WO2012020769A1 - Method for producing nickel-containing complex compound - Google Patents

Method for producing nickel-containing complex compound Download PDF

Info

Publication number
WO2012020769A1
WO2012020769A1 PCT/JP2011/068187 JP2011068187W WO2012020769A1 WO 2012020769 A1 WO2012020769 A1 WO 2012020769A1 JP 2011068187 W JP2011068187 W JP 2011068187W WO 2012020769 A1 WO2012020769 A1 WO 2012020769A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
containing composite
composite compound
producing
manganese
Prior art date
Application number
PCT/JP2011/068187
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 狩野
絢子 小山
卓也 三原
河里 健
幸満 若杉
巽 功司
Original Assignee
Agcセイミケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcセイミケミカル株式会社 filed Critical Agcセイミケミカル株式会社
Priority to JP2012528689A priority Critical patent/JPWO2012020769A1/en
Publication of WO2012020769A1 publication Critical patent/WO2012020769A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a nickel-M element-containing composite compound suitable for a positive electrode active material precursor of a lithium ion secondary battery, and a positive electrode material for a lithium ion secondary battery using the produced nickel-M element-containing composite compound It relates to the manufacturing method.
  • non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries that are small, lightweight, and have high energy density
  • the positive electrode active material for the non-aqueous electrolyte secondary battery include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2.
  • a composite oxide containing lithium and a transition metal element such as O 4 and LiMnO 2 is known.
  • lithium-nickel-cobalt-manganese-containing composite oxides are advantageous in terms of cost because they contain inexpensive manganese, and have a good balance of safety and battery characteristics. It is expected as a positive electrode material.
  • the lithium-nickel-cobalt-manganese-containing composite oxide obtained by using the conventional solid-phase method in which the powders of the respective metal sources are mixed and fired cannot provide good battery characteristics. It has been proposed to use nickel-cobalt-manganese coprecipitated hydroxide synthesized using a salt as a raw material (see Patent Documents 1 to 3). It has also been proposed to synthesize a lithium-nickel-cobalt-containing composite oxide by thermally decomposing a nickel-cobalt ammine complex (see Patent Document 4).
  • Patent Documents 5 to 10 a method is proposed in which a slurry in which a compound containing a plurality of elements such as nickel, cobalt and manganese is dispersed is spray-dried using a spray dryer or the like to form a granulated body.
  • sodium hydroxide is used for an aqueous solution of sulfate or the like in which nickel, cobalt, manganese, and the like are dissolved.
  • a coprecipitation method in which an aqueous solution in which an alkali such as ammonium sulfate is dissolved and an aqueous solution in which ammonium sulfate or the like is dissolved is dropped while adjusting pH to crystallize a coprecipitated hydroxide.
  • Patent Document 3 describes that a small amount of different elements such as boron is added to a nickel-cobalt-manganese positive electrode material to improve battery characteristics. In general, it is preferable that such different elements are uniformly distributed in the positive electrode material.
  • the applicable element species and chemical species are not limited. For example, in the case of an element such as Mg, it is difficult to coprecipitate. Even when alkali can be added to coprecipitate elements, it affects the crystallization conditions, makes it difficult to synthesize dense particles, and the cathode material contains a large amount of impurities such as sodium ions and sulfate ions. There are problems such as.
  • Patent Documents 5 to 10 a slurry in which a nickel compound, a cobalt compound, and a manganese compound are dispersed is pulverized with a bead mill or the like, and then spray-dried with a spray dryer or the like to produce granulated particles.
  • a slurry in which various raw materials are dispersed is pulverized with a bead mill or the like, impurities derived from the dispersion media are mixed, and battery characteristics such as discharge capacity and charge / discharge cycle durability tend to deteriorate.
  • the present invention can solve such problems, has a uniform composition, low impurity content, can be used in a wide voltage range, has a high discharge capacity, high safety, high fillability, charge / discharge
  • An inexpensive method for producing a nickel-containing composite compound suitable for producing a positive electrode active material for lithium ion secondary batteries having excellent cycle durability, and production of a positive electrode active material for lithium ion secondary batteries using the produced nickel-containing composite compound The purpose is to provide a method.
  • Nickel-M containing nickel ammine complex and M element source (wherein M element is at least one selected from the group consisting of transition metal elements other than Ni and Co, alkaline earth metal elements and aluminum)
  • a method for producing a nickel-M element-containing composite compound for a secondary battery positive electrode active material comprising the step 2 of obtaining a granulated product of an M element-containing composite compound.
  • Ni the ratio of Co and M element, when the Ni a Co b M c, in atomic ratio, 0.1 ⁇ a ⁇ 0.85,0 ⁇ b ⁇
  • the method for producing a nickel-M element-containing composite compound according to (1), wherein 0.85, 0.03 ⁇ c ⁇ 0.8, and a + b + c 1.
  • the nickel-M element-containing composite compound according to (1) or (2), wherein the nickel-M element-containing composite compound is a compound containing at least one selected from the group consisting of a hydroxyl group, a carbonate group, and an OOH group.
  • the nickel-M element-containing solution or dispersion is heated at 80 to 250 ° C. under a pressure of 0.03 to 2 MPa. Manufacturing method of M element containing complex compound.
  • the step 1 introduces and heats steam at 100 to 250 ° C. under a pressure of 0.03 to 2 MPa to the nickel-M element-containing solution or dispersion.
  • Nickel-M element-containing composite compound according to any one of (1) to (5) above, wherein the nickel ammine complex is a carbonate ammine complex.
  • Nickel-M according to any one of the above (1) to (8), wherein the dry granulation in the step 2 is performed by spray-drying a nickel-M element-containing solution or dispersion.
  • a method for producing an element-containing composite compound (10) The method for producing a nickel-M element-containing composite compound according to any one of the above (1) to (9), wherein the suspended slurry has a solid content concentration of 10% by mass or more and a viscosity of 2 to 1000 mPa ⁇ s. . (11) The production of the nickel-M element-containing composite compound according to any one of the above (1) to (10), wherein the nickel-M element-containing composite compound obtained in step 2 has an average particle diameter D 50 of 6-30 ⁇ m. Method. (12) The method for producing a nickel-M element-containing composite compound as described in any one of (1) to (11) above, wherein the sodium content is 0.01% by mass or less.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and an electrolytic solution, wherein the positive electrode uses a positive electrode active material for a lithium ion secondary battery obtained by the production method described in (14) above Production method.
  • a lithium ion secondary battery having a uniform composition, low impurity content, usable in a wide voltage range, high discharge capacity, high safety, and excellent charge / discharge cycle durability.
  • the positive electrode active material and its precursor are provided at low cost.
  • nickel-cobalt-M element-containing composite compound provided by the present invention exhibits excellent characteristics as a positive electrode active material precursor for lithium ion secondary batteries as described above. It can be considered as follows.
  • the particles in which the elements are uniformly dispersed are precipitated, and the slurry in which the particles are dispersed is dried and granulated, so that each element in the positive electrode material It is considered that the battery characteristics such as discharge capacity, discharge rate characteristics, and charge / discharge cycle durability can be further improved in the battery using this positive electrode material.
  • the particle diameter and the particle shape can be controlled within a desired range by granulating a suspension slurry in which the particles of the nickel-M element-containing composite compound are uniformly dispersed. Can be improved.
  • Example 2 is a SEM image of the nickel-cobalt-manganese composite compound obtained in Example 1.
  • the ammine complex refers to a complex having an amine including ammonia as a ligand, and when an organic amine is used as a ligand as an amine, the ammine complex is also referred to as an ammine complex.
  • the ligand of the ammine complex is preferably at least one selected from the group consisting of ammonia (NH 3 ), an aliphatic derivative of ammonia, diamine, pyridine, aniline, dipyridyl, and phenanthroline.
  • At least one member selected from the group consisting of ammonia (NH 3 ), triethanolamine, pyridine, aniline, dipyridyl and phenanthroline is more preferable, and ammonia (NH 3 ) is particularly preferable.
  • ligands coordination other than ammine complexes such as aqua (OH 2 ), carbonato (CO 3 2 ⁇ ), cyano (CN ⁇ ), oxalato (C 2 O 4 2 ⁇ ), hydroxo (OH ⁇ ), etc. May contain children.
  • the number of coordinated ammonia should just contain at least one, and may be two or more.
  • the amine source used for forming the ammine complex liquid ammonia, aqueous ammonia, ammonium carbonate, or ammonium bicarbonate is used. Furthermore, one kind selected from the group consisting of aliphatic derivatives of ammonia, diamine, pyridine, aniline, dipyridyl, and phenanthroline is preferred, and in view of cost, an ammine complex with ammonia is more preferred.
  • the ligand other than ammonia of the ammine complex is preferably an carbonate carbonate complex containing carbonato (CO 3 2 ⁇ ), and the counter ion is preferably a carbonate ion.
  • the carbonate source or carbonate ion source is not particularly limited, but carbon dioxide is particularly preferable.
  • ammonium carbonate is a compound whose form is represented by the chemical formula (NH 4 ) 2 CO 3 , but usually available reagents include ammonium hydrogen carbonate (NH 4 .HCO 3 ) and ammonium carbamate (NH 2 COONH 4 ). Since this ammonium carbamate forms a stable ammine complex with Mn, when M element contains Mn, it is preferable to use ammonium carbamate as an amine source. That is, when the M element contains manganese, the raw material of manganese is not particularly limited, but among these, it is preferable to use an manganese ammine complex, and more preferable to use manganese carbamate.
  • the raw material of the nickel ammine complex is not particularly limited, and among these, metals, hydroxides, carbonates, oxyhydroxides, or oxides are preferable, and metals, hydroxides, carbonates, or oxyhydroxides are preferred. More preferred.
  • the nickel source is preferably metallic nickel, nickel oxide, nickel hydroxide, nickel carbonate, basic nickel carbonate, or nickel oxyhydroxide.
  • a nickel ammine complex-containing aqueous solution can be synthesized by adding these nickel sources to ammonia water in which ammonium carbonate or the like is dissolved and stirring at 20 to 60 ° C., preferably for 30 minutes to 12 hours.
  • the M element is at least one element selected from the group consisting of transition metal elements other than Co and Ni, alkaline earth metal elements, and aluminum.
  • the transition metal element represents a transition metal element of Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11 or Group 12 of the Periodic Table.
  • the M element is preferably at least one selected from the group consisting of Mn, Al, Mg, Zr, Ti, and Hf.
  • the M element is more preferably at least one element selected from the group consisting of Mn, Al and Mg, and Mn is particularly preferable. .
  • the nickel-M element-containing solution or dispersion heated in Step 1 does not necessarily need to dissolve all components, and some of the components may be dispersed in the solution. Including solutions in colloidal form. Further, the nickel-M element-containing solution or dispersion may be an organic solvent or water, and is not particularly limited, but an aqueous solution in which the ammine complex and the raw material are highly soluble is preferable.
  • the M element contained in the nickel-M element-containing solution or dispersion is an M-element ammine complex
  • all the elements contained in the nickel-M element-containing solution are dissolved. Impurities such as Fe that are difficult to form an ammine complex can be removed.
  • M element is Mn, since it often contains a large amount of Fe impurities that adversely affect battery characteristics, it is preferable since a nickel-M element-containing composite compound with much less impurities than before can be obtained.
  • the M element source is preferably in the form of a solution.
  • the M element source is a solution
  • a mixed solution of nickel ammine complex is heated and thermally decomposed to obtain a so-called coprecipitation composite compound in which nickel and element M are uniformly dispersed in the particles at the atomic level.
  • the solvent of the mixed solution is preferably water.
  • the chemical species is not particularly limited, but metal, hydroxide, carbonate, oxyhydroxide, or oxide is preferable, and hydroxide, carbonate, oxyhydroxide is preferable. Or an oxide is more preferable.
  • the average particle diameter D 50 of the M element source is preferably 10 ⁇ m or less, more preferably 8 [mu] m, more preferably 5 ⁇ m or less.
  • D 50 exceeds 10 ⁇ m, the M element in the particles obtained after heating tends to be non-uniform.
  • the smaller the D 50 the more uniform the composition can be obtained.
  • the smaller the D 50 the higher the production cost. Therefore, considering the balance with the battery characteristics, the average particle size D 50 of the M element compound is preferably 0.01 ⁇ m or more. .1 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is more preferable.
  • volume-reduced cumulative cumulative curve is the particle size of the point at which 50% 50 It means% diameter (D 50). In the present invention, it may be simply referred to as D 50. Further, the D 10 of the volume-reduced cumulative 10% diameter means a volume-reduced cumulative 90% diameter and the D 90.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the particles in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using Microtrac HRA (X-100) manufactured by Nikkiso Co., Ltd.). Further, the average particle diameter D 50, if the particles to be measured is a secondary particle, it is the volume average particle diameter of the secondary particle diameter of primary particles formed by agglomerating one another, when the particles consisting only of primary particles Is the average particle size for the primary particles.
  • the nickel ammine complex and the nickel ammine complex contained in the nickel-M element-containing solution or dispersion containing the M element source have a nickel element concentration (mass%) of preferably 1 to 12%, more preferably 3 to 8%.
  • the concentration of the M element source is preferably 1 to 12%, more preferably 3 to 8%, as the M element concentration (% by mass).
  • the molar ratio of nickel and M element in the nickel-M element-containing solution or dispersion is preferably equal to the molar ratio of nickel and M element in the target nickel-M element-containing composite compound.
  • the nickel-M element-containing solution or dispersion preferably further contains a Co source.
  • the Co source is not particularly limited, but a Co ammine complex capable of forming a solution is preferable.
  • the cobalt ammine complex contained in the nickel-M element-containing solution or dispersion has a cobalt element concentration (mass%) of preferably 1 to 12%, more preferably 3 to 8%.
  • the Co ammine complex can be synthesized by the same method as the above nickel ammine complex.
  • the molar ratio of nickel-cobalt-M element in the solution or dispersion is nickel-cobalt in the target nickel-cobalt-M element-containing composite compound. It is preferably equal to the molar ratio of the -M element.
  • the method for heating the nickel-M element-containing solution or dispersion is not particularly limited, but it is preferably 80 to 250 ° C, more preferably 80 to 180 ° C, and more preferably 100 to 180 ° C.
  • a heating method it is preferable to use 100 ° C. or higher steam.
  • the ammine complex forms a nickel-M atom-containing composite compound and ammonia or amine, but when ammonia or amine stays in the reaction system, the composite compound forms an ammine complex again and dissolves. Therefore, in order to advance the thermal decomposition reaction efficiently, it is important to distill off the produced ammonia or amine out of the reaction system.
  • steam By introducing steam at 100 ° C.
  • ammonia or amine is distilled out of the reaction system together with excess steam, and the thermal decomposition reaction of the ammine complex can be promoted.
  • the temperature of the steam to be introduced is preferably 100 to 250 ° C, more preferably 120 to 180 ° C.
  • a method in which the nickel-M element-containing solution or dispersion is directly heated may be used, but more preferably, the nickel-M element-containing solution or dispersion is sequentially added to the heated water boiled by heating or steam introduction. It is preferred to decompose the complex.
  • thermal decomposition By carrying out thermal decomposition by sequential addition, ammonia or amine can be efficiently distilled out of the reaction system, and the thermal decomposition reaction can proceed stably.
  • the pressure in the reaction vessel may be under reduced pressure or high pressure, preferably 0.03 to 2 MPa, more preferably 0.2 to 1 MPa.
  • the heating time is preferably 0.1 to 12 hours, more preferably 0.5 to 10 hours, and particularly preferably 1 to 6 hours.
  • a pulverization step of pulverizing the composite particles dispersed in the suspension slurry obtained in step 1 may be included.
  • a grinding method wet ball mill grinding, wet bead mill grinding, wet vibration mill grinding, or the like can be applied.
  • the suspension slurry obtained in step 1 is preferably concentrated as necessary and used for spray drying in step 2.
  • the solid content concentration of the slurry is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more.
  • the solid content concentration is preferably 80% by mass or less, and more preferably 50% by mass or less.
  • the size of the droplets to be sprayed can be easily adjusted, the particle size of the granulated particles can be easily adjusted, and no voids are formed inside the particles.
  • the filling property of the granulated particles is further improved without sparse or dense bias.
  • a higher solid content concentration is preferable because productivity and production efficiency are high, and since water in the slurry is small, energy required for spray drying is also reduced.
  • the solid content concentration is determined as follows. First, a part of the suspended slurry is taken and the mass of the taken slurry is measured, and then the taken slurry is dried at 100 ° C. to measure the weight of the dry powder. The solid content concentration can be obtained by dividing the mass of the measured dry powder by the mass of the collected slurry. In this invention, you may put the grinding
  • the composite particles in the slurry are 0.5 ⁇ m or more and 3 ⁇ m or less. More preferably, the average particle diameter is adjusted to 0.7 ⁇ m or more and 2 ⁇ m or less. Grinding to less than 0.5 ⁇ m is not preferable because it takes time for grinding and increases costs, and the amount of impurities derived from the grinding / dispersion media increases. Further, the viscosity of the slurry increases, making it impossible to achieve both a viscosity suitable for spray drying and a solid content concentration.
  • the nickel-M element-containing composite compound obtained in step 1 is already particles with high uniformity of element distribution, a single-phase positive electrode material that exhibits good battery characteristics even when the average particle size is 0.5 ⁇ m or more is obtained. Can do.
  • a low-viscosity and high-concentration composite particle slurry for preparing highly granulated particles with high sphericity is prepared. can do.
  • a binder component can be added to the suspension slurry used for spray drying, and the binder component is preferably at least one selected from the group consisting of polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, and ammonium polyacrylate. .
  • the viscosity of the suspension slurry used for spray drying is preferably 2 to 1000 mPa ⁇ s, more preferably 2 to 800 mPa ⁇ s, and further preferably 2 to 500 mPa ⁇ s, and within this range, 4 to 500 mPa ⁇ s. It is preferably 4 to 300 mPa ⁇ s, more preferably 6 to 300 mPa ⁇ s, and particularly preferably 6 to 100 mPa ⁇ s.
  • the viscosity of the suspension slurry is in the above range, it is preferable because a spherical and uniform granulated body can be easily obtained.
  • the viscosity of the suspended slurry is generally measured by a rotary viscometer or a vibration viscometer, but may vary depending on the type of viscometer and measurement conditions.
  • a LV type digital rotational viscometer DV-II + manufactured by Brookfield Co., Ltd. was measured using a small amount sample unit under the conditions of 25 ° C. and 30 rpm.
  • the viscosity was 100 mPa ⁇ s or less, the spindle No. 18 is used, and in the case of 100 mPa ⁇ s or more, the spindle No. 31 is 1000 mPa ⁇ s or higher, the spindle no. It is preferable to measure using 34.
  • examples of the dry granulation method include spray drying, flash drying, a method using a belt dryer, a method using a Laedige mixer, and a method using a thermoprocessor and a paddle dryer as a twin screw dryer. .
  • the spray drying method using a spray dryer or the like is preferable because of high productivity.
  • the particle size of the granulated product composed of secondary particles after granulation is determined by the solid content concentration and viscosity of the slurry, spray type, pressurized gas supply rate, It can be controlled by selecting the slurry supply speed, drying temperature and the like.
  • the particle size of the precursor composed of secondary particles after dry granulation is substantially reflected in the particle size of the lithium-nickel-M element-containing composite oxide used for the positive electrode material.
  • the average particle diameter D 50 of the granulated product obtained after dry granulation is preferably 5 to 25 ⁇ m. If D 50 is less than 5 [mu] m, results press density of the lithium-containing composite oxide is decreased, the volume packing density of the positive electrode decreases the volume capacity density of the battery becomes low is not preferable. Further, when D 50 is at 25 ⁇ m greater, it may become difficult to obtain a smooth surface of the positive electrode. Particularly preferred D 50 of the granulated product is 7 to 20 ⁇ m.
  • the amount of expensive cobalt can be reduced and inexpensive nickel can be increased, and a nickel-M element-containing composite compound can be obtained at low cost. Further, when the lithium-nickel-M element-containing composite oxide obtained by reacting with a lithium compound is used as the positive electrode active material, it is preferable because the ratio of M element is large, so that the safety is high and the discharge capacity is high. .
  • provisional firing may be necessary, but if the proportion of Ni is 60% or less, that is, a is 0.6 or less, provisional firing is unnecessary. In order to synthesize efficiently, it is preferable that 0.25 ⁇ a ⁇ 0.6, 0 ⁇ b ⁇ 0.35, and 0.2 ⁇ c ⁇ 0.75.
  • Ni is 0.5
  • Co is 0.2
  • Mn is 0.3
  • Ni is 0.6
  • Co is 0.2
  • Mn is 0.2. Is preferred.
  • the content of the M element is large, 0.1 ⁇ a ⁇ 0.3, 0.05 ⁇ b ⁇ 0.2, 0.5 ⁇ c ⁇ 0.8.
  • a specific composition for example, a composition in which Ni is 1/6, Co is 1/6, and Mn is 4/6 is preferable.
  • the amount of elements contained in the particles can be analyzed with an ICP analysis (high frequency inductively coupled plasma emission spectroscopy) apparatus.
  • the nickel-M element-containing composite compound obtained in the present invention is not particularly limited, but preferably contains at least one selected from the group consisting of a hydroxyl group, a carbonate group and an OOH group because of high reactivity and uniformity.
  • the composite oxide is more preferably a compound containing both a hydroxyl group and a carbonate group.
  • the composition of the nickel-M element-containing composite compound obtained in the present invention is preferably represented by the following formula (1).
  • a and c are preferably 0.2 ⁇ a ⁇ 0.85 and 0.15 ⁇ c ⁇ 0.8, respectively, more preferably 0.25 ⁇ a ⁇ 0.8 and 0.2 ⁇ c ⁇ 0.75. preferable.
  • Ni a M c C p O q H r is, Ni a M c (CO 3 ) x (OH) y or preferably a Ni a M c OOH.
  • 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2, and 1 ⁇ x + y, and x and y may be a combination that is not an integer.
  • the composition of the nickel-M element-containing composite compound obtained in the present invention is more preferably represented by the following formula (2).
  • a, b and c are preferably 0.1 ⁇ a ⁇ 0.62, 0 ⁇ b ⁇ 0.35, 0.03 ⁇ c ⁇ 0.8, 0.2 ⁇ a ⁇ 0.6, 0 .05 ⁇ b ⁇ 0.35 and 0.2 ⁇ c ⁇ 0.75 are more preferable.
  • a, b and c are in the above ranges, it is preferable because the amount of expensive cobalt can be reduced and inexpensive nickel can be increased, and a nickel-cobalt-M element-containing composite compound can be obtained at low cost.
  • Ni a Co b M c C p O q H r is, Ni a Co b M c ( CO 3) x (OH) y or preferably a Ni a Co b M c OOH.
  • 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2, and 1 ⁇ x + y, and x and y may be a combination that is not an integer.
  • Ni, Co, average valence of Mn 2
  • Ni, Co, average valence of Mn 2
  • Some combinations of x and y are not integers.
  • the granulated body of the nickel-M element-containing composite compound obtained in the present invention is preferably substantially spherical.
  • the amount of impurities contained in the nickel-M element-containing composite compound obtained in the present invention is small.
  • impurity elements that affect battery performance include sodium (Na), sulfur (S), iron (Fe), and zirconium (Zr).
  • the sodium content is preferably 0.01% by mass or less, and more preferably 0.005% by mass or less.
  • the content of sodium may be 0.0001% by mass or more.
  • the sulfur content is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • 0.0001 mass% or more may be sufficient as content of sulfur.
  • the iron content is preferably 0.002% by mass or less, and more preferably 0.001% by mass or less.
  • 0.0001 mass% or more of iron content may be sufficient.
  • the zirconium content is preferably 0.015% by mass or less, and more preferably 0.010% by mass or less. Further, the content of zirconium may be 0.00001% by mass or more. The amount of these impurities can be measured by ICP analysis.
  • the particle size of the lithium-nickel-M element-containing composite oxide produced by firing the mixture of the nickel-M element-containing composite compound and the lithium compound obtained in the present invention is the same as that of the nickel-M element-containing composite compound. There is a tendency to be affected by the diameter. For this reason, when used as a positive electrode active material, the balance between safety and discharge rate characteristics is improved, so that the average particle diameter D 50 of the nickel-M element-containing composite compound is preferably in the range of 6 to 30 ⁇ m. The range of 8 to 25 ⁇ m is more preferable, and the range of 10 to 20 ⁇ m is more preferable.
  • a nickel-M element-containing composite compound and a lithium compound are mixed and then fired to obtain a lithium-nickel-M element-containing composite oxide useful as a positive electrode material for a lithium ion secondary battery.
  • the lithium compound to be used is not particularly limited, lithium hydroxide or lithium carbonate is preferable because it is inexpensive, and lithium carbonate is more preferable.
  • Firing is preferably performed in an oxygen-containing atmosphere. Further, firing at 700 to 1100 ° C. is preferable. When the firing temperature is lower than 700 ° C., the formation of the lithium-nickel-M element-containing composite oxide is insufficient and results in containing impurity crystals. On the other hand, when the firing temperature exceeds 1100 ° C., the charge / discharge cycle durability and the discharge capacity tend to decrease.
  • a minimum is 850 degreeC and an upper limit is 1050 degreeC.
  • the oxygen-containing atmosphere is preferably in the air, and more specifically, the oxygen content contained in the atmosphere is more preferably 10 to 40% by volume.
  • the firing time is preferably 1 to 24 hours, more preferably 2 to 18 hours, and particularly preferably 4 to 14 hours.
  • the average particle diameter D 50 of the lithium-nickel-M element-containing composite oxide of the present invention is preferably 2 to 25 ⁇ m, more preferably 5 to 15 ⁇ m, and even more preferably 8 to 12 ⁇ m.
  • the specific surface area is preferably from 0.1 to 1.0 m 2 / g, more preferably from 0.2 to 0.6 m 2 / g. In the present invention, the specific surface area means a value measured using the BET method.
  • the press density is preferably 2.8 g / cm 3 or more, and more preferably 2.9 g / cm 3 or more. The upper limit is not particularly limited, but 3.6 g / cm 3 is preferable. In the present invention, the press density lithium - and the apparent density of the powder when pressed at a pressure of powder 1.0 t / cm 2 of nickel -M element-containing composite oxide.
  • the amount of free alkali in the lithium-nickel-M element-containing composite oxide was determined by dispersing 5 g of the lithium-nickel-M element-containing composite oxide powder in 50 g of pure water and stirring for 30 minutes. Thereafter, the filtrate obtained by filtration is subjected to potentiometric titration with a 0.02 mol% / liter hydrochloric acid aqueous solution, and is determined from the amount of the hydrochloric acid aqueous solution used until the pH reaches 4.0.
  • a carbon-based conductive material such as acetylene black, graphite, or ketjen black is used as the composite oxide powder. It is formed by mixing a material and a binder.
  • a binder polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used.
  • the lithium-nickel-M element-containing composite oxide powder, conductive material and binder of the present invention are made into a slurry or a kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium secondary battery of the present invention.
  • a porous polyethylene film, a porous polypropylene film, or the like is used as the separator.
  • Various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate ester is preferable.
  • the carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
  • the carbonate ester can be used alone or in admixture of two or more. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate ester and a cyclic carbonate ester may improve the discharge capacity, cycle characteristics, and charge / discharge efficiency.
  • a vinylidene fluoride-hexafluoropropylene copolymer for example, trade name Kyner manufactured by Atchem Co.
  • a fluorine A gel polymer electrolyte containing a vinylidene fluoride-perfluoropropyl vinyl ether copolymer may be used.
  • Solutes added to the electrolyte solvent or polymer electrolyte include ClO 4 ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , CF 3 CO 2 ⁇ , (CF 3 Any one or more of lithium salts having SO 2 ) 2 N — or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / L with respect to the electrolyte solvent or polymer electrolyte comprising the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / L is particularly preferable.
  • a material capable of inserting and extracting lithium ions is used as the negative electrode active material.
  • the material for forming the negative electrode active material is not particularly limited.
  • the carbon material those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used.
  • the oxide a compound mainly composed of tin oxide can be used.
  • the negative electrode current collector a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
  • the shape of the lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention as the positive electrode active material is not particularly limited.
  • a sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
  • Example 1 To 335 g of 26 mass% aqueous ammonium carbonate solution, 245 g of 28 mass% ammonia aqueous solution and 40 g of cobalt hydroxide were added and dissolved by stirring at room temperature, and then insoluble components were removed by pressure filtration. An aqueous solution of a cobalt carbonate ammine complex was obtained.
  • the gas was generated simultaneously with the addition of these aqueous solutions and the internal pressure increased, the gas was released and the internal pressure was maintained at 0.2 MPa.
  • the released gases were ammonia and carbon dioxide, and these gases were absorbed in water and recovered. Further, the contents were intermittently withdrawn from the reactor while adding the mixed solution and introducing steam. The reaction time at this time was 1.5 hours.
  • the extracted content was a slurry in which the solid content was dispersed. After completion of the addition of the mixed solution, cooling is performed, and the remaining slurry in the reactor and the slurry extracted during the reaction are allowed to stand together, the solid content is settled, the supernatant is extracted, and the solid content concentration is 30% by mass. A suspension slurry was obtained.
  • the obtained slurry was measured with a laser diffraction particle size distribution meter (Microtrac HRA X-100 manufactured by Nikkiso Co., Ltd.).
  • the average particle diameter D 50 of the particles dispersed in the slurry was 2.3 ⁇ m, and the viscosity of the slurry was 9 mPa ⁇ s.
  • the average particle diameter D 50 is 11.2 ⁇ m, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.16 .
  • the total content of nickel, cobalt and manganese contained in this composite compound was 47.9% by mass.
  • the results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
  • a scanning electron micrograph (SEM image) of the obtained nickel-cobalt-manganese-containing composite compound granule is shown in FIG.
  • the obtained granulated body was substantially spherical.
  • SEM image A scanning electron micrograph (SEM image) of the obtained nickel-cobalt-manganese-containing composite compound granule is shown in FIG.
  • the obtained granulated body was substantially spherical.
  • Li 1.015 [Ni 0.5 Co 0.2 Mn 0.3] 0.985 O 2 Li substantially spherical - nickel - cobalt - to obtain a powder of manganese-containing composite oxide.
  • D 50 of the obtained composite oxide was 9.8 ⁇ m
  • D 10 was 5.4 ⁇ m
  • D 90 was 18.0 ⁇ m
  • the specific surface area was 0.42 m 2 / g.
  • the press density of this powder was 2.92 g / cm 3 and the amount of free alkali was 0.9 mol%.
  • the obtained lithium-nickel-cobalt-manganese-containing composite oxide, acetylene black, and polyvinylidene fluoride powder were mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone was added to prepare a slurry.
  • One-side coating was performed on a 20 ⁇ m thick aluminum foil using a doctor blade, dried, and roll press rolling was performed twice to produce a positive electrode sheet for a lithium battery.
  • the positive electrode sheet is punched out as a positive electrode, a metal lithium foil having a thickness of 500 ⁇ m is used as a negative electrode, a nickel foil of 20 ⁇ m is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 ⁇ m is used as a separator.
  • the electrolytic solution used is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC having a mass ratio (1: 1) of LiPF 6 as a solute. Solvents described later). Were also used to assemble two stainless steel simple sealed cell type lithium batteries in an argon glove box.
  • the one battery is charged at a load current of 75 mA per gram of the positive electrode active material at 25 ° C. to 4.3 V, discharged to 2.5 V at a load current of 75 mA per gram of the positive electrode active material, and The charge / discharge capacity density (sometimes referred to as initial weight capacity density in the present specification) was determined.
  • the battery was charged to 4.3 V with a load current of 75 mA, and the discharge capacity when discharged to 2.5 V with a load current of 113 mA was determined.
  • the initial weight capacity density of the positive electrode active material at 25 ° C.
  • Example 2 Example 28% by weight ammonia aqueous solution 3.0Kg was added to 26% by weight ammonium carbonate aqueous solution 5.58Kg, cobalt hydroxide 245g and basic nickel carbonate 870g were added, and stirred at room temperature to dissolve. The remaining insoluble components were removed by filtration to obtain an aqueous solution of nickel-cobalt ammine carbonate complex. On the other hand, after adding 600 g of ammonium carbonate to 4.5 kg of 28 mass% ammonia aqueous solution and dissolving it, 215 g of metal manganese powder was gradually added and dissolved while stirring at 25 ° C., and then the slightly insoluble component remained. Was removed by filtration to obtain an aqueous solution of manganese carbamate.
  • a 10 L autoclave equipped with a stirrer was charged with 5 L of ion exchange water, 0.3 MPa steam was introduced while stirring at a constant speed, the internal pressure was 0.2 MPa, and the internal temperature was 120 ° C.
  • the released gases were ammonia and carbon dioxide, and these gases were absorbed in water and recovered.
  • the contents were intermittently withdrawn from the reactor while the addition of the aqueous solution and the steam were continuously introduced.
  • the reaction time at this time was 1.5 hours.
  • the extracted content was a slurry in which the solid content was dispersed.
  • the introduction of steam was continued for 30 minutes so that the internal pressure was maintained at 0.2 MPa.
  • the reactor is cooled, and the remaining slurry in the reactor and the slurry extracted during the reaction are allowed to stand together, the solid content is settled, the supernatant is extracted, and the solid content concentration is 40 A suspension slurry of mass% was obtained.
  • the average particle diameter D 50 of the particles dispersed in the slurry was 5.8 ⁇ m.
  • the obtained suspension slurry with a solid content concentration of 40% by mass was pulverized using a circulating bead mill until the average particle size of the solid content in the slurry became 1.0 ⁇ m.
  • Shinmaru Enterprises Co., Ltd. [Dyno mill MULTI LAB type] was used for the circulation type bead mill, and 0.3 mm ⁇ zirconia beads were used for the grinding media.
  • the slurry after wet pulverization had a viscosity of 860 mPa ⁇ s and a solid content concentration of 38% by mass.
  • the slurry was dried while granulating using a spray dryer to obtain nickel-cobalt-manganese element-containing composite compound particles.
  • Ogawara Kako Co., Ltd. [Twin Jetter NL-5 type] was used for the spray dryer. Dry granulation was carried out under the conditions of a slurry supply rate of 100 g / min, a spray gas pressure of 0.10 MPa, and a dry gas temperature of 250 ° C. to obtain granulated particles of a nickel-cobalt-manganese containing composite compound.
  • the average particle diameter D 50 is 16.1 ⁇ m, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.3 . The total content of nickel, cobalt and manganese contained in this composite compound was 46.9% by mass. The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
  • D 50 of the obtained composite oxide was 14.6 ⁇ m
  • D 10 was 7.3 ⁇ m
  • D 90 was 26.5 ⁇ m
  • the specific surface area was 0.40 m 2 / g.
  • the press density of this powder was 3.12 g / cm 3
  • the amount of free alkali was 0.6 mol%.
  • Example 2 For the obtained composite oxide powder, an electrode and a battery were prepared and evaluated in the same manner as in Example 1. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 169.8 mAh / g. In addition, the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 94.6%. The capacity retention rate after 30 charge / discharge cycles was 96.6%.
  • Example 3 Example 28% by weight ammonia aqueous solution 3.0kg was added to 26% by weight ammonium carbonate aqueous solution 5.58kg, and cobalt hydroxide 245g and basic nickel carbonate 870g were added and dissolved by stirring at room temperature. The remaining insoluble component was removed by filtration to obtain an aqueous solution of nickel-cobalt ammine carbonate complex. On the other hand, after adding 500 g of manganese carbonate to 2.0 kg of ion-exchanged water, stirring was performed to prepare a slurry. Using a circulating bead mill, this slurry was pulverized until the average particle size of the solid content in the slurry became 0.8 ⁇ m.
  • the solid content concentration of the obtained manganese carbonate slurry was 17.2% by mass. 2615 g of this manganese carbonate slurry was slowly added to the previously prepared aqueous solution of nickel-cobalt ammonium carbonate complex with stirring to prepare a nickel-cobalt-manganese suspension.
  • the obtained slurry was measured by a laser diffraction particle size analyzer, the average particle diameter D 50 of the particles dispersed in the slurry is 1.8 .mu.m, the viscosity of the slurry was 350 mPa ⁇ s.
  • Example 2 the slurry was dried while being granulated in the same manner as in Example 2 with a spray dryer to obtain nickel-cobalt-manganese element-containing composite compound particles.
  • the average particle diameter D 50 is 11.6 ⁇ m, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.4 .
  • the total content of nickel, cobalt and manganese contained in this composite compound was 46.2% by mass.
  • Table 1 The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
  • D 50 of the obtained composite oxide was 11.4 ⁇ m
  • D 10 was 5.8 ⁇ m
  • D 90 was 22.8 ⁇ m
  • the specific surface area was 0.54 m 2 / g.
  • the press density of this powder was 3.08 g / cm 3 and the amount of free alkali was 0.6 mol%.
  • Example 2 For the obtained composite oxide powder, an electrode and a battery were prepared and evaluated in the same manner as in Example 1. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 170.2 mAh / g. Moreover, the high load capacity maintenance factor calculated
  • Example 4 Comparative Example An aqueous sulfate solution containing 0.75 mol / L nickel sulfate, 0.3 mol / L cobalt sulfate and 0.45 mol / L manganese sulfate was prepared and filtered, and nickel-cobalt- A manganese-containing sulfate aqueous solution was obtained. Next, 500 g of ion-exchanged water was added to the reaction vessel, and the mixture was stirred at 400 rpm while being kept at 50 ° C. while bubbling with nitrogen gas.
  • the resulting D 50 of the composite oxide is 11.6, D 10 is 7.3 .mu.m, D 90 is 18 [mu] m, a specific surface area of 0.36 m 2 / g.
  • the press density of this powder was 2.95 g / cm 3 , and the amount of free alkali was 0.8 mol%.
  • the initial weight capacity density was 165.8 mAh / g.
  • required from the discharge capacity when discharging with a high load of 113 mA related to the discharge rate characteristic was 91.5%.
  • the capacity retention rate after 30 charge / discharge cycles was 93.5%.
  • Example 5 Comparative Example 200.0 g of nickel oxide (NiO) having a nickel content of 78.2 mass%, 100.8 g of cobalt hydroxide having a cobalt content of 62.3 mass%, and a manganese content of 71.5 mass%
  • the manganese oxide (Mn 3 O 4 ) 122.8 g was mixed with water and stirred to obtain 1400 g slurry.
  • each raw material particle dispersed in the slurry was wet-pulverized using a circulating medium agitation type wet bead mill until the average particle diameter D 50 became 0.5 ⁇ m.
  • the slurry after wet pulverization had a viscosity of 1200 mPa ⁇ s and a solid content concentration of 30% by mass.
  • Example 2 500 g of the slurry was dried using the spray dryer in the same manner as in Example 1 to obtain nickel-cobalt-manganese element-containing composite compound particles.
  • the average particle diameter D 50 is 12.5 ⁇ m.
  • the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. It was 2 Mn 0.3 O 0.9 (OH) 0.51.
  • the total content of nickel, cobalt and manganese contained in this composite compound was 71.4% by mass.
  • Table 1 The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
  • the press density of this powder was 2.89 g / cm 3 , and the amount of free alkali was 1.0 mol%.
  • the initial weight capacity density was 161.8 mAh / g.
  • the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 89.9%.
  • the capacity retention rate after 30 charge / discharge cycles was 92.6%.
  • Example 2 the slurry was dried using a spray dryer in the same manner as in Example 2 using Okawara Kako Co., Ltd. [Twin Jetter NL-5 type], and granulated to obtain composite compound particles containing nickel-cobalt-manganese elements. Obtained.
  • the average particle diameter D 50 is 15.2 ⁇ m.
  • the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 O 0.9 (OH) 0.5 .
  • the total content of nickel, cobalt and manganese contained in this composite compound was 71.4% by mass.
  • the results of quantifying the amount of impurities in the obtained composite compound are summarized in Table 1.
  • D 50 of the obtained composite oxide was 14.0 ⁇ m
  • D 10 was 6.9 ⁇ m
  • D 90 was 26.0 ⁇ m
  • the specific surface area was 0.38 m 2 / g.
  • the press density of this powder was 2.95 g / cm 3
  • the amount of free alkali was 1.0 mol%.
  • the initial weight capacity density was 150.3 mAh / g.
  • the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 91.8%.
  • the capacity retention rate after 30 charge / discharge cycles was 92.1%.
  • a lithium ion secondary battery having a uniform composition, low impurity content, usable in a wide voltage range, high discharge capacity, high safety, and excellent charge / discharge cycle durability.
  • the positive electrode active material and its precursor are provided at low cost.
  • the said precursor for lithium ion secondary battery positive electrodes is obtained by the manufacturing method of this invention. They are useful in the field of lithium ion secondary batteries, and their applicability in this field is extremely high.

Abstract

Provided is a low-cost production method for precursor for use in production of a cathode active material for a lithium-ion rechargeable battery that can be used in a wide voltage range, has a high discharge capacity and a high safety, and is excellent in charge-discharge cycle durability. The method includes: step (1) of obtaining a slurry suspension containing particles of nickel-M element-containing complex compound by decomposing nickel ammine complex by heating a nickel-M element-containing solution or dispersion that contains a nickel ammine complex and M element source (with the proviso that M is at least one kind selected from the group consisting of a transition metal element excluding Ni and Co, an alkaline-earth metal element, and aluminum); and step (2) of obtaining a granulated substance of the nickel-M element-containing complex compound by drying and granulating the slurry suspension.

Description

ニッケル含有複合化合物の製造方法Method for producing nickel-containing composite compound
 本発明は、リチウムイオン二次電池の正極活物質前駆体に適したニッケル-M元素含有複合化合物の製造方法、及び製造されたニッケル-M元素含有複合化合物を用いるリチウムイオン二次電池の正極材料の製造方法に関する。 The present invention relates to a method for producing a nickel-M element-containing composite compound suitable for a positive electrode active material precursor of a lithium ion secondary battery, and a positive electrode material for a lithium ion secondary battery using the produced nickel-M element-containing composite compound It relates to the manufacturing method.
 近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有するリチウムイオン二次電池などの非水電解液二次電池に対する要求がますます高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO、LiNi1/3Co1/3Mn1/3、LiNiO、LiNi0.8Co0.2、LiMn、LiMnOなどのリチウムと遷移金属元素とを含有する複合酸化物が知られている。 In recent years, as devices become more portable and cordless, demands for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries that are small, lightweight, and have high energy density are increasing. Examples of the positive electrode active material for the non-aqueous electrolyte secondary battery include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2. A composite oxide containing lithium and a transition metal element such as O 4 and LiMnO 2 is known.
 なかでも、リチウム-ニッケル-コバルト-マンガン含有複合酸化物は、安価であるマンガンを含むためコストメリットがあり、かつ安全性、電池特性のバランスに優れるために、次世代のリチウムイオン二次電池用正極材料として期待されている。 Among them, lithium-nickel-cobalt-manganese-containing composite oxides are advantageous in terms of cost because they contain inexpensive manganese, and have a good balance of safety and battery characteristics. It is expected as a positive electrode material.
 しかし、それぞれの金属源の粉体を混合して焼成する従来の固相法を用いて得られたリチウム-ニッケル-コバルト-マンガン含有複合酸化物では、良い電池特性が得られないため、金属硫酸塩を原料として合成されるニッケル-コバルト-マンガン共沈水酸化物を用いることが提案されている(特許文献1~3参照)。
 またニッケル-コバルトアンミン錯体を加熱分解して、リチウム-ニッケル-コバルト含有複合酸化物を合成することが提案されている(特許文献4参照)。
 さらにニッケル、コバルトおよびマンガンなどの複数の元素を含む化合物を分散させたスラリーを、スプレードライヤーなどを用いて噴霧乾燥して、造粒体を形成する方法が提案されている(特許文献5~10参照)
However, the lithium-nickel-cobalt-manganese-containing composite oxide obtained by using the conventional solid-phase method in which the powders of the respective metal sources are mixed and fired cannot provide good battery characteristics. It has been proposed to use nickel-cobalt-manganese coprecipitated hydroxide synthesized using a salt as a raw material (see Patent Documents 1 to 3).
It has also been proposed to synthesize a lithium-nickel-cobalt-containing composite oxide by thermally decomposing a nickel-cobalt ammine complex (see Patent Document 4).
Furthermore, a method is proposed in which a slurry in which a compound containing a plurality of elements such as nickel, cobalt and manganese is dispersed is spray-dried using a spray dryer or the like to form a granulated body (Patent Documents 5 to 10). reference)
特開2002-201028号公報Japanese Patent Laid-Open No. 2002-201028 特開2003-059490号公報JP 2003-059490 A 特開2000-149923号公報JP 2000-149923 A 特開2001-076728号公報Japanese Patent Application Laid-Open No. 2001-077628 特開2005-123180号公報JP 2005-123180 A 特開2005-251717号公報JP 2005-251717 A 特開2003-034536号公報JP 2003-034536 A 特開2003-034538号公報JP 2003-034538 A 特開2003-051308号公報JP 2003-051308 A 特開2005-141983号公報Japanese Patent Laid-Open No. 2005-141983
 リチウム-ニッケル-コバルト-マンガン含有複合酸化物を合成する場合、特許文献1および特許文献2に記載のように、ニッケル、コバルトおよびマンガンなどが溶解した硫酸塩などの水溶液に対して、水酸化ナトリウムなどのアルカリを溶解した水溶液と、硫酸アンモニウムなどを溶解した水溶液とを、pHを調整しながら滴下して、共沈水酸化物を晶析させる共沈法が一般的である。 When synthesizing a lithium-nickel-cobalt-manganese-containing composite oxide, as described in Patent Document 1 and Patent Document 2, sodium hydroxide is used for an aqueous solution of sulfate or the like in which nickel, cobalt, manganese, and the like are dissolved. In general, a coprecipitation method in which an aqueous solution in which an alkali such as ammonium sulfate is dissolved and an aqueous solution in which ammonium sulfate or the like is dissolved is dropped while adjusting pH to crystallize a coprecipitated hydroxide.
 また、特許文献3には、ニッケル-コバルト-マンガン系正極材料に、ホウ素などの少量の異種元素を添加して、電池特性を改良することが記載されている。一般的に、このような異種元素も正極材料中に均一に分布していることが好ましいとされるが、特許文献3に記載された共沈法を用いる場合、適用できる元素種および化学種に制限があり、例えばMgのような元素の場合は共沈させることが困難である。また、アルカリを加えて元素を共沈させることが可能な場合でも、晶析条件に影響を及ぼし、緻密な粒子を合成しにくく、正極材料中に、ナトリウムイオンや硫酸イオンの不純物が多量に混入するなどの問題がある。 Patent Document 3 describes that a small amount of different elements such as boron is added to a nickel-cobalt-manganese positive electrode material to improve battery characteristics. In general, it is preferable that such different elements are uniformly distributed in the positive electrode material. However, when the coprecipitation method described in Patent Document 3 is used, the applicable element species and chemical species are not limited. For example, in the case of an element such as Mg, it is difficult to coprecipitate. Even when alkali can be added to coprecipitate elements, it affects the crystallization conditions, makes it difficult to synthesize dense particles, and the cathode material contains a large amount of impurities such as sodium ions and sulfate ions. There are problems such as.
 特許文献4に記載のコバルトニッケルアンミン錯塩を加熱分解する方法では、ニッケルのアンミン錯塩とコバルトのアンミン錯体とを含む溶液に高圧蒸気を吹き込み、コバルトニッケル塩を合成している。電池性能をさらに高めるため、ニッケルおよびコバルトに加え、さらに他の元素を含む複合化合物の合成が望まれているが、他の元素からなるアンミン錯塩がコバルトニッケルアンミン錯塩より極めて不安定であるため、他の元素を含む複合化合物の合成はこれまで知られていない。 In the method of thermally decomposing cobalt nickel ammine complex described in Patent Document 4, high pressure steam is blown into a solution containing nickel ammine complex and cobalt ammine complex to synthesize cobalt nickel salt. In order to further improve battery performance, synthesis of composite compounds containing other elements in addition to nickel and cobalt is desired, but ammine complex salts composed of other elements are much more unstable than cobalt nickel ammine complex salts. The synthesis of complex compounds containing other elements has not been known so far.
 特許文献5~10においては、ニッケル化合物、コバルト化合物及びマンガン化合物を分散させたスラリーをビーズミルなどで粉砕処理した後、スプレードライヤーなどで噴霧乾燥して、造粒体粒子を製造している。この場合、各種原料を分散させたスラリーをビーズミルなどで粉砕する工程を含むため、分散メディア由来の不純物が混入して、放電容量および充放電サイクル耐久性などの電池特性が悪化する傾向がある。また、粉砕により固形物の粒径を小さくするとスラリーの粘度が顕著に上昇するため、スラリーの固形分濃度を下げる必要がある。固形分濃度が下がると、噴霧乾燥で蒸発させる水分量が増大し、製造コストが高くなり、また噴霧乾燥により得られる造粒物の粒径が小さくなり、緻密な造粒体を得ることが難しくなる。特に特許文献8のように、リチウム化合物、ニッケル化合物、及びマンガン化合物を分散させたスラリーを粉砕処理し、平均粒径が0.5μm以下としたものを噴霧乾燥して、造粒体粒子を製造する場合には、0.5μm以下まで粒子を細かくする必要があり、粉砕に多大な時間とエネルギーが必要であり、著しいコストアップとなる。また、スラリーの固形分濃度を下げる必要が生じ、緻密な造粒体を得ることが非常に難しくなる。 In Patent Documents 5 to 10, a slurry in which a nickel compound, a cobalt compound, and a manganese compound are dispersed is pulverized with a bead mill or the like, and then spray-dried with a spray dryer or the like to produce granulated particles. In this case, since a slurry in which various raw materials are dispersed is pulverized with a bead mill or the like, impurities derived from the dispersion media are mixed, and battery characteristics such as discharge capacity and charge / discharge cycle durability tend to deteriorate. Further, when the particle size of the solid material is reduced by pulverization, the viscosity of the slurry is remarkably increased, so that the solid content concentration of the slurry needs to be lowered. When the solid concentration decreases, the amount of water evaporated by spray drying increases, the production cost increases, the particle size of the granulated product obtained by spray drying decreases, and it is difficult to obtain a dense granulated product. Become. In particular, as in Patent Document 8, a slurry in which a lithium compound, a nickel compound, and a manganese compound are dispersed is pulverized, and an average particle size of 0.5 μm or less is spray-dried to produce granulated particles. In this case, it is necessary to make the particles finer to 0.5 μm or less, and much time and energy are required for pulverization, resulting in a significant cost increase. Moreover, it becomes necessary to lower the solid content concentration of the slurry, and it becomes very difficult to obtain a dense granulated body.
 本発明は、このような問題を解決でき、均一な組成を有し、不純物の含有量が少なく、広い電圧範囲で使用でき、放電容量が高く、高安全性で、充填性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池用正極活物質の製造に適するニッケル含有複合化合物の安価な製造方法、及び製造されるニッケル含有複合化合物を用いるリチウムイオン二次電池用正極活物質の製造方法の提供を目的とする。 The present invention can solve such problems, has a uniform composition, low impurity content, can be used in a wide voltage range, has a high discharge capacity, high safety, high fillability, charge / discharge An inexpensive method for producing a nickel-containing composite compound suitable for producing a positive electrode active material for lithium ion secondary batteries having excellent cycle durability, and production of a positive electrode active material for lithium ion secondary batteries using the produced nickel-containing composite compound The purpose is to provide a method.
 本発明者らは、鋭意研究を続けたところ、下記を要旨とする発明により、上記の課題が良好に達成されることを見出した。
(1)ニッケルアンミン錯体およびM元素源(但し、M元素は、NiおよびCoを除く遷移金属元素、アルカリ土類金属元素ならびにアルミニウムからなる群から選ばれる少なくとも1種である)を含むニッケル-M元素含有溶液または分散液を加熱してニッケルアンミン錯体を分解させることによりニッケル-M元素含有複合化合物の粒子を含む懸濁スラリーを得る工程1と、該懸濁スラリーを乾燥造粒して、ニッケル-M元素含有複合化合物の造粒物を得る工程2を含む二次電池正極活物質用のニッケル-M元素含有複合化合物の製造方法。
(2)ニッケル-M元素含有複合化合物において、Ni、CoおよびM元素の割合を、NiCoとした場合、原子比で、0.1≦a≦0.85、0≦b≦0.85、0.03≦c≦0.8、かつa+b+c=1である上記(1)に記載のニッケル-M元素含有複合化合物の製造方法。
(3)前記ニッケル-M元素含有複合化合物が、水酸基、炭酸基およびOOH基からなる群から選ばれる少なくとも1種を含む化合物である上記(1)または(2)に記載のニッケル-M元素含有複合化合物の製造方法。
(4)前記工程1が、ニッケル-M元素含有溶液または分散液を0.03~2MPaの圧力下、80~250℃で加熱する上記(1)~(3)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(5)前記工程1が、ニッケル-M元素含有溶液または分散液に0.03~2MPaの圧力下で、100~250℃のスチームを導入して加熱する上記(1)~(3)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
As a result of intensive research, the present inventors have found that the above-described problems can be satisfactorily achieved by an invention having the following summary.
(1) Nickel-M containing nickel ammine complex and M element source (wherein M element is at least one selected from the group consisting of transition metal elements other than Ni and Co, alkaline earth metal elements and aluminum) Step 1 of obtaining a suspension slurry containing particles of a nickel-M element-containing composite compound by heating the element-containing solution or dispersion to decompose the nickel ammine complex, and drying and granulating the suspension slurry A method for producing a nickel-M element-containing composite compound for a secondary battery positive electrode active material, comprising the step 2 of obtaining a granulated product of an M element-containing composite compound.
(2) In the nickel -M element-containing complex compound, Ni, the ratio of Co and M element, when the Ni a Co b M c, in atomic ratio, 0.1 ≦ a ≦ 0.85,0 ≦ b ≦ The method for producing a nickel-M element-containing composite compound according to (1), wherein 0.85, 0.03 ≦ c ≦ 0.8, and a + b + c = 1.
(3) The nickel-M element-containing composite compound according to (1) or (2), wherein the nickel-M element-containing composite compound is a compound containing at least one selected from the group consisting of a hydroxyl group, a carbonate group, and an OOH group. A method for producing a composite compound.
(4) In the step 1, the nickel-M element-containing solution or dispersion is heated at 80 to 250 ° C. under a pressure of 0.03 to 2 MPa. Manufacturing method of M element containing complex compound.
(5) In any one of the above (1) to (3), the step 1 introduces and heats steam at 100 to 250 ° C. under a pressure of 0.03 to 2 MPa to the nickel-M element-containing solution or dispersion. A method for producing a nickel-M element-containing composite compound according to claim 1.
(6)ニッケルアンミン錯体が炭酸アンミン錯体である上記(1)~(5)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(7)M元素源がマンガンを含み、マンガン源がマンガンアンミン錯体である上記(1)~(6)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(8)マンガンアンミン錯体がマンガンカルバメートである上記(7)に記載のニッケル-M元素含有複合化合物の製造方法。
(9)工程2における乾燥造粒が、ニッケル-M元素含有溶液または分散液を噴霧乾燥することで乾燥造粒することにより行う上記(1)~(8)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(10)懸濁スラリーの固形分濃度が10質量%以上、かつ粘度が2~1000mPa・sである上記(1)~(9)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(11)工程2で得られるニッケル-M元素含有複合化合物の平均粒径D50が6~30μmである上記(1)~(10)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(12)ナトリウムの含有量が0.01質量%以下である上記(1)~(11)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(13)硫黄の含有量が0.1質量%以下である上記(1)~(12)のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。
(14)上記(1)~(13)のいずれかに記載の製造方法で得られたニッケル-M元素含有複合化合物とリチウム化合物を混合した後、酸素含有雰囲気下700~1100℃で焼成するリチウム-ニッケル-M元素含有複合酸化物の製造方法。
(15)正極、負極、非水電解質および電解液を含み、かつ該正極が上記(14)に記載の製造方法で得られたリチウムイオン二次電池用正極活物質を用いるリチウムイオン二次電池の製造方法。
(6) The method for producing a nickel-M element-containing composite compound according to any one of (1) to (5) above, wherein the nickel ammine complex is a carbonate ammine complex.
(7) The method for producing a nickel-M element-containing composite compound according to any one of the above (1) to (6), wherein the M element source contains manganese and the manganese source is a manganese ammine complex.
(8) The method for producing a nickel-M element-containing composite compound as described in (7) above, wherein the manganese ammine complex is manganese carbamate.
(9) Nickel-M according to any one of the above (1) to (8), wherein the dry granulation in the step 2 is performed by spray-drying a nickel-M element-containing solution or dispersion. A method for producing an element-containing composite compound.
(10) The method for producing a nickel-M element-containing composite compound according to any one of the above (1) to (9), wherein the suspended slurry has a solid content concentration of 10% by mass or more and a viscosity of 2 to 1000 mPa · s. .
(11) The production of the nickel-M element-containing composite compound according to any one of the above (1) to (10), wherein the nickel-M element-containing composite compound obtained in step 2 has an average particle diameter D 50 of 6-30 μm. Method.
(12) The method for producing a nickel-M element-containing composite compound as described in any one of (1) to (11) above, wherein the sodium content is 0.01% by mass or less.
(13) The method for producing a nickel-M element-containing composite compound according to any one of (1) to (12), wherein the sulfur content is 0.1% by mass or less.
(14) Lithium baked at 700 to 1100 ° C. in an oxygen-containing atmosphere after mixing the nickel-M element-containing composite compound obtained by the production method according to any one of (1) to (13) above and a lithium compound -Method for producing nickel-M element-containing composite oxide.
(15) A lithium ion secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and an electrolytic solution, wherein the positive electrode uses a positive electrode active material for a lithium ion secondary battery obtained by the production method described in (14) above Production method.
 本発明によれば、均一な組成を有し、不純物の含有量が少なく、広い電圧範囲で使用でき、放電容量が高く、高安全性で、充放電サイクル耐久性に優れたリチウムイオン二次電池用正極活物質とその前駆体が安価に提供される。  According to the present invention, a lithium ion secondary battery having a uniform composition, low impurity content, usable in a wide voltage range, high discharge capacity, high safety, and excellent charge / discharge cycle durability. The positive electrode active material and its precursor are provided at low cost. *
 本発明により提供されるニッケル-コバルト-M元素含有複合化合物が、何故に上記のごとき、リチウムイオン二次電池用正極活物質の前駆体として優れた特性を発揮するかについては必ずしも明らかではないが、ほぼ次のように考えられる。 It is not necessarily clear why the nickel-cobalt-M element-containing composite compound provided by the present invention exhibits excellent characteristics as a positive electrode active material precursor for lithium ion secondary batteries as described above. It can be considered as follows.
 金属硫酸塩を原料とする従来の共沈法では、原料中に含まれる、硫酸イオン(SO 2-)、塩化物イオン(Cl)、および製造過程での中和に用いるアルカリに含まれるナトリウムイオン(Na)は洗浄が困難であり、これらのイオンが不純物として正極材料中に残留する。これらの残留不純物の影響により、製造される正極材料を使用する電池では、放電容量が減少したり、充放電時に伴うリチウムイオンの移動が阻害され、放電レート特性が悪化したりするものと考えられる。特に、ナトリウムイオンなどの不純物はリチウムと同じアルカリ金属であり、正極材料の結晶中に取り込まれて、結晶構造に歪みが生じさせるため、充放電サイクル耐久性が悪化するものと考えられる。 In the conventional coprecipitation method using metal sulfate as a raw material, it is included in sulfate ions (SO 4 2− ), chloride ions (Cl ), and alkalis used for neutralization in the production process. Sodium ions (Na + ) are difficult to wash, and these ions remain as impurities in the positive electrode material. Due to the influence of these residual impurities, it is considered that in the battery using the produced positive electrode material, the discharge capacity is reduced or the movement of lithium ions during charging / discharging is hindered and the discharge rate characteristics are deteriorated. . In particular, impurities such as sodium ions are the same alkali metal as lithium, and are taken into the crystal of the positive electrode material to cause distortion in the crystal structure, which is considered to deteriorate the charge / discharge cycle durability.
 一方、ニッケルアンミン錯体の熱分解を利用する本発明の方法では、原料元素成分以外のアンモニアや炭酸ガスは系外に放出されるために正極材料中に不純物が残留せず、上記のような不純物が含有しないために、製造される正極材料を使用する電池では、放電容量、放電レート特性、充放電サイクル耐久性などの特性が低下することがないものと考えられる。また、本発明の方法では、アンミン錯体を熱分解することで元素が均一に分散した粒子を析出させ、該粒子が分散したスラリーを乾燥造粒することにより、正極材料中に各元素を非常に均一に分散させることができ、この正極材料を使用する電池では、放電容量、放電レート特性、充放電サイクル耐久性などの電池特性がさらに向上するものと考えられる。 On the other hand, in the method of the present invention using the thermal decomposition of nickel ammine complex, ammonia and carbon dioxide other than the raw material element components are released out of the system, so that no impurities remain in the positive electrode material, and the above impurities Therefore, in a battery using the produced positive electrode material, it is considered that characteristics such as discharge capacity, discharge rate characteristics, and charge / discharge cycle durability do not deteriorate. Further, in the method of the present invention, by thermally decomposing the ammine complex, the particles in which the elements are uniformly dispersed are precipitated, and the slurry in which the particles are dispersed is dried and granulated, so that each element in the positive electrode material It is considered that the battery characteristics such as discharge capacity, discharge rate characteristics, and charge / discharge cycle durability can be further improved in the battery using this positive electrode material.
 さらに、本発明の方法では、ニッケル-M元素含有複合化合物の粒子が均一に分散した懸濁スラリーの造粒することにより、粒子径、および粒子形状を所望の範囲に制御できるため、充填性などを向上させることができると考えられる。 Furthermore, in the method of the present invention, the particle diameter and the particle shape can be controlled within a desired range by granulating a suspension slurry in which the particles of the nickel-M element-containing composite compound are uniformly dispersed. Can be improved.
例1で得られたニッケル-コバルト-マンガン複合化合物のSEM像である。2 is a SEM image of the nickel-cobalt-manganese composite compound obtained in Example 1.
 本発明において、アンミン錯体とはアンモニアを含めたアミンを配位子とする錯体をいい、アミンとして各種有機アミンを配位子とするときもアンミン錯体という。アンミン錯体の配位子としては、具体的には、アンモニア(NH)、アンモニアの脂肪族誘導体、ジアミン、ピリジン、アニリン、ジピリジルおよびフェナントロリンからなる群から得られる少なくとも1種が好ましい。なかでもアンモニア(NH)、トリエタノールアミン、ピリジン、アニリン、ジピリジルおよびフェナントロリンからなる群から得られる少なくとも1種がより好ましく、アンモニア(NH)が特に好ましい。また配位子としては、アクア(OH)、カルボナト(CO 2-)、シアノ(CN)、オキサラト(C 2-)、ヒドロキソ(OH)などのアンミン錯体以外の配位子を含んでもよい。配位するアンモニアの数は少なくとも1つ含んでいればよく、また2つ以上でもよい。 In the present invention, the ammine complex refers to a complex having an amine including ammonia as a ligand, and when an organic amine is used as a ligand as an amine, the ammine complex is also referred to as an ammine complex. Specifically, the ligand of the ammine complex is preferably at least one selected from the group consisting of ammonia (NH 3 ), an aliphatic derivative of ammonia, diamine, pyridine, aniline, dipyridyl, and phenanthroline. Among these, at least one member selected from the group consisting of ammonia (NH 3 ), triethanolamine, pyridine, aniline, dipyridyl and phenanthroline is more preferable, and ammonia (NH 3 ) is particularly preferable. As ligands, coordination other than ammine complexes such as aqua (OH 2 ), carbonato (CO 3 2− ), cyano (CN ), oxalato (C 2 O 4 2− ), hydroxo (OH ), etc. May contain children. The number of coordinated ammonia should just contain at least one, and may be two or more.
 アンミン錯体を形成する際に用いるアミン源は、液体アンモニア、アンモニア水、炭酸アンモニウム、または重炭酸アンモニウムが用いられる。さらにはアンモニアの脂肪族誘導体、ジアミン、ピリジン、アニリン、ジピリジルおよびフェナントロリンからなる群から選ばれる1種が好ましく、コストを考慮する場合、アンモニアによるアンミン錯体がより好ましい。また、アンミン錯体のアンモニア以外の配位子としては、カルボナト(CO 2-)を含む炭酸アンミン錯体が好ましく、また対イオンとしては炭酸イオンが好ましい。カルボナト源あるいは炭酸イオン源は特に限定されないが、なかでも二酸化炭素が好ましい。上記した炭酸アンモニウムは形式上、化学式が(NHCOと表される化合物であるが、通常、入手可能な試薬では、炭酸水素アンモニウム(NH・HCO)とカルバミン酸アンモニウム(NHCOONH)との混合物である。このカルバミン酸アンモニウムはMnと安定なアンミン錯体を形成するため、M元素にMnを含む場合、アミン源としてカルバミン酸アンモニウムを用いると好ましい。すなわち、M元素がマンガンを含む場合、マンガンの原料は特に限定されないが、なかでもマンガンのアンミン錯体を用いると好ましく、マンガンカルバメートを用いるとより好ましい。 As the amine source used for forming the ammine complex, liquid ammonia, aqueous ammonia, ammonium carbonate, or ammonium bicarbonate is used. Furthermore, one kind selected from the group consisting of aliphatic derivatives of ammonia, diamine, pyridine, aniline, dipyridyl, and phenanthroline is preferred, and in view of cost, an ammine complex with ammonia is more preferred. In addition, the ligand other than ammonia of the ammine complex is preferably an carbonate carbonate complex containing carbonato (CO 3 2− ), and the counter ion is preferably a carbonate ion. The carbonate source or carbonate ion source is not particularly limited, but carbon dioxide is particularly preferable. The above-mentioned ammonium carbonate is a compound whose form is represented by the chemical formula (NH 4 ) 2 CO 3 , but usually available reagents include ammonium hydrogen carbonate (NH 4 .HCO 3 ) and ammonium carbamate (NH 2 COONH 4 ). Since this ammonium carbamate forms a stable ammine complex with Mn, when M element contains Mn, it is preferable to use ammonium carbamate as an amine source. That is, when the M element contains manganese, the raw material of manganese is not particularly limited, but among these, it is preferable to use an manganese ammine complex, and more preferable to use manganese carbamate.
 本発明において、ニッケルアンミン錯体の原料は特に限定されないが、なかでも金属、水酸化物、炭酸塩、オキシ水酸化物、または酸化物が好ましく、金属、水酸化物、炭酸塩、またはオキシ水酸化物がより好ましい。具体的には、ニッケル源として、金属ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、またはオキシ水酸化ニッケルが好ましい。 In the present invention, the raw material of the nickel ammine complex is not particularly limited, and among these, metals, hydroxides, carbonates, oxyhydroxides, or oxides are preferable, and metals, hydroxides, carbonates, or oxyhydroxides are preferred. More preferred. Specifically, the nickel source is preferably metallic nickel, nickel oxide, nickel hydroxide, nickel carbonate, basic nickel carbonate, or nickel oxyhydroxide.
 炭酸アンモニウムなどを溶解したアンモニア水などに、これらのニッケル源を加えて好ましくは20~60℃で好ましくは30分~12時間撹拌することによりニッケルアンミン錯体含有水溶液を合成することができる。 A nickel ammine complex-containing aqueous solution can be synthesized by adding these nickel sources to ammonia water in which ammonium carbonate or the like is dissolved and stirring at 20 to 60 ° C., preferably for 30 minutes to 12 hours.
 本発明において、M元素は、CoおよびNiを除く遷移金属元素、アルカリ土類金属元素ならびにアルミニウムからなる群から選ばれる少なくとも1種の元素である。ここで、上記遷移金属元素は、周期表の3族、4族、5族、6族、7族、8族、9族、10族、11族または12族の遷移金属元素を表す。なかでも、M元素は、Mn、Al、Mg、Zr、TiおよびHfからなる群から選ばれる少なくとも1種が好ましい。さらに放電容量、安全性、充放電サイクル耐久性などの見地より、M元素は、Mn、AlおよびMgからなる群から選ばれる少なくとも1種の元素であることがより好ましく、なかでもMnが特に好ましい。 In the present invention, the M element is at least one element selected from the group consisting of transition metal elements other than Co and Ni, alkaline earth metal elements, and aluminum. Here, the transition metal element represents a transition metal element of Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11 or Group 12 of the Periodic Table. Among these, the M element is preferably at least one selected from the group consisting of Mn, Al, Mg, Zr, Ti, and Hf. Further, from the viewpoint of discharge capacity, safety, charge / discharge cycle durability, etc., the M element is more preferably at least one element selected from the group consisting of Mn, Al and Mg, and Mn is particularly preferable. .
 本発明において、工程1で加熱するニッケル-M元素含有溶液または分散液は、必ずしも全ての成分が溶解する必要はなく、一部の成分が液中に分散していてもよく、懸濁溶液またはコロイド形態の溶液を含む。また、ニッケル-M元素含有溶液または分散液は、有機溶媒または水でもよく特に限定されないが、アンミン錯体と原料の溶解性が高い水溶液が好ましい。 In the present invention, the nickel-M element-containing solution or dispersion heated in Step 1 does not necessarily need to dissolve all components, and some of the components may be dispersed in the solution. Including solutions in colloidal form. Further, the nickel-M element-containing solution or dispersion may be an organic solvent or water, and is not particularly limited, but an aqueous solution in which the ammine complex and the raw material are highly soluble is preferable.
 ニッケル-M元素含有溶液または分散液に含まれるM元素がM元素アンミン錯体である場合は、ニッケル-M元素含有溶液に含まれる元素が全て溶解しているため、溶液を加熱する前に濾過するとアンミン錯体を形成し難いFeなどの不純物を除去できる。特にM元素がMnの場合は電池特性に悪影響を与えるFe不純物を多量に含んでいる場合が多いので、従来よりも非常に不純物が少ないニッケル-M元素含有複合化合物が得られるため好ましい。 When the M element contained in the nickel-M element-containing solution or dispersion is an M-element ammine complex, all the elements contained in the nickel-M element-containing solution are dissolved. Impurities such as Fe that are difficult to form an ammine complex can be removed. In particular, when M element is Mn, since it often contains a large amount of Fe impurities that adversely affect battery characteristics, it is preferable since a nickel-M element-containing composite compound with much less impurities than before can be obtained.
 本発明において、M元素源が溶液状であるのが好ましい。M元素源が溶液であるとニッケルアンミン錯体との混合溶液を加熱して熱分解することにより、ニッケルと元素Mが粒子内に原子レベルで均一に分散した、いわゆる共沈複合化合物が得られる。混合溶液の溶媒は水であるのが好ましい。 In the present invention, the M element source is preferably in the form of a solution. When the M element source is a solution, a mixed solution of nickel ammine complex is heated and thermally decomposed to obtain a so-called coprecipitation composite compound in which nickel and element M are uniformly dispersed in the particles at the atomic level. The solvent of the mixed solution is preferably water.
 M元素源が固体の場合は、化学種は特に限定されないが、なかでも金属、水酸化物、炭酸塩、オキシ水酸化物、または酸化物が好ましく、水酸化物、炭酸塩、オキシ水酸化物、または酸化物がより好ましい。また、M元素源の平均粒径D50は10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましい。D50が10μmを越えると加熱後に得られる粒子内のM元素が不均一になる傾向がある。D50は小さいほど均一な組成が得られるが、小さくするほど製造コストが高くなるので電池特性とのバランスを考慮すると、M元素の化合物の平均粒径D50は0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましい。 When the M element source is solid, the chemical species is not particularly limited, but metal, hydroxide, carbonate, oxyhydroxide, or oxide is preferable, and hydroxide, carbonate, oxyhydroxide is preferable. Or an oxide is more preferable. The average particle diameter D 50 of the M element source is preferably 10μm or less, more preferably 8 [mu] m, more preferably 5μm or less. When D 50 exceeds 10 μm, the M element in the particles obtained after heating tends to be non-uniform. The smaller the D 50, the more uniform the composition can be obtained. However, the smaller the D 50, the higher the production cost. Therefore, considering the balance with the battery characteristics, the average particle size D 50 of the M element compound is preferably 0.01 μm or more. .1 μm or more is more preferable, and 0.5 μm or more is more preferable.
 なお、本発明で平均粒径D50とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒径である体積基準累積50%径(D50)を意味する。なお、本発明では、単にD50ということがある。また、D10とは体積基準累積10%径を、D90とは体積基準累積90%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒径の測定は、粒子を水媒体中に超音波処理などで充分に分散させて粒度分布を測定することにより行われる(例えば、日機装社製マイクロトラックHRA(X-100)などを用いる)。また、この平均粒径D50は、測定する粒子が二次粒子の場合は、一次粒子が相互に凝集してなる二次粒径についての体積平均粒径となり、粒子が一次粒子のみからなる場合は、一次粒子についての平均粒径となる。 Note that the average particle size D 50 in the present invention, determine the particle size distribution on a volume basis, the cumulative curve the total volume was 100%, volume-reduced cumulative cumulative curve is the particle size of the point at which 50% 50 It means% diameter (D 50). In the present invention, it may be simply referred to as D 50. Further, the D 10 of the volume-reduced cumulative 10% diameter means a volume-reduced cumulative 90% diameter and the D 90. The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the particles in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using Microtrac HRA (X-100) manufactured by Nikkiso Co., Ltd.). Further, the average particle diameter D 50, if the particles to be measured is a secondary particle, it is the volume average particle diameter of the secondary particle diameter of primary particles formed by agglomerating one another, when the particles consisting only of primary particles Is the average particle size for the primary particles.
 ニッケルアンミン錯体およびM元素源を含むニッケル-M元素含有溶液または分散液に含まれるニッケルアンミン錯体はニッケル元素の濃度(質量%)として、1~12%が好ましく、3~8%がより好ましい。また、M元素源の濃度はM元素濃度(質量%)として、1~12%が好ましく、3~8%がより好ましい。ニッケル-M元素含有溶液または分散液中のニッケルとM元素のモル比は、目的とするニッケル-M元素含有複合化合物におけるニッケルとM元素のモル比と等しくすることが好ましい。 The nickel ammine complex and the nickel ammine complex contained in the nickel-M element-containing solution or dispersion containing the M element source have a nickel element concentration (mass%) of preferably 1 to 12%, more preferably 3 to 8%. The concentration of the M element source is preferably 1 to 12%, more preferably 3 to 8%, as the M element concentration (% by mass). The molar ratio of nickel and M element in the nickel-M element-containing solution or dispersion is preferably equal to the molar ratio of nickel and M element in the target nickel-M element-containing composite compound.
 リチウムイオン二次電池の充放電サイクル耐久性と大電流充放電性能を高めるため、ニッケル-M元素含有溶液または分散液はさらにCo源を含むのが好ましい。Co源としては、特に限定するものではないが、溶液を形成できるCoアンミン錯体が好ましい。かかる場合、ニッケル-M元素含有溶液または分散液に含まれるコバルトアンミン錯体はコバルト元素の濃度(質量%)として、1~12%が好ましく、3~8%がより好ましい。Coアンミン錯体は、上述のニッケルアンミン錯体と同様な方法で合成することができる。ニッケル-M元素含有溶液または分散液がCo源を含む場合、該溶液または分散液中のニッケル-コバルト-M元素のモル比は、目的とするニッケル-コバルト-M元素含有複合化合物におけるニッケル-コバルト-M元素のモル比と等しくすることが好ましい。 In order to improve the charge / discharge cycle durability and large current charge / discharge performance of the lithium ion secondary battery, the nickel-M element-containing solution or dispersion preferably further contains a Co source. The Co source is not particularly limited, but a Co ammine complex capable of forming a solution is preferable. In such a case, the cobalt ammine complex contained in the nickel-M element-containing solution or dispersion has a cobalt element concentration (mass%) of preferably 1 to 12%, more preferably 3 to 8%. The Co ammine complex can be synthesized by the same method as the above nickel ammine complex. When the nickel-M element-containing solution or dispersion contains a Co source, the molar ratio of nickel-cobalt-M element in the solution or dispersion is nickel-cobalt in the target nickel-cobalt-M element-containing composite compound. It is preferably equal to the molar ratio of the -M element.
 ニッケル-M元素含有溶液または分散液を加熱する方法としては、特に限定されないが、80~250℃で加熱するのが好ましく、80~180℃がより好ましく、100~180℃がより好ましい。加熱の方法としては100℃以上のスチームを用いて加熱することが好ましい。加熱により、アンミン錯体は、ニッケル-M原子含有複合化合物とアンモニアまたはアミンを生成するが、アンモニアまたはアミンが反応系内に滞留すると、該複合化合物がアンミン錯体を再び形成して、溶解する。そのため、効率的に熱分解反応を進行させるために、生成したアンモニアまたはアミンを反応系外へ留去することが重要である。100℃以上のスチームを導入するにより、過剰のスチームと共にアンモニアまたはアミンを反応系外へ留去して、アンミン錯体の熱分解反応を促進できる。導入するスチームの温度は100~250℃が好ましく、120~180℃がより好ましい。ニッケル-M元素含有溶液または分散液を直接加熱する方法でも良いが、より好ましくは、加熱またはスチーム導入により煮沸している加熱水へ、ニッケル-M元素含有溶液または分散液を逐次添加してアンミン錯体を分解させることが好ましい。逐次添加で熱分解させることで効率的にアンモニアまたはアミンを反応系外へ留去させることができ、また熱分解反応を安定して進行させることができる。反応容器内の圧力は減圧下でも高圧下でもよく、0.03~2MPaが好ましく、0.2~1MPaの圧力下で加熱することがより好ましい。加熱時間は、0.1~12時間が好ましく、0.5~10時間がより好ましく、1~6時間が特に好ましい。 The method for heating the nickel-M element-containing solution or dispersion is not particularly limited, but it is preferably 80 to 250 ° C, more preferably 80 to 180 ° C, and more preferably 100 to 180 ° C. As a heating method, it is preferable to use 100 ° C. or higher steam. By heating, the ammine complex forms a nickel-M atom-containing composite compound and ammonia or amine, but when ammonia or amine stays in the reaction system, the composite compound forms an ammine complex again and dissolves. Therefore, in order to advance the thermal decomposition reaction efficiently, it is important to distill off the produced ammonia or amine out of the reaction system. By introducing steam at 100 ° C. or higher, ammonia or amine is distilled out of the reaction system together with excess steam, and the thermal decomposition reaction of the ammine complex can be promoted. The temperature of the steam to be introduced is preferably 100 to 250 ° C, more preferably 120 to 180 ° C. A method in which the nickel-M element-containing solution or dispersion is directly heated may be used, but more preferably, the nickel-M element-containing solution or dispersion is sequentially added to the heated water boiled by heating or steam introduction. It is preferred to decompose the complex. By carrying out thermal decomposition by sequential addition, ammonia or amine can be efficiently distilled out of the reaction system, and the thermal decomposition reaction can proceed stably. The pressure in the reaction vessel may be under reduced pressure or high pressure, preferably 0.03 to 2 MPa, more preferably 0.2 to 1 MPa. The heating time is preferably 0.1 to 12 hours, more preferably 0.5 to 10 hours, and particularly preferably 1 to 6 hours.
 本発明において、工程1で得られる懸濁スラリーに分散する複合粒子を粉砕する粉砕工程を入れてもよい。粉砕する方法としては、湿式ボールミル粉砕、湿式ビーズミル粉砕、湿式振動ミル粉砕などが適用できる。 In the present invention, a pulverization step of pulverizing the composite particles dispersed in the suspension slurry obtained in step 1 may be included. As a grinding method, wet ball mill grinding, wet bead mill grinding, wet vibration mill grinding, or the like can be applied.
 本発明において、工程1で得られる懸濁スラリーは必要に応じて濃縮し、工程2の噴霧乾燥に用いることが好ましい。スラリーの固形分濃度は10質量%以上が好ましく、より好ましくは20質量%以上、さらに好ましくは30質量%以上が好ましい。この固形分濃度は、80質量%以下が好ましく、50質量%以下がより好ましい。固形分濃度がこの範囲にある場合、噴霧する液滴のサイズを容易に調整することができ、造粒体粒子の粒径を容易に調整でき、さらに粒子の内部においては、空隙が形成されずに、疎や密に偏ることなく造粒体粒子の充填性がより向上する。また、固形分濃度が高い方が生産性および生産効率が高く、スラリー中の水分が少ないため、噴霧乾燥に必要なエネルギーも少なくなるため好ましい。 In the present invention, the suspension slurry obtained in step 1 is preferably concentrated as necessary and used for spray drying in step 2. The solid content concentration of the slurry is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. The solid content concentration is preferably 80% by mass or less, and more preferably 50% by mass or less. When the solid content concentration is within this range, the size of the droplets to be sprayed can be easily adjusted, the particle size of the granulated particles can be easily adjusted, and no voids are formed inside the particles. In addition, the filling property of the granulated particles is further improved without sparse or dense bias. A higher solid content concentration is preferable because productivity and production efficiency are high, and since water in the slurry is small, energy required for spray drying is also reduced.
 なお、本発明において、固形分濃度は次のようにして求める。まず懸濁スラリーの一部を分取して、分取したスラリーの質量を測定した後、その分取したスラリーを100℃で乾燥して、乾燥粉末の質量を測定する。測定した乾燥粉末の質量を分取したスラリーの質量で除すことで、固形分濃度を求めることができる。
 本発明において、工程1で得られる懸濁スラリーに分散する複合粒子を粉砕する粉砕工程を入れてもよい。粉砕には、湿式ボールミル、湿式ビーズミルおよび湿式振動ミルのいずれかを用いるのが好ましい。特に工程2における造粒工程にて噴霧乾燥する場合に、正極材料に適した球状性が高く緻密な前駆体造粒粒子を得るためには、スラリー中の複合粒子を0.5μm以上3μm以下、より好ましくは0.7μm以上2μm以下に平均粒子径を調整することが好ましい。0.5μm未満まで粉砕することは、粉砕に時間を要しコストアップとなり、また粉砕・分散メディア由来の不純物の混入量も増大するため好ましくない。またスラリー粘度が増大し、噴霧乾燥に適した粘度と固形分濃度の両立ができなくなる。工程1で得られるニッケル-M元素含有複合化合物はすでに元素分布の均一性が高い粒子であるので、平均粒子径が0.5μm以上でも良好な電池特性を発現する単相の正極材料を得ることができる。スラリー中の複合粒子の平均粒子径を上記に示した好ましい平均粒子径に調整することにより、球状性が高く緻密な造粒粒子を作成するための、低粘性かつ高濃度の複合粒子スラリーを調製することができる。
In the present invention, the solid content concentration is determined as follows. First, a part of the suspended slurry is taken and the mass of the taken slurry is measured, and then the taken slurry is dried at 100 ° C. to measure the weight of the dry powder. The solid content concentration can be obtained by dividing the mass of the measured dry powder by the mass of the collected slurry.
In this invention, you may put the grinding | pulverization process which grind | pulverizes the composite particle disperse | distributed to the suspension slurry obtained at the process 1. FIG. It is preferable to use any one of a wet ball mill, a wet bead mill, and a wet vibration mill for the pulverization. In particular, when spray-drying in the granulation step in Step 2, in order to obtain a highly spherical and dense precursor granulated particle suitable for the positive electrode material, the composite particles in the slurry are 0.5 μm or more and 3 μm or less. More preferably, the average particle diameter is adjusted to 0.7 μm or more and 2 μm or less. Grinding to less than 0.5 μm is not preferable because it takes time for grinding and increases costs, and the amount of impurities derived from the grinding / dispersion media increases. Further, the viscosity of the slurry increases, making it impossible to achieve both a viscosity suitable for spray drying and a solid content concentration. Since the nickel-M element-containing composite compound obtained in step 1 is already particles with high uniformity of element distribution, a single-phase positive electrode material that exhibits good battery characteristics even when the average particle size is 0.5 μm or more is obtained. Can do. By adjusting the average particle size of the composite particles in the slurry to the preferred average particle size shown above, a low-viscosity and high-concentration composite particle slurry for preparing highly granulated particles with high sphericity is prepared. can do.
 本発明において、噴霧乾燥に用いる懸濁スラリーにバインダ成分を添加することができ、バインダ成分としては、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドンおよびポリアクリル酸アンモニウムからなる群から選ばれる少なくとも1種が好ましい。 In the present invention, a binder component can be added to the suspension slurry used for spray drying, and the binder component is preferably at least one selected from the group consisting of polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, and ammonium polyacrylate. .
 また、噴霧乾燥に用いる懸濁スラリーの粘度は2~1000mPa・sが好ましく、より好ましくは2~800mPa・s、さらに好ましくは2~500mPa・sであり、この範囲のなかでも4~500mPa・sが好ましく、4~300mPa・sがより好ましく、6~300mPa・sがさらに好ましく、特には6~100mPa・sが好ましい。懸濁スラリーの粘度が上記した範囲にある場合、球状で均一な造粒体を容易に得ることができるため好ましい。 The viscosity of the suspension slurry used for spray drying is preferably 2 to 1000 mPa · s, more preferably 2 to 800 mPa · s, and further preferably 2 to 500 mPa · s, and within this range, 4 to 500 mPa · s. It is preferably 4 to 300 mPa · s, more preferably 6 to 300 mPa · s, and particularly preferably 6 to 100 mPa · s. When the viscosity of the suspension slurry is in the above range, it is preferable because a spherical and uniform granulated body can be easily obtained.
 本発明において、懸濁スラリーの粘度は、一般に回転式粘度計や振動式粘度計によって測定されるが、粘度計の形式、測定条件により変わる場合がある。本発明では、ブルックフィールド社製デジタル回転粘度計DV-II+のLV型で少量サンプルユニットを用い、25℃、30rpmの条件にて測定し、粘度が100mPa・s以下の場合にはスピンドルNo.18を用い、100mPa・s以上の場合にはスピンドルNo.31を、1000mPa・s以上の場合にはスピンドルNo.34を用いて測定することが好ましい。 In the present invention, the viscosity of the suspended slurry is generally measured by a rotary viscometer or a vibration viscometer, but may vary depending on the type of viscometer and measurement conditions. In the present invention, a LV type digital rotational viscometer DV-II + manufactured by Brookfield Co., Ltd. was measured using a small amount sample unit under the conditions of 25 ° C. and 30 rpm. When the viscosity was 100 mPa · s or less, the spindle No. 18 is used, and in the case of 100 mPa · s or more, the spindle No. 31 is 1000 mPa · s or higher, the spindle no. It is preferable to measure using 34.
 本発明において、乾燥造粒する方法としては、噴霧乾燥法、フラシュドライ、ベルトドライヤーを用いる方法、レーディゲミキサーを用いる方法、2軸スクリュウドライヤーとしてサーモプロセッサ、パドルドライヤーを用いる方法が例示される。なかでもスプレードライヤーなどを用いて噴霧乾燥する方法は生産性が高いので好ましい。 In the present invention, examples of the dry granulation method include spray drying, flash drying, a method using a belt dryer, a method using a Laedige mixer, and a method using a thermoprocessor and a paddle dryer as a twin screw dryer. . Among these, the spray drying method using a spray dryer or the like is preferable because of high productivity.
 乾燥造粒の方法として、噴霧乾燥法を使用する場合は、造粒後の二次粒子からなる造粒体の粒径は、スラリーの固形分濃度および粘度、噴霧形式、加圧気体供給速度、スラリー供給速度、乾燥温度などを選ぶことにより制御できる。本発明では、乾燥造粒後の二次粒子からなる前駆体の粒径が正極材料に用いるリチウム-ニッケル-M元素含有複合酸化物の粒径にほぼ反映される。 When spray drying is used as the method of dry granulation, the particle size of the granulated product composed of secondary particles after granulation is determined by the solid content concentration and viscosity of the slurry, spray type, pressurized gas supply rate, It can be controlled by selecting the slurry supply speed, drying temperature and the like. In the present invention, the particle size of the precursor composed of secondary particles after dry granulation is substantially reflected in the particle size of the lithium-nickel-M element-containing composite oxide used for the positive electrode material.
 本発明において、乾燥造粒した後に得られる造粒物の平均粒径D50は、5~25μmが好ましい。D50が5μm未満であると、リチウム含有複合酸化物のプレス密度が低下する結果、正極の体積充填密度が低くなり電池の体積容量密度が低下するので好ましくない。また、D50が25μm超であると、平滑な正極表面を得ることが困難となることがある。造粒物の特に好ましいD50は7~20μmである。 In the present invention, the average particle diameter D 50 of the granulated product obtained after dry granulation is preferably 5 to 25 μm. If D 50 is less than 5 [mu] m, results press density of the lithium-containing composite oxide is decreased, the volume packing density of the positive electrode decreases the volume capacity density of the battery becomes low is not preferable. Further, when D 50 is at 25μm greater, it may become difficult to obtain a smooth surface of the positive electrode. Particularly preferred D 50 of the granulated product is 7 to 20 μm.
 本発明で得られるニッケル-M元素含有複合化合物は、Ni、CoおよびM元素の割合が、NiCoとした場合、原子比で0.1≦a≦0.85、0≦b≦0.85、0.03≦c≦0.8、a+b+c=1であると電池特性のバランスが良いため好ましい。さらには、0.1≦a≦0.62、0≦b≦0.35、0.03≦c≦0.8がより好ましく、さらには0.15≦a≦0.6、0≦b≦0.35、0.2≦c≦0.75が好ましい。上記した範囲では、高価なコバルト量を減らして安価なニッケルを増やすことができ、ニッケル-M元素含有複合化合物を安価に得られるため好ましい。また、リチウム化合物と反応させて、得られるリチウム-ニッケル-M元素含有複合酸化物を正極活物質として用いる場合、M元素の割合が多いため、安全性が高く、かつ放電容量が高くなるので好ましい。 Nickel -M element-containing complex compound obtained by the present invention, Ni, the ratio of Co and the M element, Ni a Co b case of a M c, 0.1 ≦ a ≦ 0.85,0 ≦ b in atomic ratio It is preferable that ≦ 0.85, 0.03 ≦ c ≦ 0.8, and a + b + c = 1 because the battery characteristics are well balanced. Furthermore, 0.1 ≦ a ≦ 0.62, 0 ≦ b ≦ 0.35 and 0.03 ≦ c ≦ 0.8 are more preferable, and further 0.15 ≦ a ≦ 0.6 and 0 ≦ b ≦. 0.35 and 0.2 ≦ c ≦ 0.75 are preferable. Within the above range, the amount of expensive cobalt can be reduced and inexpensive nickel can be increased, and a nickel-M element-containing composite compound can be obtained at low cost. Further, when the lithium-nickel-M element-containing composite oxide obtained by reacting with a lithium compound is used as the positive electrode active material, it is preferable because the ratio of M element is large, so that the safety is high and the discharge capacity is high. .
 リチウム-ニッケル-M元素含有複合酸化物を得る焼成工程において、仮焼成が必要となることがあるが、Niの割合が6割以下、すなわちaが0.6以下であると仮焼成が不要となる傾向が見られ、効率よく合成するために、0.25≦a≦0.6、0≦b≦0.35、0.2≦c≦0.75であるのが好ましい。具体的な組成としては、例えばNiが0.5、Coが0.2およびMnが0.3となる組成、またはNiが0.6、Coが0.2およびMnが0.2となる組成が好ましい。 In the firing step for obtaining the lithium-nickel-M element-containing composite oxide, provisional firing may be necessary, but if the proportion of Ni is 60% or less, that is, a is 0.6 or less, provisional firing is unnecessary. In order to synthesize efficiently, it is preferable that 0.25 ≦ a ≦ 0.6, 0 ≦ b ≦ 0.35, and 0.2 ≦ c ≦ 0.75. As a specific composition, for example, Ni is 0.5, Co is 0.2, and Mn is 0.3, or Ni is 0.6, Co is 0.2, and Mn is 0.2. Is preferred.
 一方、安全性を重視する場合は、M元素の含有量が多い方が好ましく、0.1≦a≦0.3、0.05≦b≦0.2、0.5≦c≦0.8であるのが好ましい。具体的な組成としては、例えばNiが1/6、Coが1/6およびMnが4/6となる組成が好ましい。
 さらに、高価なコバルトを使用せずNiとMnのみを含む場合は、0.2≦a≦0.7、b=0、0.3≦c≦0.8であるのが好ましく、0.2≦a≦0.55、b=0、0.45≦c≦0.8であるのがより好ましい。
 なお、本発明において、粒子に含まれる元素量はICP分析(高周波誘導結合プラズマ発光分光分析)装置で分析することができる。
On the other hand, when safety is emphasized, it is preferable that the content of the M element is large, 0.1 ≦ a ≦ 0.3, 0.05 ≦ b ≦ 0.2, 0.5 ≦ c ≦ 0.8. Is preferred. As a specific composition, for example, a composition in which Ni is 1/6, Co is 1/6, and Mn is 4/6 is preferable.
Furthermore, when expensive cobalt is not used and only Ni and Mn are included, it is preferable that 0.2 ≦ a ≦ 0.7, b = 0, 0.3 ≦ c ≦ 0.8, More preferably, ≦ a ≦ 0.55, b = 0, and 0.45 ≦ c ≦ 0.8.
In the present invention, the amount of elements contained in the particles can be analyzed with an ICP analysis (high frequency inductively coupled plasma emission spectroscopy) apparatus.
 本発明で得られるニッケル-M元素含有複合化合物は、特に限定はされないが、反応性や均一性が高いため、水酸基、炭酸基およびOOH基からなる群から選ばれる少なくとも1種を含むと好ましい。なかでも、該複合酸化物は、水酸基と炭酸基の両方を含む化合物がより好ましい。 The nickel-M element-containing composite compound obtained in the present invention is not particularly limited, but preferably contains at least one selected from the group consisting of a hydroxyl group, a carbonate group and an OOH group because of high reactivity and uniformity. Among these, the composite oxide is more preferably a compound containing both a hydroxyl group and a carbonate group.
 本発明で得られるニッケル-M元素含有複合化合物の組成は、下記式(1)で表わされるのが好ましい。

 Ni   式(1)

 ただし、0.1≦a≦0.85、0.15≦c≦0.9、0≦p≦1.6、0.9≦q≦3.1、0≦r≦3.1、a+c=1である。なかでもaおよびcはそれぞれ0.2≦a≦0.85、0.15≦c≦0.8が好ましく、0.25≦a≦0.8、0.2≦c≦0.75がより好ましい。
 特に、Niは、Ni(CO(OH)または、NiOOHであるのが好ましい。ここで、0≦x≦1、0≦y≦2、かつ1≦x+yであり、xおよびyは、整数でない組み合わせもある。
The composition of the nickel-M element-containing composite compound obtained in the present invention is preferably represented by the following formula (1).

Ni a M c C p O q H r Formula (1)

However, 0.1 ≦ a ≦ 0.85, 0.15 ≦ c ≦ 0.9, 0 ≦ p ≦ 1.6, 0.9 ≦ q ≦ 3.1, 0 ≦ r ≦ 3.1, a + c = 1. Of these, a and c are preferably 0.2 ≦ a ≦ 0.85 and 0.15 ≦ c ≦ 0.8, respectively, more preferably 0.25 ≦ a ≦ 0.8 and 0.2 ≦ c ≦ 0.75. preferable.
In particular, Ni a M c C p O q H r is, Ni a M c (CO 3 ) x (OH) y or preferably a Ni a M c OOH. Here, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2, and 1 ≦ x + y, and x and y may be a combination that is not an integer.
 本発明で得られるニッケル-M元素含有複合化合物の組成は、下記式(2)で表わされるのがより好ましい。

 NiCo   式(2)

 ただし、0.1≦a≦0.85、0≦b≦0.85、0.03≦c≦0.8、0≦p≦1.6、0.9≦q≦3.1、0≦r≦3.1、a+b+c=1である。なかでもa、bおよびcはそれぞれ0.1≦a≦0.62、0≦b≦0.35、0.03≦c≦0.8が好ましく、0.2≦a≦0.6、0.05≦b≦0.35、0.2≦c≦0.75がより好ましい。a、bおよびcが上記した範囲にあると、高価なコバルト量を減らして安価なニッケルを増やすことができ、ニッケル-コバルト-M元素含有複合化合物を安価に得られるため好ましい。
The composition of the nickel-M element-containing composite compound obtained in the present invention is more preferably represented by the following formula (2).

Ni a Co b M c C p O q H r Formula (2)

However, 0.1 ≦ a ≦ 0.85, 0 ≦ b ≦ 0.85, 0.03 ≦ c ≦ 0.8, 0 ≦ p ≦ 1.6, 0.9 ≦ q ≦ 3.1, 0 ≦ r ≦ 3.1 and a + b + c = 1. Among them, a, b and c are preferably 0.1 ≦ a ≦ 0.62, 0 ≦ b ≦ 0.35, 0.03 ≦ c ≦ 0.8, 0.2 ≦ a ≦ 0.6, 0 .05 ≦ b ≦ 0.35 and 0.2 ≦ c ≦ 0.75 are more preferable. When a, b and c are in the above ranges, it is preferable because the amount of expensive cobalt can be reduced and inexpensive nickel can be increased, and a nickel-cobalt-M element-containing composite compound can be obtained at low cost.
 NiCoは、NiCo(CO(OH)または、NiCoOOHであるのが好ましい。ここで、0≦x≦1、0≦y≦2、かつ1≦x+yであり、xおよびyは、整数でない組み合わせもある。 Ni a Co b M c C p O q H r is, Ni a Co b M c ( CO 3) x (OH) y or preferably a Ni a Co b M c OOH. Here, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2, and 1 ≦ x + y, and x and y may be a combination that is not an integer.
 NiCo(CO(OH)において、Ni、Co、Mnの平均価数が2である場合の態様は、x×2+y=2を満足するxおよびyの組み合わせである。xおよびyは、整数でない組み合わせもある。整数である場合は、x=1かつy=0、またはx=0かつy=2である。Ni、Co、Mnの平均価数が3である場合の態様は、x×2+y=3を満足するxおよびyの組み合わせである。xおよびyは、整数でない組み合わせもある。具体例としては、x=1かつy=1、またはx=0.5かつy=2である。また、本発明で得られるニッケル-M元素含有複合化合物の造粒体は、略球状であるのが好ましい。 In Ni a Co b M c (CO 3) x (OH) y, embodiments where Ni, Co, average valence of Mn is 2, is a combination of x and y satisfying x × 2 + y = 2 . There are some combinations of x and y that are not integers. If it is an integer, x = 1 and y = 0, or x = 0 and y = 2. The aspect in which the average valence of Ni, Co, and Mn is 3 is a combination of x and y that satisfies x × 2 + y = 3. Some combinations of x and y are not integers. As specific examples, x = 1 and y = 1, or x = 0.5 and y = 2. The granulated body of the nickel-M element-containing composite compound obtained in the present invention is preferably substantially spherical.
 本発明で得られるニッケル-M元素含有複合化合物に含まれる不純物量は少ない方が好ましい。電池性能に影響を及ぼす不純物元素としては、ナトリウム(Na)、硫黄(S)、鉄(Fe)およびジルコニウム(Zr)が挙げられる。ナトリウムの含有量は0.01質量%以下が好ましく、0.005質量%以下がより好ましい。またナトリウムの含有量は0.0001質量%以上であってもよい。硫黄の含有量は0.1質量%以下が好ましく、0.05質量%以下がより好ましい。また硫黄の含有量は0.0001質量%以上であってもよい。鉄の含有量は0.002質量%以下が好ましく、0.001質量%以下がより好ましい。また鉄の含有量は0.0001質量%以上であってもよい。ジルコニウムの含有量は0.015質量%以下が好ましく、0.010質量%以下がより好ましい。またジルコニウムの含有量は0.00001質量%以上であってもよい。なお、これらの不純物の量はICP分析により測定することができる。 It is preferable that the amount of impurities contained in the nickel-M element-containing composite compound obtained in the present invention is small. Examples of impurity elements that affect battery performance include sodium (Na), sulfur (S), iron (Fe), and zirconium (Zr). The sodium content is preferably 0.01% by mass or less, and more preferably 0.005% by mass or less. The content of sodium may be 0.0001% by mass or more. The sulfur content is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less. Moreover, 0.0001 mass% or more may be sufficient as content of sulfur. The iron content is preferably 0.002% by mass or less, and more preferably 0.001% by mass or less. Moreover, 0.0001 mass% or more of iron content may be sufficient. The zirconium content is preferably 0.015% by mass or less, and more preferably 0.010% by mass or less. Further, the content of zirconium may be 0.00001% by mass or more. The amount of these impurities can be measured by ICP analysis.
 本発明で得られたニッケル-M元素含有複合化合物とリチウム化合物との混合物を焼成して製造されるリチウム-ニッケル-M元素含有複合酸化物の粒径は、ニッケル-M元素含有複合化合物の粒径の影響を受ける傾向が見られる。そのため、正極活物質として用いた際に安全性と放電レート特性のバランスが良好となることから、ニッケル-M元素含有複合化合物の平均粒径D50は、6~30μmの範囲にあるのが好ましく、8~25μmの範囲がより好ましく、10~20μmがさらに好ましい。 The particle size of the lithium-nickel-M element-containing composite oxide produced by firing the mixture of the nickel-M element-containing composite compound and the lithium compound obtained in the present invention is the same as that of the nickel-M element-containing composite compound. There is a tendency to be affected by the diameter. For this reason, when used as a positive electrode active material, the balance between safety and discharge rate characteristics is improved, so that the average particle diameter D 50 of the nickel-M element-containing composite compound is preferably in the range of 6 to 30 μm. The range of 8 to 25 μm is more preferable, and the range of 10 to 20 μm is more preferable.
 ニッケル-M元素含有複合化合物とリチウム化合物とを混合した後、焼成することでリチウムイオン二次電池の正極材料として有用なリチウム-ニッケル-M元素含有複合酸化物が得られる。使用するリチウム化合物は特に限定されないが、なかでも安価であることから水酸化リチウムまたは炭酸リチウムが好ましく、炭酸リチウムがより好ましい。焼成は、酸素含有雰囲気下が好ましい。また700~1100℃で焼成することが好ましい。焼成温度が700℃より低い場合にはリチウム-ニッケル-M元素含有複合酸化物の生成が不十分であり不純物結晶を含む結果となる。一方、焼成温度が1100℃を越える場合は充放電サイクル耐久性や放電容量が低下する傾向が見られる。なかでも、焼成温度は、下限が850℃、上限が1050℃であるのが好ましい。また、酸素含有雰囲気は大気中が好ましく、具体的には雰囲気中に含まれる酸素含有量が10~40体積%であるとより好ましい。焼成時間は1~24時間が好ましく、2~18時間がより好ましく、4~14時間が特に好ましい。 A nickel-M element-containing composite compound and a lithium compound are mixed and then fired to obtain a lithium-nickel-M element-containing composite oxide useful as a positive electrode material for a lithium ion secondary battery. Although the lithium compound to be used is not particularly limited, lithium hydroxide or lithium carbonate is preferable because it is inexpensive, and lithium carbonate is more preferable. Firing is preferably performed in an oxygen-containing atmosphere. Further, firing at 700 to 1100 ° C. is preferable. When the firing temperature is lower than 700 ° C., the formation of the lithium-nickel-M element-containing composite oxide is insufficient and results in containing impurity crystals. On the other hand, when the firing temperature exceeds 1100 ° C., the charge / discharge cycle durability and the discharge capacity tend to decrease. Especially, as for a calcination temperature, it is preferable that a minimum is 850 degreeC and an upper limit is 1050 degreeC. The oxygen-containing atmosphere is preferably in the air, and more specifically, the oxygen content contained in the atmosphere is more preferably 10 to 40% by volume. The firing time is preferably 1 to 24 hours, more preferably 2 to 18 hours, and particularly preferably 4 to 14 hours.
 本発明のリチウム-ニッケル-M元素含有複合酸化物の平均粒径D50は2~25μmが好ましく、5~15μmがより好ましく、8~12μmがさらに好ましい。また比表面積は0.1~1.0m/gが好ましく、0.2~0.6m/gがより好ましい。なお、本発明において、比表面積は全てBET法を用いて測定した値を意味する。プレス密度は、2.8g/cm以上が好ましく、2.9g/cm以上より好ましい。上限は特に限定されないが3.6g/cmが好ましい。また、本発明において、プレス密度とはリチウム-ニッケル-M元素含有複合酸化物の粉末を1.0トン/cmの圧力でプレスしたときの粉末の見かけ密度を意味する。 The average particle diameter D 50 of the lithium-nickel-M element-containing composite oxide of the present invention is preferably 2 to 25 μm, more preferably 5 to 15 μm, and even more preferably 8 to 12 μm. The specific surface area is preferably from 0.1 to 1.0 m 2 / g, more preferably from 0.2 to 0.6 m 2 / g. In the present invention, the specific surface area means a value measured using the BET method. The press density is preferably 2.8 g / cm 3 or more, and more preferably 2.9 g / cm 3 or more. The upper limit is not particularly limited, but 3.6 g / cm 3 is preferable. In the present invention, the press density lithium - and the apparent density of the powder when pressed at a pressure of powder 1.0 t / cm 2 of nickel -M element-containing composite oxide.
 なお、本発明において、リチウム-ニッケル-M元素含有複合酸化物中の遊離アルカリ量は、リチウム-ニッケル-M元素含有複合酸化物の粉末5gを50gの純水中に分散して30分間撹拌した後、濾過して得られたろ液を0.02mol%/リットルの塩酸水溶液で電位差滴定して、pHが4.0に至るまでに使用した塩酸水溶液の量から求められる。 In the present invention, the amount of free alkali in the lithium-nickel-M element-containing composite oxide was determined by dispersing 5 g of the lithium-nickel-M element-containing composite oxide powder in 50 g of pure water and stirring for 30 minutes. Thereafter, the filtrate obtained by filtration is subjected to potentiometric titration with a 0.02 mol% / liter hydrochloric acid aqueous solution, and is determined from the amount of the hydrochloric acid aqueous solution used until the pH reaches 4.0.
 本発明のリチウム-ニッケル-M元素含有複合酸化物を用いてリチウム二次電池用正極を製造する場合には、かかる複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボン系導電材と結合材を混合することにより形成される。上記結合材には、好ましくは、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂などが用いられる。本発明のリチウム-ニッケル-M元素含有複合酸化物粉末、導電材および結合材を溶媒又は分散媒を使用し、スラリー又は混練物とされる。これをアルミニウム箔、ステンレス箔などの正極集電体に塗布などにより担持せしめて本発明のリチウム二次電池用の正極が製造される。 When producing a positive electrode for a lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention, a carbon-based conductive material such as acetylene black, graphite, or ketjen black is used as the composite oxide powder. It is formed by mixing a material and a binder. For the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used. The lithium-nickel-M element-containing composite oxide powder, conductive material and binder of the present invention are made into a slurry or a kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium secondary battery of the present invention.
 本発明のリチウム-ニッケル-M元素含有複合酸化物を正極活物質に用いるリチウム二次電池において、セパレータとしては、多孔質ポリエチレン、多孔質ポリプロピレンのフィルムなどが使用される。また、電池の電解質溶液の溶媒としては、種々の溶媒が使用できるが、なかでも炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)などが例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどが例示される。 In the lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention as the positive electrode active material, a porous polyethylene film, a porous polypropylene film, or the like is used as the separator. Various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate ester is preferable. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
 本発明の上記リチウム二次電池では、上記炭酸エステルを単独で又は2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電容量、サイクル特性、充放電効率が改良できる場合がある。 In the lithium secondary battery of the present invention, the carbonate ester can be used alone or in admixture of two or more. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate ester and a cyclic carbonate ester may improve the discharge capacity, cycle characteristics, and charge / discharge efficiency.
 また、本発明のリチウム-ニッケル-M元素含有複合酸化物を正極活物質に用いるリチウム二次電池においては、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(例えばアトケム社製:商品名カイナー)あるいはフッ化ビニリデン-パーフルオロプロピルビニルエーテル共重合体を含むゲルポリマー電解質としてもよい。上記の電解質溶媒又はポリマー電解質に添加される溶質としては、ClO4-、CFSO3-、BF4-、PF6-、AsF6-、SbF6-、CFCO2-、(CFSOなどをアニオンとするリチウム塩のいずれか1種以上が好ましく使用される。上記リチウム塩からなる電解質溶媒又はポリマー電解質に対して、0.2~2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。なかでも、0.5~1.5mol/Lが特に好ましい。 Further, in the lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention as the positive electrode active material, a vinylidene fluoride-hexafluoropropylene copolymer (for example, trade name Kyner manufactured by Atchem Co.) or a fluorine A gel polymer electrolyte containing a vinylidene fluoride-perfluoropropyl vinyl ether copolymer may be used. Solutes added to the electrolyte solvent or polymer electrolyte include ClO 4− , CF 3 SO 3− , BF 4− , PF 6− , AsF 6− , SbF 6− , CF 3 CO 2− , (CF 3 Any one or more of lithium salts having SO 2 ) 2 N or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / L with respect to the electrolyte solvent or polymer electrolyte comprising the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / L is particularly preferable.
 本発明のリチウム-ニッケル-M元素含有複合酸化物を正極活物質に用いるリチウム二次電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、又は15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物などがあげられる。炭素材料としては、種々の熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛などを使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔などが用いられる。かかる負極は、上記活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることにより好ましくは製造される。 In the lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention as the positive electrode active material, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material for forming the negative electrode active material is not particularly limited. For example, an oxide, a carbon compound, a silicon carbide compound, or a silicon oxide compound mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Titanium sulfide, boron carbide compounds and the like. As the carbon material, those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
 本発明のリチウム-ニッケル-M元素含有複合酸化物を正極活物質に用いるリチウム二次電池の形状には特に制約はない。シート状、フィルム状、折り畳み状、巻回型有底円筒形、ボタン形などが用途に応じて選択される。 The shape of the lithium secondary battery using the lithium-nickel-M element-containing composite oxide of the present invention as the positive electrode active material is not particularly limited. A sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
 以下に実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
[例1]実施例
 26質量%の炭酸アンモニウム水溶液335gに28質量%のアンモニア水溶液245gと水酸化コバルト40gを加え、室温で攪拌し溶解した後、加圧濾過にて不溶解成分を除去して、コバルト炭酸アンミン錯体の水溶液を得た。次いで、26質量%の炭酸アンモニウム水溶液300gに28質量%のアンモニア水溶液220gと塩基性炭酸ニッケル57gを加え、室温で攪拌し溶解した後、加圧濾過にて不溶解成分を除去して、ニッケル炭酸アンミン錯体の水溶液を得た。さらに、28質量%のアンモニア水溶液450gに炭酸アンモニウム47gを加えて溶解させた後、25℃で攪拌しながら金属マンガン粉末24gを加えて溶解させた後、加圧濾過にて不溶解成分を除去してマンガンカルバメートの水溶液を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Example 1] Example: To 335 g of 26 mass% aqueous ammonium carbonate solution, 245 g of 28 mass% ammonia aqueous solution and 40 g of cobalt hydroxide were added and dissolved by stirring at room temperature, and then insoluble components were removed by pressure filtration. An aqueous solution of a cobalt carbonate ammine complex was obtained. Next, after adding 220 g of 28 mass% aqueous ammonia solution and 57 g of basic nickel carbonate to 300 g of 26 mass% ammonium carbonate aqueous solution and stirring and dissolving at room temperature, the insoluble components were removed by pressure filtration to obtain nickel carbonate. An aqueous solution of an ammine complex was obtained. Furthermore, after 47 g of ammonium carbonate was added to and dissolved in 450 g of 28 mass% ammonia aqueous solution, 24 g of metal manganese powder was added and dissolved while stirring at 25 ° C., and then insoluble components were removed by pressure filtration. Thus, an aqueous solution of manganese carbamate was obtained.
 攪拌機を備えたオートクレーブにイオン交換水1Lを仕込み、一定速度で攪拌しながら0.3MPaのスチームを導入し、内圧を0.2MPa、内温を120℃とした。これに上記で得られたコバルト炭酸アンミン錯体の水溶液、ニッケル炭酸アンミン錯体の水溶液およびマンガンカルバメートの水溶液を、ニッケル/コバルト/マンガンのモル比が5/2/3の組成となるように混合して、その水溶液1Kgを3g/分の速度で添加した。これらの水溶液の添加と同時に気体が発生して内圧が上昇するため、気体を放出させて内圧を0.2MPaに維持した。また放出した気体はアンモニアと二酸化炭素であり、これらの気体は水に吸収させ回収した。また、混合溶液の添加およびスチームを導入しつつ、断続的に内容物を反応器から抜き出した。このときの反応時間は1.5時間であった。抜き出した内容物は固形分が分散したスラリーとなっていた。混合溶液の添加を終了した後に冷却を行い、反応器内の残留スラリーと反応中に抜き出したスラリーを併せて静置して、固形分を沈降させ上澄みを抜き取り、固形分濃度を30質量%の懸濁スラリーとした。得られたスラリーをレーザー回折式粒度分布計(日機装社製マイクロトラックHRA X-100)にて測定したところ、スラリー中に分散した粒子の平均粒径D50は2.3μmであり、スラリーの粘度が9mPa・sであった。 An autoclave equipped with a stirrer was charged with 1 L of ion-exchanged water, 0.3 MPa steam was introduced while stirring at a constant speed, the internal pressure was 0.2 MPa, and the internal temperature was 120 ° C. To this, the aqueous solution of cobalt carbonate ammine complex, the aqueous solution of nickel carbonate ammine complex and the aqueous solution of manganese carbamate obtained above were mixed so that the molar ratio of nickel / cobalt / manganese was 5/2/3. 1 kg of the aqueous solution was added at a rate of 3 g / min. Since gas was generated simultaneously with the addition of these aqueous solutions and the internal pressure increased, the gas was released and the internal pressure was maintained at 0.2 MPa. The released gases were ammonia and carbon dioxide, and these gases were absorbed in water and recovered. Further, the contents were intermittently withdrawn from the reactor while adding the mixed solution and introducing steam. The reaction time at this time was 1.5 hours. The extracted content was a slurry in which the solid content was dispersed. After completion of the addition of the mixed solution, cooling is performed, and the remaining slurry in the reactor and the slurry extracted during the reaction are allowed to stand together, the solid content is settled, the supernatant is extracted, and the solid content concentration is 30% by mass. A suspension slurry was obtained. The obtained slurry was measured with a laser diffraction particle size distribution meter (Microtrac HRA X-100 manufactured by Nikkiso Co., Ltd.). The average particle diameter D 50 of the particles dispersed in the slurry was 2.3 μm, and the viscosity of the slurry Was 9 mPa · s.
 次いで、スプレードライヤーを用いて前記のスラリー250gを造粒しながら乾燥してニッケル-コバルト-マンガン元素含有複合化合物粒子を得た。なおスプレードライヤーには、ヤマト科学社製[GB22]を使用した。スラリー供給速度5g/min、噴霧ガス圧力0.15MPa、乾燥ガス温度200℃の条件にて乾燥造粒をして、ニッケル-コバルト-マンガン含有複合化合物の造粒粒子を得た。その平均粒径D50は11.2μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.3(CO)(OH)0.16であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で47.9質量%であった。得られた造粒粒子の不純物量を定量した結果については表1にまとめた。 Next, 250 g of the slurry was dried while granulating using a spray dryer to obtain nickel-cobalt-manganese element-containing composite compound particles. In addition, Yamato Kagaku Co., Ltd. [GB22] was used for the spray dryer. Dry granulation was performed under the conditions of a slurry supply rate of 5 g / min, a spray gas pressure of 0.15 MPa, and a dry gas temperature of 200 ° C. to obtain granulated particles of a nickel-cobalt-manganese containing composite compound. The average particle diameter D 50 is 11.2 μm, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.16 . The total content of nickel, cobalt and manganese contained in this composite compound was 47.9% by mass. The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物造粒体の走査型電子顕微鏡写真(SEM像)を図1に示す。得られた造粒体は略球状であった。
 得られたニッケル-コバルト-マンガン含有複合化合物30.0gとリチウム含量18.7質量%の炭酸リチウム9.53gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。
 得られた複合酸化物のD50は9.8μm、D10は5.4μm、D90は18.0μm、比表面積は0.42m/gであった。この粉末のプレス密度は2.92g/cmであり、遊離アルカリ量は0.9モル%であった。
A scanning electron micrograph (SEM image) of the obtained nickel-cobalt-manganese-containing composite compound granule is shown in FIG. The obtained granulated body was substantially spherical.
By mixing 30.0 g of the obtained nickel-cobalt-manganese-containing composite compound and 9.53 g of lithium carbonate having a lithium content of 18.7% by mass, firing at 960 ° C. for 14 hours in an air atmosphere, and then grinding the mixture. , represented by Li 1.015 [Ni 0.5 Co 0.2 Mn 0.3] 0.985 O 2, Li substantially spherical - nickel - cobalt - to obtain a powder of manganese-containing composite oxide.
D 50 of the obtained composite oxide was 9.8 μm, D 10 was 5.4 μm, D 90 was 18.0 μm, and the specific surface area was 0.42 m 2 / g. The press density of this powder was 2.92 g / cm 3 and the amount of free alkali was 0.9 mol%.
 得られたリチウム-ニッケル-コバルト-マンガン含有複合酸化物と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N-メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工し、乾燥し、ロールプレス圧延を2回行うことによりリチウム電池用の正極体シートを作製した。 The obtained lithium-nickel-cobalt-manganese-containing composite oxide, acetylene black, and polyvinylidene fluoride powder were mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone was added to prepare a slurry. One-side coating was performed on a 20 μm thick aluminum foil using a doctor blade, dried, and roll press rolling was performed twice to produce a positive electrode sheet for a lithium battery.
 そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF/EC+DEC(1:1)溶液(LiPFを溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる)を用いて、アルゴングローブボックス内で2個のステンレス製簡易密閉セル型リチウム電池を組み立てた。 The positive electrode sheet is punched out as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil of 20 μm is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. Further, the electrolytic solution used is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC having a mass ratio (1: 1) of LiPF 6 as a solute. Solvents described later). Were also used to assemble two stainless steel simple sealed cell type lithium batteries in an argon glove box.
 上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して1回目の充放電容量密度(本明細書において、初期重量容量密度ということがある)を求めた。次に75mAの負荷電流で4.3Vまで充電し、113mAの負荷電流にて2.5Vまで放電したときの放電容量を求めた。また、この電池について、引き続き充放電サイクル試験を30回行った際の放電容量を求めた。その結果、25℃、2.5~4.3Vにおける正極活物質の初期重量容量密度は、166.6mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は92.1%であった。また30回充放電サイクル後の容量維持率は94.2%であった。 The one battery is charged at a load current of 75 mA per gram of the positive electrode active material at 25 ° C. to 4.3 V, discharged to 2.5 V at a load current of 75 mA per gram of the positive electrode active material, and The charge / discharge capacity density (sometimes referred to as initial weight capacity density in the present specification) was determined. Next, the battery was charged to 4.3 V with a load current of 75 mA, and the discharge capacity when discharged to 2.5 V with a load current of 113 mA was determined. Moreover, about this battery, the discharge capacity at the time of performing a charging / discharging cycle test 30 times continuously was calculated | required. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 166.6 mAh / g. Moreover, the high load capacity maintenance factor calculated | required from the discharge capacity when discharging with a high load of 113 mA related to the discharge rate characteristic was 92.1%. The capacity retention rate after 30 charge / discharge cycles was 94.2%.
 [例2]実施例
 26質量%の炭酸アンモニウム水溶液5.58Kgに28質量%のアンモニア水溶液3.0Kgを加え、さらに水酸化コバルト245gと塩基性炭酸ニッケル870gを加え、室温で攪拌して溶解し、わずかに残った不溶解分成分を濾過にて除去することにより、ニッケル-コバルト炭酸アンミン錯体の水溶液を得た。一方、28質量%のアンモニア水溶液4.5Kgに炭酸アンモニウム600gを加えて溶解させた後、25℃で攪拌しながら金属マンガン粉末215gを徐々に加えて溶解させた後、わずかに残った不溶解成分を濾過にて除去することにより、マンガンカルバメートの水溶液を得た。
[Example 2] Example 28% by weight ammonia aqueous solution 3.0Kg was added to 26% by weight ammonium carbonate aqueous solution 5.58Kg, cobalt hydroxide 245g and basic nickel carbonate 870g were added, and stirred at room temperature to dissolve. The remaining insoluble components were removed by filtration to obtain an aqueous solution of nickel-cobalt ammine carbonate complex. On the other hand, after adding 600 g of ammonium carbonate to 4.5 kg of 28 mass% ammonia aqueous solution and dissolving it, 215 g of metal manganese powder was gradually added and dissolved while stirring at 25 ° C., and then the slightly insoluble component remained. Was removed by filtration to obtain an aqueous solution of manganese carbamate.
 攪拌機を備えた10Lオートクレーブにイオン交換水5Lを仕込み、一定速度で攪拌しながら0.3MPaのスチームを導入し、内圧を0.2MPa、内温を120℃とした。これに上記で得られたニッケル-コバルト炭酸アンミン錯体の水溶液を27g/minの速度で、かつマンガンカルバメートの水溶液を15g/minの速度で添加した。これらの水溶液の添加と同時に気体が発生して内圧が上昇したため、気体を放出させて内圧を0.2MPaに維持した。また放出した気体はアンモニアと二酸化炭素であり、これらの気体は水に吸収させ回収した。また、水溶液の添加およびスチームを継続導入しつつ、断続的に内容物を反応器から抜き出した。このときの反応時間は1.5時間であった。抜き出した内容物は固形分が分散したスラリーとなっていた。ニッケル-コバルト炭酸アンミン錯体の水溶液およびマンガンカルバメートの水溶液の添加を終了した後30分間、内圧が0.2MPaを維持するようにスチームの導入を継続した。スチームの導入を止めた後、反応器の冷却を行い、反応器内の残留スラリーと反応中に抜き出したスラリーを併せて静置して、固形分を沈降させ上澄みを抜き取り、固形分濃度が40質量%の懸濁スラリーとした。得られたスラリーをレーザー回折式粒度分布計(日機装社製マイクロトラックHRA X-100)にて測定したところ、スラリー中に分散した粒子の平均粒径D50は5.8μmであった。 A 10 L autoclave equipped with a stirrer was charged with 5 L of ion exchange water, 0.3 MPa steam was introduced while stirring at a constant speed, the internal pressure was 0.2 MPa, and the internal temperature was 120 ° C. To this was added an aqueous solution of the nickel-cobalt ammine carbonate complex obtained above at a rate of 27 g / min and an aqueous solution of manganese carbamate at a rate of 15 g / min. Since gas was generated simultaneously with the addition of these aqueous solutions and the internal pressure increased, the gas was released to maintain the internal pressure at 0.2 MPa. The released gases were ammonia and carbon dioxide, and these gases were absorbed in water and recovered. Further, the contents were intermittently withdrawn from the reactor while the addition of the aqueous solution and the steam were continuously introduced. The reaction time at this time was 1.5 hours. The extracted content was a slurry in which the solid content was dispersed. After the addition of the aqueous solution of nickel-cobalt ammine carbonate complex and the aqueous solution of manganese carbamate was completed, the introduction of steam was continued for 30 minutes so that the internal pressure was maintained at 0.2 MPa. After stopping the introduction of steam, the reactor is cooled, and the remaining slurry in the reactor and the slurry extracted during the reaction are allowed to stand together, the solid content is settled, the supernatant is extracted, and the solid content concentration is 40 A suspension slurry of mass% was obtained. When the obtained slurry was measured with a laser diffraction particle size distribution meter (Microtrack HRA X-100, manufactured by Nikkiso Co., Ltd.), the average particle diameter D 50 of the particles dispersed in the slurry was 5.8 μm.
 得られた固形分濃度が40質量%の懸濁スラリーを攪拌しながら、循環式ビーズミルを用いて、スラリー中の固形分の平均粒子径が1.0μmになるまで粉砕した。なお循環式ビーズミルには、シンマルエンタープライゼス社製[ダイノーミル MULTI LAB型]、粉砕メディアには0.3mmφジルコニアビーズを用いた。湿式粉砕後のスラリーは、粘度が860mPa・s、固形分濃度が38質量%であった。 The obtained suspension slurry with a solid content concentration of 40% by mass was pulverized using a circulating bead mill until the average particle size of the solid content in the slurry became 1.0 μm. In addition, Shinmaru Enterprises Co., Ltd. [Dyno mill MULTI LAB type] was used for the circulation type bead mill, and 0.3 mmφ zirconia beads were used for the grinding media. The slurry after wet pulverization had a viscosity of 860 mPa · s and a solid content concentration of 38% by mass.
 次いで、スプレードライヤーを用いて前記スラリーを造粒しながら乾燥してニッケル-コバルト-マンガン元素含有複合化合物粒子を得た。なおスプレードライヤーには、大河原化工機社製[ツインジェッターNL-5型]を使用した。スラリーの供給速度100g/min、噴霧ガス圧力0.10MPa、乾燥ガス温度250℃の条件にて乾燥造粒をして、ニッケル-コバルト-マンガン含有複合化合物の造粒粒子を得た。その平均粒径D50は16.1μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.3(CO)(OH)0.3であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で46.9質量%であった。得られた造粒粒子の不純物量を定量した結果については表1にまとめた。 Next, the slurry was dried while granulating using a spray dryer to obtain nickel-cobalt-manganese element-containing composite compound particles. In addition, Ogawara Kako Co., Ltd. [Twin Jetter NL-5 type] was used for the spray dryer. Dry granulation was carried out under the conditions of a slurry supply rate of 100 g / min, a spray gas pressure of 0.10 MPa, and a dry gas temperature of 250 ° C. to obtain granulated particles of a nickel-cobalt-manganese containing composite compound. The average particle diameter D 50 is 16.1 μm, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.3 . The total content of nickel, cobalt and manganese contained in this composite compound was 46.9% by mass. The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物100gとリチウム含量18.7質量%の炭酸リチウム31.1gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。 By mixing 100 g of the obtained nickel-cobalt-manganese-containing composite compound and 31.1 g of lithium carbonate having a lithium content of 18.7% by mass, firing in an atmosphere at 960 ° C. for 14 hours, and then pulverizing, Li 1.015 represented by [Ni 0.5 Co 0.2 Mn 0.3] 0.985 O 2, Li substantially spherical - nickel - cobalt - to obtain a powder of manganese-containing composite oxide.
 得られた複合酸化物のD50は14.6μm、D10は7.3μm、D90は26.5μm、比表面積は0.40m/gであった。この粉末のプレス密度は3.12g/cmであり、遊離アルカリ量は0.6モル%であった。 D 50 of the obtained composite oxide was 14.6 μm, D 10 was 7.3 μm, D 90 was 26.5 μm, and the specific surface area was 0.40 m 2 / g. The press density of this powder was 3.12 g / cm 3 , and the amount of free alkali was 0.6 mol%.
 得られた複合酸化物の粉末について、例1と同様にして電極および電池を作製し、評価を行った。その結果、25℃、2.5~4.3Vにおける正極活物質の初期重量容量密度は、169.8mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は94.6%であった。また30回充放電サイクル後の容量維持率は96.6%であった。 For the obtained composite oxide powder, an electrode and a battery were prepared and evaluated in the same manner as in Example 1. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 169.8 mAh / g. In addition, the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 94.6%. The capacity retention rate after 30 charge / discharge cycles was 96.6%.
[例3]実施例
 26質量%の炭酸アンモニウム水溶液5.58Kgに28質量%のアンモニア水溶液3.0Kgを加え、さらに水酸化コバルト245gと塩基性炭酸ニッケル870gを加え、室温で攪拌して溶解し、わずかに残った不溶解成分を濾過にて除去することによりニッケル-コバルト炭酸アンミン錯体の水溶液を得た。一方、イオン交換水2.0Kgに炭酸マンガン500gを加えた後、攪拌してスラリーを調製した。循環式ビーズミルを用いて、スラリー中の固形分の平均粒子径が0.8μmになるまで、このスラリーを粉砕した。得られた炭酸マンガンスラリーの固形分濃度は17.2質量%であった。この炭酸マンガンスラリー2615gを先に調製したニッケル-コバルト炭酸アンミン錯体の水溶液に攪拌しながらゆっくりと加え、ニッケル-コバルト-マンガン懸濁液を調製した。
[Example 3] Example 28% by weight ammonia aqueous solution 3.0kg was added to 26% by weight ammonium carbonate aqueous solution 5.58kg, and cobalt hydroxide 245g and basic nickel carbonate 870g were added and dissolved by stirring at room temperature. The remaining insoluble component was removed by filtration to obtain an aqueous solution of nickel-cobalt ammine carbonate complex. On the other hand, after adding 500 g of manganese carbonate to 2.0 kg of ion-exchanged water, stirring was performed to prepare a slurry. Using a circulating bead mill, this slurry was pulverized until the average particle size of the solid content in the slurry became 0.8 μm. The solid content concentration of the obtained manganese carbonate slurry was 17.2% by mass. 2615 g of this manganese carbonate slurry was slowly added to the previously prepared aqueous solution of nickel-cobalt ammonium carbonate complex with stirring to prepare a nickel-cobalt-manganese suspension.
 攪拌機を備えた20Lガラス反応器にイオン交換水5Lを仕込み、マントルヒーターで内温が100℃となるまで加熱した。攪拌しながら、ニッケル-コバルト-マンガン懸濁液を10g/minの速度で継続的に添加した。発生する蒸気は環流せず、留去した。懸濁液の滴下を終了した後、30分間加熱・留去を継続した。加熱を止め、反応器の冷却を行った後に攪拌を止め、固形分を沈降させ上澄みを抜き取り、固形分濃度が30質量%の懸濁スラリーとした。得られたスラリーをレーザー回折式粒度分布計にて測定したところ、スラリー中に分散した粒子の平均粒径D50は1.8μmであり、スラリーの粘度は350mPa・sであった。 5 L of ion-exchanged water was charged into a 20 L glass reactor equipped with a stirrer, and heated with a mantle heater until the internal temperature reached 100 ° C. While stirring, the nickel-cobalt-manganese suspension was continuously added at a rate of 10 g / min. The generated steam did not circulate but distilled off. After completion of dropping the suspension, heating and distillation were continued for 30 minutes. After stopping the heating and cooling the reactor, the stirring was stopped, the solid content was settled, the supernatant was extracted, and a suspension slurry having a solid content concentration of 30% by mass was obtained. The obtained slurry was measured by a laser diffraction particle size analyzer, the average particle diameter D 50 of the particles dispersed in the slurry is 1.8 .mu.m, the viscosity of the slurry was 350 mPa · s.
 次いで、前記スラリーをスプレードライヤーにて例2と同様に造粒しながら乾燥してニッケル-コバルト-マンガン元素含有複合化合物粒子を得た。その平均粒径D50は11.6μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.3(CO)(OH)0.4であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で46.2質量%であった。得られた造粒粒子の不純物量を定量した結果については表1にまとめた。 Next, the slurry was dried while being granulated in the same manner as in Example 2 with a spray dryer to obtain nickel-cobalt-manganese element-containing composite compound particles. The average particle diameter D 50 is 11.6 μm, and the composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 (CO 3 ) (OH) 0.4 . The total content of nickel, cobalt and manganese contained in this composite compound was 46.2% by mass. The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物100gとリチウム含量18.7質量%の炭酸リチウム30.7gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。 By mixing 100 g of the obtained nickel-cobalt-manganese-containing composite compound and 30.7 g of lithium carbonate having a lithium content of 18.7% by mass, firing in an atmosphere at 960 ° C. for 14 hours, and then grinding the mixture, Li 1.05 [Ni 0.5 Co 0.2 Mn 0.3 ] 0.985 O 2 A substantially spherical lithium-nickel-cobalt-manganese-containing composite oxide powder was obtained.
 得られた複合酸化物のD50は11.4μm、D10は5.8μm、D90は22.8μm、比表面積は0.54m/gであった。この粉末のプレス密度は3.08g/cmであり、遊離アルカリ量は0.6モル%であった。 D 50 of the obtained composite oxide was 11.4 μm, D 10 was 5.8 μm, D 90 was 22.8 μm, and the specific surface area was 0.54 m 2 / g. The press density of this powder was 3.08 g / cm 3 and the amount of free alkali was 0.6 mol%.
 得られた複合酸化物の粉末について、例1と同様にして電極および電池を作製し、評価を行った。その結果、25℃、2.5~4.3Vにおける正極活物質の初期重量容量密度は、170.2mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は93.8%であった。また30回充放電サイクル後の容量維持率は97.2%であった。 For the obtained composite oxide powder, an electrode and a battery were prepared and evaluated in the same manner as in Example 1. As a result, the initial weight capacity density of the positive electrode active material at 25 ° C. and 2.5 to 4.3 V was 170.2 mAh / g. Moreover, the high load capacity maintenance factor calculated | required from the discharge capacity when discharging with a high load of 113 mA related to the discharge rate characteristic was 93.8%. The capacity retention rate after 30 charge / discharge cycles was 97.2%.
[例4]比較例
 0.75mol/Lの硫酸ニッケルと0.3mol/Lの硫酸コバルトと0.45mol/Lの硫酸マンガンを含有する硫酸塩水溶液を調製して濾過して、ニッケル-コバルト-マンガン含有硫酸塩水溶液を得た。次いで、反応槽にイオン交換水500gを入れ、窒素ガスでバブリングしながら50℃に保持しつつ400rpmで攪拌した。このイオン交換水に、上記のニッケル-コバルト-マンガン含有硫酸塩水溶液を1.2L/hrで、かつアンモニア水溶液を0.03L/hrで同時に連続的に供給しつつ、18mol/Lの水酸化ナトリウム水溶液にて反応槽内のpHが11を保つように供給した。フィルターを通した吸引濾過により反応系内の液量を調節し、50℃で24時間熟成した後、共沈スラリーを濾過、水洗し、次いで70℃で乾燥することによりニッケル-コバルト-マンガン含有複合化合物を得た。その平均粒径D50は12.7μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.30.3(OH)1.8であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で61.7質量%であった。得られた複合化合物の不純物量を定量した結果については表1にまとめた。
[Example 4] Comparative Example An aqueous sulfate solution containing 0.75 mol / L nickel sulfate, 0.3 mol / L cobalt sulfate and 0.45 mol / L manganese sulfate was prepared and filtered, and nickel-cobalt- A manganese-containing sulfate aqueous solution was obtained. Next, 500 g of ion-exchanged water was added to the reaction vessel, and the mixture was stirred at 400 rpm while being kept at 50 ° C. while bubbling with nitrogen gas. While supplying the nickel-cobalt-manganese-containing sulfate aqueous solution at a rate of 1.2 L / hr and the ammonia aqueous solution at a rate of 0.03 L / hr simultaneously to the ion-exchanged water, 18 mol / L sodium hydroxide was continuously supplied. The aqueous solution was supplied so that the pH in the reaction vessel was maintained at 11. The amount of liquid in the reaction system is adjusted by suction filtration through a filter, and after aging at 50 ° C. for 24 hours, the coprecipitated slurry is filtered, washed with water, and then dried at 70 ° C. to form a composite containing nickel-cobalt-manganese A compound was obtained. The average particle diameter D 50 is 12.7 μm. The composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction revealed that Ni 0.5 Co 0. 2 Mn 0.3 O 0.3 (OH) 1.8 . The total content of nickel, cobalt and manganese contained in this composite compound was 61.7% by mass. The results of quantifying the amount of impurities in the obtained composite compound are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物100.0gとリチウム含量18.7質量%の炭酸リチウム40.9gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。 By mixing 100.0 g of the obtained nickel-cobalt-manganese-containing composite compound and 40.9 g of lithium carbonate having a lithium content of 18.7% by mass, firing at 960 ° C. for 14 hours in an air atmosphere, and then pulverizing. Li 1.015 [Ni 0.5 Co 0.2 Mn 0.3 ] 0.985 O 2 , a substantially spherical lithium-nickel-cobalt-manganese-containing composite oxide powder was obtained.
 得られた複合酸化物のD50は11.6μm、D10は7.3μm、D90は18μm、比表面積は0.36m/gであった。この粉末のプレス密度は2.95g/cmであり、遊離アルカリ量は0.8モル%であった。 The resulting D 50 of the composite oxide is 11.6, D 10 is 7.3 .mu.m, D 90 is 18 [mu] m, a specific surface area of 0.36 m 2 / g. The press density of this powder was 2.95 g / cm 3 , and the amount of free alkali was 0.8 mol%.
 得られた複合酸化物の粉末について、例1と同様にして、電池特性の測定をしたころ、初期重量容量密度は165.8mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は91.5%であった。また30回充放電サイクル後の容量維持率は93.5%であった。  About the obtained complex oxide powder, when the battery characteristics were measured in the same manner as in Example 1, the initial weight capacity density was 165.8 mAh / g. Moreover, the high load capacity maintenance factor calculated | required from the discharge capacity when discharging with a high load of 113 mA related to the discharge rate characteristic was 91.5%. The capacity retention rate after 30 charge / discharge cycles was 93.5%. *
[例5]比較例
 ニッケル含量が78.2質量%の酸化ニッケル(NiO)200.0gと、コバルト含量が62.3質量%の水酸化コバルト100.8gと、マンガン含量が71.5質量%の酸化マンガン(Mn)122.8gに、水を混合して攪拌し1400gのスラリーとした。次いで、循環式媒体攪拌型湿式ビーズミルを用いて、このスラリーに分散する各原料粒子を、平均粒子径D50が0.5μmになるまで、湿式粉砕した。湿式粉砕後のスラリーは、粘度が1200mPa・s、固形分濃度が30質量%であった。
[Example 5] Comparative Example 200.0 g of nickel oxide (NiO) having a nickel content of 78.2 mass%, 100.8 g of cobalt hydroxide having a cobalt content of 62.3 mass%, and a manganese content of 71.5 mass% The manganese oxide (Mn 3 O 4 ) 122.8 g was mixed with water and stirred to obtain 1400 g slurry. Next, each raw material particle dispersed in the slurry was wet-pulverized using a circulating medium agitation type wet bead mill until the average particle diameter D 50 became 0.5 μm. The slurry after wet pulverization had a viscosity of 1200 mPa · s and a solid content concentration of 30% by mass.
 次いで、スプレードライヤーを用いて前記のスラリー500gを例1と同様にして、造粒しながら乾燥してニッケル-コバルト-マンガン元素含有複合化合物粒子を得た。その平均粒径D50は12.5μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.30.9(OH)0.51であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で71.4質量%であった。得られた造粒粒子の不純物量を定量した結果については表1にまとめた。 Subsequently, 500 g of the slurry was dried using the spray dryer in the same manner as in Example 1 to obtain nickel-cobalt-manganese element-containing composite compound particles. The average particle diameter D 50 is 12.5 μm. The composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. It was 2 Mn 0.3 O 0.9 (OH) 0.51. The total content of nickel, cobalt and manganese contained in this composite compound was 71.4% by mass. The results of quantifying the amount of impurities in the obtained granulated particles are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物50.0gとリチウム含量18.7質量%の炭酸リチウム23.7gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。
 得られた複合酸化物のD50は10.9μm、D10は6.0μm、D90は19μm、比表面積は0.46m/gであった。この粉末のプレス密度は2.89g/cmであり、遊離アルカリ量は1.0モル%であった。
 得られた複合酸化物の粉末について、例1と同様にして、電池特性の測定をしたころ、初期重量容量密度は161.8mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は89.9%であった。また30回充放電サイクル後の容量維持率は92.6%であった。 
By mixing 50.0 g of the obtained nickel-cobalt-manganese-containing composite compound and 23.7 g of lithium carbonate having a lithium content of 18.7% by mass, firing in an air atmosphere at 960 ° C. for 14 hours, and then grinding the mixture. Li 1.015 [Ni 0.5 Co 0.2 Mn 0.3 ] 0.985 O 2 , a substantially spherical lithium-nickel-cobalt-manganese-containing composite oxide powder was obtained.
D 50 of the obtained composite oxide was 10.9 μm, D 10 was 6.0 μm, D 90 was 19 μm, and the specific surface area was 0.46 m 2 / g. The press density of this powder was 2.89 g / cm 3 , and the amount of free alkali was 1.0 mol%.
With respect to the obtained composite oxide powder, when the battery characteristics were measured in the same manner as in Example 1, the initial weight capacity density was 161.8 mAh / g. In addition, the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 89.9%. The capacity retention rate after 30 charge / discharge cycles was 92.6%.
[例6]比較例
 ニッケル含量が78.2質量%の酸化ニッケル(NiO)800gと、コバルト含量が62.3質量%の水酸化コバルト403gと、マンガン含量が71.5質量%の酸化マンガン(Mn)491gに、イオン交換水を加えて攪拌し5650gのスラリーとした。次いで、循環式ビーズミルを用いて、このスラリーに分散する各原料粒子を、平均粒子径D50が1.0μmになるまで、湿式粉砕した。湿式粉砕後のスラリーは、粘度が730mPa・s、固形分濃度は30質量%であった。
[Example 6] Comparative Example 800 g of nickel oxide (NiO) having a nickel content of 78.2 mass%, 403 g of cobalt hydroxide having a cobalt content of 62.3 mass%, manganese oxide having a manganese content of 71.5 mass% ( Ion exchange water was added to 491 g of (Mn 3 O 4 ) and stirred to give 5650 g of slurry. Then, by using a circulating bead mill, each raw material particles dispersed in the slurry, until the average particle diameter D 50 is 1.0 .mu.m, and wet grinding. The slurry after the wet pulverization had a viscosity of 730 mPa · s and a solid content concentration of 30% by mass.
 次いで、前記スラリーをスプレードライヤーにて例2と同様に大河原化工機社製[ツインジェッターNL-5型]を使用して、造粒しながら乾燥してニッケル-コバルト-マンガン元素含有複合化合物粒子を得た。その平均粒径D50は15.2μmであり、このニッケル-コバルト-マンガン複合化合物粒子の組成分析および粉末X線回折による同定結果を元に組成計算を行ったところ、Ni0.5Co0.2Mn0.30.9(OH)0.5であった。また、この複合化合物に含まれるニッケル、コバルトおよびマンガンの含量は合計で71.4質量%であった。得られた複合化合物の不純物量を定量した結果を表1にまとめる。 Next, the slurry was dried using a spray dryer in the same manner as in Example 2 using Okawara Kako Co., Ltd. [Twin Jetter NL-5 type], and granulated to obtain composite compound particles containing nickel-cobalt-manganese elements. Obtained. The average particle diameter D 50 is 15.2 μm. The composition calculation of the nickel-cobalt-manganese composite compound particles based on the composition analysis and the identification result by powder X-ray diffraction shows that Ni 0.5 Co 0. 2 Mn 0.3 O 0.9 (OH) 0.5 . The total content of nickel, cobalt and manganese contained in this composite compound was 71.4% by mass. The results of quantifying the amount of impurities in the obtained composite compound are summarized in Table 1.
 得られたニッケル-コバルト-マンガン含有複合化合物100gとリチウム含量18.7質量%の炭酸リチウム47.4gとを混合し、大気雰囲気下で960℃、14時間焼成した後、粉砕することにより、Li1.015[Ni0.5Co0.2Mn0.30.985で表される、略球状のリチウム-ニッケル-コバルト-マンガン含有複合酸化物の粉末を得た。 By mixing 100 g of the obtained nickel-cobalt-manganese-containing composite compound and 47.4 g of lithium carbonate having a lithium content of 18.7% by mass, firing in an atmosphere at 960 ° C. for 14 hours, and then grinding the mixture, Li 1.05 [Ni 0.5 Co 0.2 Mn 0.3 ] 0.985 O 2 A substantially spherical lithium-nickel-cobalt-manganese-containing composite oxide powder was obtained.
 得られた複合酸化物のD50は14.0μm、D10は6.9μm、D90は26.0μm、比表面積は0.38m/gであった。この粉末のプレス密度は2.95g/cmであり、遊離アルカリ量は1.0モル%であった。 D 50 of the obtained composite oxide was 14.0 μm, D 10 was 6.9 μm, D 90 was 26.0 μm, and the specific surface area was 0.38 m 2 / g. The press density of this powder was 2.95 g / cm 3 , and the amount of free alkali was 1.0 mol%.
 得られた複合酸化物の粉末について、例1と同様にして、電池特性の測定をしたころ、初期重量容量密度は150.3mAh/gであった。また放電レート特性に関連する、113mAの高負荷で放電したときの放電容量から求めた高負荷容量維持率は91.8%であった。また30回充放電サイクル後の容量維持率は92.1%であった。 For the obtained composite oxide powder, when the battery characteristics were measured in the same manner as in Example 1, the initial weight capacity density was 150.3 mAh / g. In addition, the high load capacity retention rate obtained from the discharge capacity when discharged at a high load of 113 mA related to the discharge rate characteristics was 91.8%. The capacity retention rate after 30 charge / discharge cycles was 92.1%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、均一な組成を有し、不純物の含有量が少なく、広い電圧範囲で使用でき、放電容量が高く、高安全性で、充放電サイクル耐久性に優れたリチウムイオン二次電池用正極活物質とその前駆体が安価に提供される。また、上記リチウムイオン二次電池正極用前駆体は本発明の製造方法によって得られるものである。それらは、リチウムイオン二次電池分野において有用であり、本分野における利用可能性は極めて高い。

 なお、2010年8月10日に出願された日本特許出願2010-179712号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, a lithium ion secondary battery having a uniform composition, low impurity content, usable in a wide voltage range, high discharge capacity, high safety, and excellent charge / discharge cycle durability. The positive electrode active material and its precursor are provided at low cost. Moreover, the said precursor for lithium ion secondary battery positive electrodes is obtained by the manufacturing method of this invention. They are useful in the field of lithium ion secondary batteries, and their applicability in this field is extremely high.

The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-179712 filed on August 10, 2010 are cited herein as disclosure of the specification of the present invention. Incorporated.

Claims (15)

  1.  ニッケルアンミン錯体およびM元素源(但し、M元素は、NiおよびCoを除く遷移金属元素、アルカリ土類金属元素ならびにアルミニウムからなる群から選ばれる少なくとも1種である。)を含むニッケル-M元素含有溶液または分散液を加熱してニッケルアンミン錯体を分解させることによりニッケル-M元素含有複合化合物の粒子を含む懸濁スラリーを得る工程1と、該懸濁スラリーを乾燥造粒して、ニッケル-M元素含有複合化合物の造粒物を得る工程2を含む二次電池正極活物質用のニッケル-M元素含有複合化合物の製造方法。 Nickel-M element containing nickel ammine complex and M element source (wherein M element is at least one selected from the group consisting of transition metal elements excluding Ni and Co, alkaline earth metal elements and aluminum) Step 1 of obtaining a suspension slurry containing particles of the nickel-M element-containing composite compound by decomposing the nickel ammine complex by heating the solution or dispersion, and drying and granulating the suspension slurry, A method for producing a nickel-M element-containing composite compound for a secondary battery positive electrode active material, comprising the step 2 of obtaining a granulated product of an element-containing composite compound.
  2.  ニッケル-M元素含有複合化合物において、Ni、CoおよびM元素の割合を、NiCoとした場合、原子比で、1≦a≦0.85、0≦b≦0.85、0.03≦c≦0.8、a+b+c=1)である請求項1に記載のニッケル-M元素含有複合化合物の製造方法。 In nickel -M element-containing complex compound, Ni, the ratio of Co and M element, when the Ni a Co b M c, in atomic ratio, 1 ≦ a ≦ 0.85,0 ≦ b ≦ 0.85,0 The method for producing a nickel-M element-containing composite compound according to claim 1, wherein 0.03≤c≤0.8 and a + b + c = 1).
  3.  前記ニッケル-M元素含有複合化合物が、水酸基、炭酸基およびOOH基からなる群から選ばれる少なくとも1種を含む化合物である請求項1または2に記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to claim 1 or 2, wherein the nickel-M element-containing composite compound is a compound containing at least one selected from the group consisting of a hydroxyl group, a carbonate group, and an OOH group.
  4.  前記工程1が、ニッケル-M元素含有溶液または分散液を0.03~2MPaの圧力下、80~250℃で加熱する請求項1~3のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 The nickel-M element-containing composite compound according to any one of claims 1 to 3, wherein the step 1 heats the nickel-M element-containing solution or dispersion at 80 to 250 ° C under a pressure of 0.03 to 2 MPa. Production method.
  5.  前記工程1が、ニッケル-M元素含有溶液または分散液に0.03~2MPaの圧力下で、100~250℃のスチームを導入して加熱する請求項1~3のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 4. The nickel-based nickel alloy according to claim 1, wherein said step 1 heats the nickel-M element-containing solution or dispersion by introducing steam at 100 to 250 ° C. under a pressure of 0.03 to 2 MPa. Manufacturing method of M element containing complex compound.
  6.  ニッケルアンミン錯体が炭酸アンミン錯体である請求項1~5のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 6. The method for producing a nickel-M element-containing composite compound according to claim 1, wherein the nickel ammine complex is a carbonate ammine complex.
  7.  M元素源がマンガンを含み、マンガン源がマンガンアンミン錯体である請求項1~6のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to any one of claims 1 to 6, wherein the M element source contains manganese and the manganese source is a manganese ammine complex.
  8.  マンガンアンミン錯体がマンガンカルバメートである請求項7に記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to claim 7, wherein the manganese ammine complex is manganese carbamate.
  9.  工程2における乾燥造粒が、ニッケル-M元素含有溶液または分散液を噴霧乾燥することにより行う請求項1~8のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to any one of claims 1 to 8, wherein the dry granulation in step 2 is performed by spray-drying a nickel-M element-containing solution or dispersion.
  10.  懸濁スラリーが、10質量%以上の固形分濃度、および2~1000mPa・sの粘度を有する請求項1~9のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 10. The method for producing a nickel-M element-containing composite compound according to claim 1, wherein the suspension slurry has a solid content concentration of 10% by mass or more and a viscosity of 2 to 1000 mPa · s.
  11.  平均粒径D50が6~30μmである請求項1~10のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 11. The method for producing a nickel-M element-containing composite compound according to claim 1, wherein the average particle diameter D 50 is 6 to 30 μm.
  12.  ナトリウムの含有量が0.01質量%以下である請求項1~11のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to any one of claims 1 to 11, wherein the sodium content is 0.01 mass% or less.
  13.  硫黄の含有量が0.1質量%以下である請求項1~12のいずれかに記載のニッケル-M元素含有複合化合物の製造方法。 The method for producing a nickel-M element-containing composite compound according to any one of claims 1 to 12, wherein the sulfur content is 0.1 mass% or less.
  14.  請求項1~13のいずれかに記載の製造方法で得られたニッケル-M元素含有複合化合物とリチウム化合物を混合した後、酸素含有雰囲気下700~1100℃で焼成するリチウム-ニッケル-M元素含有複合酸化物の製造方法。 A nickel-M element-containing composite compound obtained by the production method according to any one of claims 1 to 13 and a lithium compound are mixed, and then fired at 700 to 1100 ° C in an oxygen-containing atmosphere. A method for producing a composite oxide.
  15.  正極、負極、非水電解質および電解液を含み、かつ該正極が請求項14に記載の製造方法で得られたリチウムイオン二次電池用正極活物質を用いるリチウムイオン二次電池の製造方法。 A method for producing a lithium ion secondary battery comprising a positive electrode active material for a lithium ion secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte and an electrolytic solution, wherein the positive electrode is obtained by the production method according to claim 14.
PCT/JP2011/068187 2010-08-10 2011-08-09 Method for producing nickel-containing complex compound WO2012020769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012528689A JPWO2012020769A1 (en) 2010-08-10 2011-08-09 Method for producing nickel-containing composite compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010179712 2010-08-10
JP2010-179712 2010-08-10

Publications (1)

Publication Number Publication Date
WO2012020769A1 true WO2012020769A1 (en) 2012-02-16

Family

ID=45567731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068187 WO2012020769A1 (en) 2010-08-10 2011-08-09 Method for producing nickel-containing complex compound

Country Status (2)

Country Link
JP (1) JPWO2012020769A1 (en)
WO (1) WO2012020769A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038245A1 (en) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 Method for producing nonaqueous electrolyte secondary battery
JP2015056384A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015056382A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015122269A (en) * 2013-12-25 2015-07-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2015128004A (en) * 2013-12-27 2015-07-09 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary batteries and producing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and producing method thereof
JP2015162323A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2015162322A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2015191848A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof
JP2016069209A (en) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 Nickel-cobalt-manganese compound and manufacturing method therefor
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018085339A (en) * 2017-12-25 2018-05-31 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076728A (en) * 1999-06-30 2001-03-23 Seimi Chem Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2004227915A (en) * 2003-01-23 2004-08-12 Mitsui Mining & Smelting Co Ltd Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076728A (en) * 1999-06-30 2001-03-23 Seimi Chem Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2004227915A (en) * 2003-01-23 2004-08-12 Mitsui Mining & Smelting Co Ltd Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437902B2 (en) 2012-09-07 2016-09-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
JP2014053193A (en) * 2012-09-07 2014-03-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
CN104604016A (en) * 2012-09-07 2015-05-06 丰田自动车株式会社 Method for producing nonaqueous electrolyte secondary battery
WO2014038245A1 (en) * 2012-09-07 2014-03-13 トヨタ自動車株式会社 Method for producing nonaqueous electrolyte secondary battery
JP2015056384A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015056382A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015122269A (en) * 2013-12-25 2015-07-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2015128004A (en) * 2013-12-27 2015-07-09 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary batteries and producing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and producing method thereof
JP2015162322A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2015162323A (en) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2015191848A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof
JP2016069209A (en) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 Nickel-cobalt-manganese compound and manufacturing method therefor
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018085339A (en) * 2017-12-25 2018-05-31 住友金属鉱山株式会社 Precursor of positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2012020769A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JP5486516B2 (en) Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
AU2011290195B2 (en) Production method for a composite compound comprising nickel and cobalt
JP5193159B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5081731B2 (en) The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries.
JP4896034B2 (en) Lithium-containing composite oxide and method for producing the same
JP5172835B2 (en) Lithium-containing composite oxide powder and method for producing the same
JP5253808B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
US8101300B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and its production method
WO2009099158A1 (en) Method for producing granular powder for positive electrode active material of lithium ion secondary battery
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2007142275A1 (en) Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP5132307B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4927369B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2008226495A (en) Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
JP4979319B2 (en) Method for producing lithium-containing composite oxide
JP5015543B2 (en) Method for producing lithium-containing composite oxide
JP2006298699A (en) Method for manufacturing lithium cobalt composite oxide having large particle size
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery
WO2012147877A1 (en) Surface-modified lithium-containing compound oxide for positive electrode active substance of lithium ion secondary cell and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012528689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011290196

Country of ref document: AU

Date of ref document: 20110809

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11816433

Country of ref document: EP

Kind code of ref document: A1