JP2007214118A - Manufacturing method of lithium/transition metal composite oxide - Google Patents

Manufacturing method of lithium/transition metal composite oxide Download PDF

Info

Publication number
JP2007214118A
JP2007214118A JP2007003102A JP2007003102A JP2007214118A JP 2007214118 A JP2007214118 A JP 2007214118A JP 2007003102 A JP2007003102 A JP 2007003102A JP 2007003102 A JP2007003102 A JP 2007003102A JP 2007214118 A JP2007214118 A JP 2007214118A
Authority
JP
Japan
Prior art keywords
transition metal
lithium
composite oxide
metal composite
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007003102A
Other languages
Japanese (ja)
Other versions
JP5069007B2 (en
Inventor
Nariaki Moriyama
斉昭 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2007003102A priority Critical patent/JP5069007B2/en
Publication of JP2007214118A publication Critical patent/JP2007214118A/en
Application granted granted Critical
Publication of JP5069007B2 publication Critical patent/JP5069007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a lithium transition metal composite oxide having high filling property and high charge discharge characteristics useful for a positive active material of a lithium battery. <P>SOLUTION: The manufacturing method of the lithium transition metal composite oxide is that a lithium transition metal composite oxide precursor changing to the lithium transition metal composite oxide by heat treatment is primarily heat treated in the oxidizing atmosphere, and then secondarily heat treated under the existence of carbonate compounds in the non-oxidizing atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、充填性に優れたリチウム・遷移金属複合酸化物を製造する方法に関する。 The present invention relates to a method for producing a lithium / transition metal composite oxide having excellent filling properties.

リチウム二次電池は、エネルギー密度が高く、充放電サイクル特性に優れていることから、急速に普及しており、リチウム二次電池の正極活物質には、コバルト酸リチウムが最もよく用いられている。しかし、コバルト資源が希少で高価であることから、近年、コバルトと、ニッケル、マンガン、鉄、銅、亜鉛、クロム等の遷移金属を複合化し、コバルトの使用量を低減させたリチウム・遷移金属複合酸化物や、あるいは、コバルトを使用せず、前記の遷移金属を複合化したものも提案されている。中でも、層状岩塩型のリチウム・遷移金属複合酸化物は放電容量が大きく、サイクル特性に優れており、とりわけ、層状岩塩型リチウム・ニッケル・マンガン・コバルト複合酸化物は、電池特性、安全性、コストのバランスに優れた材料として、実用化が期待されている。 Lithium secondary batteries are rapidly spreading due to their high energy density and excellent charge / discharge cycle characteristics, and lithium cobalt oxide is most commonly used as the positive electrode active material for lithium secondary batteries. . However, since cobalt resources are scarce and expensive, in recent years, lithium and transition metal composites that combine cobalt with transition metals such as nickel, manganese, iron, copper, zinc, and chromium to reduce the amount of cobalt used. A compound in which the above transition metal is combined without using an oxide or cobalt has been proposed. Among them, the layered rock salt type lithium / transition metal composite oxide has a large discharge capacity and excellent cycle characteristics, and the layered rock salt type lithium / nickel / manganese / cobalt composite oxide has battery characteristics, safety and cost. Practical use is expected as a material with an excellent balance.

リチウム・遷移金属複合酸化物を得るために種々の製造方法がこれまでに提案されており、たとえば下記特許文献1では、リチウム遷移金属酸化物を構成する各元素の塩及び/又は酸化物を所定比率で混合して混合物とした後、前記混合物を酸化雰囲気、650〜1000℃の範囲で、5〜50時間かけて1回以上の一次焼成を行い炭酸リチウム等のピークの観測されない単層生成物(一次焼成体)を得、前記一次焼成体を窒素雰囲気、750〜900℃の温度範囲で二次焼成を行い二次焼成体を得、次いで、前記二次焼成体を所定の方法で冷却する製造方法が提案されている。また、下記特許文献2には、所定の方法で顆粒状に造粒された原料混合物を850℃以上1100℃以下の温度で焼成した後、解砕し、解砕により生じたダメージを修復するために400℃以上700℃以下の温度で再度熱処理を行う製造方法が提案されている。 Various production methods have been proposed so far to obtain a lithium / transition metal composite oxide. For example, in Patent Document 1 below, a salt and / or oxide of each element constituting a lithium transition metal oxide is predetermined. After mixing at a ratio to make a mixture, the mixture is subjected to primary firing one or more times over 5 to 50 hours in an oxidizing atmosphere at a temperature of 650 to 1000 ° C., and a single layer product such as lithium carbonate is not observed. (Primary fired body) is obtained, and the primary fired body is subjected to secondary firing in a nitrogen atmosphere at a temperature range of 750 to 900 ° C. to obtain a secondary fired body, and then the secondary fired body is cooled by a predetermined method. Manufacturing methods have been proposed. In Patent Document 2 below, a raw material mixture granulated in a predetermined manner is baked at a temperature of 850 ° C. or higher and 1100 ° C. or lower, and then crushed to repair damage caused by the pulverization. In addition, a manufacturing method in which heat treatment is performed again at a temperature of 400 ° C. or higher and 700 ° C. or lower has been proposed.

特開2003−249217号公報(特許請求の範囲、段落0035)JP2003-249217A (Claims, paragraph 0035) 特開2005−150057号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-150057 (Claims)

近年、リチウム二次電池は、それを装着する機器の小型化に伴って益々小型化する傾向にあり、一層の高容量化・高密度化が求められている。一定体積中に充放電特性に優れた電極活物質を多量に充填することにより高容量で、しかも高エネルギー密度を有する電池を得ることができるため、より一層充填性及び充放電特性に優れた電極活物質が求められている。 In recent years, lithium secondary batteries tend to be further reduced in size with the downsizing of devices to which the lithium secondary batteries are attached, and further higher capacity and higher density are required. By filling a large volume of an electrode active material excellent in charge / discharge characteristics in a certain volume, a battery having a high capacity and a high energy density can be obtained, so that an electrode further excellent in chargeability and charge / discharge characteristics. There is a need for active materials.

本発明者らは、電極活物質としてリチウム・遷移金属複合酸化物に着目し、上記課題を解決すべく、鋭意研究を重ねた結果、熱処理によりリチウム遷移金属複合酸化物となる前駆体を二段階で熱処理してリチウム・遷移金属複合酸化物を得る製造方法において、二段目の熱処理を非酸化性雰囲気中で、しかも炭酸化合物の存在下で行うことにより、結晶性の良い(即ち、十分な充放電特性を有し)、しかも充填性に優れた(即ち、タップ密度の高い)リチウム・遷移金属複合酸化物が得られることを見出し、本発明を完成させた。 The present inventors paid attention to lithium-transition metal composite oxide as an electrode active material, and as a result of intensive research to solve the above-mentioned problems, a precursor that becomes a lithium transition metal composite oxide by heat treatment in two stages In the production method of obtaining a lithium / transition metal composite oxide by heat treatment at a high temperature, the second heat treatment is carried out in a non-oxidizing atmosphere and in the presence of a carbonate compound (ie, sufficient crystallinity is sufficient). The present inventors have found that a lithium / transition metal composite oxide having charge / discharge characteristics) and excellent filling properties (that is, high tap density) can be obtained.

即ち、本発明は、リチウム・遷移金属複合酸化物前駆体を酸化性雰囲気中で一次熱処理した後、非酸化性雰囲気中、炭酸化合物の存在下で二次熱処理することを特徴とするリチウム・遷移金属複合酸化物の製造方法である。 That is, the present invention is characterized in that a lithium / transition metal composite oxide precursor is subjected to a primary heat treatment in an oxidizing atmosphere and then subjected to a secondary heat treatment in the presence of a carbonic acid compound in a non-oxidizing atmosphere. It is a manufacturing method of metal complex oxide.

本発明の製造方法により、結晶性が良く、しかも充填性に優れたリチウム・遷移金属複合酸化物が得られる。したがって、このものを電極活物質として用いると、充放電特性に優れ、しかもエネルギー密度の高いリチウム電池が得られることが期待される。 By the production method of the present invention, a lithium / transition metal composite oxide having good crystallinity and excellent filling properties can be obtained. Therefore, when this material is used as an electrode active material, it is expected that a lithium battery having excellent charge / discharge characteristics and high energy density can be obtained.

本発明は、リチウム・遷移金属複合酸化物の製造方法であって、リチウム・遷移金属複合酸化物前駆体を酸化性雰囲気中で一次熱処理した後、非酸化性雰囲気中、炭酸化合物の存在下で二次熱処理することを特徴とする。本発明においてリチウム・遷移金属複合酸化物前駆体とは、このものを熱処理することでリチウム・遷移金属複合酸化物となるものである。該前駆体を複合酸化物が生成し易いように、酸化性雰囲気で一次熱処理して主にリチウム・遷移金属複合酸化物からなる一次熱処理物を得る。本発明においては、一次熱処理は乾式熱処理もしくは水熱処理のいずれでも差支えないが、乾式で熱処理する場合は生成物が結晶性が高くなり、且つ強固な焼結体とならないような温度範囲で行うことが重要である。次いで、一次熱処理物を炭酸化合物の存在下、炭酸化合物が分解し難いように非酸化性雰囲気中で二次熱処理して本発明のリチウム・遷移金属複合酸化物を得る。前駆体として炭酸化合物を含むものを用いて一次熱処理を行い、一次熱処理物中に炭酸化合物が残存している場合は、一次熱処理物をそのまま二次熱処理に供することができる。また、炭酸化合物の残存がわずかな場合や炭酸化合物がまったく残存していない場合、さらには前駆体に炭酸化合物を全く含まない場合は、一次熱処理物に新たに炭酸化合物を添加して二次熱処理を行うことができる。いずれにしても、二次焼成時に炭酸化合物を存在させることが重要である。二次熱処理時に存在させる炭酸化合物は、二次熱処理時の結晶成長を制御し、緻密な粒子を形成する働きをすると推測され、このため、充填性に優れたリチウム・遷移金属複合酸化物が得られるものと考えられる。以下に本発明の製造方法における各工程について、詳細に説明する。 The present invention relates to a method for producing a lithium / transition metal composite oxide, wherein the lithium / transition metal composite oxide precursor is subjected to primary heat treatment in an oxidizing atmosphere and then in a non-oxidizing atmosphere in the presence of a carbonate compound. A secondary heat treatment is performed. In the present invention, the lithium / transition metal composite oxide precursor is a lithium / transition metal composite oxide that is heat-treated. The precursor is subjected to a primary heat treatment in an oxidizing atmosphere so that a composite oxide is easily formed, thereby obtaining a primary heat-treated product mainly composed of a lithium / transition metal composite oxide. In the present invention, the primary heat treatment may be either dry heat treatment or hydrothermal treatment, but when the heat treatment is performed in the dry method, the heat treatment should be performed in a temperature range in which the product has high crystallinity and does not become a strong sintered body. is important. Next, the primary heat-treated product is secondarily heat-treated in a non-oxidizing atmosphere so that the carbonic acid compound is hardly decomposed in the presence of the carbonic acid compound to obtain the lithium / transition metal composite oxide of the present invention. When a primary heat treatment is performed using a precursor containing a carbonate compound, and the carbonate compound remains in the primary heat-treated product, the primary heat-treated product can be directly subjected to the secondary heat treatment. Also, if there is little or no carbonic acid compound remaining, or if the precursor does not contain any carbonic acid compound, add a new carbonic acid compound to the primary heat treatment and perform a secondary heat treatment. It can be performed. In any case, it is important that the carbonic acid compound is present during the secondary firing. The carbonic acid compound present during the secondary heat treatment is presumed to control the crystal growth during the secondary heat treatment and to form dense particles, and as a result, a lithium / transition metal composite oxide with excellent filling properties can be obtained. It is thought that Below, each process in the manufacturing method of this invention is demonstrated in detail.

まず、リチウム・遷移金属複合酸化物前駆体を酸化性雰囲気中で一次熱処理して、主にリチウム・遷移金属複合酸化物からなる一次熱処理物を得る。本発明においてリチウム・遷移金属複合酸化物前駆体とは、前記したように、このものを熱処理することでリチウム・遷移金属複合酸化物となるものであり、たとえば炭酸リチウム等のリチウム化合物と遷移金属の炭酸塩、酸化物、水酸化物等の遷移金属化合物との混合物や、それらの複合化合物等が挙げられる。遷移金属としては、ニッケル、マンガン、コバルト、鉄、銅、亜鉛、クロム、チタン、バナジウム及びジルコニウムからなる群より選ばれる少なくとも一種が好ましく、目的とするリチウム・遷移金属複合酸化物の組成に応じて、適宜選択することができる。 First, the lithium / transition metal composite oxide precursor is subjected to a primary heat treatment in an oxidizing atmosphere to obtain a primary heat treatment mainly composed of a lithium / transition metal composite oxide. In the present invention, as described above, the lithium / transition metal composite oxide precursor is a lithium / transition metal composite oxide that is heat-treated as described above. For example, a lithium compound such as lithium carbonate and a transition metal And mixtures thereof with transition metal compounds such as carbonates, oxides and hydroxides, and composite compounds thereof. The transition metal is preferably at least one selected from the group consisting of nickel, manganese, cobalt, iron, copper, zinc, chromium, titanium, vanadium, and zirconium, depending on the composition of the target lithium / transition metal composite oxide. Can be appropriately selected.

前記前駆体は、(1)遷移金属の炭酸塩及び/又は水酸化物と水溶性リチウム化合物とを水系媒液中で反応させたり、また(2)遷移金属の炭酸塩、酸化物及び水酸化物から選ばれる少なくとも一種とリチウム化合物とを混合したりして得ることが好ましい。 The precursor may be (1) a reaction of a transition metal carbonate and / or hydroxide with a water-soluble lithium compound in an aqueous medium, or (2) a transition metal carbonate, oxide or hydroxide. It is preferable to obtain by mixing at least one selected from the above and a lithium compound.

前記(1)の方法において用いる水溶性リチウム化合物としては、水酸化リチウム、硝酸リチウム、硫酸リチウム等が挙げられる。中でも水酸化リチウムは遷移金属炭酸塩及び/又は水酸化物、特に炭酸塩との反応性に優れているので、これを用いるのが好ましい。遷移金属炭酸塩は、水溶性リチウム化合物との反応性に富んでいるため、反応温度は常圧で反応が行える100℃未満であれば特に制限は無く、遷移金属元素の種類に応じて適宜設定するが、通常は、室温以上90℃未満の範囲の温度が好ましく、室温以上60℃以下の範囲が更に好ましい。反応後は、固液分離して反応生成物を得る。固液分離は通常のろ過・乾燥法、減圧乾燥法、蒸発乾固法、凍結乾燥法、噴霧乾燥法等、特に制限は無いが、通常のろ過・乾燥法を用いるのが、工業的に有利な方法であり好ましい。(1)の方法で遷移金属炭酸塩を用いた場合、得られる反応生成物は、遷移金属炭酸塩に含まれる炭酸成分とリチウム化合物に含まれるリチウムとが反応して生成した炭酸リチウムと、遷移金属炭酸塩から生成した遷移金属水酸化物とを含む組成物であると推測される。このような組成は、粉末X線回折を測定することにより確認することができる。 Examples of the water-soluble lithium compound used in the method (1) include lithium hydroxide, lithium nitrate, and lithium sulfate. Among these, lithium hydroxide is preferable because it is excellent in reactivity with transition metal carbonates and / or hydroxides, particularly carbonates. Since transition metal carbonates are rich in reactivity with water-soluble lithium compounds, the reaction temperature is not particularly limited as long as the reaction temperature is less than 100 ° C. at which the reaction can be performed at normal pressure, and is appropriately set according to the type of the transition metal element. However, usually, a temperature in the range of room temperature to 90 ° C. is preferable, and a range of room temperature to 60 ° C. is more preferable. After the reaction, the reaction product is obtained by solid-liquid separation. Solid-liquid separation is not particularly limited, such as normal filtration / drying method, vacuum drying method, evaporation / drying method, freeze-drying method, spray drying method, etc. However, it is industrially advantageous to use normal filtration / drying method. This method is preferable. When a transition metal carbonate is used in the method of (1), the reaction product obtained is obtained by reacting the carbonate component contained in the transition metal carbonate with lithium contained in the lithium compound, It is estimated that it is a composition containing the transition metal hydroxide produced | generated from the metal carbonate. Such a composition can be confirmed by measuring powder X-ray diffraction.

また、前記(2)の方法で用いるリチウム化合物としては、水酸化リチウム、硝酸リチウム、硫酸リチウム、塩化リチウム、炭酸リチウム等が挙げられる。これらリチウム化合物と前記遷移金属の炭酸塩等の遷移金属化合物との混合は自動乳鉢、ヘンシェルミキサー、V型混合機等の混合機の使用を、粉体の性状や処理能力に応じて適宜選択できる。あるいは、ごく少量の水等の媒液を結着剤として用いてペースト状にして混練、混合することもできる。 Examples of the lithium compound used in the method (2) include lithium hydroxide, lithium nitrate, lithium sulfate, lithium chloride, and lithium carbonate. Mixing of these lithium compounds with transition metal compounds such as carbonates of the transition metals can be selected as appropriate depending on the properties of powder and processing ability, using an automatic mortar, Henschel mixer, V-type mixer or the like. . Alternatively, a very small amount of a medium such as water can be used as a binder to form a paste and kneaded and mixed.

(1)、(2)の方法で用いる遷移金属炭酸塩は、遷移金属と炭酸成分を含むものであれば限定されず、例えば、遷移金属の塩基性炭酸塩、炭酸水素塩等を用いることができる。特に、水系媒液中で、ニッケルイオン、マンガンイオン、コバルトイオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、チタンイオン、バナジウムイオン及びジルコニウムイオンから選ばれる少なくとも一種の遷移金属イオンを、少なくとも炭酸イオンと反応させて得られる遷移金属炭酸塩を用いるのが好ましい。炭酸イオンと反応させる方法としては、(a)水溶性ニッケル化合物、水溶性マンガン化合物、水溶性コバルト化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物、水溶性チタン化合物、水溶性バナジウム化合物及び水溶性ジルコニウム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物を、水系媒液中で、塩基性炭酸化合物を含む塩基性化合物で中和する方法が好ましい。あるいは、(b)水溶性ニッケル化合物、水溶性マンガン化合物、水溶性コバルト化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物、水溶性チタン化合物、水溶性バナジウム化合物及び水溶性ジルコニウム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物を、水系媒液中で、炭酸ガスを吹き込みながら塩基性化合物で中和する方法も好ましい。用いる前記遷移金属の水溶性化合物としては、これらの硫酸塩、塩化物、硝酸塩等が挙げられ、塩基性炭酸化合物としては炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム等が挙げられる。また、(a)の方法において用いる塩基性化合物として塩基性炭酸化合物のほかに塩基性水酸化物を併用してもよい。その場合、塩基性水酸化物としては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を用いることができる。(b)の方法において用いる塩基性化合物としては、塩基性炭酸化合物、塩基性水酸化物等が挙げられ、特に塩基性炭酸化合物を用いて炭酸ガスと併用すると、重質な遷移金属炭酸塩が生成されるので好ましい。 The transition metal carbonate used in the methods (1) and (2) is not limited as long as it contains a transition metal and a carbonic acid component. For example, a transition metal basic carbonate, bicarbonate, or the like may be used. it can. In particular, at least one transition metal ion selected from nickel ions, manganese ions, cobalt ions, iron ions, copper ions, zinc ions, chromium ions, titanium ions, vanadium ions, and zirconium ions in an aqueous medium is at least carbonic acid. It is preferable to use a transition metal carbonate obtained by reacting with ions. As a method of reacting with carbonate ions, (a) water-soluble nickel compound, water-soluble manganese compound, water-soluble cobalt compound, water-soluble iron compound, water-soluble copper compound, water-soluble zinc compound, water-soluble chromium compound, water-soluble titanium A method in which at least one water-soluble transition metal compound selected from a compound, a water-soluble vanadium compound and a water-soluble zirconium compound is neutralized with a basic compound containing a basic carbonic acid compound in an aqueous medium is preferable. Or (b) water-soluble nickel compound, water-soluble manganese compound, water-soluble cobalt compound, water-soluble iron compound, water-soluble copper compound, water-soluble zinc compound, water-soluble chromium compound, water-soluble titanium compound, water-soluble vanadium compound and A method in which at least one water-soluble transition metal compound selected from water-soluble zirconium compounds is neutralized with a basic compound in an aqueous medium while blowing carbon dioxide gas is also preferred. Examples of the water-soluble compounds of the transition metal used include these sulfates, chlorides, nitrates, etc., and basic carbonate compounds include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium carbonate, hydrogen carbonate. Ammonium etc. are mentioned. In addition to the basic carbonate compound, a basic hydroxide may be used in combination as the basic compound used in the method (a). In that case, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used as the basic hydroxide. Examples of the basic compound used in the method (b) include a basic carbonate compound, a basic hydroxide, and the like. Particularly, when a basic carbonate compound is used in combination with carbon dioxide gas, a heavy transition metal carbonate is obtained. Since it is produced | generated, it is preferable.

(a)の方法において、前記遷移金属の水溶性化合物と塩基性炭酸化合物を含む塩基性化合物との反応は、前記遷移金属の水溶性化合物の水溶液中に塩基性炭酸化合物を含む塩基性化合物の水溶液を添加して行っても、その逆の添加順序でもよく、あるいは、水系媒液中に前記遷移金属の水溶性化合物、塩基性炭酸化合物を含む塩基性化合物の各水溶液を並行添加して行ってもよい。また、(b)の方法においても、前記遷移金属の水溶性化合物の水溶液中に炭酸ガスを通気しながら塩基性水酸化物を含む塩基性化合物の水溶液を添加しても、逆に、塩基性水酸化物を含む塩基性化合物の水溶液中に炭酸ガスを通気しながら前記遷移金属の水溶性化合物の水溶液を添加してもよく、あるいは、水系媒液中に炭酸ガスを通気しながら前記遷移金属の水溶性化合物、塩基性水酸化物を含む塩基性化合物の各水溶液とを並行添加して行ってもよい。特に、(a)、(b)いずれの方法でも、並行添加を行うと、粒度分布が整った遷移金属炭酸塩が得られ易く、このものを用いると電池特性が優れたリチウム・遷移金属複合酸化物が得られ易いので好ましい。並行添加は、1〜20時間かけて徐々に行うと、一層粒度分布が整ったものが得られ易いので好ましく、3〜12時間の範囲が更に好ましい。反応温度は、いずれの方法でも、0〜90℃の範囲であると、反応が進み易いので好ましく、15〜80℃の範囲が更に好ましい。(a)の方法における塩基性炭酸化合物は、前記遷移金属の水溶性化合物の中和当量から2.5倍当量の範囲で用いるのが好ましい。塩基性水酸化物を併用する場合は、塩基性炭酸化合物と同当量以下の量を用いるのが好ましい。塩基性水酸化物の使用量が塩基性炭酸化合物と同当量より多くなると、遷移金属複合炭酸塩以外にも、遷移金属水酸化物が副生しやすくなる。(b)の方法においては、塩基性化合物を、前記遷移金属の水溶性化合物の中和当量から2.5倍当量の範囲で用いるのが好ましく、炭酸ガスの使用量は、前記遷移金属が炭酸塩を形成するのに必要な化学量論量以上であれば、特に制限は無い。 In the method (a), the reaction between the water-soluble compound of the transition metal and the basic compound containing the basic carbonate compound is performed by reacting the basic compound containing the basic carbonate compound in the aqueous solution of the water-soluble compound of the transition metal. The aqueous solution may be added in the reverse order, or the aqueous solution of the transition metal and the basic compound containing the basic carbonate compound may be added in parallel in the aqueous medium. May be. In addition, in the method (b), even if an aqueous solution of a basic compound containing a basic hydroxide is added to the aqueous solution of the water-soluble compound of the transition metal while carbon dioxide gas is passed, The transition metal water-soluble compound aqueous solution may be added to the aqueous solution of the basic compound containing hydroxide while aeration of carbon dioxide gas, or the transition metal may be added to the aqueous medium while aeration of carbon dioxide gas. These water-soluble compounds and aqueous solutions of basic compounds including basic hydroxides may be added in parallel. In particular, in both methods (a) and (b), when parallel addition is performed, a transition metal carbonate having a uniform particle size distribution is easily obtained. Since a thing is easy to be obtained, it is preferable. When the parallel addition is gradually performed over 1 to 20 hours, a product having a more uniform particle size distribution is easily obtained, and the range of 3 to 12 hours is more preferable. In any method, the reaction temperature is preferably in the range of 0 to 90 ° C. because the reaction easily proceeds, and the range of 15 to 80 ° C. is more preferable. The basic carbonic acid compound in the method (a) is preferably used in the range of neutralization equivalent to 2.5-fold equivalent of the water-soluble compound of the transition metal. When a basic hydroxide is used in combination, it is preferable to use an amount equal to or less than that of the basic carbonate compound. When the usage-amount of a basic hydroxide becomes more than the same equivalent as a basic carbonate compound, it will become easy to byproduce a transition metal hydroxide besides a transition metal composite carbonate. In the method (b), the basic compound is preferably used in the range of neutralization equivalent to 2.5 times equivalent of the water-soluble compound of the transition metal, and the amount of carbon dioxide used is that the transition metal is carbonated. There is no particular limitation as long as it is the stoichiometric amount or more necessary for forming the salt.

遷移金属炭酸塩を、前記(a)又は(b)の方法で製造する場合、得られる遷移金属炭酸塩は、遷移金属を1種含む場合、炭酸ニッケル、炭酸マンガン、炭酸コバルト、炭酸鉄、炭酸銅、炭酸亜鉛、炭酸クロムであり、遷移金属を2種以上含む場合は、ニッケル、マンガン、コバルト、鉄、銅、亜鉛、クロム、チタン、バナジウム、ジルコニウム等の複合炭酸塩である。チタン、バナジウム、ジルコニウムは、それぞれ単独の炭酸塩は知られていないが、他の遷移金属との複合炭酸塩は形成し得ると考えられる。これらは、何れも六方晶の結晶構造を有する化合物であり、粉末X線回折を測定することにより確認することができる。 When the transition metal carbonate is produced by the method of (a) or (b) above, the resulting transition metal carbonate contains nickel carbonate, manganese carbonate, cobalt carbonate, iron carbonate, carbonate, Copper, zinc carbonate, and chromium carbonate. When two or more transition metals are included, they are complex carbonates such as nickel, manganese, cobalt, iron, copper, zinc, chromium, titanium, vanadium, and zirconium. Titanium, vanadium, and zirconium are not known as single carbonates, respectively, but it is thought that complex carbonates with other transition metals can be formed. These are all compounds having a hexagonal crystal structure, and can be confirmed by measuring powder X-ray diffraction.

前記(1)又は(2)の方法において、遷移金属炭酸塩を用いる場合、このものとリチウム化合物との反応若しくは混合に先立って、遷移金属の炭酸塩を塩基性水溶液でリーチングし、ろ別した後、純水で洗浄する工程を設けると、酸性根及びアルカリ金属の含有量を低減させられ、放電容量が高い複合酸化物が得られ易いので好ましい。塩基性水溶液としては炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、アンモニア等の水溶液が挙げられ、特に、アルカリ金属炭酸塩、アルカリ金属水酸化物は洗浄性がよく好ましい。リーチングは、遷移金属炭酸塩を水系媒液中に分散させスラリー化し、塩基性水溶液でスラリーのpHを8〜11.5、より好ましくは8.5〜11の範囲に調整すると、酸性根の含有量を低減させ易く好ましい。pHが8以下であると酸性根の低減が困難であり、また11.5以上にすると、塩基性水溶液の使用量が多くなり過ぎ、水洗してもアルカリ成分の除去が困難となる。塩基性水溶液を添加後は、例えば、10分〜2時間程度撹拌するなどして一定の時間保持するのが好ましい。酸性根は、出発物質となる前記遷移金属の水溶性化合物に由来するSOやCl等であり、アルカリ金属は塩基性炭酸化合物や中和剤に由来し、実質的にナトリウムとカリウムである。遷移金属炭酸塩中の酸性根の含有量が総量で多くとも2000ppm、アルカリ金属の含有量が総量で多くとも3000ppmになるように、リーチング及び純水洗浄を行うと好ましい。ろ別には公知のろ過装置を用いることができ、特に制限は無いが、工業的にはロールプレス、フィルタープレス等が好ましい。 In the case of using the transition metal carbonate in the method (1) or (2), prior to the reaction or mixing of this with a lithium compound, the transition metal carbonate was leached with a basic aqueous solution and filtered. Thereafter, it is preferable to provide a step of washing with pure water because the content of acidic roots and alkali metals can be reduced and a complex oxide having a high discharge capacity can be easily obtained. Examples of the basic aqueous solution include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and aqueous solutions such as ammonia. Oxides are preferable because of their good detergency. In the leaching, a transition metal carbonate is dispersed in an aqueous medium to form a slurry, and the pH of the slurry is adjusted to 8 to 11.5, more preferably 8.5 to 11 with a basic aqueous solution. It is easy to reduce the amount, which is preferable. When the pH is 8 or less, it is difficult to reduce acidic roots. When the pH is 11.5 or more, the amount of the basic aqueous solution used is excessive, and it is difficult to remove the alkaline component even if washed with water. After adding the basic aqueous solution, it is preferable to hold for a certain period of time, for example, by stirring for about 10 minutes to 2 hours. The acidic root is SO 3 or Cl derived from the water-soluble compound of the transition metal as a starting material, and the alkali metal is derived from a basic carbonate compound or a neutralizing agent, and is substantially sodium and potassium. It is preferable to perform leaching and pure water cleaning so that the total content of acidic roots in the transition metal carbonate is at most 2000 ppm and the total content of alkali metals is at most 3000 ppm. A known filtration device can be used for the filtration, and there is no particular limitation, but a roll press, a filter press and the like are preferable industrially.

(1)の方法にリーチング処理遷移金属炭酸塩を用いる場合、このものと水溶性リチウム化合物との反応生成物である該前駆体をろ別すると、該前駆体を固液分離すると共に、リーチング処理後も残留する酸性根、アルカリ金属を除去でき、これらの含有量をいっそう低減できる。該前駆体中の酸性根の含有量は総量で多くとも1500ppm、アルカリ金属の含有量は総量で多くとも2000ppmとするのが好ましく、それぞれを多くとも1000ppm、1500ppmとするのが更に好ましい。但し、ろ別中またはろ別後に、洗浄やリーチングを行うと、該前駆体からリチウムが溶出し易くなるので好ましくない。ろ別後は乾燥し、次の一次熱処理工程に供するのが好ましい。 When a leaching treatment transition metal carbonate is used in the method (1), the precursor, which is a reaction product of this and a water-soluble lithium compound, is filtered off, and the precursor is solid-liquid separated and leaching treatment is performed. The remaining acidic roots and alkali metals can be removed, and the content thereof can be further reduced. The total content of acidic roots in the precursor is at most 1500 ppm, and the total content of alkali metals is preferably at most 2000 ppm, and more preferably at most 1000 ppm and 1500 ppm, respectively. However, washing or leaching during or after filtration is not preferable because lithium is likely to be eluted from the precursor. It is preferable to dry after filtration and to use for the next primary heat treatment process.

尚、リーチング処理遷移金属炭酸塩及びこれを用いた該前駆体中の酸性根、アルカリ金属の含有量は、これらを120℃の温度で5時間乾燥した後、測定したものである。 The contents of the leaching-treated transition metal carbonate and the acidic root and alkali metal in the precursor using the same were measured after drying them at a temperature of 120 ° C. for 5 hours.

前記(1)又は(2)の方法で遷移金属水酸化物を用いる場合、水系媒液中で、水溶性ニッケル化合物、水溶性マンガン化合物、水溶性コバルト化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物、水溶性チタン化合物、水溶性バナジウム化合物、水溶性ジルコニウム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物を、塩基性化合物にて中和する方法で得るのが好ましい。用いる前記遷移金属の水溶性化合物としては、これらの硫酸塩、塩化物、硝酸塩等が挙げられ、塩基性炭酸化合物としては塩基性水酸化物としては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を用いることができる。 When a transition metal hydroxide is used in the method of (1) or (2), a water-soluble nickel compound, a water-soluble manganese compound, a water-soluble cobalt compound, a water-soluble iron compound, and a water-soluble copper compound are used in an aqueous medium. And at least one water-soluble transition metal compound selected from water-soluble zinc compounds, water-soluble chromium compounds, water-soluble titanium compounds, water-soluble vanadium compounds, and water-soluble zirconium compounds. Is preferred. Examples of the water-soluble compounds of the transition metal used include those sulfates, chlorides, nitrates, etc., as the basic carbonate compound, as the basic hydroxide, alkali metal water such as sodium hydroxide, potassium hydroxide, etc. An oxide can be used.

前記遷移金属の水溶性化合物と塩基性化合物との反応は、前記遷移金属の水溶性化合物の水溶液中に塩基性化合物の水溶液を添加して行っても、その逆の添加順序でもよく、あるいは、水系媒液中に前記遷移金属の水溶性化合物、塩基性化合物の各水溶液を並行添加して行ってもよい。特に、並行添加は、粒度分布が整った遷移金属水酸化物が得られ易いので好ましい。並行添加は、1〜20時間かけて徐々に行うと、一層粒度分布が整ったものが得られ易いので好ましく、3〜12時間の範囲が更に好ましい。反応温度は、室温以上90℃以下の範囲であると、反応が進み易いので好ましく、45〜80℃の範囲が更に好ましい。 The reaction between the water-soluble compound of the transition metal and the basic compound may be performed by adding an aqueous solution of the basic compound to the aqueous solution of the water-soluble compound of the transition metal, or vice versa. You may carry out by adding in parallel each aqueous solution of the said transition metal water-soluble compound and a basic compound in an aqueous medium. In particular, the parallel addition is preferable because a transition metal hydroxide having a uniform particle size distribution is easily obtained. When the parallel addition is gradually performed over 1 to 20 hours, a product having a more uniform particle size distribution is easily obtained, and the range of 3 to 12 hours is more preferable. The reaction temperature is preferably in the range of room temperature to 90 ° C., because the reaction is easy to proceed, and is preferably in the range of 45 to 80 ° C.

また、前記(2)の方法で遷移金属酸化物を用いる場合、このものを得るには、遷移金属水酸化物を酸化性雰囲気中で加熱焼成したり放置したりするなどして酸化する方法、遷移金属化合物、例えば、遷移金属の炭酸塩、酢酸塩、クエン酸、硝酸塩、硫酸塩、塩化物等を加熱分解する方法を用いることができる。また、前記の方法で得られた遷移金属水酸化物を得る際に、水系媒液中に、空気、酸素、オゾン等の酸化性ガスを吹き込んだり、過酸化水素、ペルオキソ二硫酸塩等の酸化剤を添加したりして酸化すると、短時間でしかも連続的に行えるので、低コストで工業的に好ましい。 Further, when a transition metal oxide is used in the method (2), in order to obtain this, a method in which the transition metal hydroxide is oxidized by heating and firing in an oxidizing atmosphere or leaving it, A method of thermally decomposing transition metal compounds such as carbonates, acetates, citric acids, nitrates, sulfates and chlorides of transition metals can be used. Further, when obtaining the transition metal hydroxide obtained by the above method, an oxidizing gas such as air, oxygen or ozone is blown into the aqueous medium, or oxidation such as hydrogen peroxide or peroxodisulfate is conducted. Oxidation by adding an agent is industrially preferable at low cost because it can be performed continuously in a short time.

前記の方法で得られたリチウム・遷移金属複合酸化物前駆体を、複合酸化物が生成し易いように酸化性雰囲気中で一次熱処理して、主にリチウム・遷移金属複合酸化物からなる一次熱処理物を得る。本発明においては、一次熱処理は乾式熱処理もしくは水熱処理のいずれでも差支えない。乾式で熱処理する場合はさらに二次熱処理で結晶成長を促進させ、緻密な粒子が得られるように、一次熱処理物の結晶性が高くなり、且つ強固な焼結体とならないような温度範囲で行うことが望ましい。具体的には、炭酸成分を含む前駆体を乾式で熱処理する場合、炭酸化合物が完全には分解、揮発しないように、比較的低い温度で行うのが好ましく、300℃以上800℃未満の範囲がより好ましく、500〜750℃の範囲が更に好ましい。酸化性雰囲気にするには、酸素等の酸化性ガスを供給してよいが、単に大気中で加熱焼成するだけでもよい。一次熱処理時間は多くとも5時間未満とするのが好ましく、5時間以上乾式熱処理を行うと、熱処理温度を前記のものとしても炭酸化合物が揮発し易くなり、焼結も進み易くなる。より好ましい範囲は、0.5〜4時間である。また、前駆体として炭酸成分を含まないものを用いる場合も、上記の熱処理条件(温度及び時間)に準じて一次熱処理することが好ましい。 The lithium-transition metal composite oxide precursor obtained by the above method is subjected to a primary heat treatment in an oxidizing atmosphere so that the composite oxide is easily formed, and the primary heat treatment mainly composed of a lithium-transition metal composite oxide. Get things. In the present invention, the primary heat treatment can be either a dry heat treatment or a hydrothermal treatment. When heat treatment is performed in a dry process, the crystal growth is further promoted by secondary heat treatment, and the heat treatment is performed in a temperature range where the crystallinity of the primary heat-treated product is high and a strong sintered body is not obtained so that dense particles can be obtained. It is desirable. Specifically, when a precursor containing a carbonic acid component is subjected to a heat treatment in a dry process, it is preferably performed at a relatively low temperature so that the carbonic acid compound is not completely decomposed and volatilized. More preferably, the range of 500-750 degreeC is still more preferable. In order to obtain an oxidizing atmosphere, an oxidizing gas such as oxygen may be supplied, but it may be simply heated and fired in the atmosphere. The primary heat treatment time is preferably less than 5 hours at the most, and when dry heat treatment is performed for 5 hours or more, the carbonic acid compound is easily volatilized and the sintering is facilitated even if the heat treatment temperature is the same as described above. A more preferable range is 0.5 to 4 hours. Also, when a precursor that does not contain a carbonic acid component is used, it is preferable to perform a primary heat treatment according to the above heat treatment conditions (temperature and time).

一次熱処理した後、非酸化性雰囲気中、炭酸化合物の存在下で二次熱処理してリチウム・遷移金属複合酸化物を得る。炭酸成分を含む前駆体の一次熱処理により得られる一次熱処理物に炭酸リチウム等の炭酸化合物が残存している場合は、このものを直接二次熱処理に供することができる。また、炭酸化合物の残存が僅かな場合や炭酸成分を含まない前駆体を一次熱処理した場合は、一次熱処理物に炭酸化合物を新たに添加して二次熱処理に供することができる。新たに添加する炭酸化合物としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸リチウム等を用いることができる。非酸化性雰囲気中での二次熱処理時に炭酸化合物を存在させることで、一次熱処理で生成したリチウム・遷移金属複合酸化物の結晶化と結晶の成長を進めていると考えられる。炭酸化合物の存在量は、一次熱処理物に対しCOとして0.2〜5重量%の範囲とするのが好ましい。この範囲より少ないと、二次熱処理による結晶化や結晶の成長等の所望の効果が得られ難く、この範囲より多いと、最終生成物に残存する炭酸成分が多くなりすぎ、充放電容量等の電池特性の低下を招く。より好ましい範囲は、0.5〜3重量%である。なお、一次熱処理物に残存する炭酸化合物の有無は、このもののX解回折を測定することで確認することができる。また、一次熱処理物が炭酸成分を含む前駆体を用いたものである場合、炭酸化合物の存在量は、一次熱処理物を高周波燃焼−赤外線吸収法により分析し、得られた炭素(C)の含有量から換算できる。 After the primary heat treatment, a secondary heat treatment is performed in the presence of a carbonic acid compound in a non-oxidizing atmosphere to obtain a lithium / transition metal composite oxide. When a carbonate compound such as lithium carbonate remains in the primary heat treatment product obtained by the primary heat treatment of the precursor containing the carbonic acid component, this can be directly subjected to the secondary heat treatment. Further, when the remaining amount of the carbonic acid compound is slight or when the precursor containing no carbonic acid component is subjected to the primary heat treatment, the carbonic acid compound can be newly added to the primary heat-treated product and subjected to the secondary heat treatment. As the carbonic acid compound to be newly added, for example, ammonium carbonate, ammonium hydrogen carbonate, lithium carbonate, or the like can be used. The presence of a carbonic acid compound during the secondary heat treatment in a non-oxidizing atmosphere is considered to promote the crystallization and crystal growth of the lithium / transition metal composite oxide produced by the primary heat treatment. The amount of the carbonate compound is preferably in the range of 0.2 to 5% by weight as CO 3 with respect to the primary heat-treated product. If it is less than this range, it is difficult to obtain desired effects such as crystallization or crystal growth by secondary heat treatment, and if it is more than this range, the carbonic acid component remaining in the final product becomes too much, and the charge / discharge capacity, etc. The battery characteristics are degraded. A more preferable range is 0.5 to 3% by weight. In addition, the presence or absence of the carbonic acid compound remaining in the primary heat-treated product can be confirmed by measuring X-diffraction of this product. In addition, when the primary heat-treated product uses a precursor containing a carbonic acid component, the abundance of the carbonic acid compound is determined by analyzing the primary heat-treated product by a high-frequency combustion-infrared absorption method and containing carbon (C) obtained. Can be converted from the quantity.

二次熱処理温度は、目的とする複合酸化物に応じて適宜設定することができるが、少なくとも800℃であれば好ましい。粒子の焼結を防ぐためには、1000℃以下とするのが更に好ましいので、いっそう好ましい二次熱処理温度は800〜1000℃の範囲である。非酸化性雰囲気にするには、窒素、アルゴン等の不活性ガスを供給することで行え、窒素ガスを用いるのが経済的に好ましい。また、二次熱処理時間は、0.5〜10時間の範囲で行うと、結晶性が高いリチウム・遷移金属複合酸化物が得られ易いので好ましい。一次および二次の熱処理には、ロータリーキルン、トンネルキルン等公知の機器を用いることができる。 The secondary heat treatment temperature can be appropriately set according to the target composite oxide, but is preferably at least 800 ° C. In order to prevent the sintering of the particles, the temperature is further preferably set to 1000 ° C. or lower, and therefore, the more preferable secondary heat treatment temperature is in the range of 800 to 1000 ° C. In order to make it a non-oxidizing atmosphere, it can carry out by supplying inert gas, such as nitrogen and argon, and it is economically preferable to use nitrogen gas. The secondary heat treatment time is preferably in the range of 0.5 to 10 hours because a lithium / transition metal composite oxide having high crystallinity is easily obtained. Known devices such as a rotary kiln and a tunnel kiln can be used for the primary and secondary heat treatment.

遷移金属化合物種およびそれらの配合割合は、目的とするリチウム・遷移金属複合酸化物の組成に応じて適宜設定することができる。また、リチウム化合物の使用量は、前記遷移金属の合計量に対してモル比で0.5〜1.5に相当する量に設定すればよい。 The transition metal compound species and the blending ratio thereof can be appropriately set according to the composition of the target lithium / transition metal composite oxide. Moreover, what is necessary is just to set the usage-amount of a lithium compound to the quantity equivalent to 0.5-1.5 by molar ratio with respect to the total amount of the said transition metal.

本発明の製造方法で得られるリチウム・遷移金属複合酸化物は、結晶性が良く、しかもタップ密度の高いものであるので、このものをリチウム電池の正極活物質として用いると、十分な充放電特性を有し、しかもエネルギー密度の高いリチウム電池が得られることが期待される。本発明の製造方法においては、タップ密度が少なくとも2.0g/ccのリチウム・遷移金属複合酸化物が得られる。 The lithium / transition metal composite oxide obtained by the production method of the present invention has good crystallinity and high tap density. Therefore, when this is used as a positive electrode active material of a lithium battery, sufficient charge / discharge characteristics are obtained. It is expected that a lithium battery having a high energy density can be obtained. In the production method of the present invention, a lithium / transition metal composite oxide having a tap density of at least 2.0 g / cc is obtained.

本発明により層状構造若しくはスピネル構造を有する種々のリチウム・遷移金属複合酸化物を製造することができる。層状構造を有する複合酸化物は、一般式LiMO(但しMはNi、Mn、Co、Fe、Cu、Zn、Cr、Ti、V及びZrから選ばれる少なくとも一種の元素である)であらわされるものであり、例えばLiCoO、LiMnO、LiNiO、Li(Co、Mn)O、Li(Ni、Mn)O、Li(Ni、Co)O、Li(Ni、Mn、Co)O等が挙げられる。また、スピネル構造を有する複合酸化物としては、LiM24(但しMはNi、Mn、Co、Fe、Cu、Zn、Cr、Ti、V及びZrから選ばれる少なくとも一種の元素である)、例えばLiMn、Li(Co、Mn)、Li(Ni、Mn)、Li(Fe、Mn)、Li(Cr、Mn)、Li(Ni、Mn、Co)等が挙げられる。上記複合酸化物において、リチウムと遷移金属のモル比は特に上記組成に限定されるものではなく、遷移金属をMで表すと、Li/M=0.8〜1.5の範囲、より好ましくは0.9〜1.3の範囲の層状化合物、Li/M=0.5〜0.8の範囲、より好ましくは0.5〜0.75の範囲のスピネル型化合物が得られる。 According to the present invention, various lithium / transition metal composite oxides having a layered structure or a spinel structure can be produced. The composite oxide having a layered structure is represented by the general formula LiMO 2 (where M is at least one element selected from Ni, Mn, Co, Fe, Cu, Zn, Cr, Ti, V, and Zr). For example, LiCoO 2 , LiMnO 2 , LiNiO 2 , Li (Co, Mn) O 2 , Li (Ni, Mn) O 2 , Li (Ni, Co) O 2 , Li (Ni, Mn, Co) O 2 Etc. Moreover, as a complex oxide having a spinel structure, LiM 2 O 4 (where M is at least one element selected from Ni, Mn, Co, Fe, Cu, Zn, Cr, Ti, V, and Zr), For example, LiMn 2 O 4 , Li (Co, Mn) 2 O 4 , Li (Ni, Mn) 2 O 4 , Li (Fe, Mn) 2 O 4 , Li (Cr, Mn) 2 O 4 , Li (Ni, Mn, Co) 2 O 4 and the like. In the composite oxide, the molar ratio of lithium to the transition metal is not particularly limited to the above composition. When the transition metal is represented by M, Li / M = 0.8 to 1.5, more preferably A layered compound in the range of 0.9 to 1.3, a spinel type compound in the range of Li / M = 0.5 to 0.8, more preferably in the range of 0.5 to 0.75 is obtained.

本発明は、特に、層状岩塩型結晶構造を有するリチウム・遷移金属複合酸化物の製造に適しており、リーチング処理遷移金属炭酸塩を用いて(1)の方法を適用すると、タップ密度が大きく且つ、酸性根及びアルカリ金属の含有量が少なく、結晶性の高いものが得られる。例えば、そのようなリチウム・遷移金属複合酸化物として、タップ密度が少なくとも2.0g/cc、より好ましくは2.5g/cc以上であり、Li1+x1−x(Mはニッケル、マンガン、コバルト、鉄、銅、亜鉛、クロム、チタン、バナジウム、ジルコニウムから選ばれる少なくとも一種の遷移金属、0≦x≦0.15)で表され、酸性根の含有量が総量で多くとも1500ppm、アルカリ金属の含有量が総量で多くとも2000ppmであり、六方晶に帰属されるX線回折の(003)及び(104)のピーク強度比(I(003)/I(104))が少なくとも1.4である層状岩塩型リチウム・遷移金属複合酸化物が挙げられる。このものは、充填性が優れているばかりでなく、コバルト含有量を少くしても、放電容量が大きく、レート特性に優れている。 The present invention is particularly suitable for the production of a lithium / transition metal composite oxide having a layered rock salt type crystal structure. When the method (1) is applied using a leaching transition metal carbonate, the tap density is large and In addition, low crystallinity and alkali metal content and high crystallinity are obtained. For example, such a lithium / transition metal composite oxide has a tap density of at least 2.0 g / cc, more preferably 2.5 g / cc or more, and Li 1 + x M 1-x O 2 (M is nickel, manganese) At least one transition metal selected from cobalt, iron, copper, zinc, chromium, titanium, vanadium, and zirconium, 0 ≦ x ≦ 0.15), and the total content of acidic roots is at most 1500 ppm, alkali The total amount of metal is at most 2000 ppm, and the peak intensity ratio (I (003) / I (104)) of (003) and (104) of X-ray diffraction attributed to hexagonal crystals is at least 1.4. And a layered rock salt type lithium / transition metal composite oxide. This product not only has excellent filling properties, but also has a large discharge capacity and excellent rate characteristics even when the cobalt content is reduced.

電池特性を改良する目的で、リチウム、前記遷移金属以外の異種元素を、その結晶格子中にドープすることができる。異種元素としては、例えば熱安定性を改良する目的ではAl等が挙げられ、またサイクル特性を改良する目的ではMg、Ca、Al、B等が挙げられる。異種元素をドープする方法は、例えば、リチウム・遷移金属複合酸化物の表面に異種金属の化合物を沈着させた後、加熱焼成する等の公知の方法に従ってもよい。あるいは、前記の遷移金属炭酸塩や遷移金属水酸化物を得る工程において、異種元素の水溶性化合物を添加してもよい。また、複合酸化物の粒子表面に、異種元素を酸化物、複合酸化物等の形態で被覆することもできる。 In order to improve battery characteristics, different elements other than lithium and the transition metal can be doped into the crystal lattice. Examples of the different element include Al for the purpose of improving the thermal stability, and Mg, Ca, Al, B and the like for the purpose of improving the cycle characteristics. The method of doping the different element may be a known method such as, for example, depositing a compound of a different metal on the surface of the lithium / transition metal composite oxide and then baking it. Alternatively, a water-soluble compound of a different element may be added in the step of obtaining the transition metal carbonate or transition metal hydroxide. In addition, the surface of the composite oxide particles can be coated with a different element in the form of an oxide, composite oxide or the like.

次に、本発明はリチウム電池であって、前記製造方法で得られたリチウム・遷移金属複合酸化物を正極活物質として用いることを特徴とする。リチウム電池用正極は、前記複合酸化物にカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。リチウム電池は前記の正極、負極及び電解液とからなる。負極材料としては、金属リチウム、リチウム合金など、あるいはグラファイト、コークスなどの炭素系材料などが用いられる。また、電解液には、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、などの溶媒にLiPF、LiClO、LiCFSO、LiN(CFSO、LiBFなどのリチウム塩を溶解させたものなど常用の材料を用いることができる。 Next, the present invention is a lithium battery, wherein the lithium / transition metal composite oxide obtained by the above production method is used as a positive electrode active material. The positive electrode for a lithium battery is obtained by adding a conductive material such as carbon black and a binder such as a fluororesin to the composite oxide, and molding or applying the material appropriately. The lithium battery is composed of the positive electrode, the negative electrode, and the electrolytic solution. As the negative electrode material, metallic lithium, lithium alloy or the like, or carbon-based material such as graphite or coke is used. In addition, the electrolyte includes a solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , Conventional materials such as those in which a lithium salt such as LiBF 4 is dissolved can be used.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。 Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
1.遷移金属炭酸塩の調製
硫酸ニッケル、硫酸マンガン及び硫酸コバルトの混合水溶液(ニッケルイオン、マンガンイオン、コバルトイオン換算でそれぞれ0.7モル)700ミリリットルと、炭酸水素カリウム水溶液(炭酸イオン換算で4.72モル)1575ミリリットルとを、70℃の温度の純水500ミリリットル中に、温度を維持し撹拌しながら10時間かけて並行添加して中和し、ろ別した後、純水で洗浄し、遷移金属炭酸塩を得た。
Example 1
1. Preparation of transition metal carbonate 700 ml of mixed aqueous solution of nickel sulfate, manganese sulfate and cobalt sulfate (0.7 mol each in terms of nickel ion, manganese ion and cobalt ion) and aqueous potassium hydrogen carbonate solution (4.72 in terms of carbonate ion) Mole) 1575 ml of pure water at a temperature of 70 ° C. in 500 ml of pure water while maintaining the temperature and stirring in parallel for 10 hours to neutralize, filter, wash with pure water, transition Metal carbonate was obtained.

2.複合炭酸塩の塩基性水溶液リーチング及び水洗
ろ別・洗浄した遷移金属炭酸塩を、純水に分散させて400ミリリットルのスラリーとし、炭酸カリウム水溶液を添加してスラリーのpHを9に調整し、1時間攪拌後、再度ろ別した後、純水で洗浄した。尚、この複合炭酸塩に含まれる酸性根としてはSOが1710ppm、アルカリ金属としてはナトリウムが150ppm、カリウムが100ppmであった。
2. The basic aqueous solution leaching of the composite carbonate and the transition metal carbonate separated and washed with water are dispersed in pure water to make a 400 ml slurry, and the pH of the slurry is adjusted to 9 by adding an aqueous potassium carbonate solution. After stirring for a period of time, it was filtered again and washed with pure water. In addition, as an acidic root contained in this composite carbonate, SO 3 was 1710 ppm, and as an alkali metal, sodium was 150 ppm and potassium was 100 ppm.

3.リチウム・遷移金属複合酸化物前駆体の調製
ニッケル、マンガン及びコバルトの合量換算で100gに相当するリーチング・水洗した遷移金属炭酸塩を、純水に分散させて400ミリリットルのスラリーとした。このスラリーに攪拌しながら水酸化リチウム(一水塩)83gを室温下、常圧下で添加し1時間攪拌した後、ろ過・乾燥してリチウム・遷移金属複合酸化物前駆体を得た。尚、この前駆体に含まれる酸性根としてはSOが800ppm、アルカリ金属としてはナトリウムが120ppm、カリウムが70ppmであった。
3. Preparation of Lithium / Transition Metal Composite Oxide Precursor A leaching / water-washed transition metal carbonate corresponding to 100 g in terms of the total amount of nickel, manganese and cobalt was dispersed in pure water to form a 400 ml slurry. While stirring this slurry, 83 g of lithium hydroxide (monohydrate) was added at room temperature and normal pressure and stirred for 1 hour, followed by filtration and drying to obtain a lithium / transition metal composite oxide precursor. The acidic root contained in this precursor was 800 ppm of SO 3 , and the alkali metal was 120 ppm of sodium and 70 ppm of potassium.

4.リチウム・遷移金属複合酸化物前駆体の加熱焼成
リチウム・遷移金属複合酸化物前駆体を、大気中にて700℃の温度で3時間一次焼成を行った。一次熱処理物中の炭酸化合物の含有量は、COとして1.5重量%であった。一次焼成物の粉末X線回折(X線:Cu−Kα)を測定した結果を図1に示す。このX線回折チャートから、実施例1の一次焼成後の試料には層状岩塩型化合物の他に、炭酸リチウムの存在が認められる。引き続き、二次焼成を窒素雰囲気中にて900℃の温度で3時間行って、層状岩塩型リチウム遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料A)を得た。
4). Heating and calcination of lithium / transition metal composite oxide precursor The lithium / transition metal composite oxide precursor was subjected to primary calcination in the atmosphere at a temperature of 700 ° C. for 3 hours. The content of the carbonic acid compound in the primary heat-treated product was 1.5% by weight as CO 3 . The result of measuring the powder X-ray diffraction (X-ray: Cu—Kα) of the primary fired product is shown in FIG. From this X-ray diffraction chart, in the sample after the primary firing of Example 1, the presence of lithium carbonate in addition to the layered rock salt type compound is recognized. Subsequently, secondary firing was performed in a nitrogen atmosphere at a temperature of 900 ° C. for 3 hours to obtain a layered rock salt type lithium transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (Sample A).

実施例2
1.遷移金属炭酸塩の調製
70℃の温度の純水500ミリリットル中に、炭酸ガスを毎分1リットルの流量で吹込みながら、塩化ニッケル、塩化マンガン、塩化コバルトの混合水溶液(ニッケルイオン、マンガンイオン及びコバルトイオン換算で、それぞれ1.15モル、1.15モル、0.1モル)800ミリリットルと、炭酸カリウム水溶液(炭酸イオン換算で3.2モル)1000ミリリットルとを、温度を維持し攪拌しながら10時間かけて並行添加して中和し、ろ別した後、純水で洗浄して遷移金属炭酸塩を得た。
Example 2
1. Preparation of transition metal carbonate A mixed aqueous solution of nickel chloride, manganese chloride and cobalt chloride (nickel ion, manganese ion and manganese ion) while blowing carbon dioxide gas at a flow rate of 1 liter per minute into 500 ml of pure water at a temperature of 70 ° C. While maintaining the temperature and stirring, 800 ml of 1.15 mol, 1.15 mol, and 0.1 mol in terms of cobalt ion and 1000 ml of aqueous potassium carbonate solution (3.2 mol in terms of carbonate ion), respectively. The mixture was added in parallel for 10 hours to neutralize, filtered, and washed with pure water to obtain a transition metal carbonate.

2.遷移金属炭酸塩の塩基性水溶液リーチング及び水洗
ろ別・洗浄した遷移金属炭酸塩を、純水に分散させて500ミリリットルのスラリーとし、炭酸カリウム水溶液を添加してスラリーのpHを9に調整し、1時間攪拌後、再度ろ別した後、純水で洗浄した。尚、この複合炭酸塩に含まれる酸性根としてはClが90ppm、SOが40ppm、アルカリ金属としてはナトリウムが160ppm、カリウムが70ppmであった。
2. The transition metal carbonate leaching of the transition metal carbonate and the transition metal carbonate separated and washed with water are dispersed in pure water to form a slurry of 500 ml, and the pH of the slurry is adjusted to 9 by adding an aqueous potassium carbonate solution. After stirring for 1 hour, it was filtered again and washed with pure water. The acidic root contained in this composite carbonate was 90 ppm Cl, 40 ppm SO 3 , and 160 ppm sodium and 70 ppm potassium as the alkali metal.

3.リチウム・遷移金属複合酸化物前駆体の調製
ニッケル、マンガン及びコバルトの合量換算で100gに相当するリーチング・水洗した遷移金属炭酸塩を、純水に分散させて500ミリリットルのスラリーとした。このスラリーに攪拌しながら水酸化リチウム(一水塩)85gを室温下、常圧下で添加し1時間攪拌した後、ろ過・乾燥してリチウム・遷移金属複合酸化物前駆体を得た。尚、前駆体に含まれる酸性根としてはClが60ppm、SOが20ppm、アルカリ金属としてはナトリウムが110ppm、カリウムが40ppmであった。
3. Preparation of Lithium / Transition Metal Composite Oxide Precursor A leaching / water-washed transition metal carbonate corresponding to 100 g in terms of the total amount of nickel, manganese and cobalt was dispersed in pure water to give a slurry of 500 ml. While stirring the slurry, 85 g of lithium hydroxide (monohydrate) was added at room temperature and normal pressure and stirred for 1 hour, followed by filtration and drying to obtain a lithium / transition metal composite oxide precursor. The acidic root contained in the precursor was 60 ppm Cl and 20 ppm SO 3 , and the alkali metal was 110 ppm sodium and 40 ppm potassium.

4.リチウム・遷移金属複合酸化物前駆体の加熱焼成
リチウム・遷移金属複合酸化物前駆体を、大気中にて700℃の温度で3時間一次焼成を行った。一次熱処理物中の炭酸化合物の含有量は、COとして1.3重量%であった。引き続き、二次焼成を窒素雰囲気中にて900℃の温度で3時間行って、層状岩塩型リチウム・遷移金属複合酸化物Li1.06Ni0.46Mn0.46Co0.042(試料B)を得た。一次焼成物の粉末X線回折を実施例1と同様にして測定したところ、炭酸リチウムの存在が確認された。
4). Heating and calcination of lithium / transition metal composite oxide precursor The lithium / transition metal composite oxide precursor was subjected to primary calcination in the atmosphere at a temperature of 700 ° C. for 3 hours. The content of the carbonic acid compound in the primary heat-treated product was 1.3% by weight as CO 3 . Subsequently, secondary firing was performed in a nitrogen atmosphere at a temperature of 900 ° C. for 3 hours to obtain a layered rock salt type lithium / transition metal composite oxide Li 1.06 Ni 0.46 Mn 0.46 Co 0.04 O 2 (Sample B). When the powder X-ray diffraction of the primary baked product was measured in the same manner as in Example 1, the presence of lithium carbonate was confirmed.

尚、実施例1、2で得られたリチウム・遷移金属複合酸化物前駆体の粉末X線回折の測定したところ、六方晶系の水酸化物に由来すると考えられるブロードな回折ピークと、炭酸リチウムの生成を示す鋭い回折ピークが認められ、このものは、ニッケル・マンガン・コバルト複合水酸化物と炭酸リチウムを含む組成物であることがわかった。 In addition, when the powder X-ray diffraction of the lithium / transition metal composite oxide precursor obtained in Examples 1 and 2 was measured, a broad diffraction peak considered to be derived from a hexagonal hydroxide, lithium carbonate, A sharp diffraction peak indicating the formation of was observed, and this was found to be a composition containing nickel / manganese / cobalt composite hydroxide and lithium carbonate.

実施例3
実施例1で得られたリーチング処理遷移金属炭酸塩を、ニッケル、マンガン及びコバルトの合算換算で50gに相当する量を用い、これに水酸化リチウム(一水塩)41gをサンプルミルを用いて混合してリチウム・遷移金属複合酸化物前駆体を得た。この前駆体を大気中にて700℃の温度で3時間一次焼成を行った。一次熱処理物中の炭酸化合物の含有量は、COとして1.1重量%であった。引き続き、二次焼成を窒素雰囲気中にて900℃の温度で3時間行って、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料C)を得た。一次焼成物の粉末X線回折を実施例1と同様にして測定したところ、炭酸リチウムの存在が確認された。
Example 3
The leaching-treated transition metal carbonate obtained in Example 1 was used in an amount corresponding to 50 g in terms of the sum of nickel, manganese and cobalt, and 41 g of lithium hydroxide (monohydrate) was mixed with this using a sample mill. Thus, a lithium / transition metal composite oxide precursor was obtained. The precursor was subjected to primary firing at 700 ° C. for 3 hours in the air. The content of the carbonic acid compound in the primary heat-treated product was 1.1% by weight as CO 3 . Subsequently, secondary firing was performed in a nitrogen atmosphere at a temperature of 900 ° C. for 3 hours to obtain a layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (Sample C). When the powder X-ray diffraction of the primary baked product was measured in the same manner as in Example 1, the presence of lithium carbonate was confirmed.

実施例4
硫酸ニッケル、硫酸マンガン及び硫酸コバルトの混合水溶液(ニッケルイオン、マンガンイオン、コバルトイオン換算でそれぞれ0.8)800ミリリットルと、水酸化ナトリウム水溶液(水酸イオン換算で6.2モル)1000ミリリットルとを、50℃の温度の純水600ミリリットル中に、温度を維持し撹拌しながら6時間かけて並行添加して中和し、ろ別、純水で洗浄後、乾燥して遷移金属水酸化物を得た。ニッケル、マンガン及びコバルトの合量換算で50gに相当する遷移金属水酸化物に、炭酸リチウム37gをサンプルミルを用いて混合してリチウム・遷移金属複合酸化物前駆体を得た。この前駆体を大気中にて700℃の温度で3時間一次焼成を行った。一次熱処理物中の炭酸化合物の含有量は、COとして2.0重量%であった。引き続き、二次焼成を窒素雰囲気中にて900℃の温度で3時間行って、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料D)を得た。一次焼成物の粉末X線回折を実施例1と同様にして測定したところ、炭酸リチウムの存在が確認された。
Example 4
800 ml of a mixed aqueous solution of nickel sulfate, manganese sulfate and cobalt sulfate (each 0.8 in terms of nickel ion, manganese ion and cobalt ion) and 1000 ml of an aqueous sodium hydroxide solution (6.2 mol in terms of hydroxide ion) In 600 ml of pure water at a temperature of 50 ° C., neutralize by adding in parallel for 6 hours while maintaining the temperature, filter, wash with pure water, and then dry to obtain the transition metal hydroxide. Obtained. A transition metal hydroxide equivalent to 50 g in terms of the total amount of nickel, manganese and cobalt was mixed with 37 g of lithium carbonate using a sample mill to obtain a lithium / transition metal composite oxide precursor. The precursor was subjected to primary firing at 700 ° C. for 3 hours in the air. The content of the carbonic acid compound in the primary heat-treated product was 2.0% by weight as CO 3 . Subsequently, secondary firing was performed in a nitrogen atmosphere at a temperature of 900 ° C. for 3 hours to obtain a layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (Sample D). When the powder X-ray diffraction of the primary baked product was measured in the same manner as in Example 1, the presence of lithium carbonate was confirmed.

比較例1
一次焼成の加熱焼成温度を850℃、加熱焼成時間を10時間とした以外は実施例1と同様にして、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料E)を得た。一次熱処理物中の炭酸化合物の含有量は、COとして0.1重量%であった。実施例1と同様に、一次焼成物の粉末X線回折を測定した結果を図2に示す。図2より、一次焼成後の試料には層状岩塩型化合物の存在のみが認めら、炭酸リチウムの存在は認められなかった。
Comparative Example 1
Layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (sample) E) was obtained. The content of the carbonic acid compound in the primary heat-treated product was 0.1% by weight as CO 3 . As in Example 1, the results of measuring powder X-ray diffraction of the primary fired product are shown in FIG. From FIG. 2, only the presence of the layered rock salt type compound was observed in the sample after the primary firing, but the presence of lithium carbonate was not observed.

比較例2
二次焼成を行わなかった以外は実施例1と同様にして、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料F)を得た。
Comparative Example 2
A layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (Sample F) was obtained in the same manner as in Example 1 except that secondary firing was not performed.

比較例3
二次焼成を行わず、加熱焼成温度を950℃、加熱焼成時間を20時間とした以外は実施例1と同様にして、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料G)を得た。
Comparative Example 3
Layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 in the same manner as in Example 1 except that the secondary firing was not performed, the heat firing temperature was 950 ° C., and the heat firing time was 20 hours. O 2 (Sample G) was obtained.

比較例4
一次焼成を窒素雰囲気中にて900℃の温度で3時間行い、引き続き、二次焼成を大気中にて700℃の温度で3時間を行った以外は実施例1と同様にして、リチウム・遷移金属複合酸化物(試料H)を得た。このものは、単相の層状岩塩型構造になっていなかった。
Comparative Example 4
Lithium transition was performed in the same manner as in Example 1 except that primary firing was performed at 900 ° C. for 3 hours in a nitrogen atmosphere, and then secondary firing was performed at 700 ° C. for 3 hours in the air. A metal composite oxide (sample H) was obtained. This was not a single-phase layered rock salt structure.

比較例5
実施例4で得られた遷移金属水酸化物を、ニッケル、マンガン及びコバルトの合算換算で50gに相当する量を用い、これに水酸化リチウム(一水塩)41gをサンプルミルを用いて混合しリチウム・遷移金属複合酸化物前駆体を得た。この前駆体を大気中にて700℃の温度で3時間一次焼成を行った。一次熱処理物中の炭酸化合物の含有量は、COとして0重量%であった。引き続き、二次焼成を窒素雰囲気中にて900℃の温度で3時間行って、層状岩塩型リチウム・遷移金属複合酸化物Li1.05Ni0.32Mn0.32Co0.322(試料I)を得た。
Comparative Example 5
The transition metal hydroxide obtained in Example 4 was used in an amount corresponding to 50 g in terms of the sum of nickel, manganese and cobalt, and 41 g of lithium hydroxide (monohydrate) was mixed with this using a sample mill. A lithium / transition metal composite oxide precursor was obtained. The precursor was subjected to primary firing at 700 ° C. for 3 hours in the air. The content of the carbonic acid compound in the primary heat-treated product was 0% by weight as CO 3 . Subsequently, secondary firing was performed in a nitrogen atmosphere at a temperature of 900 ° C. for 3 hours to obtain a layered rock salt type lithium / transition metal composite oxide Li 1.05 Ni 0.32 Mn 0.32 Co 0.32 O 2 (Sample I).

評価1:タップ密度の評価
実施例1〜4及び比較例1〜5で得られたリチウム・遷移金属複合酸化物(試料A〜I)50gを、サンプルミルで30秒間解砕した後、100ミリリットルのメスシリンダーに入れ、100回タッピングしてタップ密度を測定した。結果を、表1に示す。本発明で得られたリチウム・遷移金属複合酸化物は、いずれもタップ密度が大きく、充填性が優れていることがわかる。
Evaluation 1: Evaluation of Tap Density 50 g of the lithium / transition metal composite oxides (samples A to I) obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were crushed with a sample mill for 30 seconds, and then 100 ml. The tap density was measured by tapping 100 times. The results are shown in Table 1. It can be seen that all of the lithium / transition metal composite oxides obtained in the present invention have a high tap density and an excellent filling property.

評価2:充放電容量の評価
実施例1〜4及び比較例1〜5で得られたリチウム・遷移金属複合酸化物(試料A〜I)を正極活物質とした場合のリチウムニ次電池の充放電容量を評価した。電池の形態や測定条件について説明する。
Evaluation 2: Evaluation of Charging / Discharging Capacity Charging / Discharging of Lithium Secondary Battery Using Lithium / Transition Metal Composite Oxides (Samples A to I) Obtained in Examples 1 to 4 and Comparative Examples 1 to 5 as a positive electrode active material Capacity was evaluated. The battery configuration and measurement conditions will be described.

試料A〜Iと、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリ四フッ化エチレン粉末を重量比で100:10:3で混合し、乳鉢で練り合わせ、直径10mmの円形に成形してペレット状とした。ペレットの重量は10mgであった。このペレットに直径10mmに切り出したアルミニウム製のメッシュを重ね合わせ、14.7MPaでプレスして作用極とした。 Samples A to I, acetylene black powder as a conductive agent, and polytetrafluoroethylene powder as a binder are mixed at a weight ratio of 100: 10: 3, kneaded in a mortar, and formed into a circle with a diameter of 10 mm. To form a pellet. The weight of the pellet was 10 mg. An aluminum mesh cut to a diameter of 10 mm was superimposed on this pellet and pressed at 14.7 MPa to obtain a working electrode.

この作用極を120℃で4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型評価用セルに正極として組み込んだ。評価用セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径14mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPF6を溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。 This working electrode was vacuum-dried at 120 ° C. for 4 hours and then incorporated as a positive electrode in a sealable coin-type evaluation cell in a glove box having a dew point of −70 ° C. or lower. The evaluation cell used was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 3.2 mm. As the negative electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 14 mm was used. A mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF6 was dissolved at a concentration of 1 mol / liter was used as the non-aqueous electrolyte.

正極は評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液をスポイドで滴下した。さらにその上に負極及び厚み調整用の0.5mm厚スペーサーとスプリング(ともにSUS316製)をのせ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。 The positive electrode was placed in the lower can of the evaluation cell, a porous polypropylene film was placed thereon as a separator, and a non-aqueous electrolyte was dropped from above with a dropper. Further, a negative electrode and a 0.5 mm thick spacer for adjusting the thickness and a spring (both made of SUS316) were put thereon, and an upper can with a propylene gasket was put on and the outer peripheral edge portion was caulked and sealed.

充放電容量の測定は、電圧範囲を2.5V〜4.3Vに設定し、充放電電流を0.45mA/g(約3サイクル/日)に設定して、定電流定電圧法にて行った。結果を、表1に示す。本発明で得られたリチウム・遷移金属複合酸化物は、いずれも充放電容量が高いことがわかる。 The charge / discharge capacity is measured by the constant current / constant voltage method with the voltage range set to 2.5 V to 4.3 V, the charge / discharge current set to 0.45 mA / g (about 3 cycles / day). It was. The results are shown in Table 1. It can be seen that the lithium / transition metal composite oxide obtained in the present invention has a high charge / discharge capacity.

Figure 2007214118
Figure 2007214118

本発明で得られるリチウム・遷移金属複合酸化物は、高容量のリチウム電池に有用である。 The lithium / transition metal composite oxide obtained in the present invention is useful for a high-capacity lithium battery.

実施例1の一次焼成物のX線回折チャートである。2 is an X-ray diffraction chart of a primary fired product of Example 1. FIG. 比較例1の一次焼成物のX線回折チャートである。3 is an X-ray diffraction chart of a primary fired product of Comparative Example 1.

Claims (13)

リチウム・遷移金属複合酸化物前駆体を酸化性雰囲気中で一次熱処理した後、非酸化性雰囲気中、炭酸化合物の存在下で二次熱処理することを特徴とするリチウム・遷移金属複合酸化物の製造方法。 Lithium / transition metal composite oxide precursor is first heat-treated in an oxidizing atmosphere, followed by a second heat treatment in the presence of a carbonic acid compound in a non-oxidizing atmosphere. Method. 遷移金属がニッケル、マンガン、コバルト、鉄、銅、亜鉛、クロム、チタン、バナジウム及びジルコニウムからなる群より選ばれる少なくとも一種であることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The lithium / transition metal composite oxide according to claim 1, wherein the transition metal is at least one selected from the group consisting of nickel, manganese, cobalt, iron, copper, zinc, chromium, titanium, vanadium and zirconium. Manufacturing method. 一次熱処理が乾式熱処理もしくは水熱処理であることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 2. The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the primary heat treatment is a dry heat treatment or a hydrothermal treatment. 一次熱処理が300℃以上800℃未満の温度での乾式熱処理であることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the primary heat treatment is a dry heat treatment at a temperature of 300 ° C or higher and lower than 800 ° C. 二次熱処理が少なくとも800℃の温度での乾式熱処理であることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the secondary heat treatment is a dry heat treatment at a temperature of at least 800 ° C. 炭酸化合物の存在量が一次熱処理物に対しCOとして0.2〜5重量%の範囲であることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 2. The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the amount of the carbonic acid compound is in the range of 0.2 to 5 wt% as CO 3 with respect to the primary heat-treated product. 遷移金属の炭酸塩及び/又は水酸化物と水溶性リチウム化合物とを水系媒液中で反応させて該前駆体を得ることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The lithium-transition metal composite oxide according to claim 1, wherein the precursor is obtained by reacting a transition metal carbonate and / or hydroxide with a water-soluble lithium compound in an aqueous medium. Production method. リチウム化合物との反応に先立って、遷移金属の炭酸塩を塩基性水溶液でリーチングし、ろ別した後、純水で洗浄することを特徴とする請求項7に記載のリチウム・遷移金属複合酸化物の製造方法。 The lithium / transition metal composite oxide according to claim 7, wherein prior to the reaction with the lithium compound, the transition metal carbonate is leached with a basic aqueous solution, filtered, and then washed with pure water. Manufacturing method. 遷移金属の炭酸塩、酸化物及び水酸化物から選ばれる少なくとも一種とリチウム化合物とを混合して該前駆体を得ることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 2. The lithium / transition metal composite oxide according to claim 1, wherein the precursor is obtained by mixing at least one selected from carbonate, oxide and hydroxide of a transition metal with a lithium compound. Method. リチウム化合物との混合に先立って、遷移金属の炭酸塩を塩基性水溶液でリーチングし、ろ別した後、純水で洗浄することを特徴とする請求項9に記載のリチウム・遷移金属複合酸化物の製造方法。 The lithium / transition metal composite oxide according to claim 9, wherein the transition metal carbonate is leached with a basic aqueous solution, filtered and then washed with pure water prior to mixing with the lithium compound. Manufacturing method. リチウム化合物が炭酸リチウムを含むことを特徴とする請求項9に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 9, wherein the lithium compound contains lithium carbonate. リチウム・遷移金属複合酸化物がリチウム電池正極活物質として用いるものであることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the lithium / transition metal composite oxide is used as a positive electrode active material for a lithium battery. 請求項1に記載の製造方法で得られるリチウム・遷移金属複合酸化物を正極活物質として用いたリチウム電池。 A lithium battery using, as a positive electrode active material, a lithium / transition metal composite oxide obtained by the production method according to claim 1.
JP2007003102A 2006-01-12 2007-01-11 Method for producing lithium / transition metal composite oxide Expired - Fee Related JP5069007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003102A JP5069007B2 (en) 2006-01-12 2007-01-11 Method for producing lithium / transition metal composite oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006004565 2006-01-12
JP2006004565 2006-01-12
JP2007003102A JP5069007B2 (en) 2006-01-12 2007-01-11 Method for producing lithium / transition metal composite oxide

Publications (2)

Publication Number Publication Date
JP2007214118A true JP2007214118A (en) 2007-08-23
JP5069007B2 JP5069007B2 (en) 2012-11-07

Family

ID=38492330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003102A Expired - Fee Related JP5069007B2 (en) 2006-01-12 2007-01-11 Method for producing lithium / transition metal composite oxide

Country Status (1)

Country Link
JP (1) JP5069007B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745464B2 (en) * 2008-12-24 2011-08-10 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
US20110284806A1 (en) * 2010-05-21 2011-11-24 Basf Se Electrode material and use thereof for production of electrochemical cells
WO2014007360A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, production method for lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
WO2014136760A1 (en) * 2013-03-04 2014-09-12 三井金属鉱業株式会社 Lithium metal composite oxide powder
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
JP2016069209A (en) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 Nickel-cobalt-manganese compound and manufacturing method therefor
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2021501980A (en) * 2017-11-24 2021-01-21 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167919A (en) * 1997-12-05 1999-06-22 Nikki Chemcal Co Ltd Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2003249217A (en) * 2002-02-25 2003-09-05 Ngk Insulators Ltd Positive electrode active material and its manufacturing method, and lithium secondary battery using the positive electrode active material
JP2006134852A (en) * 2004-11-04 2006-05-25 Kyoo-Sun Han Method of manufacturing crystalline material nano particulate anode active material using self-blending eutectic method for high output lithium secondary battery
JP2006232608A (en) * 2005-02-24 2006-09-07 Mitsubishi Chemicals Corp Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167919A (en) * 1997-12-05 1999-06-22 Nikki Chemcal Co Ltd Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2003249217A (en) * 2002-02-25 2003-09-05 Ngk Insulators Ltd Positive electrode active material and its manufacturing method, and lithium secondary battery using the positive electrode active material
JP2006134852A (en) * 2004-11-04 2006-05-25 Kyoo-Sun Han Method of manufacturing crystalline material nano particulate anode active material using self-blending eutectic method for high output lithium secondary battery
JP2006232608A (en) * 2005-02-24 2006-09-07 Mitsubishi Chemicals Corp Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
JP4745464B2 (en) * 2008-12-24 2011-08-10 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
US20110284806A1 (en) * 2010-05-21 2011-11-24 Basf Se Electrode material and use thereof for production of electrochemical cells
US8709298B2 (en) * 2010-05-21 2014-04-29 Basf Se Electrode material and use thereof for production of electrochemical cells
WO2014007360A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, production method for lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
JP5847352B2 (en) * 2013-03-04 2016-01-20 三井金属鉱業株式会社 Lithium metal composite oxide powder
KR20150103103A (en) * 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
WO2014136760A1 (en) * 2013-03-04 2014-09-12 三井金属鉱業株式会社 Lithium metal composite oxide powder
JP2016041653A (en) * 2013-03-04 2016-03-31 三井金属鉱業株式会社 Lithium metal composite oxide powder
KR101637412B1 (en) 2013-03-04 2016-07-07 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9391313B2 (en) 2013-03-04 2016-07-12 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
JPWO2014136760A1 (en) * 2013-03-04 2017-02-09 三井金属鉱業株式会社 Lithium metal composite oxide powder
JP2016069209A (en) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 Nickel-cobalt-manganese compound and manufacturing method therefor
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2021501980A (en) * 2017-11-24 2021-01-21 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material
JP2022111183A (en) * 2017-11-24 2022-07-29 エルジー・ケム・リミテッド Method for preparing cathode active material

Also Published As

Publication number Publication date
JP5069007B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4768562B2 (en) Lithium / transition metal composite oxide, method for producing the same, and lithium battery using the same
US11742479B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
JP5069007B2 (en) Method for producing lithium / transition metal composite oxide
JP4807467B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP2557068B1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
EP1837937A1 (en) Lithium manganese-based composite oxide and method and method forpreparing the same
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP2005222953A (en) Positive electrode active material used for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2017188211A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7118129B2 (en) METHOD FOR PRODUCING POSITIVE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JP2007109477A (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
JP2006147499A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP3030764B2 (en) Spinel-type lithium manganese oxide, method for producing the same, and use thereof
JP5657970B2 (en) Lithium / transition metal composite oxide and lithium battery using the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2009190954A (en) Lithium-titanium-iron compound oxide, its using method, lithium-ion secondary battery and method for producing the lithium-titanium-iron compound oxide
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7119302B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
Choi et al. Influence of fluorine substitution on the electrochemical performance of 3 V spinel Li4Mn5O12− ηFη cathodes
CN115667153A (en) Cathode materials and methods
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5069007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees