JPH11167919A - Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage - Google Patents
Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usageInfo
- Publication number
- JPH11167919A JPH11167919A JP9335544A JP33554497A JPH11167919A JP H11167919 A JPH11167919 A JP H11167919A JP 9335544 A JP9335544 A JP 9335544A JP 33554497 A JP33554497 A JP 33554497A JP H11167919 A JPH11167919 A JP H11167919A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- nickel
- positive electrode
- ion secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の技術分野】本発明は、充電容量が高く、安全性
に優れたリチウムイオン二次電池用正極材および該リチ
ウムイオン二次電池用正極材の製造方法に関する。さら
に、本発明は、上記正極材を含む正極を用いて形成され
たリチウムイオン二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material for a lithium ion secondary battery having a high charge capacity and excellent safety and a method for producing the positive electrode material for the lithium ion secondary battery. Furthermore, the present invention relates to a lithium ion secondary battery formed using a positive electrode including the above-described positive electrode material.
【0002】[0002]
【発明の技術的背景】リチウムイオン二次電池は、ニッ
カド電池やニッケル・水素電池に比べて、エネルギー密
度が高く、小型で軽量であるという特徴を有するため、
携帯電話、カメラ一体型VTR、ノート型パソコンなど
の携帯用電子機器の電源として搭載され、その需要は急
激に延びている。BACKGROUND OF THE INVENTION Lithium-ion secondary batteries are characterized by higher energy density, smaller size and lighter weight than nickel-cadmium batteries and nickel-metal hydride batteries.
It is mounted as a power source for portable electronic devices such as a mobile phone, a camera-integrated VTR, and a notebook personal computer, and the demand has been rapidly increasing.
【0003】このようなリチウムイオン二次電池では、
正極材として、コバルト酸リチウム(LiCoO2)が使
用されている。コバルト酸リチウムは、層状岩塩構造
(α-NaFeO2構造)を有し、可逆的にリチウムイオン
を吸蔵・放出することが可能な化合物である。In such a lithium ion secondary battery,
Lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode material. Lithium cobaltate is a compound having a layered rock salt structure (α-NaFeO 2 structure) and capable of reversibly storing and releasing lithium ions.
【0004】しかしながら、コバルト酸リチウムは、高
価なコバルト化合物を原料とするため、材料コストの面
で、安価な正極材の出現が望まれていた。このため、正
極材として、コバルト酸リチウムと同様の層状岩塩構造
を有し、かつ資源的に安価なニッケル化合物を原料とす
るニッケル酸リチウム(LiNiO 2)に期待が高まって
いる。[0004] However, lithium cobalt oxide has a high
Material cost because of using a cobalt compound
Thus, the emergence of an inexpensive cathode material has been desired. For this reason,
As a pole material, the same layered rock salt structure as lithium cobalt oxide
Using nickel compounds that are
Lithium nickelate (LiNiO) TwoExpectations have risen
I have.
【0005】しかし、ニッケル酸リチウムを正極材とし
て含むリチウムイオン二次電池は、過電圧が大きく、放
電容量が不充分であるという欠点があった。これは、ニ
ッケル酸リチウムでは、リチウム(Li+)サイトに、ニッ
ケル(Ni2+)が入るタイプの置換が起こりやすいため、リ
チウム(Li+)サイトにニッケル(Ni2+)が存在する化合物
となり、このニッケル(Ni2+)がリチウムイオンの拡散を
阻害して、充放電特性に悪影響を与えるためであると説
明されている。[0005] However, lithium ion secondary batteries containing lithium nickelate as a positive electrode material have the disadvantage that the overvoltage is large and the discharge capacity is insufficient. This is because lithium nickelate, lithium (Li +) site, and is easy to occur substitution type nickel (Ni 2+) enters, becomes a compound of lithium (Li +) nickel site (Ni 2+) is present It is described that nickel (Ni 2+ ) inhibits diffusion of lithium ions and adversely affects charge / discharge characteristics.
【0006】このため、ニッケル酸リチウムのニッケル
の一部を他の金属元素に置換して、電池の充放電特性を
高める試みがなされており、本出願人は、特願平8−2
84380号で、リチウムイオン二次電池用正極材とし
て、ニッケルの一部を他の金属元素に置換した複合ニッ
ケル酸リチウムを提案している。For this reason, attempts have been made to improve the charge / discharge characteristics of batteries by substituting a part of nickel of lithium nickelate with another metal element.
No. 84380 proposes a composite lithium nickelate in which a part of nickel is replaced by another metal element as a positive electrode material for a lithium ion secondary battery.
【0007】ところで、リチウムイオン二次電池は、正
極と負極との短絡や誤用によって電流が流れた場合、電
池の温度が上昇することがある。このような場合の電池
の安全性確保のため、種々の安全対策がなされている
が、さらなる安全性向上のためにニッケル酸リチウム自
身の安全性を向上させることが望まれている。[0007] In a lithium ion secondary battery, when a current flows due to a short circuit between the positive electrode and the negative electrode or due to misuse, the temperature of the battery may increase. Various safety measures have been taken to ensure the safety of the battery in such a case, but it is desired to improve the safety of lithium nickelate itself in order to further improve the safety.
【0008】また、ニッケル酸リチウムは、常温で空気
中の湿度と反応して、電池性能を低下させることがある
ため、保存時に乾燥状態を保つ必要があり、取扱が困難
であるという欠点もあった。[0008] Further, lithium nickelate reacts with the humidity in the air at room temperature and may degrade the battery performance. Therefore, it is necessary to keep a dry state during storage and it is difficult to handle. Was.
【0009】[0009]
【発明の目的】本発明は、上記のような従来技術におけ
る問題点を解決しようとするものであって、安全性に優
れ、かつ充電容量が大きく、取扱が容易な複合ニッケル
酸リチウムからなる高安定性リチウムイオン二次電池用
正極材を提供することを目的としている。SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a high-quality lithium nickel nickelate which is excellent in safety, has a large charge capacity and is easy to handle. An object is to provide a positive electrode material for a stable lithium ion secondary battery.
【0010】[0010]
【発明の概要】本発明に係る高安定性リチウムイオン二
次電池用正極材は、リチウムと、ニッケルと、リチウム
およびニッケル以外の金属元素とを含む複合ニッケル酸
リチウム微粒子からなるリチウムイオン二次電池用正極
材において、複合ニッケル酸リチウム微粒子の表面の少
なくとも一部が、リチウムの炭酸塩で被覆され、かつ、
複合ニッケル酸リチウムのニッケル(Ni)と、リチウ
ムおよびニッケル以外の金属元素(M)との原子比(N
i/M)が70/30〜95/5の範囲にあることを特
徴としている。SUMMARY OF THE INVENTION A positive electrode material for a highly stable lithium ion secondary battery according to the present invention is a lithium ion secondary battery comprising fine particles of lithium composite nickelate containing lithium, nickel, and a metal element other than lithium and nickel. In the positive electrode material, at least a part of the surface of the composite lithium nickelate fine particles is coated with lithium carbonate, and
The atomic ratio (N) between nickel (Ni) of the composite lithium nickelate and a metal element (M) other than lithium and nickel
i / M) is in the range of 70/30 to 95/5.
【0011】前記リチウムおよびニッケル以外の金属元
素は、ニッケルのイオン半径の0.8〜1.5倍であるこ
とが好ましい。本発明に係る高安定性リチウムイオン二
次電池用正極材の製造方法は、リチウム化合物と、ニッ
ケル化合物と、リチウムおよびニッケル以外の金属の化
合物とを含む混合物を、酸素含有ガス雰囲気下で600
〜850℃で焼成し、次いで400℃以下で二酸化炭素
ガスとを接触させることを特徴としている。The metal elements other than lithium and nickel are preferably 0.8 to 1.5 times the ionic radius of nickel. The method for producing a positive electrode material for a highly stable lithium ion secondary battery according to the present invention includes the steps of: mixing a mixture containing a lithium compound, a nickel compound, and a compound of a metal other than lithium and nickel in an oxygen-containing gas atmosphere under an oxygen-containing gas atmosphere;
It is characterized by firing at ~ 850 ° C and then contacting with carbon dioxide gas at 400 ° C or less.
【0012】本発明に係るリチウムイオン二次電池は、
(i) 前記リチウムイオン二次電池用正極材から構成され
た正極と、(ii)リチウム金属、リチウム合金またはリチ
ウムイオンを吸蔵・放出可能な材料を負極活物質として
含む負極と、(iii)液体または固体の電解質とを含むこ
とを特徴としている。[0012] The lithium ion secondary battery according to the present invention comprises:
(i) a positive electrode composed of the positive electrode material for a lithium ion secondary battery, (ii) a negative electrode containing a lithium metal, a lithium alloy or a material capable of occluding and releasing lithium ions as a negative electrode active material, and (iii) a liquid. Alternatively, a solid electrolyte is included.
【0013】[0013]
【発明の具体的説明】以下、本発明に係る高安定性リチ
ウムイオン二次電池用正極材およびその製造方法につい
て具体的に説明する。DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the cathode material for a highly stable lithium ion secondary battery according to the present invention and a method for producing the same will be described in detail.
【0014】[高安定性リチウムイオン二次電池用正極
材]本発明に係る高安定性リチウムイオン二次電池用正
極材は、リチウムと、ニッケルと、リチウムおよびニッ
ケル以外の金属元素(以下、第三金属元素という)とを
含む複合ニッケル酸リチウム微粒子からなる。[Positive Electrode Material for Highly Stable Lithium Ion Secondary Battery] The positive electrode material for a highly stable lithium ion secondary battery according to the present invention comprises lithium, nickel, and a metal element other than lithium and nickel (hereinafter, referred to as a lithium-ion secondary battery). Trimetallic element).
【0015】第三金属元素としては、イオン半径がNi
のイオン半径の0.8〜1.5倍、好ましくは0.9〜
1.3倍の範囲のものが好ましく、具体的には、Mn、
Fe、Co、Mg、Alなどが挙げられる。本発明では、こ
れらの第三金属元素の1種または2種以上がニッケル酸
リチウムの結晶構造中に均一に固溶している。The third metal element has an ionic radius of Ni
0.8 to 1.5 times, preferably 0.9 to 1.5 times the ion radius of
It is preferably in the range of 1.3 times, specifically, Mn,
Fe, Co, Mg, Al and the like. In the present invention, one or more of these third metal elements are uniformly dissolved in the crystal structure of lithium nickelate.
【0016】この複合ニッケル酸リチウムのニッケル
(Ni)と第三金属元素(M)との原子比(Ni/M)
は、70/30〜95/5、好ましくは80/20〜9
0/10であることが望ましい。Ni/Mが95/5よ
りも大きいと、電池のサイクル特性が低下することがあ
り、またNi/Mが70/30よりも小さいと充電容量
が低下することがある。The atomic ratio (Ni / M) between nickel (Ni) and the third metal element (M) of the composite lithium nickelate
Is 70/30 to 95/5, preferably 80/20 to 9
Desirably, it is 0/10. If Ni / M is larger than 95/5, the cycle characteristics of the battery may be deteriorated, and if Ni / M is smaller than 70/30, the charge capacity may be reduced.
【0017】また、上記複合ニッケル酸リチウムのリチ
ウム(Li)と、ニッケルおよび第三金属元素(Ni+M)
との原子比(Li/(Ni+M))は、0.95〜1.3、好ま
しくは0.97〜1.05の範囲にあることが好ましい。
原子比が0.95未満では、複合ニッケル酸リチウム中
のリチウムが少ないため、電池の放電容量が低下し、か
つ微粒子表面のリチウム炭酸塩の被覆量が少なくなる。
また原子比が1.3より多くなっても、放電容量を向上
させる効果が少なく、後述する炭酸ガスによる被覆効果
も少ない。Further, lithium (Li) of the composite lithium nickelate, nickel and a third metal element (Ni + M)
The atomic ratio (Li / (Ni + M)) is preferably in the range of 0.95 to 1.3, more preferably 0.97 to 1.05.
When the atomic ratio is less than 0.95, the lithium in the composite lithium nickelate is small, so that the discharge capacity of the battery is reduced and the amount of lithium carbonate coated on the surface of the fine particles is reduced.
Further, even if the atomic ratio is more than 1.3, the effect of improving the discharge capacity is small, and the effect of covering with carbon dioxide gas described later is also small.
【0018】本発明では、上記複合ニッケル酸リチウム
微粒子の表面の少なくとも一部が、リチウムの炭酸塩で
被覆されている。このような複合ニッケル酸リチウム微
粒子表面には、リチウムの炭酸塩以外の化合物、たとえ
ば酸化リチウムなどが存在してもよいが、複合ニッケル
酸リチウム微粒子の大部分の表面が、リチウムの炭酸塩
で被覆されていることが望ましい。In the present invention, at least a portion of the surface of the composite lithium nickelate fine particles is coated with lithium carbonate. Compounds other than lithium carbonate, such as lithium oxide, may be present on the surface of the composite lithium nickelate fine particles, but most surfaces of the composite lithium nickelate fine particles are coated with lithium carbonate. It is desirable to have been.
【0019】このような本発明に係る高安定性リチウム
イオン二次電池用正極材は、リチウム化合物と、ニッケ
ル化合物と、第三金属元素の化合物とを所定の割合とな
るように混合したのち、混合物を酸素含有ガス雰囲気下
で600〜850℃、好ましくは700〜750℃で焼
成し、次いで400℃以下、好ましくは200〜300
℃で二酸化炭素ガスとを接触させることにより得ること
ができる。In the cathode material for a highly stable lithium ion secondary battery according to the present invention, a lithium compound, a nickel compound, and a compound of a third metal element are mixed at a predetermined ratio. The mixture is calcined in an oxygen-containing gas atmosphere at 600 to 850 ° C, preferably 700 to 750 ° C, and then 400 ° C or less, preferably 200 to 300 ° C.
It can be obtained by contacting carbon dioxide gas at a temperature of ° C.
【0020】リチウム化合物としては、炭酸リチウム、
過酸化リチウム、水酸化リチウム、硝酸リチウム、酢酸
リチウム、クエン酸リチウムなどが挙げられる。ニッケ
ル化合物としては、ニッケル金属、酸化ニッケル、水酸
化ニッケル、炭酸ニッケル、硝酸ニッケル、硫酸ニッケ
ル、酢酸ニッケル、クエン酸ニッケルなどが挙げられ
る。このうち、特に水溶性の硫酸ニッケルおよび硝酸ニ
ッケルが望ましい。As the lithium compound, lithium carbonate,
Examples include lithium peroxide, lithium hydroxide, lithium nitrate, lithium acetate, lithium citrate and the like. Examples of the nickel compound include nickel metal, nickel oxide, nickel hydroxide, nickel carbonate, nickel nitrate, nickel sulfate, nickel acetate, nickel citrate and the like. Of these, water-soluble nickel sulfate and nickel nitrate are particularly desirable.
【0021】第三金属元素の化合物としては、炭酸塩、
硝酸塩、水酸化物、酸化物などが挙げられる。特に、水
溶性の塩が好ましい。このようなリチウムイオン二次電
池用正極材の製造方法として具体的には、以下の方法が
挙げられる。As the compound of the third metal element, carbonate,
Nitrate, hydroxide, oxide and the like can be mentioned. In particular, water-soluble salts are preferred. Specific examples of the method for producing such a positive electrode material for a lithium ion secondary battery include the following methods.
【0022】まず、水溶性ニッケル化合物と、第三金
属元素の水溶性化合物とが溶解した混合水溶液を調製
し、この水溶液に炭酸ナトリウムなどのアルカリ水溶液
を添加し、ニッケル化合物と第三金属元素の化合物との
共沈物を沈殿させる。First, a mixed aqueous solution in which a water-soluble nickel compound and a water-soluble compound of a third metal element are dissolved is prepared, and an aqueous alkali solution such as sodium carbonate is added to this aqueous solution to form a mixture of the nickel compound and the third metal element. The co-precipitate with the compound precipitates.
【0023】得られた共沈物を濾過・洗浄したのち、
300〜500℃で焼成して、複合酸化物微粒子を得
る。 得られた複合酸化物微粒子と、水酸化リチウムなどの
リチウム化合物とを混合し、酸素含有ガス雰囲気下で6
00〜850℃、好ましくは700〜750℃で焼成し
て、複合ニッケル酸リチウム結晶粒子または結晶粒子の
集合物からなる微粒子を調製する。After filtering and washing the obtained coprecipitate,
By firing at 300 to 500 ° C., composite oxide fine particles are obtained. The obtained composite oxide fine particles are mixed with a lithium compound such as lithium hydroxide, and mixed under an oxygen-containing gas atmosphere.
Firing at 00 to 850 ° C, preferably 700 to 750 ° C, prepares fine particles composed of composite lithium nickelate crystal particles or an aggregate of crystal particles.
【0024】調製した複合ニッケル酸リチウム微粒子
を、二酸化炭素を供給しながら、400℃以下、好まし
く200〜300℃加熱して、複合ニッケル酸リチウム
微粒子表面に炭酸リチウム層を形成する。The prepared composite lithium nickelate fine particles are heated to 400 ° C. or lower, preferably 200 to 300 ° C. while supplying carbon dioxide, to form a lithium carbonate layer on the surface of the composite lithium nickelate fine particles.
【0025】このような二酸化炭素ガス雰囲気で加熱す
ることにより複合ニッケル酸リチウム微粒子表面に炭酸
リチウム層が形成される理由としては次のようなことが
考えられる。The reason why a lithium carbonate layer is formed on the surface of the composite lithium nickel oxide fine particles by heating in such a carbon dioxide gas atmosphere is considered as follows.
【0026】ニッケル酸リチウムまたは複合ニッケル酸
リチウムなどは、通常高温で焼成することにより、これ
らの結晶が生成・成長し、一定の大きさの結晶粒子が得
られるが、このとき過剰のリチウムの少なくとも一部が
結晶粒子の表面に移動すると考えられる。この表面に移
動したリチウムは、酸化されて酸化リチウムとなり、こ
のため焼成後の複合ニッケル酸リチウムの結晶粒子また
はこれらの結晶粒子が集合した微粒子は、その表面が酸
化リチウムで被覆された状態になっていると考えられ
る。[0026] Lithium nickelate or composite lithium nickelate is usually baked at a high temperature to produce and grow these crystals to obtain crystal grains of a certain size. It is believed that some migrate to the surface of the crystal grains. The lithium transferred to the surface is oxidized to lithium oxide, so that the crystal particles of the composite lithium nickel oxide after firing and the fine particles in which these crystal particles are aggregated are in a state where the surface is coated with lithium oxide. It is thought that it is.
【0027】このような表面が酸化リチウムで被覆され
た状態の複合ニッケル酸リチウム微粒子を、二酸化炭素
ガスで処理すると、酸化リチウムの少なくとも一部が炭
酸リチウムに変化し、本発明に係る表面が炭酸リチウム
で被覆された複合ニッケル酸リチウム微粒子を得ること
ができると考えられる。When the composite lithium nickel oxide fine particles whose surface is coated with lithium oxide are treated with carbon dioxide gas, at least a part of the lithium oxide is changed to lithium carbonate, and the surface according to the present invention is carbonated. It is considered that composite lithium nickelate fine particles coated with lithium can be obtained.
【0028】本発明に係る高安定性リチウムイオン二次
電池用正極材は、上記方法の他に、焼成後の複合ニッケ
ル酸リチウム微粒子と炭酸リチウム粉末との混合物を、
転動させながら700〜750℃に加熱して炭酸リチウ
ムを溶融させて、複合ニッケル酸リチウム微粒子表面を
炭酸リチウム粉末で被覆することによっても得ることが
できる。The positive electrode material for a highly stable lithium ion secondary battery according to the present invention may further comprise, in addition to the above method, a mixture of composite lithium nickel oxide fine particles and lithium carbonate powder after firing.
It can also be obtained by heating to 700 to 750 ° C. while rolling to melt the lithium carbonate, and coating the surface of the composite lithium nickel oxide fine particles with lithium carbonate powder.
【0029】このようなリチウムイオン二次電池用正極
材は、表面に炭酸リチウム層が形成されているので、正
極材の複合ニッケル酸リチウムと電解液とが炭酸リチウ
ム層を介して接触している。このため、短絡などの場合
の正極の発熱が抑制されると考えられる。また複合ニッ
ケル酸リチウム微粒子表面の炭酸リチウム層によって、
大気中の水分の吸着を抑制することができる。In such a positive electrode material for a lithium ion secondary battery, since a lithium carbonate layer is formed on the surface, the composite lithium nickel oxide of the positive electrode material and the electrolytic solution are in contact via the lithium carbonate layer. . Therefore, it is considered that the heat generation of the positive electrode in the case of a short circuit or the like is suppressed. In addition, by the lithium carbonate layer on the surface of the composite lithium nickelate fine particles,
Adsorption of moisture in the atmosphere can be suppressed.
【0030】このため、本発明に係る高安定性リチウム
イオン二次電池用正極材を用いると、安全性および耐湿
性に優れたリチウムイオン二次電池を作成することがで
きる。Therefore, the use of the highly stable cathode material for a lithium ion secondary battery according to the present invention makes it possible to produce a lithium ion secondary battery having excellent safety and moisture resistance.
【0031】[リチウムイオン二次電池]本発明に係る
リチウムイオン二次電池は、(i) 前記リチウムイオン二
次電池用正極材から構成された正極と、(ii)リチウムイ
オンを吸蔵・放出可能な材料またはリチウム金属、リチ
ウム合金を負極活物質として含む負極と、(iii)液体ま
たは固体の電解質と、(iv)正極と負極とを隔離するため
のセパレータとを含むことを特徴としている。[Lithium ion secondary battery] The lithium ion secondary battery according to the present invention comprises (i) a positive electrode composed of the above-mentioned positive electrode material for a lithium ion secondary battery, and (ii) a lithium ion secondary battery capable of inserting and extracting lithium ions. A negative electrode containing a suitable material or a lithium metal or a lithium alloy as a negative electrode active material; (iii) a liquid or solid electrolyte; and (iv) a separator for separating the positive electrode from the negative electrode.
【0032】正極は、前記リチウムイオン二次電池用正
極材、導電材および結着材とから構成される。導電材と
しては、天然黒鉛、人造黒鉛、コークス類、カーボンブ
ラックなどの炭素質材料が使用される。また、結着材と
しては、ポリテトラフルオロエチレンなどのフッ素樹脂
が使用される。The positive electrode is composed of the positive electrode material for a lithium ion secondary battery, a conductive material and a binder. As the conductive material, a carbonaceous material such as natural graphite, artificial graphite, coke, and carbon black is used. As the binder, a fluororesin such as polytetrafluoroethylene is used.
【0033】このような正極は、前記リチウムイオン二
次電池用正極材と、導電材および結着材との混合物を圧
延して得ることができる。また前記リチウムイオン二次
電池用正極材と、導電材および結着材と、必要に応じて
溶媒とからなる混合物を、Al、Ni、ステンレスなどの
集電材に塗布することによって得ることもできる。Such a positive electrode can be obtained by rolling a mixture of the positive electrode material for a lithium ion secondary battery, a conductive material and a binder. Further, it can also be obtained by applying a mixture comprising the positive electrode material for a lithium ion secondary battery, a conductive material and a binder, and, if necessary, a solvent to a current collector such as Al, Ni or stainless steel.
【0034】負極を構成する負極活物質としては、リチ
ウムイオンを吸蔵・放出することが可能なグラファイト
などの炭素系材料、または金属リチウム、リチウム合金
のいずれを用いることができる。As the negative electrode active material constituting the negative electrode, any of a carbon-based material such as graphite capable of occluding and releasing lithium ions, metallic lithium, and a lithium alloy can be used.
【0035】本発明に係るリチウムイオン二次電池で
は、電解質としては、液体または固体の電解質が使用さ
れる。液体の電解質としては、通常、リチウム塩を有機
溶媒に溶解した非水電解液が使用される。In the lithium ion secondary battery according to the present invention, a liquid or solid electrolyte is used as the electrolyte. As the liquid electrolyte, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent is usually used.
【0036】リチウム塩としては、LiPF6、LiB
F4、LiClO4、LiAsF6、LiOSO2CF3、
LiAlCl4、LiN(SO2CF3)2、LiC(SO2C
F3)、LiOSO2C4F9などが挙げられる。As the lithium salt, LiPF 6 , LiB
F 4 , LiClO 4 , LiAsF 6 , LiOSO 2 CF 3 ,
LiAlCl 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 C
F 3 ), LiOSO 2 C 4 F 9 and the like.
【0037】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
メチルエチルカーボネート、ジエチルカーボネート、メ
チルイソプロピルカーボネートなどのカーボネート類、
γ-ブチロラクトン、蟻酸メチル、酢酸メチルなどのエ
ステル類などが挙げられる。As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Carbonates such as methyl ethyl carbonate, diethyl carbonate, methyl isopropyl carbonate,
Esters such as γ-butyrolactone, methyl formate, methyl acetate and the like.
【0038】固体電解質としては、ポリエチレンオキサ
イド系重合体、ポリオルガノシロキサン鎖またはポリオ
キシアルキレン鎖を含む重合体、Li2S-SiS2、Li2
S-GeS2、Li2S-P2S5、Li2S-B2S3などが挙げ
られる。また、ポリエチレンオキサイド系重合体に前記
非水溶媒を保持させたゲル状のものを使用することもで
きる。Examples of the solid electrolyte include a polyethylene oxide polymer, a polymer containing a polyorganosiloxane chain or a polyoxyalkylene chain, Li 2 S—SiS 2 , Li 2
Such as S-GeS 2, Li 2 S -P 2 S 5, Li 2 S-B 2 S 3 and the like. Further, a gel-like material in which the above-mentioned non-aqueous solvent is held in a polyethylene oxide-based polymer can also be used.
【0039】セパレータとしては、ポリオレフィン系樹
脂などからなる多孔性膜が使用される。なお本発明に係
るリチウムイオン二次電池の形状は特に限定されず、ペ
ーパー型、コイン型、円筒型、角型などのいずれであっ
てもよい。As the separator, a porous film made of a polyolefin resin or the like is used. The shape of the lithium ion secondary battery according to the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.
【0040】[0040]
【発明の効果】本発明に係るリチウムイオン二次電池用
正極材は、複合ニッケル酸リチウム微粒子の表面の少な
くとも一部が炭酸リチウムで被覆されているので、安全
性に優れ、かつ放電容量およびサイクル特性に優れたリ
チウムイオン二次電池を得ることができる。The positive electrode material for a lithium ion secondary battery according to the present invention is excellent in safety, discharge capacity and cycle because at least a part of the surface of the composite lithium nickel oxide fine particles is coated with lithium carbonate. A lithium ion secondary battery having excellent characteristics can be obtained.
【0041】また、本発明に係るリチウムイオン二次電
池用正極材は、耐湿性に優れているので、大気中の水分
を吸着することがなく、従来の正極材のように水分の吸
着による電池性能の低下がない。したがって、従来のニ
ッケル酸リチウムを用いた正極材を取り扱う場合のよう
な除湿設備は不要である。Further, the positive electrode material for a lithium ion secondary battery according to the present invention is excellent in moisture resistance, so that it does not adsorb moisture in the air, and has the same characteristics as a conventional positive electrode material. No performance degradation. Therefore, there is no need for a dehumidifying facility as in the case of handling a conventional positive electrode material using lithium nickelate.
【0042】[0042]
【実施例】以下、本発明を実施例により説明するが、本
発明はこれらの実施例に何ら限定されるものではない。EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
【0043】[0043]
【製造例】硝酸ニッケル494.2gおよび硝酸コバル
ト89.1gを2リットルの純水に溶解した水溶液を調
製した(A液)。また、炭酸ナトリウム318.0gを
1.8リットルの純水に溶解した水溶液を調製した(B
液)。80℃の熱水1リットルと前記A液およびB液と
を注加し、反応させた。得られた沈殿物を濾過、洗浄、
および乾燥したのち、空気中400℃で、3時間焼成し
て、NiとCoとの複合酸化物(Ni:Co=85:15)
を得た。Production Example An aqueous solution was prepared by dissolving 494.2 g of nickel nitrate and 89.1 g of cobalt nitrate in 2 liters of pure water (Solution A). Further, an aqueous solution prepared by dissolving 318.0 g of sodium carbonate in 1.8 liter of pure water was prepared (B
liquid). One liter of 80 ° C. hot water and the above-mentioned solution A and solution B were poured and reacted. The obtained precipitate is filtered, washed,
After drying, the mixture is calcined in air at 400 ° C. for 3 hours to obtain a composite oxide of Ni and Co (Ni: Co = 85: 15).
I got
【0044】得られた複合酸化物に、Li/(Ni+Co)
が1.10(原子比)となるように、水酸化リチウム粉
末を加えて混合し、ロータリーキルンを用いて酸素気流
中で、750℃、10時間焼成して、複合ニッケル酸リ
チウム微粒子(試料A)を得た。The obtained composite oxide was added with Li / (Ni + Co)
And lithium hydroxide powder were mixed and baked at 750 ° C. for 10 hours in an oxygen stream using a rotary kiln to obtain composite lithium nickelate fine particles (Sample A). I got
【0045】次いで、試料Aが入ったロータリーキルン
に二酸化炭素を供給しながら、200℃、3時間加熱し
て、炭酸リチウムで被覆された複合ニッケル酸リチウム
微粒子(試料B)を得た。Then, the mixture was heated at 200 ° C. for 3 hours while supplying carbon dioxide to the rotary kiln containing sample A, to obtain composite lithium nickelate fine particles (sample B) coated with lithium carbonate.
【0046】[0046]
【実施例1】試料B、導電助材(アセチレンブラック)
および結着材(ポリテトラフルオロエチレン粉末)を7
5:20:5(重量比)に混合し、混練、圧延して試験
用電池正極を作成し、充放電試験、および安全性試験を
行った。Example 1 Sample B, conductive additive (acetylene black)
And binder (polytetrafluoroethylene powder)
The mixture was mixed at a ratio of 5: 20: 5 (weight ratio), kneaded and rolled to prepare a test battery positive electrode, and a charge / discharge test and a safety test were performed.
【0047】また、試料Bを、室温の大気中に1週間放
置したのち、同様にアセチレンブラックおよびポリテト
ラフルオロエチレン粉末を加えて、混練、圧延して試験
用電池正極を作成し、耐湿性試験を行った。After the sample B was left in the air at room temperature for one week, acetylene black and polytetrafluoroethylene powder were similarly added, kneaded and rolled to prepare a test battery positive electrode, and a moisture resistance test was performed. Was done.
【0048】充放電試験 前記正極と、非水電解液(LiClO4がエチレンカーボ
ネートとジメチルカーボネートとの体積比が1:1の混
合溶媒に1モル/リットル溶解したもの)と、隔膜と、
負極(金属リチウム)とを用いて、充放電試験用電池を
作成し、定電流かつ0.5mA/cm2の電流密度で、電池を
4.3Vの電位に充電したのち、3.0Vまで放電し、電
池の放電効率を測定した。 Charge / Discharge Test The positive electrode, a non-aqueous electrolyte (LiCl 4 dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 at 1 mol / liter), a diaphragm,
A charge / discharge test battery was prepared using the negative electrode (metal lithium), and the battery was charged to a potential of 4.3 V at a constant current and a current density of 0.5 mA / cm 2 , and then discharged to 3.0 V. Then, the discharge efficiency of the battery was measured.
【0049】安全性試験 前記試験用電池を4.3Vの電位に充電したのち、正極
を電池より取り出し、真空脱気した。この正極とエチレ
ンカーボネートとを重量比1:1の割合で混合し、安全
性試験用試料を作成した。 Safety test After the test battery was charged to a potential of 4.3 V, the positive electrode was taken out of the battery and degassed under vacuum. This positive electrode and ethylene carbonate were mixed at a weight ratio of 1: 1 to prepare a safety test sample.
【0050】この試料を、示差熱天秤にかけて、空気中
で昇温して発熱量を測定した。耐湿性試験 室温の大気中に1週間放置した試料Bを用いた正極を用
いて、前記充放電試験用電池を作成し、定電流かつ0.
5mA/cm2の電流密度で、電池を4.3Vに充電したの
ち、3.0Vまで放電したときの電池の放電容量を測定
した。This sample was placed on a differential thermobalance and heated in air to measure the calorific value. Moisture resistance test The above-described battery for charge / discharge test was prepared using a positive electrode using Sample B that had been left in the air at room temperature for one week.
After charging the battery to 4.3 V at a current density of 5 mA / cm 2 , the discharge capacity of the battery when discharged to 3.0 V was measured.
【0051】結果を表1に示す。Table 1 shows the results.
【0052】[0052]
【比較例1】実施例1において、試料Bの代わりに、炭
酸リチウムで微粒子表面が被覆されていない試料Aを用
いて、同様に充放電試験、安全性試験および耐湿性試験
を行った。Comparative Example 1 A charge / discharge test, a safety test, and a moisture resistance test were conducted in the same manner as in Example 1, except that Sample A in which the surface of the fine particles was not coated with lithium carbonate was used instead of Sample B.
【0053】結果を表1に示す。Table 1 shows the results.
【0054】[0054]
【表1】 [Table 1]
【0055】表1の結果からわかるように、表面が炭酸
リチウムで被覆された複合ニッケル酸リチウムを用いた
正極材を含む正極は、炭酸リチウムで被覆させていない
複合ニッケル酸リチウムを用いた正極材を含む正極と比
較して、発熱量が低くなっており、電池の安全性が向上
している。また、このような正極材は、1週間大気中に
放置した後に正極を形成しても放電容量は変化しておら
ず、大気中の水分による性能低下が抑えられており、耐
湿性が向上している。As can be seen from the results in Table 1, the positive electrode including the positive electrode material using the composite lithium nickelate whose surface was coated with lithium carbonate was the same as the positive electrode material using the composite lithium nickelate not coated with lithium carbonate. The calorific value is lower than that of the positive electrode containing, and the safety of the battery is improved. Further, in such a positive electrode material, even if the positive electrode is formed after being left in the air for one week, the discharge capacity does not change, the performance degradation due to moisture in the air is suppressed, and the moisture resistance is improved. ing.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤 田 隆 幸 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 水 沢 浩 二 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 坂 井 雅 春 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 藤 井 芳 夫 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 坂 口 正 巳 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Fujita 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture Inside of JGC Chemicals Research Laboratory (72) Inventor Koji Mizusawa 1-Takiya Honmachi, Niitsu City, Niigata Prefecture 26 Inside JGC Chemicals Development Laboratory (72) Masaharu Sakai Inventor 1-26 Takiya Honcho, Niitsu City, Niigata Prefecture Inside (72) Inventor Yoshio Fujii, Takiya Honmachi Niigata City, Niigata Prefecture 1-26 Inside JGC Chemicals Development Laboratory (72) Inventor Masami Sakaguchi 1-26 Takiya Honcho, Niitsu City, Niigata Prefecture Inside JGC Chemicals Development Laboratory
Claims (4)
ニッケル以外の金属元素とを含む複合ニッケル酸リチウ
ム微粒子からなるリチウムイオン二次電池用正極材にお
いて、 複合ニッケル酸リチウム微粒子の表面の少なくとも一部
が、リチウムの炭酸塩で被覆され、 かつ、複合ニッケル酸リチウムのニッケル(Ni)と、
リチウムおよびニッケル以外の金属元素(M)との原子
比(Ni/M)が70/30〜95/5の範囲にあるこ
とを特徴とする高安定性リチウムイオン二次電池用正極
材。1. A positive electrode material for a lithium ion secondary battery comprising lithium composite nickel fine particles containing lithium, nickel, and a metal element other than lithium and nickel, wherein at least a part of the surface of the composite lithium nickel oxide fine particles is provided. , Coated with lithium carbonate, and nickel (Ni) of composite lithium nickelate;
A cathode material for a highly stable lithium ion secondary battery, wherein the atomic ratio (Ni / M) to a metal element (M) other than lithium and nickel is in the range of 70/30 to 95/5.
素が、ニッケルのイオン半径の0.8〜1.5倍であるこ
とを特徴とする請求項1に記載の高安定性リチウムイオ
ン二次電池用正極材。2. The highly stable lithium ion secondary battery according to claim 1, wherein the metal element other than lithium and nickel has an ionic radius of 0.8 to 1.5 times the ionic radius of nickel. Positive electrode material.
チウムおよびニッケル以外の金属の化合物とを含む混合
物を、酸素含有ガス雰囲気下で600〜850℃で焼成
し、次いで400℃以下で二酸化炭素ガスとを接触させ
ることを特徴とする複合ニッケル酸リチウムからなる高
安定性リチウムイオン二次電池用正極材の製造方法。3. A mixture containing a lithium compound, a nickel compound, and a compound of a metal other than lithium and nickel, is calcined at 600 to 850 ° C. in an oxygen-containing gas atmosphere, and then with a carbon dioxide gas at 400 ° C. or lower. A method for producing a positive electrode material for a highly stable lithium ion secondary battery comprising a composite lithium nickelate, characterized by contacting with a nickel.
オン二次電池用正極材を含む正極と、(ii)リチウム金
属、リチウム合金、またはリチウムイオンを吸蔵・放出
可能な材料を負極活物質として含む負極と、(iii)液体
または固体の電解質とから構成されることを特徴とする
リチウムイオン二次電池。4. A positive electrode comprising (i) a positive electrode material for a lithium ion secondary battery according to claim 1 or 2; and (ii) a negative electrode comprising lithium metal, a lithium alloy, or a material capable of occluding and releasing lithium ions. A lithium ion secondary battery comprising: a negative electrode containing an active material; and (iii) a liquid or solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9335544A JPH11167919A (en) | 1997-12-05 | 1997-12-05 | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9335544A JPH11167919A (en) | 1997-12-05 | 1997-12-05 | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11167919A true JPH11167919A (en) | 1999-06-22 |
Family
ID=18289772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9335544A Pending JPH11167919A (en) | 1997-12-05 | 1997-12-05 | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11167919A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11204108A (en) * | 1998-01-19 | 1999-07-30 | Matsushita Electric Ind Co Ltd | Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery |
JP2004241390A (en) * | 2003-02-07 | 2004-08-26 | Samsung Sdi Co Ltd | Positive electrode activator with carbon compound adsorbed and lithium battery using the same |
JP2007214118A (en) * | 2006-01-12 | 2007-08-23 | Ishihara Sangyo Kaisha Ltd | Manufacturing method of lithium/transition metal composite oxide |
US7541114B2 (en) | 2002-03-01 | 2009-06-02 | Panasonic Corporation | Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery |
US7579114B2 (en) | 2001-09-13 | 2009-08-25 | Panasonic Corporation | Method of preparing positive electrode active material |
US7592100B2 (en) | 2001-03-22 | 2009-09-22 | Panasonic Corporation | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
US7722989B2 (en) | 2003-11-07 | 2010-05-25 | Panasonic Corporation | Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles |
US7816036B2 (en) | 2001-09-13 | 2010-10-19 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same |
US7935443B2 (en) | 2001-06-27 | 2011-05-03 | Panasonic Corporation | Lithium nickel-manganese-cobalt oxide positive electrode active material |
US8153297B2 (en) | 2002-08-05 | 2012-04-10 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
WO2012160698A1 (en) * | 2011-05-26 | 2012-11-29 | トヨタ自動車株式会社 | Coated active material, and lithium solid-state battery |
US8349287B2 (en) | 2001-10-25 | 2013-01-08 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
WO2013065918A1 (en) * | 2011-11-04 | 2013-05-10 | (주)제이에이치화학공업(주) | Method for manufacturing a cathode active material for a lithium secondary battery |
WO2013084352A1 (en) * | 2011-12-09 | 2013-06-13 | トヨタ自動車株式会社 | Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material |
JP2014503942A (en) * | 2010-11-25 | 2014-02-13 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing transition metal composite oxide precursor |
US9240593B2 (en) | 2005-04-28 | 2016-01-19 | Sumitomo Chemical Company, Limited | Active material for nonaqueous secondary battery and method for producing same |
US9391325B2 (en) | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
CN113764630A (en) * | 2020-06-02 | 2021-12-07 | 比亚迪股份有限公司 | Positive electrode material and preparation method and application thereof |
US11621419B2 (en) | 2020-11-24 | 2023-04-04 | Samsung Sdi Co., Ltd. | Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode |
-
1997
- 1997-12-05 JP JP9335544A patent/JPH11167919A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11204108A (en) * | 1998-01-19 | 1999-07-30 | Matsushita Electric Ind Co Ltd | Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery |
US7718318B2 (en) | 2001-03-22 | 2010-05-18 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7592100B2 (en) | 2001-03-22 | 2009-09-22 | Panasonic Corporation | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
US7682747B2 (en) | 2001-03-22 | 2010-03-23 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7935443B2 (en) | 2001-06-27 | 2011-05-03 | Panasonic Corporation | Lithium nickel-manganese-cobalt oxide positive electrode active material |
US7816036B2 (en) | 2001-09-13 | 2010-10-19 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same |
US7579114B2 (en) | 2001-09-13 | 2009-08-25 | Panasonic Corporation | Method of preparing positive electrode active material |
US7670723B2 (en) | 2001-09-13 | 2010-03-02 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8349287B2 (en) | 2001-10-25 | 2013-01-08 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7541114B2 (en) | 2002-03-01 | 2009-06-02 | Panasonic Corporation | Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery |
US9391325B2 (en) | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
US8153297B2 (en) | 2002-08-05 | 2012-04-10 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2004241390A (en) * | 2003-02-07 | 2004-08-26 | Samsung Sdi Co Ltd | Positive electrode activator with carbon compound adsorbed and lithium battery using the same |
US7939200B2 (en) | 2003-11-07 | 2011-05-10 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
US7722989B2 (en) | 2003-11-07 | 2010-05-25 | Panasonic Corporation | Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles |
US9240593B2 (en) | 2005-04-28 | 2016-01-19 | Sumitomo Chemical Company, Limited | Active material for nonaqueous secondary battery and method for producing same |
JP2007214118A (en) * | 2006-01-12 | 2007-08-23 | Ishihara Sangyo Kaisha Ltd | Manufacturing method of lithium/transition metal composite oxide |
JP2014503942A (en) * | 2010-11-25 | 2014-02-13 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing transition metal composite oxide precursor |
CN103534845A (en) * | 2011-05-26 | 2014-01-22 | 丰田自动车株式会社 | Coated active material, and lithium solid-state battery |
JPWO2012160698A1 (en) * | 2011-05-26 | 2014-07-31 | トヨタ自動車株式会社 | Coated active material and lithium solid state battery |
JP5578280B2 (en) * | 2011-05-26 | 2014-08-27 | トヨタ自動車株式会社 | Coated active material and lithium solid state battery |
US9214674B2 (en) | 2011-05-26 | 2015-12-15 | Toyota Jidosha Kabushiki Kaisha | Coated active material and lithium solid state battery |
WO2012160698A1 (en) * | 2011-05-26 | 2012-11-29 | トヨタ自動車株式会社 | Coated active material, and lithium solid-state battery |
WO2013065918A1 (en) * | 2011-11-04 | 2013-05-10 | (주)제이에이치화학공업(주) | Method for manufacturing a cathode active material for a lithium secondary battery |
WO2013084352A1 (en) * | 2011-12-09 | 2013-06-13 | トヨタ自動車株式会社 | Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material |
US9537137B2 (en) | 2011-12-09 | 2017-01-03 | Toyota Jidosha Kabushiki Kaisha | Cathode active material, cathode active material layer, all solid state battery and producing method for cathode active material |
CN113764630A (en) * | 2020-06-02 | 2021-12-07 | 比亚迪股份有限公司 | Positive electrode material and preparation method and application thereof |
US11621419B2 (en) | 2020-11-24 | 2023-04-04 | Samsung Sdi Co., Ltd. | Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111554919B (en) | Positive electrode active material, preparation method thereof and sodium ion battery | |
JP7254875B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same | |
JP5214202B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP3994238B2 (en) | Nonaqueous electrolyte lithium secondary battery | |
CN107845781B (en) | Negative electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery | |
JPH11167919A (en) | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage | |
JP5036100B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP7177277B2 (en) | Electrodes for lithium secondary batteries | |
JP2013214493A (en) | Lithium manganese oxide positive active material for lithium ion secondary battery, and lithium ion secondary battery including the same | |
CN111900501A (en) | Lithium supplement additive and preparation method and application thereof | |
CN111771301A (en) | Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same | |
JP2005063674A (en) | Nonaqueous electrolyte secondary battery | |
JP2003123724A (en) | Separator for lithium secondary battery and lithium secondary battery using the same | |
JP7262419B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2013127860A (en) | Negative electrode for nonaqueous electrolytic secondary battery, method of manufacturing the same, and nonaqueous electrolytic secondary battery | |
JPH11224664A (en) | Lithium-ion secondary battery having high moisture resistance and high safety | |
TW201640724A (en) | Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery | |
JP2001243951A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same | |
JP2018006331A (en) | Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP4013327B2 (en) | Non-aqueous secondary battery | |
JP2005285545A (en) | Lithium secondary battery | |
JP2002042812A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
JP2001155729A (en) | Positive electrode active material for use in non-aqueous secondary battery and non-aqueous electrolyte secondary battery using it | |
CN114122380A (en) | Preparation method of zirconium-doped cerium fluoride-coated nickel-cobalt-manganese ternary positive electrode material and prepared positive electrode material | |
JP4803867B2 (en) | Method for producing lithium manganate for positive electrode of lithium battery |