活物質粒子粉末は、放電容量及び初期効率が高く、サイクル特性及びレート特性を向上させることができるので、非水電解質二次電池用の正極活物質粒子粉末として好適である。   The positive electrode active material particle powder according to the present invention is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery because it has high discharge capacity and initial efficiency and can improve cycle characteristics and rate characteristics.

実施例1で得られた正極活物質粒子粉末のX線回折図である。2 is an X-ray diffraction diagram of positive electrode active material particle powder obtained in Example 1. FIG.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る正極活物質は、少なくともLi、Ni、Mn及びAlを含有する複合酸化物からなり、該正極活物質粒子粉末を用いた正極と金属リチウムからなる負極とを用いた二次電池において、上限電位をリチウム対極に換算して4.6V、下限電位をリチウム対極に換算して2.0Vとして、20mA/gの電流レートで充放電したときの初期効率が95%以上であり、初期放電容量が220mAh/g以上である化合物である。   The positive electrode active material according to the present invention is composed of a composite oxide containing at least Li, Ni, Mn, and Al, and in a secondary battery using a positive electrode using the positive electrode active material particle powder and a negative electrode made of metallic lithium. The initial efficiency is 95% or more when charging / discharging at a current rate of 20 mA / g when the upper limit potential is 4.6 V in terms of the lithium counter electrode and the lower limit potential is 2.0 V in terms of the lithium counter electrode. It is a compound having a discharge capacity of 220 mAh / g or more.

前記複合酸化物は、空間群R−3mに属する結晶系を有する化合物と、空間群C2/m、C2/c又はP312に属する結晶系を有する化合物からなる。 The composite oxide is made of a compound having a compound having a crystal system belonging to the space group R-3m, a crystal system belonging to the space group C2 / m, C2 / c or P3 1 12.

空間群R−3mに属する結晶系を有する化合物としては、LiMMn1−x(MはNi及び/又はCo、xの範囲が0<x≦1)が好ましい。具体的には、LiCoMn1−x2、LiNiMn1−x、Li(Ni、Co)Mn1−xなどが好ましい。
なお、空間群R−3mは正式には、R3mの3の上にバーのついた表記が正しいが、ここでは便宜上、R−3mと記す。
The compound having a crystal system belonging to the space group R-3m is preferably LiM x Mn 1-x O 2 (M is Ni and / or Co, and the range of x is 0 <x ≦ 1). Specifically, LiCo x Mn 1-x O 2, LiNi x Mn 1-x O 2, Li (Ni, Co) such as x Mn 1-x O 2 is preferred.
The space group R-3m is officially written with a bar on 3 of R3m, but for the sake of convenience, it is described as R-3m.

空間群C2/m、C2/c又はP312に属する結晶系を有する化合物としては、LiM’(1−y)Mn(M’はNi及び/又はCo、yの範囲が0<y≦1)が好ましい。 As a compound having a crystal system belonging to space group C2 / m, C2 / c or P3 1 12, Li 2 M ′ (1-y) Mn y O 3 (M ′ is in the range of Ni and / or Co, y) 0 <y ≦ 1) is preferred.

本発明に係る正極活物質粒子粉末について、Cu−Kα線を線源とした粉末X線回折を行った場合に、空間群R−3mに属する結晶系に属する化合物であるLiMMn1−xに特徴的なピークの一つが2θ=18.6±1°に現れ、空間群C2/m、C2/c又はP312に属する結晶系に属する化合物であるLiM’(1−y)Mnに特徴的なピークの一つが2θ=20.8±1°に現れる。 When positive electrode active material particles according to the present invention are subjected to powder X-ray diffraction using Cu—Kα rays as a source, LiM x Mn 1-x which is a compound belonging to a crystal system belonging to space group R-3m One of the peaks characteristic of O 2 appears at 2θ = 18.6 ± 1 °, and Li 2 M ′ ( 1−1) is a compound belonging to a crystal system belonging to space group C2 / m, C2 / c or P3 1 12. y) One of the peaks characteristic of Mn y O 3 appears at 2θ = 20.8 ± 1 °.

本発明に係る正極活物質粒子粉末の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)は0.02〜0.2である。相対強度比(a)/(b)が0.02未満の場合には、空間群C2/m、C2/c又はP312に属する結晶系を有する化合物が少なすぎて十分な充放電容量が得られず、相対強度比(a)/(b)が0.2を超える場合には、空間群C2/m、C2/c又はP312に属する結晶系を有する化合物が多すぎてスムーズなリチウムイオンの移動ができずに十分な充放電容量が得られない。好ましい相対強度比(a)/(b)は0.02〜0.15であり、より好ましくは0.04〜0.12であり、さらにより好ましくは0.05〜0.1である。 The relative intensity ratio between the intensity (a) of the maximum diffraction peak at 2θ = 20.8 ± 1 ° and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° of the positive electrode active material powder according to the present invention. (A) / (b) is 0.02-0.2. When the relative intensity ratio (a) / (b) is less than 0.02, sufficient charge and discharge capacity is too small, the compound having a crystal system belonging to the space group C2 / m, C2 / c or P3 1 12 is not obtained, when the relative intensity ratio (a) / (b) is more than 0.2, a smoothly too many compounds having a crystal system belonging to the space group C2 / m, C2 / c or P3 1 12 Lithium ion cannot move and sufficient charge / discharge capacity cannot be obtained. A preferred relative intensity ratio (a) / (b) is 0.02 to 0.15, more preferably 0.04 to 0.12, and even more preferably 0.05 to 0.1.

本発明に係る正極活物質粒子粉末は、(Li/(Ni+Mn+Co))がモル比で1.25〜1.65であることが好ましい。(Li/(Ni+Mn+Co))が1.25未満では充電に寄与できるリチウムが少なくなって充電容量が低くなり、1.65を超えると逆にリチウムが多くなりすぎて放電容量が低くなる。より好ましくは1.28〜1.6、さらに好ましくは1.28〜1.55である。   The positive electrode active material particle powder according to the present invention preferably has a (Li / (Ni + Mn + Co)) molar ratio of 1.25 to 1.65. When (Li / (Ni + Mn + Co)) is less than 1.25, the amount of lithium that can contribute to charging is reduced and the charge capacity is lowered. On the other hand, when it exceeds 1.65, the lithium is excessively increased and the discharge capacity is lowered. More preferably, it is 1.28-1.6, More preferably, it is 1.28-1.55.

本発明に係る正極活物質粒子粉末は、Mn含有量がモル比でMn/(Ni+Co+Mn)が0.5以上である。これを下回ると空間群C2/m、C2/c又はP312に属する結晶系を有する化合物が十分形成されず、充放電容量が低下する。好ましいMn含有量は0.55以上であり、より好ましくは、0.6以上であり、さらにより好ましくは0.65以上である。また、上限は、好ましくは0.95程度である。 The positive electrode active material particle powder according to the present invention has a Mn content in a molar ratio of Mn / (Ni + Co + Mn) of 0.5 or more. Below this range, a compound having a crystal system belonging to the space group C2 / m, C2 / c or P3 1 12 is not sufficiently formed, and the charge / discharge capacity decreases. The preferable Mn content is 0.55 or more, more preferably 0.6 or more, and even more preferably 0.65 or more. The upper limit is preferably about 0.95.

本発明に係る正極活物質粒子粉末は、Ni含有量がモル比でNi/(Ni+Co+Mn)が0.05〜0.45であることが好ましい。0.45を超えると熱安定性が低下するので好ましくない。より好ましいNi含有量は0.08〜0.4であり、さらにより好ましくは0.10〜0.35である。   The positive electrode active material particle powder according to the present invention preferably has a Ni content in a molar ratio of Ni / (Ni + Co + Mn) of 0.05 to 0.45. Exceeding 0.45 is not preferable because the thermal stability is lowered. The Ni content is more preferably 0.08 to 0.4, and even more preferably 0.10 to 0.35.

本発明に係る正極活物質粒子粉末は、Co含有量がモル比でCo/(Ni+Co+Mn)が0〜0.45であることが好ましい。0.45を超えると構造が不安定になるので好ましくない。より好ましいCo含有量は0.05〜0.4であり、さらにより好ましくは0.10〜0.35である。   The positive electrode active material powder according to the present invention preferably has a Co content in a molar ratio of Co / (Ni + Co + Mn) of 0 to 0.45. If it exceeds 0.45, the structure becomes unstable, such being undesirable. The more preferable Co content is 0.05 to 0.4, and even more preferably 0.10 to 0.35.

本発明に係る正極活物質粒子粉末は、Alを0.03〜3wt%含有する。Alの含有量が0.03wt%未満の場合、該正極活物質粒子粉末を用いた二次電池のサイクル特性及び熱安定性を改善させることが出来ない。3wt%を超える場合には、充放電容量が著しく低下するため好ましくない。好ましい含有量は0.05〜1wt%であり、より好ましくは0.1〜1wt%であり、さらにより好ましくは0.1〜0.7wt%である。   The positive electrode active material particle powder according to the present invention contains 0.03 to 3 wt% of Al. When the Al content is less than 0.03 wt%, the cycle characteristics and thermal stability of a secondary battery using the positive electrode active material particle powder cannot be improved. When it exceeds 3 wt%, the charge / discharge capacity is remarkably lowered, which is not preferable. The preferred content is 0.05 to 1 wt%, more preferably 0.1 to 1 wt%, and even more preferably 0.1 to 0.7 wt%.

本発明に係る正極活物質粒子粉末は、フッ素を0.03〜5wt%含有することが好ましい。フッ素の含有量が0.03wt%未満の場合、該正極活物質粒子粉末を用いた二次電池の熱安定性をより改善させる効果が現れない。5wt%を超える場合には、充放電容量が著しく低下するため好ましくない。好ましい含有量は0.05〜1.7wt%であり、より好ましくは0.10〜1.7wt%であり、さらにより好ましくは0.12〜1.2wt%である。   The positive electrode active material particle powder according to the present invention preferably contains 0.03 to 5 wt% of fluorine. When the fluorine content is less than 0.03 wt%, the effect of further improving the thermal stability of the secondary battery using the positive electrode active material particle powder does not appear. When it exceeds 5 wt%, the charge / discharge capacity is remarkably reduced, which is not preferable. The preferred content is 0.05 to 1.7 wt%, more preferably 0.10 to 1.7 wt%, and even more preferably 0.12 to 1.2 wt%.

本発明に係る正極活物質粒子粉末は、他の添加元素を含有してもよく、より好ましい添加元素としてはMg、Tiが挙げられる。前記添加元素は0.05〜3wt%含有することが好ましい。   The positive electrode active material particle powder according to the present invention may contain other additive elements, and more preferable additive elements include Mg and Ti. The additive element is preferably contained in an amount of 0.05 to 3 wt%.

本発明に係る正極活物質粒子粉末は、BET法による比表面積が0.5〜30m/gであることが好ましく、より好ましくは1〜20m/gであり、さらにより好ましくは2〜15m/gである。 The positive electrode active material particle powder according to the present invention preferably has a specific surface area of 0.5 to 30 m 2 / g, more preferably 1 to 20 m 2 / g, even more preferably 2 to 15 m, according to the BET method. 2 / g.

本発明に係る正極活物質粒子粉末は、一次粒子が凝集した二次粒子からなる正極活物質粒子粉末であって、走査型電子顕微鏡で観察される平均一次粒子径が好ましくは5μm以下であり、より好ましくは0.005〜2μmであり、さらに好ましくは0.01〜0.8μmである。   The positive electrode active material particle powder according to the present invention is a positive electrode active material particle powder composed of secondary particles in which primary particles are aggregated, and an average primary particle diameter observed with a scanning electron microscope is preferably 5 μm or less, More preferably, it is 0.005-2 micrometers, More preferably, it is 0.01-0.8 micrometers.

本発明に係る正極活物質粒子粉末の平均二次粒子径が好ましくは1〜50μmである。平均二次粒子径が1μm未満の場合、電解液との接触面積が上がりすぎることによって、電解液との反応性が高くなり、充電時の安定性が低下する。平均粒子径が50μmを超えると、電極内の抵抗が上昇して、充放電レート特性が低下する。より好ましい平均二次粒子径は1〜40μmであり、さらに好ましくは2〜30μmである。   The average secondary particle diameter of the positive electrode active material particle powder according to the present invention is preferably 1 to 50 μm. When the average secondary particle diameter is less than 1 μm, the contact area with the electrolytic solution increases too much, so that the reactivity with the electrolytic solution increases and the stability during charging decreases. When the average particle diameter exceeds 50 μm, the resistance in the electrode increases, and the charge / discharge rate characteristics deteriorate. A more preferable average secondary particle diameter is 1 to 40 μm, and further preferably 2 to 30 μm.

次に、本発明に係る正極活物質粒子粉末の製造方法について述べる。   Next, the manufacturing method of the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末は、あらかじめ作製した遷移金属を含む前駆体粒子粉末とリチウム化合物とを混合して焼成し、この中間焼成物を酸及びAlの塩の混合水溶液に浸して濾過、乾燥、焼成することによって得ることができる。   The positive electrode active material particle powder according to the present invention is prepared by mixing a precursor particle powder containing a transition metal prepared in advance and a lithium compound, firing, and immersing the intermediate fired product in a mixed aqueous solution of an acid and an Al salt. It can be obtained by drying and baking.

本発明における遷移金属を含む前駆体粒子粉末は、所定の濃度のニッケル塩、コバルト塩、マンガン塩を含有する混合溶液とアルカリ水溶液とを反応槽へ供給し、pHが6〜13になるように制御し、オーバーフローした懸濁液をオーバーフロー管に連結された濃縮槽で濃縮速度を調整しながら反応槽へ種循環し、反応槽と沈降槽中の前駆体粒子濃度が0.1〜15mol/lになるまで反応を行って得ることができる。また、濃縮槽を設けずに、オーバーフローで前駆体粒子粉末を得ても良い。反応後は常法に従って、水洗、乾燥、粉砕を行えばよい。   The precursor particle powder containing a transition metal in the present invention supplies a mixed solution containing a predetermined concentration of nickel salt, cobalt salt and manganese salt and an aqueous alkaline solution to the reaction vessel so that the pH is 6 to 13. Controlling and circulating the overflowed suspension to the reaction tank while adjusting the concentration rate in the concentration tank connected to the overflow pipe, the concentration of precursor particles in the reaction tank and the settling tank is 0.1 to 15 mol / l. The reaction can be carried out until Moreover, you may obtain precursor particle powder by overflow, without providing a concentration tank. After the reaction, washing with water, drying and pulverization may be performed according to a conventional method.

本発明における遷移金属を含む前駆体粒子粉末としては、特に限定されることなく各種の遷移金属化合物を用いることができるが、例えば、酸化物、水酸化物、炭酸塩又はそれらの混合物が好ましく、より好ましくは遷移金属の水酸化物若しくは炭酸塩である。   As the precursor particle powder containing a transition metal in the present invention, various transition metal compounds can be used without any particular limitation. For example, oxides, hydroxides, carbonates or mixtures thereof are preferable, More preferred are transition metal hydroxides or carbonates.

本発明における前駆体粒子粉末は、平均粒子径が0.15〜50μm、BET比表面積が0.5〜300m/gであることが好ましい。 The precursor particle powder in the present invention preferably has an average particle size of 0.15 to 50 μm and a BET specific surface area of 0.5 to 300 m 2 / g.

本発明に用いるリチウム化合物としては、特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられ、炭酸リチウムが好ましい。リチウム化合物を混合する場合の混合割合は前記前駆体粒子に対して20〜100wt%であることが好ましい。   The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, Examples include lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being preferred. The mixing ratio in the case of mixing a lithium compound is preferably 20 to 100 wt% with respect to the precursor particles.

また、用いるリチウム化合物は平均粒子径が50μm以下であることが好ましい。より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、前駆体粒子との混合が不均一となり、結晶性の良い複合酸化物粒子粉末を得るのが困難となる。   Moreover, it is preferable that the lithium compound to be used has an average particle diameter of 50 micrometers or less. More preferably, it is 30 μm or less. When the average particle diameter of the lithium compound exceeds 50 μm, mixing with the precursor particles becomes non-uniform, and it becomes difficult to obtain composite oxide particle powder having good crystallinity.

遷移金属を含む前駆体粒子粉末とリチウム化合物の混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   The mixing treatment of the precursor particle powder containing the transition metal and the lithium compound may be either dry or wet as long as it can be uniformly mixed.

遷移金属を含む前駆体粒子粉末とリチウム化合物との混合処理は、一度で行ってもよく、遷移金属を含む前駆体粒子粉末とLi化合物とを混合し焼成した焼成物にLi化合物を加えて再度焼成してもよい。   The mixing treatment of the precursor particle powder containing the transition metal and the lithium compound may be performed once. The Li compound is added again to the fired product obtained by mixing the precursor particle powder containing the transition metal and the Li compound and calcining, and again. You may bake.

このとき、焼成温度は、400〜1500℃であることが好ましい。400℃未満の場合にはLiとNi、Co、Mnの反応が十分に進まず、十分に複合化されない。1500℃を超える場合には焼結が進みすぎるので好ましくない。より好ましくは600〜1200℃の温度範囲であり、さらにより好ましくは750〜1050℃の温度範囲である。焼成時の雰囲気は酸化性ガス雰囲気が好ましく、より好ましくは通常の空気である。焼成時間は1〜30時間が好ましい。   At this time, it is preferable that a calcination temperature is 400-1500 degreeC. When the temperature is lower than 400 ° C., the reaction between Li and Ni, Co, and Mn does not proceed sufficiently and is not sufficiently combined. If the temperature exceeds 1500 ° C., the sintering proceeds excessively, which is not preferable. More preferably, it is a temperature range of 600-1200 degreeC, More preferably, it is a temperature range of 750-1050 degreeC. The atmosphere during firing is preferably an oxidizing gas atmosphere, and more preferably normal air. The firing time is preferably 1 to 30 hours.

本発明の正極活物質粒子粉末は少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し得られた中間焼成物を酸及びAlの塩の混合水溶液に浸して濾過乾燥し再焼成することで得ることができる。また、酸及びAlの塩の混合水溶液は、酸、Alの塩の他にNi、Mn、Coから選ばれる少なくとも1種の元素の塩を含む混合水溶液であってもよい。中間焼成物を酸及びAlの塩の混合水溶液に浸すことによって、酸による余剰のリチウムを除去する効果と粒子表面へのAlの担持を同時に行うことができ、さらに、電池特性を向上させるその他の元素の担持も容易に行うことができる。   The cathode active material particle powder of the present invention is obtained by immersing an intermediate fired product obtained by firing a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound in a mixed aqueous solution of an acid and an Al salt, followed by filtration and drying. It can be obtained by refiring. The mixed aqueous solution of the acid and Al salt may be a mixed aqueous solution containing a salt of at least one element selected from Ni, Mn, and Co in addition to the acid and Al salt. By immersing the intermediate fired product in a mixed aqueous solution of an acid and an Al salt, the effect of removing excess lithium by the acid and the loading of Al on the particle surface can be performed simultaneously. Element loading can also be easily performed.

また、酸及びAlの塩の混合水溶液は、さらに他の元素の塩を含む混合水溶液であってもよい。酸及びAlの塩の混合水溶液が他の元素の塩を含むことによって、中間焼成物に電池特性を向上させるその他の元素の担持を容易に行うことができる。酸及びAlの塩の混合水溶液に含まれる他の元素としては、Mg、Tiが好ましい。   The mixed aqueous solution of acid and Al salt may be a mixed aqueous solution containing a salt of another element. When the mixed aqueous solution of the acid and Al salt contains a salt of another element, the intermediate fired product can be easily loaded with another element that improves battery characteristics. Other elements contained in the mixed aqueous solution of acid and Al salt are preferably Mg and Ti.

中間焼成物を浸す混合水溶液中の酸は、特に限定されることなく各種の酸を用いることができるが、例えば、硫酸、硝酸、塩酸、燐酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、蓚酸、酢酸、クエン酸、蟻酸等の無機酸及び有機酸を用いることができ、好ましくは硫酸、硝酸、塩酸で、特に硫酸が好ましい。   The acid in the mixed aqueous solution in which the intermediate fired product is immersed is not particularly limited, and various acids can be used. For example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, hypochlorous acid, chlorous acid, chloric acid, Inorganic acids and organic acids such as perchloric acid, succinic acid, acetic acid, citric acid and formic acid can be used, and sulfuric acid, nitric acid and hydrochloric acid are preferred, and sulfuric acid is particularly preferred.

中間焼成物を浸す混合水溶液中の酸の濃度は、0.005〜1mol/lである。濃度が高すぎると中間焼成物が溶解してしまい、低すぎるとLiを溶出させる効果が得られない。好ましくは0.01〜0.5mol/l、より好ましくは0.03〜0.3mol/lである。   The concentration of the acid in the mixed aqueous solution in which the intermediate fired product is immersed is 0.005 to 1 mol / l. If the concentration is too high, the intermediate fired product is dissolved, and if it is too low, the effect of eluting Li cannot be obtained. Preferably it is 0.01-0.5 mol / l, More preferably, it is 0.03-0.3 mol / l.

中間焼成物を浸す混合水溶液中のAlの塩、Ni、Mn、Coから選ばれる少なくとも1種の元素の塩、及びその他の元素の塩は、特に限定されることなく各種の水溶性の塩を用いることができるが、例えば、硫酸塩、硝酸塩、塩化物、燐酸塩、蓚酸塩、酢酸塩、クエン酸塩等を用いることができ、好ましくは硫酸塩、硝酸塩、塩化物で、特に硫酸塩が好ましい。   The salt of Al, the salt of at least one element selected from Ni, Mn, and Co in the mixed aqueous solution soaking the intermediate fired product, and the salt of other elements are not particularly limited, and various water-soluble salts can be used. For example, sulfates, nitrates, chlorides, phosphates, oxalates, acetates, citrates, etc. can be used, preferably sulfates, nitrates, chlorides, particularly sulfates. preferable.

中間焼成物を浸す混合水溶液中のAlの塩の濃度は、0.01〜2.5mol/lであることが好ましい。濃度が高すぎると中間焼成物にAlの塩が均一に担持されず、低すぎると中間焼成物に担持されずに溶液中に残存してしまう。より好ましくは0.05〜2.5mol/l、更に好ましくは0.8〜2.2mol/lである。   The concentration of the Al salt in the mixed aqueous solution in which the intermediate fired product is immersed is preferably 0.01 to 2.5 mol / l. If the concentration is too high, the salt of Al is not uniformly supported on the intermediate baked product, and if it is too low, it remains in the solution without being supported on the intermediate baked product. More preferably, it is 0.05-2.5 mol / l, More preferably, it is 0.8-2.2 mol / l.

中間焼成物を浸す混合水溶液中のAlの塩、Ni、Mn、Coから選ばれる少なくとも1種の元素の塩、及びその他の元素の塩の合計濃度は、0.01〜2.5mol/lであることが好ましい。濃度が高すぎると中間焼成物にAlの塩、Ni、Mn、Coから選ばれる少なくとも1種の元素の塩、及びその他の元素の塩が均一に担持されず、低すぎると中間焼成物に担持されずに溶液中に残存してしまう。より好ましくは0.05〜2.5mol/l、更に好ましくは0.1〜2.5mol/lである。   The total concentration of the salt of Al, the salt of at least one element selected from Ni, Mn, and Co in the mixed aqueous solution in which the intermediate fired product is immersed is 0.01 to 2.5 mol / l. Preferably there is. If the concentration is too high, the intermediate fired product will not uniformly support the salt of Al, at least one element selected from Ni, Mn, and Co, and the salt of other elements, and if it is too low, it will be supported on the intermediate fired product. Instead, it remains in the solution. More preferably, it is 0.05-2.5 mol / l, More preferably, it is 0.1-2.5 mol / l.

本発明に係る正極活物質粒子粉末を製造するにあたり、中間焼成物を浸す混合水溶液にNi、Mn、Coから選ばれる少なくとも1種の元素が含まれる場合、混合水溶液のAlとNi、Mn、Coから選ばれる少なくとも1種の元素の比は、Alの含有率がmol比で、0.1以上である。Alの比率が少なすぎるとサイクル特性を改善する効果が得られない。好ましいAlの含有率は0.2以上であり、より好ましくは0.3以上であり、さらにより好ましくは0.4以上である。   In producing the positive electrode active material particle powder according to the present invention, when the mixed aqueous solution in which the intermediate fired product is immersed contains at least one element selected from Ni, Mn, and Co, the mixed aqueous solution Al and Ni, Mn, Co The ratio of the at least one element selected from the above is 0.1 or more in terms of mol ratio of Al. If the Al ratio is too small, the effect of improving the cycle characteristics cannot be obtained. A preferable Al content is 0.2 or more, more preferably 0.3 or more, and still more preferably 0.4 or more.

中間焼成物を浸す混合水溶液の量は、中間焼成物100gに対して、1〜300mlであることが好ましい。量が少なすぎると中間焼成物にAlの塩、及びNi、Mn、Coから選ばれる少なくとも1種の元素の塩が均一に担持されず、多すぎると中間焼成物に担持されずに溶液中に残存してしまう。好ましくは1〜150ml、より好ましくは1〜20mlである。   The amount of the mixed aqueous solution in which the intermediate baked product is immersed is preferably 1 to 300 ml with respect to 100 g of the intermediate baked product. If the amount is too small, the intermediate baked product will not be uniformly supported with the salt of Al and at least one element selected from Ni, Mn, and Co. It will remain. Preferably it is 1-150 ml, More preferably, it is 1-20 ml.

本発明の正極活物質粒子粉末は少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成して得られた中間焼成物をフッ化物水溶液に浸す工程を含んで製造してもよい。   The positive electrode active material particle powder of the present invention is manufactured by including a step of immersing an intermediate fired product obtained by firing a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound in an aqueous fluoride solution. Also good.

中間焼成物をフッ化物水溶液に浸す場合のフッ化物水溶液は、特に限定されることなく各種の水溶性のフッ素化合物を用いることができるが、例えば、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、フルオロ酢酸ナトリウム等を用いることができ、好ましくはフッ化カリウム、フッ化アンモニウムで、特にフッ化アンモニウムが好ましい。   The aqueous fluoride solution in the case of immersing the intermediate baked product in the aqueous fluoride solution is not particularly limited, and various water-soluble fluorine compounds can be used. For example, sodium fluoride, potassium fluoride, ammonium fluoride, Sodium fluoroacetate or the like can be used, preferably potassium fluoride or ammonium fluoride, particularly preferably ammonium fluoride.

中間焼成物をフッ化物水溶液に浸す場合のフッ化物水溶液濃度は、フッ素の濃度として、0.02〜1mol/lであることが好ましい。濃度が高すぎると中間焼成物にフッ素が均一に担持されず、低すぎると中間焼成物に担持されずに溶液中に残存してしまう。より好ましくは0.1〜1mol/l、更に好ましくは0.5〜1mol/lである。   The concentration of the aqueous fluoride solution when the intermediate baked product is immersed in the aqueous fluoride solution is preferably 0.02 to 1 mol / l as the fluorine concentration. If the concentration is too high, fluorine is not uniformly supported on the intermediate baked product, and if it is too low, it remains in the solution without being supported on the intermediate baked product. More preferably, it is 0.1-1 mol / l, More preferably, it is 0.5-1 mol / l.

中間焼成物をフッ化物水溶液に浸す場合のフッ化物水溶液量は、中間焼成物100gに対して、10〜200mlであることが好ましい。量が少なすぎると中間焼成物にフッ素が均一に担持されず、多すぎると中間焼成物に担持されずに溶液中に残存してしまう。より好ましくは10〜150ml、更に好ましくは10〜100mlである。   The amount of the aqueous fluoride solution when the intermediate fired product is immersed in the aqueous fluoride solution is preferably 10 to 200 ml with respect to 100 g of the intermediate fired product. If the amount is too small, fluorine is not uniformly supported on the intermediate baked product, and if it is too large, it remains in the solution without being supported on the intermediate baked product. More preferably, it is 10-150 ml, More preferably, it is 10-100 ml.

本発明に係る正極活物質の製造方法においては、中間焼成物を水またはフッ化物水溶液に投入しスラリー状態にした後に、前記スラリーを攪拌しながら、酸及びAlの塩の混合水溶液を投入することが好ましい。このとき中間焼成物を浸しておく水若しくはフッ化物水溶液は、中間焼成物100gに対して、10〜200mlであり、好ましくは10〜150mlであり、より好ましくは10〜100mlである。また、このときの処理温度は、0〜80℃が好ましく、20〜60℃が特に好ましい。   In the method for producing a positive electrode active material according to the present invention, after the intermediate fired product is put into water or a fluoride aqueous solution to form a slurry, a mixed aqueous solution of acid and Al salt is put into the slurry while stirring the slurry. Is preferred. At this time, the water or fluoride aqueous solution in which the intermediate baked product is immersed is 10 to 200 ml, preferably 10 to 150 ml, more preferably 10 to 100 ml, with respect to 100 g of the intermediate baked product. Moreover, 0-80 degreeC is preferable and the processing temperature at this time has especially preferable 20-60 degreeC.

この中間焼成物を混合水溶液に浸す時間は、30時間以内が好ましい。30時間以上浸すと、中間焼成物からMnが過剰に溶出し、サイクル特性が低下してしまう。より好ましくは10時間以内であり、さらにより好ましくは5時間以内である。   The time for immersing the intermediate fired product in the mixed aqueous solution is preferably within 30 hours. When soaked for 30 hours or more, Mn is excessively eluted from the intermediate fired product, and the cycle characteristics deteriorate. More preferably, it is within 10 hours, and even more preferably within 5 hours.

この中間焼成物を混合水溶液に浸す処理をした後、このスラリーを濾過するが、濾過後に、少量の水で水洗しても良い。その後、乾燥し、焼成するが、このときの熱処理温度は、100℃〜1100℃であることが好ましい。より好ましくは200〜900℃の温度範囲であり、さらにより好ましくは300〜500℃の温度範囲である。熱処理時の雰囲気は酸化性ガス雰囲気が好ましく、より好ましくは通常の空気である。熱処理時間は1〜30時間が好ましい。   The slurry is filtered after the intermediate fired product is soaked in the mixed aqueous solution. After filtration, the slurry may be washed with a small amount of water. Thereafter, drying and firing are performed, and the heat treatment temperature at this time is preferably 100 ° C to 1100 ° C. More preferably, it is a temperature range of 200-900 degreeC, More preferably, it is a temperature range of 300-500 degreeC. The atmosphere during the heat treatment is preferably an oxidizing gas atmosphere, more preferably normal air. The heat treatment time is preferably 1 to 30 hours.

本発明においては、中間焼成物を混合水溶液に浸す処理によって中間焼成物から引き抜かれた余剰のリチウムを除去することにより、初期効率を高めることができたものと考えられる。従って、中間焼成物を混合水溶液に浸す処理をした後、スラリーを濾過し、乾燥、焼成を行って、正極活物質粒子粉末に残留する余剰のリチウムを低減する。   In the present invention, it is considered that the initial efficiency could be improved by removing excess lithium extracted from the intermediate baked product by the treatment of immersing the intermediate baked product in the mixed aqueous solution. Accordingly, after the intermediate fired product is soaked in the mixed aqueous solution, the slurry is filtered, dried and fired to reduce excess lithium remaining in the positive electrode active material particle powder.

本発明において、得られた正極活物質粒子粉末は、少なくとも空間群R−3mに属する結晶系と、空間群C2/m、C2/c又はP312に属する結晶系とを特定比率で有する化合物からなる必要がある。焼成して得られる化合物が、このような2種の結晶系を特定比率で有するためには、基本的に、Mn含有量がモル比でMn/(Ni+Co+Mn)が0.5以上、好ましくは0.55〜0.9の範囲となるような前駆体粒子を調製すればよい。前駆体粒子のMn/(Ni+Co+Mn)を上記範囲内に調製する方法としては、原料であるニッケル塩、コバルト塩及びマンガン塩の量を調節する方法、反応溶液のpHを調節する方法、アンモニアなどの錯化剤を調整する方法などが挙げられる。なお、空間群R−3mに属する結晶系は上記のLiMMn1−x化合物に由来するものであり、空間群C2/m、C2/c又はP312に属する結晶系は上記のLiM’(1−y)Mnに由来するものであるが、これらの化合物は一連の製造方法で同時に形成されるものであり、その比率は基本的に上記のように前駆体のLi及びMn含有量で決定されるものである。 In the present invention, the obtained positive electrode active material particle powder is a compound having at least a crystal system belonging to the space group R-3m and a crystal system belonging to the space group C2 / m, C2 / c, or P3 1 12 in a specific ratio. It is necessary to consist of. In order for the compound obtained by firing to have such two types of crystal systems at a specific ratio, the Mn content is basically a molar ratio and Mn / (Ni + Co + Mn) is 0.5 or more, preferably 0. The precursor particles may be prepared in the range of .55 to 0.9. As a method of preparing Mn / (Ni + Co + Mn) of the precursor particles within the above range, a method of adjusting the amount of nickel salt, cobalt salt and manganese salt as raw materials, a method of adjusting the pH of the reaction solution, ammonia, etc. The method of adjusting a complexing agent is mentioned. The crystal system belonging to the space group R-3m is derived from the above LiM x Mn 1-x O 2 compound, and the crystal system belonging to the space group C2 / m, C2 / c or P3 1 12 is Although it is derived from Li 2 M ′ (1-y) Mn y O 3 , these compounds are formed simultaneously by a series of production methods, and the ratio is basically the precursor as described above. This is determined by the Li and Mn contents.

反応溶液のpHを調節する方法においては、pHを低くすると、ピーク強度比(a)/(b)は小さくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが少なくなる傾向となる。逆にpHを高くすると、ピーク強度比(a)/(b)は大きくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが多くなる傾向となる。 In the method of adjusting the pH of the reaction solution, when the pH is lowered, the peak intensity ratio (a) / (b) tends to decrease, that is, the crystal system belonging to the space group C2 / m, C2 / c or P3 1 12 is reduced. Li 2 M ′ (1-y) Mn y O 3 has a tendency to decrease. Conversely, when the pH is increased, the peak intensity ratio (a) / (b) tends to increase, that is, Li 2 M ′ (1-y having a crystal system belonging to the space group C2 / m, C2 / c, or P3 1 12 ) Mn y O 3 tends to increase.

反応溶液の錯化剤を調節する方法においては、錯化剤を少なく投入すると、ピーク強度比(a)/(b)は小さくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが少なくなる傾向となる。逆に錯化剤を多く投入すると、ピーク強度比(a)/(b)は大きくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが多くなる傾向となる。 In the method of adjusting the complexing agent in the reaction solution, when a small amount of complexing agent is added, the peak intensity ratio (a) / (b) tends to decrease, that is, the space group C2 / m, C2 / c or P3 1 12 Li 2 M ′ (1-y) Mn y O 3 having a crystal system belonging to the group tends to decrease. Conversely, when a large amount of complexing agent is added, the peak intensity ratio (a) / (b) tends to increase, that is, Li 2 M ′ ( having a crystal system belonging to space group C2 / m, C2 / c or P3 1 12 1-y) Mn y O 3 tends to increase.

なお、錯化剤としては錯化剤として、アンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、ジメチルグリオキシム、ジチゾン、オキシン、アセチルアセトン又はグリシンから選ばれる1種又は2以上を用いることができる。   As the complexing agent, one or more selected from a complexing agent selected from ammonium ion donor, hydrazine, ethylenediaminetetraacetic acid, nitritotriacetic acid, uracil diacetic acid, dimethylglyoxime, dithizone, oxine, acetylacetone or glycine. Can be used.

また、焼成条件を調整することでも、ピーク強度比(a)/(b)が異なり、焼成温度が高くなると、ピーク強度比(a)/(b)は小さくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが少なくなる傾向となる。逆に焼成温度が低くなると、ピーク強度比(a)/(b)は大きくなる傾向、すなわち空間群C2/m、C2/c又はP312に属する結晶系を有するLiM’(1−y)Mnが多くなる傾向となる。 Further, even when the firing conditions are adjusted, the peak intensity ratio (a) / (b) is different, and as the firing temperature is increased, the peak intensity ratio (a) / (b) tends to decrease, that is, the space group C2 / m. , C 2 / c or P 3 1 12 having a crystal system belonging to P 2 1 12 tends to decrease in Li 2 M ′ (1-y) Mn y O 3 . On the contrary, when the firing temperature is lowered, the peak intensity ratio (a) / (b) tends to increase, that is, Li 2 M ′ (1−1) having a crystal system belonging to the space group C2 / m, C2 / c or P3 1 12. y) Mn y O 3 tends to increase.

次に、本発明に係る正極活物質粒子粉末を含有する正極について述べる。   Next, the positive electrode containing the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing the positive electrode containing the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder which concerns on this invention is comprised from the said positive electrode, a negative electrode, and electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した二次電池は、後述する評価法で初期放電容量が220mAh/g以上であり、好ましくは240mAh/g以上、より好ましくは260mAh/g以上、さらにより好ましくは270mAh/g以上で、高くなるほど良い。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has an initial discharge capacity of 220 mAh / g or more, preferably 240 mAh / g or more, more preferably 260 mAh according to an evaluation method described later. / G or more, even more preferably 270 mAh / g or more, the higher the better.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した二次電池は、後述する評価法でレート特性を評価し、2回目の充放電における放電容量が180mAh/g以上であり、好ましくは200mAh/g以上、より好ましくは210mAh/g以上、さらにより好ましくは220mAh/g以上で、高くなるほど良い。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention is evaluated for rate characteristics by the evaluation method described later, and the discharge capacity in the second charge / discharge is 180 mAh / g or more, Preferably it is 200 mAh / g or more, More preferably, it is 210 mAh / g or more, More preferably, it is 220 mAh / g or more, and it is so good that it becomes high.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した二次電池は、後述する評価法でサイクル特性が75%以上であり、好ましくは80%以上、より好ましくは85%以上、さらにより好ましくは90%以上で、高くなるほど良い。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has a cycle characteristic of 75% or more, preferably 80% or more, more preferably 85% or more, by an evaluation method described later. Even more preferably, it is 90% or more, and the higher the better.

<作用>
本発明に係る正極活物質粒子粉末は、Alが複合酸化物にほとんど固溶せず正極活物質の一次粒子表面に存在し、Alと粒子表面に存在するLi−Mn化合物との相互作用が電解液と正極活物質との過剰な接触を抑制することによって、サイクル特性、レート特性及び初期効率が向上するものと本発明者らは考えている。
<Action>
In the positive electrode active material particle powder according to the present invention, Al hardly dissolves in the composite oxide and is present on the primary particle surface of the positive electrode active material, and the interaction between Al and the Li-Mn compound present on the particle surface is electrolyzed. The present inventors consider that cycle characteristics, rate characteristics, and initial efficiency are improved by suppressing excessive contact between the liquid and the positive electrode active material.

また、本発明の製造方法によれば、酸とAlの塩の混合水溶液に中間焼成物を浸すことによって余分なLiが抜け、Alの担持を同時に行うことができるために、サイクル特性及びレート特性及び初期効率に優れた前記の構造の正極活物質粒子粉末を容易に得ることができる。   In addition, according to the production method of the present invention, excess Li can be removed by immersing the intermediate baked product in a mixed aqueous solution of an acid and Al salt, and Al can be supported simultaneously. And the positive electrode active material particle powder of the said structure excellent in initial efficiency can be obtained easily.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

BET比表面積値は、試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いて測定した。   The BET specific surface area value was measured using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.

正極活物質粒子粉末を構成するリチウム、ニッケル、コバルト、マンガン、マグネシウム、チタン、アルミニウムの含有量は、該正極活物質粒子粉末0.2gを酸で溶解し、測定にはICAP[SPS−4000 セイコー電子工業(株)製]を用いて定量して決定した。   The content of lithium, nickel, cobalt, manganese, magnesium, titanium, and aluminum constituting the positive electrode active material particle powder was obtained by dissolving 0.2 g of the positive electrode active material particle powder with an acid, and ICAP [SPS-4000 Seiko Quantitative determination was performed using “Electronic Industry Co., Ltd.”.

正極活物質粒子粉末を構成するフッ素の含有量は、該正極活物質粒子粉末を純水に浸して煮沸させてフッ素を溶出させて、その濾液のイオンクロマト測定を[ICA−2000 東亜ディーケーケー(株)製]を用いて行い、濾液にフッ素分が検出されなくなるまでこの操作を繰り返して定量して決定した。   The content of fluorine constituting the positive electrode active material particle powder is determined by immersing the positive electrode active material particle powder in pure water to boil and elute the fluorine, and ion chromatography measurement of the filtrate [ICA-2000 Toa DKK Co., Ltd. This was repeated until the fluorine content was no longer detected in the filtrate.

平均二次粒子径(D50)はレーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。   The average secondary particle diameter (D50) is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring device Microtrac HRA [manufactured by Nikkiso Co., Ltd.].

相の同定及び強度の測定は、X線回折測定で行った。X線回折装置は粉末X線回折装置SmartLab[(株)リガク製](管球:Cu、管電圧:45kV、管電流:200mA、ステップ角度:0.010°、計数時間:0.9s、入射スリット:0.650°、受光スリット1:0.650°、受光スリット2:0.200mm)を使用した。   Phase identification and strength measurement were performed by X-ray diffraction measurement. The X-ray diffractometer is a powder X-ray diffractometer SmartLab [manufactured by Rigaku Corporation] (tube: Cu, tube voltage: 45 kV, tube current: 200 mA, step angle: 0.010 °, counting time: 0.9 s, incidence Slit: 0.650 °, light receiving slit 1: 0.650 °, light receiving slit 2: 0.200 mm).

正極活物質粒子粉末を用いたコインセルによる充放電特性及びサイクル特性評価を行った。   Charge / discharge characteristics and cycle characteristics were evaluated by a coin cell using positive electrode active material particle powder.

まず、正極活物質として複合酸化物を84重量%、導電材としてアセチレンブラックを4重量%及びグラファイトKS−6を4重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン8重量%とを混合した後、Al金属箔に塗布し110℃にて乾燥した。このシートを15mmφに打ち抜いた後、3t/cmで圧着した物を正極に用いた。負極は16mmφに打ち抜いた金属リチウムとし、電解液は1mol/lのLiPFを溶解したECとDMCを体積比で1:2で混合した溶液を用いてCR2032型コインセルを作製した。 First, 84% by weight of the composite oxide as the positive electrode active material, 4% by weight of acetylene black as the conductive material, 4% by weight of graphite KS-6, and 8% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as the binder. After mixing, it was applied to an Al metal foil and dried at 110 ° C. The sheet was punched out to 15 mmφ, and then pressure-bonded at 3 t / cm 2 was used for the positive electrode. A CR2032-type coin cell was manufactured using a lithium mixed with 1 mol / l of LiPF 6 dissolved in EC and DMC at a volume ratio of 1: 2 with a negative electrode made of metallic lithium punched to 16 mmφ.

1回目の充放電は、25℃で充電は4.6Vまで20mA/gで充電した後、定圧で電流値が1/100になるまで充電し、放電を2.0Vまで20mA/gにて行った。このときの((放電容量/充電容量)×100)を初期効率とした。   The first charge / discharge is performed at 25 ° C. and charged to 4.6 V at 20 mA / g, then charged at a constant pressure until the current value becomes 1/100, and discharged to 2.0 V at 20 mA / g. It was. The initial efficiency was ((discharge capacity / charge capacity) × 100) at this time.

2回目の充放電は、25℃で充電は4.6Vまで27mA/gで充電した後、定圧充電は行わずに、放電を2.0Vまで270mA/gにて行った。このときの放電容量をレート特性として評価した。   The second charge / discharge was carried out at 25 ° C. and charged at 27 mA / g up to 4.6 V, and then was performed at 270 mA / g up to 2.0 V without performing constant pressure charging. The discharge capacity at this time was evaluated as a rate characteristic.

3回目の充放電以降は、25℃で充電は4.6Vまで54mA/gで充電した後、定圧充電は行わずに、放電を2.0Vまで135mA/gにて行った。((22回目放電容量/3回目放電容量)×100)をサイクル特性とした。   After the third charge / discharge, after charging at 54 mA / g up to 4.6 V at 25 ° C., discharging was carried out at 135 mA / g up to 2.0 V without performing constant pressure charging. ((22nd discharge capacity / third discharge capacity) × 100) was defined as the cycle characteristics.

実施例1
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.5(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 1
8 L of water was placed in a closed reaction tank and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 8.5 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下880℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを30℃に保持した20mlの純水に攪拌しながら投入した。次に硫酸濃度0.05mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、120℃で乾燥した。これを電気炉を用いて、空気流通下400℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was baked for 5 hours at 880 ° C. under air flow using an electric furnace to obtain an intermediate baked product. 100 g of this intermediate fired product was added to 20 ml of pure water kept at 30 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.05 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l was dropped into the slurry of the intermediate fired product, filtered, washed with water, and 120 ° C. And dried. This was fired at 400 ° C. for 5 hours using an electric furnace to obtain positive electrode active material particle powder.

X線回折測定の結果、得られた正極活物質粒子粉末は、ピーク強度比(a)/(b)が0.069であった。ICP組成分析の結果、それぞれモル比でLi/(Ni+Co+Mn)=1.38、Ni:Co:Mn=0.19:0.12:0.69(Mn/(Ni+Co+Mn)=0.69)であり、Al=0.149wt%であった。BET比表面積は5.5m/gで、平均二次粒子径が11.6μmの二次粒子を形成している様子が観測された。 As a result of the X-ray diffraction measurement, the obtained positive electrode active material particle powder had a peak intensity ratio (a) / (b) of 0.069. As a result of ICP composition analysis, the molar ratios are Li / (Ni + Co + Mn) = 1.38, Ni: Co: Mn = 0.19: 0.12: 0.69 (Mn / (Ni + Co + Mn) = 0.69), respectively. Al = 0.149 wt%. It was observed that the BET specific surface area was 5.5 m 2 / g and secondary particles having an average secondary particle diameter of 11.6 μm were formed.

実施例2
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.3(±0.1)となるよう、攪拌しながら連続的にNi、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 2
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 8.3 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下850℃で6hr焼成し、中間焼成物を得た。この中間焼成物100gを35℃に保持した30mlの純水に攪拌しながら投入した。次に硫酸濃度0.04mol/l、硫酸アルミニウム濃度0.6mol/l、硫酸マンガン濃度1.4mol/lとなるように調整した混合水溶液6mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下450℃で4hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 850 ° C. for 6 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 30 ml of pure water maintained at 35 ° C. with stirring. Next, 6 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.04 mol / l, an aluminum sulfate concentration of 0.6 mol / l, and a manganese sulfate concentration of 1.4 mol / l is dropped into the slurry of the intermediate baked product, filtered, washed with water Then, it dried at 100 degreeC. Using an electric furnace, this was fired at 450 ° C. for 4 hours under air flow to obtain positive electrode active material particle powder.

実施例3
密閉型反応槽に水を6.5L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=7.8(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、110℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 3
6.5 L of water was put into the sealed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium carbonate aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that the pH was 7.8 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 110 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下830℃で6hr焼成し、中間焼成物を得た。この中間焼成物100gを40℃に保持した25mlの純水に攪拌しながら投入した。次に硫酸濃度0.09mol/l、硫酸アルミニウム濃度1.6mol/l、硫酸マンガン濃度0.4mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下300℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 830 ° C. for 6 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 25 ml of pure water kept at 40 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.09 mol / l, an aluminum sulfate concentration of 1.6 mol / l, and a manganese sulfate concentration of 0.4 mol / l was dropped into the slurry of the intermediate fired product, filtered, Dried at 100 ° C. This was fired at 300 ° C. for 5 hours under an air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例4
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.0(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 4
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.0 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下870℃で10hr焼成し、中間焼成物を得た。この中間焼成物100gを30℃に保持した0.95mol/lのフッ化アンモニウム水溶液20mlに攪拌しながら投入した。次に硫酸濃度0.05mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、90℃で乾燥した。これを電気炉を用いて、空気流通下450℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 870 ° C. for 10 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 20 ml of a 0.95 mol / l aqueous ammonium fluoride solution maintained at 30 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.05 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l was dropped into the slurry of the intermediate fired product, filtered, washed with water, and 90 ° C. And dried. Using an electric furnace, this was fired at 450 ° C. for 3 hours under air flow to obtain a positive electrode active material particle powder.

実施例5
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=7.9(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、105℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 5
8 L of water was placed in a closed reaction tank and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 7.9 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 105 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下880℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを40℃に保持した30mlの純水に攪拌しながら投入した。次に硫酸濃度0.1mol/l、硫酸アルミニウム濃度2mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下350℃で10hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was baked for 5 hours at 880 ° C. under air flow using an electric furnace to obtain an intermediate baked product. 100 g of this intermediate fired product was added to 30 ml of pure water maintained at 40 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.1 mol / l and an aluminum sulfate concentration of 2 mol / l was dropped into the slurry of the intermediate fired product, filtered, washed with water, and dried at 100 ° C. This was baked for 10 hours at 350 ° C. under an air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例6
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.3(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 6
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.3 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下850℃で7hr焼成し、中間焼成物を得た。この中間焼成物100gを35℃に保持した0.95mol/lのフッ化アンモニウム水溶液20mlに攪拌しながら投入した。次に硫酸濃度0.1mol/l、硫酸アルミニウム濃度2mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下400℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 850 ° C. for 7 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 20 ml of a 0.95 mol / l aqueous ammonium fluoride solution maintained at 35 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.1 mol / l and an aluminum sulfate concentration of 2 mol / l was dropped into the slurry of the intermediate fired product, filtered, washed with water, and dried at 100 ° C. This was fired at 400 ° C. for 5 hours using an electric furnace to obtain positive electrode active material particle powder.

実施例7
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=8.5(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを水酸化ナトリウム水溶液を加えてpH=11に調整して、攪拌しながら硫酸マグネシウムの水溶液を、Mg/(Ni+Co+Mn)モル比が0.05になるように滴下し、濾過、水洗し、80℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 7
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium carbonate aqueous solution, and an aqueous ammonia solution were continuously added while stirring so that the pH was 8.5 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was adjusted to pH = 11 by adding an aqueous sodium hydroxide solution, and an aqueous magnesium sulfate solution was added dropwise with stirring so that the Mg / (Ni + Co + Mn) molar ratio was 0.05, followed by filtration and washing with water. And dried at 80 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下900℃で6hr焼成し、中間焼成物を得た。この中間焼成物100gを30℃に保持した30mlの純水に攪拌しながら投入した。次に硫酸濃度0.06mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下400℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 900 ° C. for 6 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 30 ml of pure water kept at 30 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.06 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l was dropped into the slurry of the intermediate fired product, filtered, washed with water, and 100 ° C. And dried. This was fired at 400 ° C. for 3 hours using an electric furnace to obtain positive electrode active material particle powder.

実施例8
密閉型反応槽に水を10L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.3(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中はスラリーをオーバーフローさせて連続的に共沈生成物のスラリーを採取した。採取したスラリーを水酸化ナトリウム水溶液を加えてpH=8.0に調整して、攪拌しながら硫酸チタニルの水溶液を、Ti/(Ni+Co+Mn)モル比が0.03になるように滴下し、濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 8
10 L of water was placed in a closed reaction vessel and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.3 (± 0.1). During the reaction, the slurry was overflowed to continuously collect a slurry of the coprecipitation product. The collected slurry was adjusted to pH = 8.0 by adding an aqueous sodium hydroxide solution, and an aqueous solution of titanyl sulfate was added dropwise with stirring so that the Ti / (Ni + Co + Mn) molar ratio was 0.03, followed by filtration, It was washed with water and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と水酸化リチウム一水和物粉末を秤量し、十分に混合した。これを電気炉を用いて、酸素流通下720℃で15hr焼成し、中間焼成物を得た。この中間焼成物100gを55℃に保持した25mlの純水に攪拌しながら投入した。次に硫酸濃度0.15mol/l、硫酸アルミニウム濃度0.25mol/l、硫酸マンガン濃度0.25mol/lとなるように調整した混合水溶液12mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、酸素流通下250℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium hydroxide monohydrate powder were weighed and mixed well. This was fired at 720 ° C. for 15 hours under an oxygen flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 25 ml of pure water maintained at 55 ° C. with stirring. Next, 12 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.15 mol / l, an aluminum sulfate concentration of 0.25 mol / l, and a manganese sulfate concentration of 0.25 mol / l is dropped into the slurry of the intermediate fired product, filtered and washed with water. Then, it dried at 100 degreeC. This was fired at 250 ° C. for 5 hours under an oxygen flow using an electric furnace to obtain positive electrode active material particle powder.

実施例9
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=11.0(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と水酸化ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 9
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium hydroxide aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that the pH = 11.0 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下860℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを50℃に保持した100mlの純水に攪拌しながら投入した。次に硫酸濃度0.11mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液6mlを、中間焼成物のスラリーに滴下し、濾過後、120℃で乾燥した。これを電気炉を用いて、空気流通下500℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 860 ° C. for 5 hours in an air stream using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 100 ml of pure water kept at 50 ° C. with stirring. Next, 6 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.11 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l is dropped into the slurry of the intermediate fired product, filtered, and dried at 120 ° C. did. This was fired at 500 ° C. for 5 hours under an air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例10
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=11.1(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と水酸化ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを水酸化ナトリウム水溶液を加えてpH=11.3に調整して、攪拌しながら硫酸マグネシウムの水溶液を、Mg/(Ni+Co+Mn)モル比が0.03になるように滴下し、濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 10
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium hydroxide aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that pH = 11.1 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was adjusted to pH = 11.3 by adding an aqueous sodium hydroxide solution, and the magnesium sulfate aqueous solution was added dropwise with stirring so that the Mg / (Ni + Co + Mn) molar ratio was 0.03. It was washed with water and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下840℃で8hr焼成し、中間焼成物を得た。この中間焼成物100gを45℃に保持した150mlの純水に攪拌しながら投入した。次に硫酸濃度0.05mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液6mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下450℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 840 ° C. for 8 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 150 ml of pure water maintained at 45 ° C. with stirring. Next, 6 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.05 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l is dropped into the slurry of the intermediate fired product, filtered and dried at 100 ° C. did. This was fired at 450 ° C. for 5 hours under an air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例11
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=10.8(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と水酸化ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 11
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium hydroxide aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that the pH = 10.8 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下860℃で7hr焼成し、中間焼成物を得た。この中間焼成物100gを30℃に保持した100mlの純水に攪拌しながら投入した。次に硫酸濃度0.1mol/l、硫酸アルミニウム濃度2mol/lとなるように調整した混合水溶液3mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下500℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 860 ° C. for 7 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 100 ml of pure water kept at 30 ° C. with stirring. Next, 3 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.1 mol / l and an aluminum sulfate concentration of 2 mol / l was dropped into the slurry of the intermediate fired product, filtered, and dried at 100 ° C. This was fired at 500 ° C. for 5 hours under an air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例12
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=9.0(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硝酸塩水溶液と炭酸リチウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 12
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed nitrate aqueous solution of Ni, Co, and Mn and an aqueous lithium carbonate solution were continuously added while stirring so that the pH was 9.0 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と硝酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下1100℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを70℃に保持した120mlの純水に攪拌しながら投入した。次に硝酸濃度0.6mol/l、硝酸アルミニウム濃度0.008mol/l、硫酸コバルト濃度0.072mol/lとなるように調整した混合水溶液101mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下950℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium nitrate powder were weighed and mixed well. This was fired at 1100 ° C. for 5 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 120 ml of pure water maintained at 70 ° C. with stirring. Next, 101 ml of a mixed aqueous solution adjusted to have a nitric acid concentration of 0.6 mol / l, an aluminum nitrate concentration of 0.008 mol / l, and a cobalt sulfate concentration of 0.072 mol / l was dropped into the slurry of the intermediate fired product, filtered, Dried at 100 ° C. This was fired at 950 ° C. for 3 hours in an air stream using an electric furnace to obtain positive electrode active material particle powder.

実施例13
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.8(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合塩化物水溶液と炭酸ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 13
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed chloride aqueous solution of Ni, Co, and Mn, a sodium carbonate aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that the pH was 8.8 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と水酸化リチウム一水和物粉末を秤量し、十分に混合した。これを電気炉を用いて、酸素流通下980℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを50℃に保持した100mlの純水に攪拌しながら投入した。次に塩酸濃度0.4mol/l、塩化アルミニウム濃度0.4mol/l、硫酸ニッケル濃度1.6mol/lとなるように調整した混合水溶液75mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下550℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium hydroxide monohydrate powder were weighed and mixed well. This was fired at 980 ° C. for 5 hours under an oxygen flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 100 ml of pure water kept at 50 ° C. with stirring. Next, 75 ml of a mixed aqueous solution adjusted to have a hydrochloric acid concentration of 0.4 mol / l, an aluminum chloride concentration of 0.4 mol / l, and a nickel sulfate concentration of 1.6 mol / l was dropped into the slurry of the intermediate fired product, filtered, Dried at 100 ° C. This was fired at 550 ° C. for 3 hours in an air stream using an electric furnace to obtain positive electrode active material particle powder.

実施例14
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=11.5(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と水酸化ナトリウム水溶液とアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、110℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 14
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn, a sodium hydroxide aqueous solution, and an aqueous ammonia solution were continuously added with stirring so that the pH = 11.5 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 110 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下860℃で5hr焼成し、中間焼成物を得た。この中間焼成物100gを40℃に保持した100mlの純水に攪拌しながら投入した。次に硫酸濃度0.033mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度0.5mol/l、硫酸マグネシウム濃度0.5mol/lとなるように調整した混合水溶液6mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下450℃で10hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 860 ° C. for 5 hours in an air stream using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 100 ml of pure water kept at 40 ° C. with stirring. Next, 6 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.033 mol / l, an aluminum sulfate concentration of 1 mol / l, a manganese sulfate concentration of 0.5 mol / l, and a magnesium sulfate concentration of 0.5 mol / l, The solution was added dropwise to the solution, filtered, and dried at 100 ° C. This was baked for 10 hours at 450 ° C. under air flow using an electric furnace to obtain positive electrode active material particle powder.

実施例15
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。さらにpH=8.4(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、150℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Example 15
8 L of water was put into a closed reaction tank and kept at 40 ° C. while circulating nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.4 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 150 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下870℃で7hr焼成し、中間焼成物を得た。この中間焼成物100gを15℃に保持した0.11mol/lのフッ化アンモニウム水溶液180mlに攪拌しながら投入した。次に硫酸濃度0.008mol/l、硫酸アルミニウム濃度0.01mol/l、硫酸マンガン濃度0.01mol/l、硫酸チタニル濃度0.01mol/lとなるように調整した混合水溶液209mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下150℃で15hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired for 7 hours at 870 ° C. under air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 180 ml of a 0.11 mol / l aqueous ammonium fluoride solution maintained at 15 ° C. with stirring. Next, 209 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.008 mol / l, an aluminum sulfate concentration of 0.01 mol / l, a manganese sulfate concentration of 0.01 mol / l, and a titanyl sulfate concentration of 0.01 mol / l, The solution was added dropwise to the slurry, filtered, washed with water, and dried at 100 ° C. Using an electric furnace, this was fired at 150 ° C. for 15 hours under air flow to obtain a positive electrode active material particle powder.

比較例1
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.5(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Comparative Example 1
8 L of water was placed in a closed reaction tank and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 8.5 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下880℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was baked for 5 hours at 880 ° C. under air flow using an electric furnace to obtain positive electrode active material particle powder.

比較例2
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=7.9(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、110℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Comparative Example 2
8 L of water was placed in a closed reaction tank and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 7.9 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 110 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下850℃で6hr焼成し、中間焼成物を得た。この中間焼成物100gを40℃に保持した25mlの純水に攪拌しながら投入した。次に0.1mol/lの硫酸3mlを、中間焼成物のスラリーに滴下し、濾過後、100℃で乾燥した。これを電気炉を用いて、空気流通下400℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 850 ° C. for 6 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 25 ml of pure water kept at 40 ° C. with stirring. Next, 3 ml of 0.1 mol / l sulfuric acid was dropped into the slurry of the intermediate fired product, filtered and dried at 100 ° C. This was fired at 400 ° C. for 3 hours using an electric furnace to obtain positive electrode active material particle powder.

比較例3
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.0(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Comparative Example 3
8 L of water was placed in a closed reaction tank and maintained at 50 ° C. while nitrogen gas was circulated. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.0 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と水酸化リチウム一水和物粉末を秤量し、十分に混合した。これを電気炉を用いて、酸素流通下900℃で4hr焼成し、中間焼成物を得た。この中間焼成物100gを50℃に保持した30mlの純水に攪拌しながら投入した。次に硫酸濃度0.05mol/l、硫酸アルミニウム濃度1mol/l、硫酸マンガン濃度1mol/lとなるように調整した混合水溶液144mlを、中間焼成物のスラリーに滴下し、濾過、水洗後、120℃で乾燥した。これを電気炉を用いて、空気流通下550℃で5hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium hydroxide monohydrate powder were weighed and mixed well. This was fired at 900 ° C. for 4 hours under an oxygen flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate fired product was added to 30 ml of pure water maintained at 50 ° C. with stirring. Next, 144 ml of a mixed aqueous solution adjusted to have a sulfuric acid concentration of 0.05 mol / l, an aluminum sulfate concentration of 1 mol / l, and a manganese sulfate concentration of 1 mol / l is dropped into the slurry of the intermediate fired product, filtered, washed with water, And dried. This was fired at 550 ° C. for 5 hours under an air flow using an electric furnace to obtain positive electrode active material particle powder.

比較例4
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.5(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Comparative Example 4
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added with stirring so that the pH was 8.5 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下820℃で8hr焼成し、中間焼成物を得た。この中間焼成物100gを35℃に保持した0.95mol/lのフッ化アンモニウム水溶液20mlに攪拌しながら投入し、濾過、水洗後、110℃で乾燥した。これを電気炉を用いて、空気流通下500℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was baked for 8 hours at 820 ° C. under air flow using an electric furnace to obtain an intermediate baked product. 100 g of this intermediate fired product was added to 20 ml of a 0.95 mol / l aqueous ammonium fluoride solution maintained at 35 ° C. with stirring, filtered, washed with water, and dried at 110 ° C. This was fired at 500 ° C. for 3 hours in an air stream using an electric furnace to obtain positive electrode active material particle powder.

比較例5
密閉型反応槽に水を8L入れ、窒素ガスを流通させながら45℃に保持した。さらにpH=8.2(±0.1)となるよう、攪拌しながら連続的にNi、Co、Mnの混合硫酸塩水溶液と炭酸ナトリウム水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗し、100℃で一晩乾燥させ、共沈前駆体の粉末を得た。
Comparative Example 5
8 L of water was placed in a closed reaction tank and kept at 45 ° C. while flowing nitrogen gas. Further, a mixed sulfate aqueous solution of Ni, Co, and Mn and an aqueous sodium carbonate solution were continuously added while stirring so that the pH was 8.2 (± 0.1). During the reaction, only the filtrate was discharged out of the system with a concentrating device, and the solid content was retained in the reaction tank. After the reaction, a slurry of the coprecipitation product was collected. The collected slurry was filtered, washed with water, and dried at 100 ° C. overnight to obtain a coprecipitation precursor powder.

得られた共沈前駆体と炭酸リチウム粉末を秤量し、十分に混合した。これを電気炉を用いて、空気流通下850℃で6hr焼成し、中間焼成物を得た。この中間焼成物100gを20℃に保持した純水120mlに攪拌しながら投入し、濾過、水洗後、100℃で乾燥した。これを電気炉を用いて、空気流通下350℃で3hr焼成し、正極活物質粒子粉末を得た。   The obtained coprecipitation precursor and lithium carbonate powder were weighed and mixed thoroughly. This was fired at 850 ° C. for 6 hours under an air flow using an electric furnace to obtain an intermediate fired product. 100 g of this intermediate baked product was added to 120 ml of pure water maintained at 20 ° C. with stirring, filtered, washed with water, and dried at 100 ° C. This was fired at 350 ° C. for 3 hours in an air stream using an electric furnace to obtain positive electrode active material particle powder.

実施例1〜15及び比較例1〜5で得られた正極活物質粒子粉末の諸特性を表1に、その正極活物質粒子粉末を用いて作製した電池の特性を表2に示す。   Table 1 shows the characteristics of the positive electrode active material particle powders obtained in Examples 1 to 15 and Comparative Examples 1 to 5, and Table 2 shows the characteristics of batteries produced using the positive electrode active material particle powders.

Figure 0006303279
Figure 0006303279

Figure 0006303279
Figure 0006303279

実施例1〜15で得られた正極活物質粒子粉末は、いずれも1回目の放電容量が220mAh/g以上で、初期効率が95%以上であり、2回目の放電容量が180mAh/g以上である。また、22回目の放電容量と3回目の放電容量の百分率が75%以上である。本発明に係る正極活物質粒子粉末は、LiM’(1−y)Mnを有することによって大きな放電容量を持ち、さらに、中間焼成物に酸を含むアルミニウム水溶液に浸すことによって初期効率とレート特性とサイクル特性に優れた正極材料である。 The positive electrode active material particle powders obtained in Examples 1 to 15 each have a first discharge capacity of 220 mAh / g or more, an initial efficiency of 95% or more, and a second discharge capacity of 180 mAh / g or more. is there. Further, the percentage of the discharge capacity at the 22nd time and the discharge capacity at the 3rd time is 75% or more. The positive electrode active material particle powder according to the present invention has a large discharge capacity due to the presence of Li 2 M ′ (1-y) Mn y O 3 , and is further initially immersed in an aluminum aqueous solution containing an acid in the intermediate fired product. It is a positive electrode material excellent in efficiency, rate characteristics and cycle characteristics.

比較例1、2、4、5のようにアルミニウムを含まないものは実施例と比べ、サイクル特性が劣る。比較例3ように過剰なアルミニウムを含むものは実施例と比べ、充放電時のリチウムの出入りが阻害され、放電容量が低下する。適量のアルミニウムが存在し、酸によって中間焼成物から引き抜かれたリチウムがリチウム水溶液となって排出され、ピーク強度比(a)/(b)、Li/(Ni+Co+Mn)モル比、Ni:Co:Mnモル比が適切な範囲であることにより、放電容量、初期効率、レート特性及びサイクル特性に優れた非水電解質二次電池用正極活物質が得られることが認められる。   Those that do not contain aluminum as in Comparative Examples 1, 2, 4, and 5 are inferior in cycle characteristics as compared to the Examples. As compared with Example, the lithium containing excess aluminum as in Comparative Example 3 is inhibited from entering and exiting lithium during charging and discharging, and the discharge capacity is reduced. An appropriate amount of aluminum is present, and lithium extracted from the intermediate baked product by the acid is discharged as an aqueous lithium solution, and the peak intensity ratio (a) / (b), Li / (Ni + Co + Mn) molar ratio, Ni: Co: Mn It can be seen that when the molar ratio is in an appropriate range, a positive electrode active material for a nonaqueous electrolyte secondary battery excellent in discharge capacity, initial efficiency, rate characteristics, and cycle characteristics can be obtained.

以上の結果から本発明に係る正極活物質粒子粉末は、放電容量が大きく、初期効率、レート特性及びサイクル特性に優れた非水電解質二次電池用正極活物質として有効であることが確認された。   From the above results, it was confirmed that the positive electrode active material particle powder according to the present invention has a large discharge capacity and is effective as a positive electrode active material for a non-aqueous electrolyte secondary battery excellent in initial efficiency, rate characteristics and cycle characteristics. .

本発明に係る正極活物質粒子粉末は放電容量が大きく、初期効率、レート特性及びサイクル特性が向上しているので、非水電解質二次電池用の正極活物質粒子粉末として好適である。   Since the positive electrode active material particle powder according to the present invention has a large discharge capacity and improved initial efficiency, rate characteristics, and cycle characteristics, it is suitable as a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery.

Claims (8)

以下に記載の正極活物質粒子粉末の製造方法であって、少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物を酸及びAlの塩の混合水溶液に浸して濾過、乾燥し、再焼成することを特徴とする正極活物質粒子粉末の製造方法。
[正極活物質粒子粉末]
少なくともLi、Ni、Mn及びAlを含有するがBを含有しない複合酸化物からなる正極活物質粒子粉末であって、該複合酸化物のMn含有量はモル比(Mn/(Ni+Co+Mn))で0.5以上であり、Al含有量は0.03〜3重量%であり、該正極活物質粒子粉末のCu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.2であり、該正極活物質粒子粉末を用いた正極と金属リチウムからなる負極とを用いた二次電池において、上限電位をリチウム対極に換算して4.6V、下限電位をリチウム対極に換算して2.0Vとして、20mA/gの電流レートで充放電したときの初期効率が95%以上であり、初期放電容量が220mAh/g以上であることを特徴とする正極活物質粒子粉末。
A method for producing a positive electrode active material particle powder as described below, wherein a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound is fired, and the resulting intermediate fired product is converted to an acid and an Al salt. A method for producing a positive electrode active material particle powder, which is soaked in a mixed aqueous solution, filtered, dried, and refired.
[Positive electrode active material powder]
A positive electrode active material particle powder comprising a composite oxide containing at least Li, Ni, Mn and Al but not B, wherein the Mn content of the composite oxide is 0 in terms of molar ratio (Mn / (Ni + Co + Mn)). 0.5 or more, the Al content is 0.03 to 3% by weight, and the maximum at 2θ = 20.8 ± 1 ° of the powder X-ray diffraction diagram using Cu—Kα ray of the positive electrode active material particle powder. The relative intensity ratio (a) / (b) between the intensity (a) of the diffraction peak and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0.02 to 0.2, and the positive electrode In a secondary battery using a positive electrode using active material particle powder and a negative electrode made of metallic lithium, the upper limit potential is converted to a lithium counter electrode of 4.6 V, and the lower limit potential is converted to a lithium counter electrode of 2.0 V. First when charging / discharging at a current rate of 20 mA / g Efficiency is 95% or more, the positive electrode active material particles the initial discharge capacity is equal to or is 220 mAh / g or more.
少なくともLi、Ni、Mn及びAlを含有する複合酸化物からなる正極活物質粒子粉末が、フッ素を含有する請求項1に記載の正極活物質粒子粉末の製造方法。   The method for producing a positive electrode active material particle powder according to claim 1, wherein the positive electrode active material particle powder comprising a composite oxide containing at least Li, Ni, Mn and Al contains fluorine. 少なくともLi、Ni、Mn及びAlを含有する複合酸化物からなる正極活物質粒子粉末が、Coを含有する請求項1又は2に記載の正極活物質粒子粉末の製造方法。   The manufacturing method of the positive electrode active material particle powder of Claim 1 or 2 with which the positive electrode active material particle powder which consists of complex oxide containing at least Li, Ni, Mn, and Al contains Co. Li/(Ni+Mn+Co)がモル比で1.25〜1.65である請求項1〜3のいずれかに記載の正極活物質粒子粉末の製造方法。   Li / (Ni + Mn + Co) is a 1.25 to 1.65 molar ratio, The manufacturing method of the positive electrode active material particle powder in any one of Claims 1-3. 少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物をフッ化物水溶液に浸した後、さらに酸及びAlの塩の混合水溶液に浸して濾過、乾燥し、再焼成する請求項1〜4のいずれかに記載の正極活物質粒子粉末の製造方法。   After firing the mixture containing the precursor particle powder containing at least Ni and Mn and the lithium compound, the obtained intermediate fired product is immersed in an aqueous fluoride solution, and further immersed in a mixed aqueous solution of acid and Al salt for filtration. The method for producing positive electrode active material particle powder according to claim 1, wherein the powder is dried and refired. 以下に記載の正極活物質粒子粉末の製造方法であって、少なくともNi及びMnを含む
前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物を酸、Alの塩、及びNi、Mn、Coから選ばれる少なくとも1種の元素の塩の混合水溶液に浸して濾過、乾燥し、再焼成する正極活物質粒子粉末の製造方法。
[正極活物質粒子粉末]
少なくともLi、Ni、Mn及びAlを含有するがBを含有しない複合酸化物からなる正極活物質粒子粉末であって、該複合酸化物のMn含有量はモル比(Mn/(Ni+Co+Mn))で0.5以上であり、Al含有量は0.03〜3重量%であり、該正極活物質粒子粉末のCu−Kα線を使用した粉末X線回折図の2θ=20.8±1°における最大回折ピークの強度(a)と2θ=18.6±1°における最大回折ピークの強度(b)との相対強度比(a)/(b)が0.02〜0.2であり、該正極活物質粒子粉末を用いた正極と金属リチウムからなる負極とを用いた二次電池において、上限電位をリチウム対極に換算して4.6V、下限電位をリチウム対極に換算して2.0Vとして、20mA/gの電流レートで充放電したときの初期効率が95%以上であり、初期放電容量が220mAh/g以上であることを特徴とする正極活物質粒子粉末。
A method for producing a positive electrode active material particle powder as described below, wherein a mixture containing a precursor particle powder containing at least Ni and Mn and a lithium compound is fired, and the resulting intermediate fired product is converted to an acid, an Al salt. And a method for producing positive electrode active material particle powders that are immersed in a mixed aqueous solution of a salt of at least one element selected from Ni, Mn, and Co, filtered, dried, and refired.
[Positive electrode active material powder]
A positive electrode active material particle powder comprising a composite oxide containing at least Li, Ni, Mn and Al but not B, wherein the Mn content of the composite oxide is 0 in terms of molar ratio (Mn / (Ni + Co + Mn)). 0.5 or more, the Al content is 0.03 to 3% by weight, and the maximum at 2θ = 20.8 ± 1 ° of the powder X-ray diffraction diagram using Cu—Kα ray of the positive electrode active material particle powder. The relative intensity ratio (a) / (b) between the intensity (a) of the diffraction peak and the intensity (b) of the maximum diffraction peak at 2θ = 18.6 ± 1 ° is 0.02 to 0.2, and the positive electrode In a secondary battery using a positive electrode using active material particle powder and a negative electrode made of metallic lithium, the upper limit potential is converted to a lithium counter electrode of 4.6 V, and the lower limit potential is converted to a lithium counter electrode of 2.0 V. First when charging / discharging at a current rate of 20 mA / g Efficiency is 95% or more, the positive electrode active material particles the initial discharge capacity is equal to or is 220 mAh / g or more.
少なくともNi及びMnを含む前駆体粒子粉末とリチウム化合物とを含有する混合物を焼成し、得られた中間焼成物をフッ化物水溶液に浸した後、さらに酸、Alの塩、及びNi、Mn、Coから選ばれる少なくとも1種の元素の塩の混合水溶液に浸して濾過、乾燥し、再焼成する請求項6に記載の正極活物質粒子粉末の製造方法。   After firing the mixture containing the precursor particle powder containing at least Ni and Mn and the lithium compound and immersing the obtained intermediate fired product in an aqueous fluoride solution, the acid, Al salt, and Ni, Mn, Co The manufacturing method of the positive electrode active material particle powder of Claim 6 which is immersed in the mixed aqueous solution of the salt of the at least 1 sort (s) of element chosen from, drying, and rebaking. 非水電解質二次電池の製造方法であって、請求項1〜7のいずれかに記載の製造方法で正極活物質粒子粉末を得る工程と、得られた正極活物質粒子粉末を含有する正極を作成する工程とを含むことを特徴とする非水電解質二次電池の製造方法。 It is a manufacturing method of a nonaqueous electrolyte secondary battery, Comprising: The process of obtaining positive electrode active material particle powder with the manufacturing method in any one of Claims 1-7 , The positive electrode containing the obtained positive electrode active material particle powder And a process for producing a non-aqueous electrolyte secondary battery.
JP2013075600A 2013-04-01 2013-04-01 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery Active JP6303279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075600A JP6303279B2 (en) 2013-04-01 2013-04-01 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075600A JP6303279B2 (en) 2013-04-01 2013-04-01 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014203509A JP2014203509A (en) 2014-10-27
JP6303279B2 true JP6303279B2 (en) 2018-04-04

Family

ID=52353812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075600A Active JP6303279B2 (en) 2013-04-01 2013-04-01 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6303279B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294219B2 (en) * 2014-12-25 2018-03-14 信越化学工業株式会社 Method for producing lithium cobalt composite oxide
CN108370036A (en) 2015-12-15 2018-08-03 株式会社杰士汤浅国际 Positive active material for lithium secondary battery, positive active material precursor manufacturing method, the manufacturing method of positive active material, positive electrode for lithium secondary battery and lithium secondary battery
JP2019023148A (en) * 2015-12-17 2019-02-14 株式会社Gsユアサ Method for producing transition metal hydroxide particles, method for producing lithium transition metal composite oxide, method for producing positive electrode for lithium secondary battery, method for producing lithium secondary battery, and transition metal hydroxide particles
JP6844156B2 (en) * 2016-09-08 2021-03-17 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, its manufacturing method, electrode for lithium secondary battery, and lithium secondary battery
WO2018056139A1 (en) * 2016-09-21 2018-03-29 Basf戸田バッテリーマテリアルズ合同会社 Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery
JP7224754B2 (en) * 2017-07-12 2023-02-20 住友金属鉱山株式会社 Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method
KR102572417B1 (en) * 2017-08-23 2023-08-30 토프쉐 에이/에스 Homogeneous incorporation of titanium into solid materials
CN114667615A (en) * 2019-08-26 2022-06-24 株式会社杰士汤浅国际 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and power storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004285A (en) * 2007-06-25 2009-01-08 Sanyo Electric Co Ltd Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
JP2012169066A (en) * 2011-02-10 2012-09-06 Asahi Glass Co Ltd Method for producing cathode active material for lithium ion secondary battery
JP6176109B2 (en) * 2011-03-30 2017-08-09 戸田工業株式会社 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2014203509A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6176109B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI423508B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP2019186221A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR20120125347A (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6408097B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5594500B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2020121905A (en) Lithium composite oxide and application thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250