JP2004227915A - Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same - Google Patents

Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same Download PDF

Info

Publication number
JP2004227915A
JP2004227915A JP2003014248A JP2003014248A JP2004227915A JP 2004227915 A JP2004227915 A JP 2004227915A JP 2003014248 A JP2003014248 A JP 2003014248A JP 2003014248 A JP2003014248 A JP 2003014248A JP 2004227915 A JP2004227915 A JP 2004227915A
Authority
JP
Japan
Prior art keywords
ion battery
raw material
lithium ion
hydroxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014248A
Other languages
Japanese (ja)
Inventor
Janko Marinov Todorov
ヤンコ マリノフ トドロフ
Shintaro Ishida
新太郎 石田
Koichi Numata
幸一 沼田
Shigeo Hirayama
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003014248A priority Critical patent/JP2004227915A/en
Publication of JP2004227915A publication Critical patent/JP2004227915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material hydroxide for a lithium ion battery positive electrode material having a high tap density, and to provide a lithium ion battery electrode material using the raw material hydroxide for a lithium ion battery positive electrode material. <P>SOLUTION: The raw material hydroxide for a lithium ion battery positive electrode material is represented by a composition formula: (Ni1-x-y-z, Cox, Mny, Mz)(OH)<SB>2</SB>(or including M=Al, Mg, Ti in some cases) and is used for a raw material of a lithium ion battery positive electrode material which has a tap density of 1.0g/cm<SP>3</SP>or higher, and is represented by a composition formula: Li1+a(Ni1-x-y-z, Cox, Mny, Mz)1-aO<SB>2</SB>(or including M= Al, Mg, Ti in some cases). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池正極材料用原料水酸化物、及び該リチウムイオン電池正極材料用原料水酸化物を原料に用いたリチウムイオン電池正極材料に関する。
【0002】
【従来技術】
近年、組成式Li(Ni,Co,Mn)O2(x+y+z=1)で表されるリチウムイオン電池正極材料を、Liイオン二次電池の正極材に用いた電池が、多く市販されるに到っている。
【0003】
しかし、組成式Li(Ni,Co,Mn)O2(x+y+z=1)で表されるリチウムイオン電池正極材料は、電池内により多くの材料を詰め込めるようにするために高タップ密度化が要求される。組成式Li(Ni,Co,Mn)O2(x+y+z=1)で表されるリチウムイオン電池正極材料の合成方法の一つに、水溶液反応によりNi,Co,Mnの共沈原料(水酸化物あるいは炭酸塩等)を作成し、これにリチウム化合物を混合して焼成する方法がある。このため、タップ密度が大きいLi(Ni,Co,Mn)O2(x+y+z=1)を得るためには、タップ密度が大きいNi,Co,Mnの共沈原料(水酸化物あるいは炭酸塩等)を合成する事が必要となる。
【0004】
タップ密度が大きい水酸化ニッケル(Niの一部がCo,Al,Mnで置換されたものを含む)の作成方法は特許文献1等に開示されている。しかし、反応pHが広域(11.0〜13.0)に渡っており、また反応槽内での粉末の滞留時間が、反応槽の容積(500l)と硫酸ニッケル等の添加速度から算出すると27時間以上となり、生産性の向上が求められている。また、ニッケルイオンを一度アンモニアと錯体を形成させてから反応槽内のアルカリ中へ連続的に添加することで水酸化物を得る方法も知られている。ニッケルイオンをアルカリ中に直接添加すると、ニッケルイオンと水酸化物イオンの反応が速いために核発生が多くなり、結晶が微細化し、結果として隙間の多い凝集粒ができてしまいタップ密度の低い水酸化物粒子になってしまう。そこで、ニッケルイオンを一度アンモニアと錯形成させてからアルカリ中に添加すると、ニッケルはアンモニアに配位しているために、水酸化物イオンと接触した場合の反応が遅くなり、核発生が抑制される。これにより、滴下したニッケルイオンは新たな核を生成する事が抑制されて、既に存在している粒子上に析出し易くなり、且つ粒子の方位も揃ってくるために密な二次粒子が形成されて、タップ密度が大きな水酸化ニッケル粒子が生成する。
【0005】
しかし、この方法で(Ni,Co,Mn)(OH)(x+y+z=1)を得ようとすると、CoあるいはMnがアンモニアと接触した時点で水酸化物として析出して微細な粒子となるばかりでなく、最終的に得られる物質は不定形でタップ密度が小さなものになってしまう。これを原料にLi(Ni,Co,Mn)O2(x+y+z=1)を焼成しても、高タップ密度なものは得られない。
【0006】
【特許文献1】
特開2002−201028号公報
【0007】
【発明が解決しようとする課題】
本発明は、このような事情に鑑み、タップ密度が高い原料、及びこれを原料に用いた正極材料もタップ密度が高くできる電池特性の優れたリチウムイオン二次電池用正極材料を提供することを課題とする。
【0008】
【課題を解決するための手段】
我々は、鋭意研究の結果、Ni,Co,Mnの混合水溶液(場合によりAl,Mg,Tiを含む)とアンモニア水溶液を別々に連続的に反応槽内に供給し、且つpHを低く調整して反応溶液中にアンミン錯イオンを残したまま、連続的に合成し、且つ連続的に回収するとタップ密度が高い水酸化物粒子が得られることを見出した。すなわち、反応溶液中のpHを下げることで、金属塩の原料液が液中に添加されたときに核発生反応速度が抑制され、添加された金属イオンは既に存在している粒子上に析出し易くなる。また、アンミン錯イオンが溶液中に存在していることで、水酸化物粒子の溶解・析出反応が加速され、微小な粒子は溶解し、大きな粒子状に再析出しやすくなる。これにより、微粉が少ない、且つよく詰まったタップ密度が大きい水酸化物粒子が生成できると推察される。これを原料に焼成した組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料はタップ密度が大きくなるばかりでなく比表面積が小さい割りには電池容量が高い材料が得られる。
【0009】
しかし、反応では母液中に常にニッケルのアンミン錯イオンが溶解した状態になっているため、得られた水酸化物粒子を回収するときに廃液中にニッケルアンミン錯イオンが溶解しており、これを回収する事が必要になってくる。
【0010】
廃液中にニッケルを残さないようにする方法として、反応槽を二段にして合成する方法がある。一段目の反応槽で生成した水酸化物とニッケルアンミン錯イオンを含む溶液が二段目の反応槽に入り、ここに水酸化ナトリウムを供給してpHをあげることで、溶液中のニッケルが水酸化物として析出する。このとき、別の粒子として析出するものも若干あると考えられるが、その殆どが一段目で生成した水酸化物粒子の上に析出すると考えられる。このため、ニッケルを後から沈降させたにもかかわらず微粉の少ない、タップ密度の高い原料水酸化物粒子が得られる。
【0011】
これを原料に焼成した組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料も同様にタップ密度が大きいだけでなく、比表面積が小さい割には電池容量が高い材料が得られる。
【0012】
そこで、本発明の第1の態様は、組成式 (Ni1−x−y−z,Cox,Mny,Mz)(OH)(場合によりM=Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料用原料水酸化物であって、タップ密度が1.0g/cm以上であることを特徴とする、組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料の原料に用いるリチウムイオン電池正極材料用原料水酸化物である。
【0013】
本発明の第2の態様は、溶液中にニッケルアンミン錯イオンが存在する状態で、アンモニアとNi, Co, Mn,M塩溶液(場合によりM=Al,Mg,Ti塩溶液を含む)を別々に、且つ連続的に供給して水酸化物として合成することを特徴とする請求項1記載のリチウムイオン電池正極材料用原料水酸化物にある。ここで、溶液中にニッケルアンミン錯イオンが存在する状態とは、例えば、硫酸ニッケル、アンモニア水の存在下でpH11.4〜11.7にすると実現できる。
【0014】
本発明の第3の態様は、請求項2で得られた水酸化物とアンミン錯イオンが共存する溶液にアルカリを添加してpHをあげて、溶液中のニッケルイオンを溶液中に存在する水酸化物粒子の上に沈降させて得られる請求項1記載のリチウムイオン電池正極材料用原料水酸化物にある。
【0015】
本発明の第4の態様は、請求項1記載のリチウムイオン電池正極材料用原料水酸化物にリチウム化合物を混合して、焼成して得られた組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料にある。
【0016】
本発明の第5の態様は、請求項1記載のリチウムイオン電池正極材料用原料水酸化物にリチウム化合物とフッ素化合物を混合して、焼成して得られる組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO2−vFv(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料にある。
【0017】
【発明の実施の形態】
次に、本発明を実施例及び比較例に基づいてさらに詳細に説明する。
【0018】
(実施例1)
硫酸ニッケル15.249kg、硫酸コバルト14.055kg、硫酸マンガン11.756kgを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用いた。反応槽の概略図を図1に示す。反応槽は2.2lのものを用い、合成中は反応液中にアルゴンガスを0.5l/minでバブリングし、反応液が空気と接触しないように密閉構造とした。また、反応槽は二重ジャケットにより40℃に保温した。なお、二重ジャケットと恒温槽(図示しない)間で温水を循環させた。反応液は、攪拌モーターを用いて1000rpmで攪拌し、反応槽内は図に示すような対流が起こるようにした。Ni,Co,Mn溶液を8.0ml/min、水酸化ナトリウム水溶液を4.9ml/min、アンモニア水を1.2ml/minで反応槽内に供給して合成した。このとき、反応槽内のpHは11.4〜11.7になるようにした。得られた共沈粉は、デカンテーション水洗を行い、ろ過、乾燥して原料粉とした。
【0019】
得られた原料粉125gと炭酸リチウム58.62gを混合し、電気炉を用いて900℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。電池特性は、得られた正極材:TAB2=2:1で混合したものを隙間を50μmに調整したローラーを用いてシート状に圧延し、13φmmのポンチで打ち抜いて正極に用いた。対極にはLiメタルを、電解液には1M−LiPF6/(EC:DMC=1:1)を用いた。ここで、TAB2とは非水溶液系の電池に用いられる導電剤とバインダーの複合剤で、テフロナイズドアセチレンブラック(テトラフルオロエチレンバインダーとアセチレンブラックの複合剤)の略称である。電池の充放電は4.3V−3.0Vの範囲で行なった。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。なお、反応槽から出てきた液中のCo,Mnの濃度はいずれも0.01g/ml以下であったが、コバルト、マンガンのアンミン錯イオンの安定度はニッケルイオンよりも低いため、アンモニアの存在下ではニッケルが優先してアンミン錯イオンとして水溶液中に存在する。反応液がアルカリであるため、コバルト、マンガンはほとんど水酸化物粒子として沈降していると考えられる。そのため、反応液中にコバルト、マンガンが殆ど溶解していないと考えられる。
【0020】
以上より、実施例1において、pH域を狭い範囲(11.4〜11.7)にコントロールすることにより、生産性良く高タップ密度のリチウムイオン電池正極材料用原料水酸化物を得ることができる。即ち、反応槽内での粉末の滞留時間が、反応槽の容積(2.2l)と硫酸ニッケル等の添加速度から算出すると約3時間程度である。
【0021】
【表1】

Figure 2004227915
【0022】
【表2】
Figure 2004227915
【0023】
【表3】
Figure 2004227915
【0024】
【表4】
Figure 2004227915
【0025】
実施例2
硫酸ニッケル14.102kg、硫酸コバルト15.111kg、硫酸マンガン12.908kgを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用いた。反応槽の概略図を図2に示す。一段目には2.2lの反応槽を、二段目には1lの反応槽を用いた。実施例1の場合と同じように、一段目、二段目共に反応槽は二重ジャケットにより40℃に保温し、アルゴンガスをバブリングし、密閉構造とした。反応液は、攪拌モーターを用いて一段目が1000rpm、二段目は1600rpmで攪拌し、反応槽内は図に示すような対流が起こるようにした。一段目の反応槽へはNi,Co,Mn溶液を8ml/min、水酸化ナトリウム水溶液を4.9 ml/min、アンモニア水を1.2ml/minで反応槽内に供給して合成し、このとき、反応槽内のpHは11.4〜11.7になるようにした。反応液は二段目の反応槽内へ供給される。二段目の反応槽へは水酸化ナトリウム水溶液を0.5ml/minで供給し、反応槽内の液のpHは12.3〜12.8になるようにした。得られた共沈粉は、デカンテーション水洗を行い、ろ過、乾燥して原料粉とした。
【0026】
得られた原料粉125gと炭酸リチウム58.98gを混合し、電気炉を用いて900℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。
【0027】
[実施例3]
硫酸ニッケル15.097kg、硫酸コバルト13.914kg、硫酸マンガン11.638kg、硫酸マグネシウム398.4gを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用い、実施例1の場合と同様に原料粉を調整した。
得られた原料粉125gと炭酸リチウム57.63gを混合し、電気炉を用いて900℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。
【0028】
[実施例4]
硫酸ニッケル15.097kg、硫酸コバルト13.914kg、硫酸マンガン11.638kg、Alの濃度を1.75Mに調整した硫酸アルミニウム水溶液0.913lを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用い、実施例1の場合と同様に原料粉を調整した。得られた原料粉125gと炭酸リチウム57.31gを混合し、電気炉を用いて900℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。
【0029】
[実施例5]
硫酸ニッケル15.097kg、硫酸コバルト13.914 kg、硫酸マンガン11.638kg、硫酸チタン780gを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用い、実施例1の場合と同様に原料粉を調整した。
得られた原料粉125gと炭酸リチウム58.22gを混合し、電気炉を用いて900℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。
【0030】
[実施例6]
実施例1で得られた原料粉125gと炭酸リチウム56.92gを混合し、電気炉を用いて900℃で20時間焼成し、得られた粉末にLiF0.71gを添加して700℃で10hr焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は一段目の焼成は30℃/hrで設定し、二段目の焼成は140℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。
【0031】
[比較例1]
硫酸ニッケル14.102kg、硫酸コバルト15.111kg、硫酸マンガン12.908kgを80lの水に溶解させ、また、水酸化ナトリウム6mol/l、アンモニア水を原料液として用いた。反応槽は実施例1で使用したものと同じものを用い、液温、攪拌速度、対流、窒素バブリングは同じ条件で行なった。Ni,Co,Mn溶液を8ml/min、水酸化ナトリウム水溶液を5.5ml/min、アンモニア水を1.2 ml/minで反応槽内に供給して合成した。このとき、反応槽内のpHは12.3〜12.8になるようにした。得られた共沈粉は、デカンテーション水洗を行い、ろ過、乾燥して原料粉とした。
【0032】
得られた原料粉125gと炭酸リチウム58.08gを混合し、電気炉を用いて1000℃で20時間焼成してLiイオン電池正極材料を得た。このとき、昇降温速度は30℃/hrで設定した。得られた原料粉・焼成粉は、実施例1の場合と同様な方法で評価を行った。得られた原料粉の物性、化学分析値、及び反応槽から出てきた液中のNi,Co,Mnの濃度を表1,2に示す。また、焼成粉の物性、電池特性、及び化学分析値を表3,4に示す。本法で合成した原料は、タップ密度が高く、これを原料に用いた正極材料もタップ密度が高くできる。結果を表1に示す。表3によると、実施例と比較例とで単位重量当たりの放電容量の差は見られなかったが、単位体積当たりとすると、高タップ密度品の放電容量は優れていることがわかる。
【0033】
【発明の効果】
以上説明したように、本発明によるとタップ密度が高いリチウムイオン電池正極材料用原料水酸化物が得られ、該リチウムイオン電池正極材料用原料水酸化物を原料に用いたリチウムイオン電池正極材は高タップ密度であり、これをリチウムイオン電池に用いると、電極に活物質の充填量を増大させる事が出来、結果的に単位体積あたりの容量を増大させるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に関する反応槽の概略図。
【図2】本発明に関する反応槽の概略図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a raw material hydroxide for a lithium ion battery positive electrode material, and a lithium ion battery positive electrode material using the raw material hydroxide for a lithium ion battery positive electrode material as a raw material.
[0002]
[Prior art]
In recent years, many batteries using the lithium ion battery cathode material represented by the composition formula Li (Ni x , Co y , Mn z ) O 2 (x + y + z = 1) as the cathode material of a Li ion secondary battery are commercially available. Has been reached.
[0003]
However, the lithium ion battery cathode material represented by the composition formula Li (Ni x , Co y , Mn z ) O 2 (x + y + z = 1) has a high tap density in order to pack more materials in the battery. Required. One of the methods for synthesizing a lithium ion battery cathode material represented by the composition formula Li (Ni x , Co y , Mn z ) O 2 (x + y + z = 1) is a coprecipitation raw material (water, Ni, Co, Mn) by an aqueous solution reaction. There is a method in which an oxide or a carbonate is prepared, a lithium compound is mixed therein, and the mixture is baked. Therefore, in order to obtain Li (Ni x , Co y , Mn z ) O 2 (x + y + z = 1) having a large tap density, a coprecipitating material (hydroxide or carbonate) of Ni, Co, Mn having a large tap density is required. Etc.) must be synthesized.
[0004]
Patent Document 1 and the like disclose a method for producing nickel hydroxide having a large tap density (including one in which a part of Ni is replaced with Co, Al, and Mn). However, the reaction pH ranges over a wide range (11.0 to 13.0), and the residence time of the powder in the reaction tank is calculated from the volume of the reaction tank (500 l) and the addition rate of nickel sulfate or the like. It is more than time, and improvement of productivity is required. There is also known a method in which nickel ions are once formed into a complex with ammonia and then continuously added to an alkali in a reaction tank to obtain a hydroxide. When nickel ions are directly added to an alkali, the reaction between nickel ions and hydroxide ions is fast, so nucleation is increased, crystals are refined, and consequently, aggregated particles with many gaps are formed and water having a low tap density is obtained. It becomes oxide particles. Therefore, if nickel ions are once complexed with ammonia and then added to an alkali, nickel is coordinated with ammonia, so the reaction when contacted with hydroxide ions is slowed, and nucleation is suppressed. You. As a result, the dropped nickel ions are prevented from generating new nuclei, are easily deposited on the existing particles, and form dense secondary particles because the orientation of the particles is uniform. As a result, nickel hydroxide particles having a large tap density are generated.
[0005]
However, in this method (Ni x, Co y, Mn z) (OH) 2 (x + y + z = 1) and is to be obtained, fine particles precipitated as a hydroxide at the time the Co or Mn is in contact with ammonia In addition to this, the substance finally obtained is indefinite and has a low tap density. Li this raw material (Ni x, Co y, Mn z) be fired O2 (x + y + z = 1), can not be obtained as high tap density.
[0006]
[Patent Document 1]
JP-A-2002-201028
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a raw material having a high tap density, and a positive electrode material for a lithium ion secondary battery having excellent battery characteristics that enables a positive electrode material using the raw material to have a high tap density. Make it an issue.
[0008]
[Means for Solving the Problems]
As a result of our intensive research, we have continuously and separately supplied a mixed aqueous solution of Ni, Co, and Mn (including Al, Mg, and Ti in some cases) and an aqueous ammonia solution, and adjusted the pH to be low. It has been found that hydroxide particles having a high tap density can be obtained by continuously synthesizing and continuously collecting the ammine complex ion while leaving the ammine complex ion in the reaction solution. That is, by lowering the pH in the reaction solution, the nucleation reaction rate is suppressed when the metal salt raw material solution is added to the solution, and the added metal ions precipitate on the already existing particles. It will be easier. In addition, the presence of the ammine complex ion in the solution accelerates the dissolution / precipitation reaction of the hydroxide particles, so that the fine particles are dissolved and easily reprecipitated into large particles. Thereby, it is presumed that hydroxide particles having a small amount of fine powder and well packed and having a large tap density can be generated. Formula which was calcined material Li1 + a (Ni1-x- y-z, Cox, Mny, Mz) lithium-ion battery cathode material represented by 1-aO 2 (optionally including M = Al, Mg, and Ti by) In addition to the increase in tap density, a material having a high battery capacity can be obtained for a small specific surface area.
[0009]
However, in the reaction, the nickel ammine complex ion is always dissolved in the mother liquor, so when recovering the obtained hydroxide particles, the nickel ammine complex ion is dissolved in the waste liquid. It becomes necessary to collect it.
[0010]
As a method for preventing nickel from remaining in the waste liquid, there is a method of synthesizing the reaction tank in two stages. The solution containing hydroxide and nickel ammine complex ions generated in the first reaction tank enters the second reaction tank, and sodium hydroxide is supplied thereto to raise the pH, whereby nickel in the solution is converted into water. Precipitates as oxide. At this time, it is considered that some of the particles precipitate as separate particles, but most of them are considered to precipitate on the hydroxide particles generated in the first step. For this reason, the raw material hydroxide particles having a small tapping density and a high tap density can be obtained despite the precipitation of nickel later.
[0011]
Formula which was calcined material Li1 + a (Ni1-x- y-z, Cox, Mny, Mz) lithium-ion battery cathode material represented by 1-aO 2 (optionally including M = Al, Mg, and Ti by) Similarly, not only the tap density is high, but also a material having a high battery capacity is obtained for a small specific surface area.
[0012]
Accordingly, a first aspect of the present invention provides a lithium battery represented by a composition formula (Ni1-xyz, Cox, Mny, Mz) (OH) 2 (including M = Al, Mg, and Ti in some cases). A compositional formula Li1 + a (Ni1-xyz, Cox, Mny, Mz) 1 which is a raw material hydroxide for an ion battery positive electrode material and has a tap density of 1.0 g / cm 3 or more. -aO is 2 (optionally M = Al, Mg, including Ti) material hydroxide for lithium-ion battery cathode materials for use in the raw material of the lithium-ion battery cathode material represented by.
[0013]
According to a second aspect of the present invention, ammonia and Ni, Co, Mn, M salt solutions (including M = Al, Mg, Ti salt solutions in some cases) are separated in the presence of nickel ammine complex ions in the solution. 2. The raw material hydroxide for a lithium ion battery positive electrode material according to claim 1, wherein the raw material hydroxide is supplied continuously and synthesized as a hydroxide. Here, the state in which the nickel ammine complex ion is present in the solution can be realized, for example, by adjusting the pH to 11.4 to 11.7 in the presence of nickel sulfate and aqueous ammonia.
[0014]
According to a third aspect of the present invention, the pH is increased by adding an alkali to the solution in which the hydroxide and the ammine complex ion coexist, and the nickel ions in the solution are added to the water present in the solution. 2. The raw material hydroxide for a lithium ion battery cathode material according to claim 1, which is obtained by sedimentation on oxide particles.
[0015]
According to a fourth aspect of the present invention, there is provided a composition formula Li1 + a (Ni1-xyz, obtained by mixing a lithium compound with the raw material hydroxide for a lithium ion battery positive electrode material according to claim 1 and firing the mixture. Cox, Mny, Mz) is 1-aO 2 (optionally M = Al, Mg, lithium-ion battery cathode materials expressed by containing Ti).
[0016]
In a fifth aspect of the present invention, a composition formula Li1 + a (Ni1-xy-) obtained by mixing a lithium compound and a fluorine compound with the raw material hydroxide for a lithium ion battery cathode material according to claim 1 and firing the mixture. z, Cox, Mny, Mz) 1-aO2-vFv (M = including Al, Mg, and Ti in some cases).
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail based on examples and comparative examples.
[0018]
(Example 1)
15.249 kg of nickel sulfate, 14.55 kg of cobalt sulfate, and 11.756 kg of manganese sulfate were dissolved in 80 l of water, and 6 mol / l of sodium hydroxide and ammonia water were used as a raw material liquid. FIG. 1 shows a schematic view of the reaction tank. The reaction tank used was 2.2 l, and argon gas was bubbled into the reaction liquid at 0.5 l / min during the synthesis to form a closed structure so that the reaction liquid did not come into contact with air. The temperature of the reactor was kept at 40 ° C. by a double jacket. Note that hot water was circulated between the double jacket and a thermostat (not shown). The reaction solution was stirred at 1000 rpm using a stirring motor so that convection as shown in the figure occurred in the reaction tank. Ni, Co, and Mn solutions were supplied into the reactor at 8.0 ml / min, an aqueous solution of sodium hydroxide at 4.9 ml / min, and aqueous ammonia at 1.2 ml / min. At this time, the pH in the reaction tank was adjusted to 11.4 to 11.7. The obtained coprecipitated powder was washed with decantation water, filtered and dried to obtain a raw material powder.
[0019]
125 g of the obtained raw material powder and 58.62 g of lithium carbonate were mixed and fired at 900 ° C. for 20 hours using an electric furnace to obtain a Li-ion battery cathode material. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The battery characteristics were such that the obtained mixture of the positive electrode material: TAB2 = 2: 1 was rolled into a sheet shape using a roller having a gap adjusted to 50 μm, punched out with a 13 mm punch, and used as a positive electrode. Li metal was used for the counter electrode, and 1M-LiPF6 / (EC: DMC = 1: 1) was used for the electrolytic solution. Here, TAB2 is a composite agent of a conductive agent and a binder used for a non-aqueous solution type battery, and is an abbreviation for tephronized door acetylene black (a composite agent of a tetrafluoroethylene binder and acetylene black). The charge and discharge of the battery were performed in the range of 4.3V to 3.0V. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder. Although the concentrations of Co and Mn in the liquid discharged from the reaction tank were both 0.01 g / ml or less, the stability of the ammine complex ions of cobalt and manganese was lower than that of nickel ions. In the presence, nickel preferentially exists in the aqueous solution as an ammine complex ion. Since the reaction solution is alkaline, it is considered that cobalt and manganese are almost precipitated as hydroxide particles. Therefore, it is considered that cobalt and manganese hardly dissolved in the reaction solution.
[0020]
As described above, in Example 1, by controlling the pH range to a narrow range (11.4 to 11.7), a raw material hydroxide for a positive electrode material of a lithium ion battery having a high tap density with high productivity can be obtained. . That is, the residence time of the powder in the reaction tank is about 3 hours when calculated from the volume (2.2 l) of the reaction tank and the addition rate of nickel sulfate or the like.
[0021]
[Table 1]
Figure 2004227915
[0022]
[Table 2]
Figure 2004227915
[0023]
[Table 3]
Figure 2004227915
[0024]
[Table 4]
Figure 2004227915
[0025]
Example 2
14.102 kg of nickel sulfate, 15.111 kg of cobalt sulfate, and 12.908 kg of manganese sulfate were dissolved in 80 l of water, and 6 mol / l of sodium hydroxide and aqueous ammonia were used as raw material liquids. FIG. 2 shows a schematic view of the reaction tank. The first stage used a 2.2 liter reaction tank, and the second stage used a 1 liter reaction tank. As in the case of Example 1, the reaction vessel was kept at 40 ° C. by a double jacket in both the first stage and the second stage, and argon gas was bubbled to form a sealed structure. The reaction liquid was stirred using a stirring motor at the first stage at 1000 rpm and at the second stage at 1600 rpm, so that convection as shown in the figure occurred in the reaction tank. Ni, Co, and Mn solutions were supplied to the first-stage reaction vessel at 8 ml / min, an aqueous solution of sodium hydroxide at 4.9 ml / min, and aqueous ammonia at 1.2 ml / min to synthesize the reaction vessel. At this time, the pH in the reaction tank was adjusted to 11.4 to 11.7. The reaction solution is supplied into the second-stage reaction tank. An aqueous sodium hydroxide solution was supplied to the second-stage reaction tank at a rate of 0.5 ml / min, and the pH of the liquid in the reaction tank was adjusted to 12.3 to 12.8. The obtained coprecipitated powder was washed with decantation water, filtered and dried to obtain a raw material powder.
[0026]
The obtained raw material powder (125 g) and lithium carbonate (58.98 g) were mixed and fired at 900 ° C. for 20 hours using an electric furnace to obtain a Li-ion battery cathode material. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder.
[0027]
[Example 3]
15.097 kg of nickel sulfate, 13.914 kg of cobalt sulfate, 11.638 kg of manganese sulfate and 398.4 g of magnesium sulfate were dissolved in 80 l of water, and 6 mol / l of sodium hydroxide and aqueous ammonia were used as raw material liquids. Raw material powder was prepared in the same manner as in Example 1.
125 g of the obtained raw material powder and 57.63 g of lithium carbonate were mixed and fired at 900 ° C. for 20 hours using an electric furnace to obtain a positive electrode material for a Li-ion battery. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder.
[0028]
[Example 4]
15.097 kg of nickel sulfate, 13.914 kg of cobalt sulfate, 11.638 kg of manganese sulfate, 0.913 l of an aluminum sulfate aqueous solution adjusted to an Al concentration of 1.75 M are dissolved in 80 l of water, and sodium hydroxide 6 mol / l A raw material powder was prepared in the same manner as in Example 1 using ammonia water as a raw material liquid. 125 g of the obtained raw material powder and 57.31 g of lithium carbonate were mixed and fired at 900 ° C. for 20 hours using an electric furnace to obtain a positive electrode material for a Li-ion battery. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder.
[0029]
[Example 5]
Example 1 was prepared by dissolving 15.097 kg of nickel sulfate, 13.914 kg of cobalt sulfate, 11.638 kg of manganese sulfate, and 780 g of titanium sulfate in 80 l of water, and using 6 mol / l of sodium hydroxide and aqueous ammonia as a raw material liquid. The raw material powder was prepared in the same manner as in the case of (1).
125 g of the obtained raw material powder and 58.22 g of lithium carbonate were mixed and fired at 900 ° C. for 20 hours using an electric furnace to obtain a positive electrode material for a Li-ion battery. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder.
[0030]
[Example 6]
A mixture of 125 g of the raw material powder obtained in Example 1 and 56.92 g of lithium carbonate was fired at 900 ° C. for 20 hours using an electric furnace, and 0.71 g of LiF was added to the obtained powder, followed by firing at 700 ° C. for 10 hours. Thus, a Li-ion battery cathode material was obtained. At this time, the temperature rise / fall rate was set at 30 ° C./hr for the first baking and 140 ° C./hr for the second baking. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder.
[0031]
[Comparative Example 1]
14.102 kg of nickel sulfate, 15.111 kg of cobalt sulfate, and 12.908 kg of manganese sulfate were dissolved in 80 l of water, and 6 mol / l of sodium hydroxide and aqueous ammonia were used as raw material liquids. The same reactor as that used in Example 1 was used, and the liquid temperature, stirring speed, convection, and nitrogen bubbling were performed under the same conditions. Ni, Co, and Mn solutions were supplied into the reaction tank at a rate of 8 ml / min, an aqueous solution of sodium hydroxide at a rate of 5.5 ml / min, and aqueous ammonia at a rate of 1.2 ml / min. At this time, the pH in the reaction tank was adjusted to 12.3 to 12.8. The obtained coprecipitated powder was washed with decantation water, filtered and dried to obtain a raw material powder.
[0032]
125 g of the obtained raw material powder and 58.08 g of lithium carbonate were mixed and calcined at 1000 ° C. for 20 hours using an electric furnace to obtain a Li-ion battery positive electrode material. At this time, the temperature rise / fall rate was set at 30 ° C./hr. The obtained raw material powder and calcined powder were evaluated in the same manner as in Example 1. Tables 1 and 2 show the physical properties, chemical analysis values, and concentrations of Ni, Co, and Mn in the liquid discharged from the reaction tank of the obtained raw material powder. Tables 3 and 4 show the physical properties, battery characteristics, and chemical analysis values of the fired powder. The raw material synthesized by this method has a high tap density, and the positive electrode material using the raw material as the raw material can also have a high tap density. Table 1 shows the results. According to Table 3, although there was no difference in the discharge capacity per unit weight between the example and the comparative example, it can be seen that the discharge capacity of the high tap density product is excellent when it is per unit volume.
[0033]
【The invention's effect】
As described above, according to the present invention, a raw material hydroxide for a lithium ion battery positive electrode material having a high tap density is obtained, and the lithium ion battery positive electrode material using the raw material hydroxide for the lithium ion battery positive electrode material as a raw material is as follows: It has a high tap density, and when it is used for a lithium ion battery, it is possible to increase the filling amount of the active material in the electrode, and as a result, it is possible to increase the capacity per unit volume.
[Brief description of the drawings]
FIG. 1 is a schematic view of a reaction tank according to the present invention.
FIG. 2 is a schematic view of a reaction tank according to the present invention.

Claims (5)

組成式 (Ni1−x−y−z,Cox,Mny,Mz)(OH)(場合によりM=Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料用原料水酸化物であって、タップ密度が1.0g/cm以上であることを特徴とする、組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料の原料に用いるリチウムイオン電池正極材料用原料水酸化物。It is a raw material hydroxide for a lithium ion battery cathode material represented by a composition formula (Ni1-xyz, Cox, Mny, Mz) (OH) 2 (including M = Al, Mg, Ti in some cases). Te, wherein the tap density of 1.0 g / cm 3 or more, the composition formula Li1 + a (Ni1-x- y-z, Cox, Mny, Mz) 1-aO 2 ( optionally M = Al, Mg , And Ti), a raw material hydroxide for a lithium ion battery cathode material used as a raw material for a lithium ion battery cathode material represented by the formula: 溶液中にニッケルアンミン錯イオンが存在する状態で、アンモニアとNi, Co, Mn,M塩溶液(場合によりM=Al,Mg,Ti塩溶液を含む)を別々に、且つ連続的に供給して水酸化物として合成することを特徴とする請求項1記載のリチウムイオン電池正極材料用原料水酸化物。In the state where the nickel ammine complex ion is present in the solution, ammonia and Ni, Co, Mn, M salt solutions (including M = Al, Mg, Ti salt solutions in some cases) are separately and continuously supplied. The raw material hydroxide for a positive electrode material for a lithium ion battery according to claim 1, which is synthesized as a hydroxide. 請求項2で得られた水酸化物とアンミン錯イオンが共存する溶液にアルカリを添加してpHをあげて、溶液中のニッケルイオンを溶液中に存在する水酸化物粒子の上に沈降させて得られる請求項1記載のリチウムイオン電池正極材料用原料水酸化物。An alkali is added to the solution in which the hydroxide and ammine complex ion coexist in claim 2 to raise the pH, and nickel ions in the solution are precipitated on the hydroxide particles present in the solution. The raw material hydroxide for a lithium ion battery cathode material according to claim 1 obtained. 請求項1記載のリチウムイオン電池正極材料用原料水酸化物にリチウム化合物を混合して、焼成して得られた組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料。A composition formula Li1 + a (Ni1-x-yz, Cox, Mny, Mz) 1-aO obtained by mixing a lithium compound with the raw material hydroxide for a lithium ion battery cathode material according to claim 1 and firing the mixture. 2 Lithium ion battery positive electrode material represented by (possibly including M = Al, Mg, Ti). 請求項1記載のリチウムイオン電池正極材料用原料水酸化物にリチウム化合物とフッ素化合物を混合して、焼成して得られる組成式Li1+a(Ni1−x−y−z,Cox,Mny,Mz)1−aO2−vFv(場合によりM= Al,Mg,Tiを含む)で表されるリチウムイオン電池正極材料。A composition formula Li1 + a (Ni1-xyz, Cox, Mny, Mz) 1 obtained by mixing a lithium compound and a fluorine compound with the raw material hydroxide for a lithium ion battery cathode material according to claim 1 and firing the mixture. -AO2-vFv (possibly including M = Al, Mg, Ti) positive electrode material for lithium ion batteries.
JP2003014248A 2003-01-23 2003-01-23 Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same Pending JP2004227915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014248A JP2004227915A (en) 2003-01-23 2003-01-23 Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014248A JP2004227915A (en) 2003-01-23 2003-01-23 Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same

Publications (1)

Publication Number Publication Date
JP2004227915A true JP2004227915A (en) 2004-08-12

Family

ID=32902344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014248A Pending JP2004227915A (en) 2003-01-23 2003-01-23 Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same

Country Status (1)

Country Link
JP (1) JP2004227915A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127931A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
JP2006331939A (en) * 2005-05-27 2006-12-07 Sony Corp Manufacturing method of positive electrode active material and battery
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2010505733A (en) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compound powder, process for its production and its use in electrochemical applications
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
JP2014506220A (en) * 2010-09-22 2014-03-13 オーエムジー・コッコラ・ケミカルズ・オイ Alloy oxide hydroxide and method for producing the same
KR101469685B1 (en) * 2006-11-28 2014-12-05 소니 가부시끼가이샤 Cathode active material, non-aqueous electrolyte secondary battery using the same, and manufacturing method of cathode active material
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP2019104657A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JP2019104655A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JPWO2020225904A1 (en) * 2019-05-09 2020-11-12
CN114014378A (en) * 2021-10-22 2022-02-08 陕西红马科技有限公司 Method for preparing amorphous single crystal positive electrode material by using super mixed flow reactor
KR20220089282A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Positive active material, preparing method thereof and rechargeable lithium battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127931A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
JP2006331939A (en) * 2005-05-27 2006-12-07 Sony Corp Manufacturing method of positive electrode active material and battery
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2010505733A (en) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compound powder, process for its production and its use in electrochemical applications
KR101469685B1 (en) * 2006-11-28 2014-12-05 소니 가부시끼가이샤 Cathode active material, non-aqueous electrolyte secondary battery using the same, and manufacturing method of cathode active material
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
JP4941617B2 (en) * 2009-12-02 2012-05-30 住友金属鉱山株式会社 Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
US9287555B2 (en) 2010-09-22 2016-03-15 OMG Kokkola Chemical Oy Mixed metal oxidized hydroxide and method for production
JP2014506220A (en) * 2010-09-22 2014-03-13 オーエムジー・コッコラ・ケミカルズ・オイ Alloy oxide hydroxide and method for producing the same
KR101810865B1 (en) * 2010-09-22 2017-12-20 프리포트 코발트 오와이 Mixed metal oxidized hydroxide and method for prodction
JP2019104655A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JP2019104657A (en) * 2017-12-13 2019-06-27 住友金属鉱山株式会社 Production method of nickel-containing hydroxide
JPWO2020225904A1 (en) * 2019-05-09 2020-11-12
WO2020225904A1 (en) * 2019-05-09 2020-11-12 日揮グローバル株式会社 Method for treating nickel-including raw material
JP7191215B2 (en) 2019-05-09 2022-12-16 日揮グローバル株式会社 Method for treating nickel-containing raw materials
KR20220089282A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Positive active material, preparing method thereof and rechargeable lithium battery
KR102580333B1 (en) 2020-12-21 2023-09-18 포스코홀딩스 주식회사 Positive active material, preparing method thereof and rechargeable lithium battery
CN114014378A (en) * 2021-10-22 2022-02-08 陕西红马科技有限公司 Method for preparing amorphous single crystal positive electrode material by using super mixed flow reactor
CN114014378B (en) * 2021-10-22 2023-07-28 陕西红马科技有限公司 Method for preparing amorphous single crystal positive electrode material by using super mixed flow reactor

Similar Documents

Publication Publication Date Title
JP2004227915A (en) Raw material hydroxide for lithium ion battery positive electrode material and lithium ion battery positive electrode material using same
JP4444121B2 (en) Material for positive electrode of lithium secondary battery and manufacturing method thereof
JP4768562B2 (en) Lithium / transition metal composite oxide, method for producing the same, and lithium battery using the same
JP6023587B2 (en) Method for producing positive electrode active material for lithium ion battery
CN103108833B (en) Mixed metal oxidized hydroxide and method for production
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
WO2012020768A1 (en) Production method for a composite compound comprising nickel and cobalt
WO2004010519A1 (en) Method for producing positive plate material for lithium secondary cell
TW201620840A (en) High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
KR20060041302A (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP5083668B2 (en) Spherical manganese carbonate precipitation method and product produced thereby
JP2016533018A (en) Carbonate precursors for high lithium and manganese containing cathode materials
JP2013180917A (en) Nickel-containing hydroxide and method for producing the same
JP2023532185A (en) Method for producing particulate (oxy)hydroxide
JP2007214118A (en) Manufacturing method of lithium/transition metal composite oxide
JP6026403B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
CN110799460A (en) β -Nickel hydroxide doped with aluminum
JP5657970B2 (en) Lithium / transition metal composite oxide and lithium battery using the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
WO2012128289A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP6030546B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR102005600B1 (en) Manganomanganic oxide and process for producing same
JP2017195020A (en) Method for producing positive electrode active material for lithium ion battery