JP4655599B2 - Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP4655599B2
JP4655599B2 JP2004339687A JP2004339687A JP4655599B2 JP 4655599 B2 JP4655599 B2 JP 4655599B2 JP 2004339687 A JP2004339687 A JP 2004339687A JP 2004339687 A JP2004339687 A JP 2004339687A JP 4655599 B2 JP4655599 B2 JP 4655599B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrode active
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004339687A
Other languages
Japanese (ja)
Other versions
JP2006147499A (en
Inventor
英雄 笹岡
竜一 葛尾
篤 福井
光国 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004339687A priority Critical patent/JP4655599B2/en
Publication of JP2006147499A publication Critical patent/JP2006147499A/en
Application granted granted Critical
Publication of JP4655599B2 publication Critical patent/JP4655599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解質二次電池用正極活物質とその製造方法及びこれを用いた非水系電解質二次電池に関するものである。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及にともない、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池の負極材料には、リチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられている。これらの材料は、リチウムを脱離・挿入することが可能な材料である。   In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. As such a secondary battery, there is a lithium ion secondary battery. Lithium metal, lithium alloy, metal oxide, carbon, or the like is used as a negative electrode material for a lithium ion secondary battery. These materials are materials capable of removing and inserting lithium.

このようなリチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、実用化が進んでいる。このリチウムコバルト複合酸化物(LiCoO)を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。
しかし、リチウムコバルト複合酸化物(LiCoO)は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となる。このため、正極活物質としてリチウムコバルト複合酸化物(LiCoO)以外のものを用いることが望まれている。
Research and development of such lithium ion secondary batteries is being actively conducted. Among these, a lithium ion secondary battery using a lithium metal composite oxide, in particular, a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. It is expected as a battery having a high density and is being put to practical use. In the lithium ion secondary battery using this lithium cobalt composite oxide (LiCoO 2 ), many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.
However, since lithium cobalt complex oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, it causes an increase in battery cost. For this reason, it is desired to use materials other than lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.

また、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池としてリチウムイオン二次電池を適用することへの期待も高まってきている。このため、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果が期待しており、リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 In addition, recently, not only small secondary batteries for portable electronic devices but also expectations for applying lithium ion secondary batteries as large-sized secondary batteries for power storage and electric vehicles are increasing. . For this reason, reducing the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery is expected to have a large ripple effect in a wide range of fields. The positive electrode active material for lithium ion secondary batteries As newly proposed materials, lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel can be cited. it can.

リチウムマンガン複合酸化物(LiMn)は原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物(LiCoO)の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物(LiCoO)のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点もあった。 Lithium-manganese composite oxide (LiMn 2 O 4 ) is a powerful alternative to lithium-cobalt composite oxide (LiCoO 2 ) because it is inexpensive and has excellent thermal stability, in particular, safety with respect to ignition. Although it can be said that the theoretical capacity is only about half that of lithium cobalt composite oxide (LiCoO 2 ), it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, at 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.

一方、リチウムニッケル複合酸化物(LiNiO)は、リチウムコバルト複合酸化物(LiCoO)とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣っている。また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点も有している。 On the other hand, lithium nickel composite oxide (LiNiO 2 ) has almost the same theoretical capacity as lithium cobalt composite oxide (LiCoO 2 ), and shows a slightly lower battery voltage than lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and development is performed actively from expecting higher capacity | capacitance. However, when a lithium-ion secondary battery is made using a lithium-nickel composite oxide composed solely of nickel as a positive electrode active material without replacing nickel with other elements, the cycle is higher than that of lithium-cobalt composite oxide. The characteristics are inferior. In addition, there is a disadvantage that battery performance is relatively easily lost when used or stored in a high temperature environment.

このような欠点を解決するために、例えば特許文献1では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiNiCo(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウムニッケル複合酸化物、つまりホウ素が添加されたリチウム含有複合酸化物が提案されている。 In order to solve such drawbacks, for example, in Patent Document 1, Li w Ni x Co y B z O 2 is used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. Lithium nickel composite oxide represented by (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1), that is, boron is added. Lithium-containing composite oxides have been proposed.

また、特許文献2では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiNiCo(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル系複合酸化物が提案されている。 In Patent Document 2, in order to improve the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2,0. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu and A lithium nickel composite oxide represented by at least one element selected from Zn has been proposed.

しかしながら、上記した従来の製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト系複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、コバルト系複合酸化物に比べて低い温度から酸素放出を伴うといった問題がある。   However, in the lithium nickel composite oxide obtained by the above-described conventional manufacturing method, both the charge capacity and discharge capacity are higher and the cycle characteristics are improved as compared with the lithium cobalt composite oxide. If left in the environment, there is a problem that oxygen is released from a temperature lower than that of the cobalt-based composite oxide.

このような問題を解決するために、例えば特許文献3では、リチウムイオン二次電池正極材料の熱的安定性を向上させることを目的として、LiNiCo(MはAl、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、かつ0<a<1.3、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、さらにb+c+d=1である)で表されるリチウム含有複合酸化物等が提案されている。この場合に添加元素Mとして、例えばアルミニウムを選択した場合、ニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上することが確かめられている。しかし、十分な安定性を確保するのに有効なアルミニウムでニッケルを置換すると、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少するため、電池性能として最も重要である初期容量が大きく低下するという問題点を有していた。これはAlは3価で安定していることからNiも電荷を合わせるため3価で安定化させるとRedox反応に寄与しない部分が生ずるために容量低下が起こるものと考えられる。 In order to solve such a problem, for example, in Patent Document 3, Li a Mb Ni c Co d O e (M is Al) for the purpose of improving the thermal stability of the positive electrode material of the lithium ion secondary battery. , Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, and at least one metal selected from the group consisting of 0 <a <1.3, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1) has been proposed. In this case, for example, when aluminum is selected as the additive element M, it is confirmed that if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved. However, replacing nickel with aluminum, which is effective to ensure sufficient stability, reduces the amount of nickel that contributes to the oxidation-reduction reaction associated with the charge / discharge reaction, so the initial capacity, which is the most important for battery performance, is large. It had the problem of decreasing. Since Al is trivalent and stable, Ni is also matched to charge, and if it is stabilized with trivalent, a portion that does not contribute to the Redox reaction is generated, and it is considered that the capacity decreases.

また、特許文献4では、一般式LiNi1−xCo(ただし、0.1≦x≦0.3、0.05≦y≦0.28、0.02≦z≦0.25、x=y+zであり、MはMg、Al、Ca、Ti、V、Cr、Mn、Feのうち少なくとも一種以上から成る)で表されるリチウム含有複合酸化物を、反応槽を用い、これに塩濃度が調整されたニッケル−コバルト−M塩水溶液、その水溶液と錯塩を形成する錯化剤、及びアルカリ金属水酸化物をそれぞれ連続的に供給し、ニッケル−コバルト−M錯塩を生成させ、次いでこの錯塩をアルカリ金属水酸化物により分解してニッケル−コバルト−M水酸化物を析出させ、上記錯塩の生成及び分解を槽内で循環させながら繰り返し行わせ、ニッケル−コバルト−M水酸化物をオ−バーフローさせて取り出すことにより得られる粒子形状が略球状であるニッケル−コバルト−M水酸化物を原料として用いるか、或いは更にこれを焼成してニッケル−コバルト−M酸化物とした後に、これにリチウム塩を混合し、焼成して得ることが記載されている。 In Patent Document 4, the general formula LiNi 1-x Co y M z O 2 ( however, 0.1 ≦ x ≦ 0.3,0.05 ≦ y ≦ 0.28,0.02 ≦ z ≦ 0. 25, x = y + z, and M is composed of at least one of Mg, Al, Ca, Ti, V, Cr, Mn, and Fe). A nickel-cobalt-M salt aqueous solution having a salt concentration adjusted, a complexing agent that forms a complex salt with the aqueous solution, and an alkali metal hydroxide, respectively, to form a nickel-cobalt-M complex salt, Next, the complex salt is decomposed with an alkali metal hydroxide to precipitate nickel-cobalt-M hydroxide, and the complex salt is repeatedly generated and decomposed while circulating in the tank. Overflow The nickel-cobalt-M hydroxide having a substantially spherical particle shape obtained by taking it out is used as a raw material, or further calcined to obtain a nickel-cobalt-M oxide, and then a lithium salt is added thereto. It is described that it is obtained by mixing and baking.

これは水酸化ニッケルに二種以上の水酸化物を共沈させ、そのうちの一種をコバルトに限定することによって、リチウム含有複合酸化物活物質の分極特性を改善し、更にニッケル及びコバルト以外の水酸化物を共沈させることにより、格子の安定化を図ったものであり、この方法により得られた複合元素共沈水酸化物をリチウムイオン二次電池の正極活物質材料として用いた場合、2元素共沈水酸化物であるコバルト−ニッケル水酸化物を用いた場合に比べ初期容量が上昇し、又充放電の繰り返しによるサイクル劣化が抑制されると記載されている。   This improves the polarization characteristics of the lithium-containing composite oxide active material by co-precipitation of two or more hydroxides in nickel hydroxide and restricts one of them to cobalt. When the oxide is coprecipitated to stabilize the lattice, the composite element coprecipitated hydroxide obtained by this method is used as a positive electrode active material for a lithium ion secondary battery. It is described that the initial capacity increases as compared with the case where cobalt-nickel hydroxide which is a coprecipitated hydroxide is used, and cycle deterioration due to repeated charge and discharge is suppressed.

上記特許文献4の実施例5には、M塩として硫酸チタンを用いてニッケル−コバルト−M水酸化物であるNi0.75Co0.20Ti0.05(OH)が作製されているが、発明者らが作製を試みたところ、硫酸チタンは3価ではほとんど水に不溶であり、4価では水溶性であるが加水分解を起こしやすいことから、ニッケル−コバルト−M水溶液を用いて、安定してニッケル−コバルト−M水酸化物を得ることができず、チタン水酸化物が偏析し、また粒成長がしにくくなり、工業的には不向きであることがわかった。 In Example 5 of Patent Document 4, Ni 0.75 Co 0.20 Ti 0.05 (OH) 2, which is a nickel-cobalt-M hydroxide, is produced using titanium sulfate as the M salt. However, when the inventors tried to make it, titanium sulfate is almost insoluble in water when it is trivalent, and is water-soluble when it is tetravalent. However, since it is easy to cause hydrolysis, a nickel-cobalt-M aqueous solution is used. It was found that the nickel-cobalt-M hydroxide could not be obtained stably, the titanium hydroxide segregated, and the grain growth became difficult, which was unsuitable industrially.

最近では携帯電子機器等の小型二次電池に対する高容量化の要求は年々高まる一方であり、安全性を確保するために容量を犠牲にすることは、リチウムニッケル複合酸化物の高容量のメリットを失うことになる。また、リチウムイオン二次電池を大型二次電池に用いようという動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源としての期待が大きい。自動車用の電源として用いられる場合、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。
特開平8−45509号公報 特開平8−213015号公報 特開平5−242891号公報 特開平10−27611号公報
Recently, the demand for higher capacity for small secondary batteries such as portable electronic devices has been increasing year by year, and sacrificing capacity to ensure safety has the advantage of high capacity of lithium nickel composite oxide. You will lose. In addition, a movement to use a lithium ion secondary battery for a large-sized secondary battery is also prominent. In particular, there is a great expectation as a power source for a hybrid vehicle and an electric vehicle. When used as a power source for automobiles, solving the problem of the lithium nickel composite oxide that is inferior in safety is a big problem.
JP-A-8-45509 Japanese Patent Laid-Open No. 8-213015 Japanese Patent Laid-Open No. 5-242891 JP-A-10-27611

本発明は、かかる問題点に鑑みてなされたものであって、安定してニッケルとコバルトとチタンの水酸化物を共沈させ、チタン水酸化物が偏析しておらず、また粒成長が進んでいないニッケル−コバルト−M水酸化物を得て、該水酸化物を原料として作製された正極活物質を非水系電解質二次電池の正極に用いて、熱安定性が良好で、かつ高い充放電容量をもつ正極活物質を提供することを目的とする。   The present invention has been made in view of such problems, and stably coprecipitates nickel, cobalt and titanium hydroxides, titanium hydroxides are not segregated, and grain growth proceeds. Nickel-cobalt-M hydroxide is obtained, and the positive electrode active material produced using the hydroxide as a raw material is used for the positive electrode of a non-aqueous electrolyte secondary battery. An object is to provide a positive electrode active material having a discharge capacity.

発明者等は、一般式Li1+ZNi1−x−yCo(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム−金属複合酸化物の粉末について鋭意検討したところ、添加元素Mとしてチタンが充電状態での熱安定性を向上させるのに好ましく、特に、均一なニッケル−コバルト−チタン水酸化物を作製する点からは添加チタン塩として硫酸チタニルを用いることが必要であることを見出し、ニッケル塩とコバルト塩の混合水溶液と硫酸チタニルの硫酸水溶液にアルカリ溶液を加えてニッケルとコバルトとチタンの水酸化物を共沈させることによって得た複合水酸化物Ni1−x−yCoTi(OH)とリチウム化合物とを混合し、該混合物を650℃以上800℃以下の温度で熱処理することで得られる非水系電解質二次電池用正極活物質が、熱安定性が良好で、かつ、高い充放電容量をもつ正極活物質となることを見出し、本発明を完成するに至った。 Inventors have general formula Li 1 + Z Ni 1-x -y Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.03 ≦ y ≦ 0.08, -0.05 ≦ z As a result of intensive studies on the lithium-metal composite oxide powder represented by ≦ 0.10), titanium is preferable as the additive element M for improving the thermal stability in the charged state, and in particular, uniform nickel-cobalt. -From the point of preparing titanium hydroxide, we found that it was necessary to use titanyl sulfate as the added titanium salt, and added an alkaline solution to a mixed aqueous solution of nickel salt and cobalt salt and a sulfuric acid aqueous solution of titanyl sulfate to add nickel and A composite hydroxide Ni 1-xy Co x Ti y (OH) 2 obtained by coprecipitation of a hydroxide of cobalt and titanium and a lithium compound are mixed, and the mixture is heated to 650 ° C. or higher and 800 ° C. It has been found that a positive electrode active material for a non-aqueous electrolyte secondary battery obtained by heat treatment at a temperature of ℃ or less becomes a positive electrode active material having good thermal stability and high charge / discharge capacity. It came to be completed.

本発明に係る非水系電解質二次電池用正極活物質の製造方法とは、リチウム金属複合酸化物Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)の粉末からなる非水系電解質二次電池用正極活物質の製造方法であって、ニッケル塩とコバルト塩の混合水溶液と硫酸チタニルの硫酸水溶液に、アルカリ溶液を加え、50℃以上80℃以下で、かつ、pH10以上12.5以下の条件で、ニッケルとコバルトとチタンの水酸化物を共沈させることによって得られた複合水酸化物Ni1−x−yCoTi(OH)(但し、0.10≦x≦0.21、0.03≦y≦0.08)と、リチウム化合物とを混合し、該混合物を650℃以上800℃以下の温度で熱処理することを特徴とするものである。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention refers to a lithium metal composite oxide Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0. 21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10), a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a nickel salt and a cobalt salt By adding an alkaline solution to a mixed aqueous solution and a sulfuric acid aqueous solution of titanyl sulfate, and co-precipitating nickel, cobalt and titanium hydroxides under the conditions of 50 ° C. or higher and 80 ° C. or lower and pH 10 or higher and 12.5 or lower. The obtained composite hydroxide Ni 1-xy Co x Ti y (OH) 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08) and a lithium compound And the mixture is 650 ° C. or higher and 800 ° C. or lower. It is characterized in that the heat treatment in degrees.

本発明に係る他の非水系電解質二次電池用正極活物質の製造方法とは、前記硫酸チタニルの硫酸水溶液は、硫酸が10wt%以上入った硫酸チタニル水溶液であることを特徴とするものであり、また、前記リチウム化合物は、炭酸リチウム、若しくは水酸化リチウム、又はこれらの水和物であることを特徴とするものである。   Another method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the sulfuric acid aqueous solution of titanyl sulfate is a titanyl sulfate aqueous solution containing 10 wt% or more of sulfuric acid. In addition, the lithium compound is lithium carbonate, lithium hydroxide, or a hydrate thereof.

また、本発明に係る非水系電解質二次電池用正極活物質とは、前記記載の非水系電解質二次電池用正極活物質の製造方法によって得られたリチウム金属複合酸化物Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)の粉末からなることを特徴とするものであり、更に、本発明に係る他の非水系電解質二次電池用正極活物質とは、前記記載の非水系電解質二次電池用正極活物質の製造方法によって得られた非水系電解質二次電池用正極活物質が、エネルギー分散法により測定した結果、該活物質のどの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINiとしたときの強度比ITi/INiの標準偏差が強度比ITi/INi平均値の1/2以内であり、常に、組成式Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)を満たすことを特徴とするものである。 Moreover, the positive electrode active material for nonaqueous electrolyte secondary batteries according to the present invention is a lithium metal composite oxide Li 1 + Z Ni 1-x obtained by the method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries described above. -Y Co x Ti y O 2 (where 0.10 ≤ x ≤ 0.21, 0.03 ≤ y ≤ 0.08, -0.05 ≤ z ≤ 0.10) Furthermore, the other positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary material obtained by the above- described method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. As a result of measuring the positive electrode active material for the secondary battery by the energy dispersion method, the peak intensity of the Ti K-line is expressed as I Ti , and the peak intensity of the Ni L-line is measured regardless of the range of the active material. standard deviation of the intensity ratio I Ti / I Ni when the I Ni There is a half less of the intensity ratio I Ti / I Ni average always the composition formula Li 1 + Z Ni 1-x -y Co x Ti y O 2 ( where, 0.10 ≦ x ≦ 0.21,0 .03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10).

また、本発明に係る非水系電解質二次電池とは、前記記載の非水系電解質二次電池用正極活物質を正極に用いたことを特徴とするものである。   The nonaqueous electrolyte secondary battery according to the present invention is characterized in that the positive electrode active material for a nonaqueous electrolyte secondary battery described above is used for a positive electrode.

本発明に係る非水系電解質二次電池用正極活物質は、一般式Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はニッケル塩とコバルト塩の混合水溶液とチタン塩として硫酸チタニルの水溶液にアルカリ溶液を加えてニッケルとコバルトとチタンの水酸化物を共沈させることによって得た複合水酸化物Ni1−x−yCoTi(OH)とリチウム化合物とを混合し、該混合物650℃以上800℃以下の温度で熱処理して得ることができる非水系電解質二次電池用正極活物質であり、4価で安定するチタンで置換することによりNiの一部が3価から2価で安定化させることで、ニッケルを別元素に置換したことによる電池の初期容量の低下を防止することができる。また、酸化力の強いチタンで置換させることでリチウムイオン電池の正極として用いた場合、電池の熱安定性の向上を図ることができる。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10), and the powder is a mixed aqueous solution of nickel salt and cobalt salt and an aqueous solution of titanyl sulfate as titanium salt. A composite hydroxide Ni 1-xy Co x Ti y (OH) 2 obtained by coprecipitation of hydroxides of nickel, cobalt and titanium by adding an alkaline solution and a lithium compound are mixed, and the mixture It is a positive electrode active material for a non-aqueous electrolyte secondary battery that can be obtained by heat treatment at a temperature of 650 ° C. or higher and 800 ° C. or lower. By stabilizing the It is possible to prevent a decrease in the initial capacity of the battery due to the replacement of the nickel with another element. Moreover, when it uses as a positive electrode of a lithium ion battery by substituting with titanium with strong oxidizing power, the thermal stability of a battery can be aimed at.

上記本発明の非水系電解質二次電池用正極活物質を用いることによって、最近の携帯電子機器等の小型二次電池に対する高容量化の要求を満足するとともに、ハイブリッド自動車用、電気自動車用大型二次電池に用いられる電源として求められる安全性をも確保することが可能な非水系電解質二次電池を得ることができ、工業上有用である。   By using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a large capacity for a hybrid vehicle and an electric vehicle can be satisfied. A non-aqueous electrolyte secondary battery capable of ensuring the safety required as a power source used for the secondary battery can be obtained and is industrially useful.

本発明による二次電池の充放電反応は、正極活物質内のリチウムイオンが可逆的に出入りすることで進行する。充電によってリチウムが引き抜かれた正極活物質は高温で不安定であり、加熱すると活物質が分解して酸素を放出し、この酸素が電解液の燃焼を引き起こし、発熱反応が起こる。正極材料の熱安定性を改善するということは、リチウムが引き抜かれた正極活物質の分解反応を抑えるということである。従来開示されている正極活物質の分解反応を抑える方法としては、アルミニウムのような酸素との共有結合性の強い元素でニッケルの一部を置換することが一般的に行なわれてきた。確かにニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上するが、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少することで充放電容量の低下を招くため、アルミニウムへの置換量はある程度に留めなければならなかった。その結果、十分な熱安定性を確保した場合には十分な可逆容量を得ることができず、ある程度の容量を得るためには熱安定性を犠牲にしなければならなかった。   The charge / discharge reaction of the secondary battery according to the present invention proceeds by reversibly entering and exiting lithium ions in the positive electrode active material. The positive electrode active material from which lithium has been extracted by charging is unstable at high temperatures, and when heated, the active material decomposes and releases oxygen, which causes combustion of the electrolyte and an exothermic reaction. To improve the thermal stability of the positive electrode material means to suppress the decomposition reaction of the positive electrode active material from which lithium has been extracted. As a method for suppressing the decomposition reaction of the positive electrode active material disclosed heretofore, it has been generally performed that a part of nickel is substituted with an element having strong covalent bond with oxygen such as aluminum. Certainly, if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved, but the amount of nickel contributing to the redox reaction accompanying the charge / discharge reaction is reduced. In order to reduce the charge / discharge capacity, the amount of substitution with aluminum had to be limited to some extent. As a result, a sufficient reversible capacity could not be obtained when sufficient thermal stability was ensured, and thermal stability had to be sacrificed in order to obtain a certain level of capacity.

そこで、上記課題を解決するためには、一般式Li1+ZNi1−x−yCo(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末であって、添加元素Mとして、4価で安定するチタンで置換することでNiの一部が3価から2価で安定することで、ニッケルを別元素に置換したことによる電池の初期容量の低下を防止することができるので、添加元素Mとしてチタンが充電状態での熱安定性を向上させるのに好ましく、特に、均一なニッケル−コバルト−チタン水酸化物を作製する点からは硫酸チタニルを用いることが必要である。 Therefore, in order to solve the above problems, the general formula Li 1 + Z Ni 1-x -y Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.03 ≦ y ≦ 0.08, -0.05 ≦ z ≦ 0.10), and by substituting with tetravalent and stable titanium as the additive element M, a part of Ni is made trivalent. Since it is possible to prevent a decrease in the initial capacity of the battery by substituting nickel for another element by being stabilized at divalent, titanium as an additive element M is preferable for improving thermal stability in a charged state. In particular, it is necessary to use titanyl sulfate from the viewpoint of producing a uniform nickel-cobalt-titanium hydroxide.

本発明では、一般式Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表される層状構造を有するリチウムニッケルコバルトチタン複合酸化物は、まず、コバルトとニッケルとチタンとの原子比が上記一般式の原子比となるように、ニッケル塩とコバルト塩の混合水溶液と硫酸チタニル水溶液にアルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にコバルトとニッケルとチタンとの原子比が上記一般式の原子比となるように共沈殿させる。そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケルコバルトチタン複合水酸化物を得る。その後、これをリチウム化合物と混合して熱処理することで、望まれる比率のリチウムイオン二次電池用正極活物質として有用なリチウムニッケルコバルトチタン複合酸化物が得られる。 In the present invention, the general formula Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ The lithium nickel cobalt titanium composite oxide having a layered structure represented by 0.10) is first of nickel salt and cobalt salt so that the atomic ratio of cobalt, nickel and titanium is the atomic ratio of the above general formula. Add alkaline solution to mixed aqueous solution and aqueous solution of titanyl sulfate, stir them at a constant speed, and co-precipitate in reaction tank so that atomic ratio of cobalt, nickel and titanium is the atomic ratio of the above general formula . Then, after reaching a steady state, a precipitate is collected, filtered and washed with water to obtain a nickel cobalt titanium composite hydroxide. Thereafter, this is mixed with a lithium compound and subjected to heat treatment to obtain a lithium nickel cobalt titanium composite oxide useful as a positive electrode active material for a lithium ion secondary battery in a desired ratio.

次に、本発明に係るリチウムイオン二次電池の実施形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。   Next, embodiments of the lithium ion secondary battery according to the present invention will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The embodiments described below are merely examples, and the non-aqueous electrolyte secondary battery of the present invention is implemented in various modified and improved embodiments based on the knowledge of those skilled in the art, including the following embodiments. can do. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.

(1)正極活物質、正極
本発明に係る非水系電解質二次電池用正極活物質は、一般式 Li1+ZNi1-x-yCoTiy(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末からなる。
本発明ではニッケル塩とコバルト塩の複合水溶液と硫酸チタニル水溶液を準備しアルカリ水溶液とともに同時添加を行うことで3元素が均一に分散した複合水酸化物を得ることを特徴としている。これはニッケル塩、コバルト塩およびチタン塩の混合水溶液を作製する場合、チタン塩を代表する塩化チタン、硫酸チタンでは、加水分解或いはその時点で酸化が進み水酸化チタン或いは酸化チタンが発生し、チタンの偏析が起きるからである。したがって使用するチタン塩としては水への溶解度の高い硫酸チタニルを用いることが工業的に必要である。
(1) Positive electrode active material, positive electrode The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0 .21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10).
The present invention is characterized in that a composite hydroxide in which three elements are uniformly dispersed is obtained by preparing a composite aqueous solution of nickel salt and cobalt salt and an aqueous solution of titanyl sulfate and simultaneously adding them together with an alkaline aqueous solution. This is because when preparing a mixed aqueous solution of nickel salt, cobalt salt and titanium salt, titanium chloride or titanium sulfate, which is representative of titanium salt, is hydrolyzed or oxidized at that time, and titanium hydroxide or titanium oxide is generated. This is because segregation occurs. Therefore, it is industrially necessary to use titanyl sulfate having high solubility in water as the titanium salt to be used.

次に、本発明に係る非水系電解質二次電池用正極活物質の製造方法について説明する。
本発明に係る非水系電解質二次電池用正極活物質は、ニッケル塩とコバルト塩の混合水溶液および硫酸チタニル水溶液にアルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にコバルトとニッケルとチタンとの原子比が上記一般式の原子比となるように共沈殿させる。そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケルコバルトチタン複合水酸化物を得る。その後、ニッケルとコバルトおよびチタンの水酸化物を共沈させることによって得られたニッケルコバルトチタン複合水酸化物とリチウム化合物とを混合し、この混合物を650℃以上800℃以下の温度で熱処理することが必要である。
Next, the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which concerns on this invention is demonstrated.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is obtained by adding an alkaline solution to a mixed aqueous solution of nickel salt and cobalt salt and an aqueous titanyl sulfate solution, stirring them at a constant speed, Coprecipitation is performed so that the atomic ratio of nickel, titanium, and titanium is the atomic ratio of the above general formula. Then, after reaching a steady state, a precipitate is collected, filtered and washed with water to obtain a nickel cobalt titanium composite hydroxide. Thereafter, nickel cobalt titanium composite hydroxide obtained by coprecipitation of nickel, cobalt and titanium hydroxide and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. to 800 ° C. is required.

リチウム化合物としては、炭酸リチウムや水酸化リチウム、その水和物等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等を、添加元素に係る化合物としては、酸化物、炭酸化物等を使用できるが、前述したように複合水酸化物や複合酸化物を使用した方がより好ましい。また、硫酸チタニルは、硫酸が10wt%以上入った硫酸チタニル水溶液を使用することが好ましい。一般的な塩化チタン、硫酸チタンでは、加水分解或いはその時点で酸化が進み水酸化チタン或いは酸化チタンが発生し、チタンの偏析が起きるからである。したがって使用するチタン塩としては水への溶解度の高い硫酸チタニルを用い、かつ硫酸水溶液であることが工業的に必要である。硫酸が10wt%未満の硫酸チタニルでは、保存中に加水分解を起こし水酸化チタンが析出し、複合水酸化物を作製した場合、チタンの偏析が起こり、工業上好ましくない。   As the lithium compound, lithium carbonate, lithium hydroxide, and hydrates thereof are preferable. Nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, etc. can be used as the nickel compound, and oxides, carbonates, etc. can be used as the compound related to the additive element. It is more preferable to use an oxide or a complex oxide. Moreover, it is preferable to use a titanyl sulfate aqueous solution containing 10 wt% or more of sulfuric acid as the titanyl sulfate. This is because in general titanium chloride and titanium sulfate, hydrolysis or oxidation proceeds at that time, and titanium hydroxide or titanium oxide is generated, causing segregation of titanium. Therefore, as the titanium salt to be used, it is industrially necessary to use titanyl sulfate having high solubility in water and to be a sulfuric acid aqueous solution. When titanyl sulfate containing less than 10 wt% sulfuric acid is hydrolyzed during storage and titanium hydroxide is precipitated to produce a composite hydroxide, segregation of titanium occurs, which is not industrially preferable.

反応条件は、錯化剤の使用の有無により異なるが、50℃を越えて80℃以下の温度範囲で、混合水溶液がpH10〜12.5の範囲となるようにアルカリ溶液を添加して共沈殿させる。所定の条件下で一定速度にて攪拌し、反応槽内が定常状態になった後に、オーバーフローした沈殿物を採取し、濾過、水洗してニッケルコバルトチタン複合水酸化物粒子を得ることができる。
本方法によりニッケルとコバルトとチタンの原子比が望む比率に均一に混合された粒子を得ることができる。さらには得られる粒子は球状に近く、濾過性も良好で実にハンドリング性の良い良好な粒子が得られる。
The reaction conditions vary depending on whether or not a complexing agent is used, but coprecipitation is performed by adding an alkaline solution so that the mixed aqueous solution has a pH of 10 to 12.5 in a temperature range of 50 ° C. to 80 ° C. Let After stirring at a constant speed under a predetermined condition and the inside of the reaction tank is in a steady state, the overflowed precipitate can be collected, filtered and washed with water to obtain nickel cobalt titanium composite hydroxide particles.
By this method, particles in which the atomic ratio of nickel, cobalt, and titanium is uniformly mixed can be obtained. Furthermore, the obtained particles are nearly spherical, and have good filterability and excellent handling properties.

従来法と異なり、チタン溶液の添加をニッケルやコバルト塩混合水溶液と別に行うのは、硫酸チタニルの硫酸水溶液とその他硫酸混合水溶液を最初に混合すると硫酸濃度の低下によりチタンの加水分解が起こりチタンの偏析が起こる可能性があるためと、チタン水酸化物は両性で酸やアルカリで再溶解するため、反応液中の硫酸及び苛性ソーダが析出したチタン水酸化物の再溶解に消費されニッケル及びコバルトの析出を阻害することから粒子の成長が促進されず微粉になり易いからである。   Unlike the conventional method, the titanium solution is added separately from the nickel or cobalt salt mixed aqueous solution. When the sulfuric acid aqueous solution of titanyl sulfate and the other sulfuric acid mixed aqueous solution are mixed first, the hydrolysis of titanium occurs due to the decrease in sulfuric acid concentration. Since segregation may occur and titanium hydroxide is amphoteric and redissolved with acid and alkali, sulfuric acid and caustic soda in the reaction solution are consumed for re-dissolution of titanium hydroxide and nickel and cobalt are dissolved. This is because the growth of the particles is not promoted because the precipitation is inhibited, and the powder tends to be fine.

pH領域は、錯化剤無しの場合、pH=10〜11を選択し、かつ混合水溶液の温度を60℃を越えて80℃以下の範囲とする。錯化剤無しの場合、pH11より高く、特にpH13程度で晶析すると細かい粒子となり、濾過性も悪くなり、球状粒子が得られない。また、pHが10よりも小さいと水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の混合水酸化物が得られなくなってしまう。上記のように、pH=10〜11とし、かつ混合水溶液の温度を50℃を越えて保つことによって、すなわち、反応温度を上げ、またNiの溶解度を上げることで、Niの沈殿量が目的組成からずれて共沈にならない現象を回避している。この時、混合水溶液の温度が80℃を越えると、水の蒸発量が多いためにスラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等、正極材の充放電容量が低下する原因となる状態が起こるので好ましくない。一方、アンモニアなど錯化剤使用の場合、Niの溶解度が上昇するためpH領域はpH10〜12.5まで、温度領域も50℃〜80℃まで広げることができる。金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなることが好ましい。   As for the pH region, when there is no complexing agent, pH = 10 to 11 is selected, and the temperature of the mixed aqueous solution is set to a range of more than 60 ° C. and 80 ° C. or less. In the absence of a complexing agent, crystallization occurs at a pH higher than pH 11, particularly around pH 13, resulting in fine particles, poor filterability and no spherical particles. On the other hand, if the pH is less than 10, the rate of hydroxide formation is remarkably slow, Ni remains in the filtrate, and the amount of precipitation of Ni deviates from the target composition, making it impossible to obtain a mixed hydroxide of the target ratio. End up. As described above, by adjusting the pH to 10 to 11 and maintaining the temperature of the mixed aqueous solution above 50 ° C., that is, by increasing the reaction temperature and increasing the solubility of Ni, the amount of precipitation of Ni can be reduced by the desired composition. It avoids the phenomenon that it does not co-precipitate due to deviation. At this time, if the temperature of the mixed aqueous solution exceeds 80 ° C., the slurry concentration becomes high due to a large amount of water evaporation, the solubility of Ni decreases, and crystals such as sodium sulfate are generated in the filtrate, and the impurity concentration Since a state that causes a decrease in charge / discharge capacity of the positive electrode material occurs, such as an increase in the positive electrode material, it is not preferable. On the other hand, in the case of using a complexing agent such as ammonia, the solubility of Ni increases, so that the pH range can be expanded to pH 10 to 12.5 and the temperature range can be expanded to 50 ° C. to 80 ° C. The metal composite hydroxide is preferably composed of spherical secondary particles in which a plurality of primary particles of 1 μm or less are aggregated.

本発明の正極活物質は、リチウム化合物と、上記の方法で得られた複合水酸化物Ni1−x−yCoTi(OH)をそれぞれ所定量混合し、酸素気流中で650℃〜800℃程度の温度で、10〜20時間程度焼成することによって合成することができる。650℃より低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。また、800℃を越えるとLi層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトにおけるリチウム以外の金属イオンのサイト占有率が2%より大きくなってしまい、リチウムのサイトである3aサイトに金属イオンの混入率が高くなり、リチウムイオンの拡散パスが阻害され、その正極を用いた電池は初期容量や出力が低下してしまうことから好ましくない。 The positive electrode active material of the present invention is prepared by mixing a predetermined amount of a lithium compound and the composite hydroxide Ni 1-xy Co x Ti y (OH) 2 obtained by the above method, and in an oxygen stream at 650 ° C. It can synthesize | combine by baking for about 10 to 20 hours at the temperature of about -800 degreeC. When the temperature is lower than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. When the temperature exceeds 800 ° C., Ni is mixed into the Li layer and Li is mixed into the Ni layer, so that the layered structure is disturbed, and the site occupancy rate of metal ions other than lithium at the 3a site becomes larger than 2%. The metal ion mixing rate at the 3a site is increased, the lithium ion diffusion path is hindered, and a battery using the positive electrode is not preferable because the initial capacity and output are reduced.

また、得られた正極活物質の粒度分布のd50は4.5〜8.1μmであり、タップ密度は1.2〜1.76g/mlであることが好ましい。上記範囲を外れると、正極を作製するときに十分正極活物質を充填できなくなるなど正極材として相応しくなくなってしまうからである。   Moreover, d50 of the particle size distribution of the obtained positive electrode active material is preferably 4.5 to 8.1 μm, and the tap density is preferably 1.2 to 1.76 g / ml. If it is out of the above range, it becomes unsuitable as a positive electrode material, for example, the positive electrode active material cannot be sufficiently filled when producing the positive electrode.

次に、正極を形成する正極合材およびそれを構成する各材料について説明する。
前記一般式 Li1+ZNi1-x-yCoTiy(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物を正極活物質として用いた正極は、例えば、次のようにして作製する。
Next, the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
General formula Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10) For example, the positive electrode using the lithium metal composite oxide represented by (2) is produced as follows.

粉末状の正極活物質、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法に依ってもよい。   A powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass as in the case of the positive electrode of a general lithium secondary battery. It is desirable that the content is 1 to 20% by mass and the content of the binder is 1 to 20% by mass. The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production. However, the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.

前記正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。
また、バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluororubber, styrene butadiene, cellulose resin, polyacrylic acid, and the like can be used.
The binder plays a role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(2)負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
(2) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions and adding an appropriate solvent to form a paste. In addition, it is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.

(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many fine holes can be used.

(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。
(4) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
[実施例]
(5) Shape and configuration of battery The shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is various, such as a cylindrical type and a laminated type. be able to.
In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and this electrode body is impregnated with the non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal that communicates with the outside, and the negative electrode current collector and the negative electrode terminal that communicates with the outside are connected using a current collecting lead or the like. The battery having the above structure can be sealed in a battery case to complete the battery.
[Example]

以下、本発明になる一実施の形態を好適な図面に基づいて詳述する。各実施例および比較例で合成したLi1+ZNi1-x-yCoTiyの組成および、その評価結果を表1にまとめた。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the preferred drawings. Table 1 summarizes the composition of Li 1 + Z Ni 1-xy Co x Ti y O 2 synthesized in each example and comparative example and the evaluation results thereof.

ニッケル:コバルト:チタンのモル比が81:15:4となるように硫酸ニッケルと硫酸コバルトの混合溶液および硫酸チタニル水溶液とを準備し、12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を50℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトチタン複合水酸化物粒子を形成させた。その後反応槽内の水酸化物スラリーを全量回収し、濾過、水洗後乾燥し、ニッケルコバルトチタン複合水酸化物の乾燥粉末を得た。   Prepare a mixed solution of nickel sulfate and cobalt sulfate and an aqueous solution of titanyl sulfate so that the molar ratio of nickel: cobalt: titanium is 81: 15: 4, and simultaneously add 12.5% sodium hydroxide solution to the reaction vessel. The nickel cobalt titanium composite hydroxide particles were formed by a coprecipitation method while keeping the pH in the range of 10 to 11 and the reaction temperature in the range of 50 to 80 ° C. Thereafter, the entire amount of hydroxide slurry in the reaction vessel was recovered, filtered, washed with water and dried to obtain a dry powder of nickel cobalt titanium composite hydroxide.

このニッケルコバルトチタン複合水酸化物と市販の炭酸リチウム(FMC社製)とをニッケルコバルトチタンとリチウムの原子比が1:1.05になるように秤量した後、球状の二次粒子の形骸が維持される程度の強さでシェ−カーミキサー(WAB社製TURBULA TypeT2C)を用いて十分に混合した。この混合物20gを5cm×12cm×3cmのマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量3L/minの酸素気流中で昇温速度5℃/minで730℃まで昇温して10時間焼成した後、室温まで炉冷した。   After weighing this nickel cobalt titanium composite hydroxide and commercially available lithium carbonate (manufactured by FMC) so that the atomic ratio of nickel cobalt titanium and lithium is 1: 1.05, the shape of spherical secondary particles is The mixture was sufficiently mixed using a shaker mixer (TURBULA Type T2C manufactured by WAB Co., Ltd.) at such a strength as to be maintained. 20 g of this mixture was inserted into a 5 cm × 12 cm × 3 cm magnesia firing vessel, and heated to 730 ° C. at a heating rate of 5 ° C./min in an oxygen stream with a flow rate of 3 L / min using a closed electric furnace. The mixture was baked for 10 hours and then cooled to room temperature.

得られた焼成物は、X線回折で分析したところ、図1に示すとおり異相を含まない六方晶系の層状構造を有し、化学分析法(Ni、Co、Tiについては、ICP発光分析装置(PERKINELMER製 OPTIMA 3300DV)、Liについては原子吸光分析(VARIAN製 Spectr AA-40原子吸光法)により分析した)で測定すると組成式(Li1.05Ni0.81Co0.15Ti0.04)となる正極活物質であることがわかった。マイクロトラックで測定した粒度分布のd50は6.6μm、タップ密度は1.46g/mlであった。
また、この金属複合酸化物からなる正極活物質について、エネルギー分散測定装置(EDAX社製EDX装置FALCON)を用いて、エネルギー分散法によって組成のばらつきを判断した。測定方法は、上記複合酸化物を試料台上の導電性両面テープ上に数粒子の厚さで載せ、真空状態にして、SEMで像を確認し、測定目標を定め、測定を行った。
測定条件は、電圧15kV、電流10−9〜10−10Aとし、電子ビーム径は3〜5nm、取り出し角度は20°とした。この測定においては、上記複合酸化物の粒子の一部で厚み数μmの情報を拾うことになる。上記測定では、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiのn=10の測定の平均値と標準偏差により判断した。
n=10で測定した結果、この金属複合酸化物からなる正極活物質のどの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの平均値が0.045となり、標準偏差が0.005となり、常に、組成式Li1.05Ni0.81Co0.15Ti0.04を満たすものであった。
上記測定方法は、他の実施例、比較例でも同様に用いた。
The obtained fired product was analyzed by X-ray diffraction. As shown in FIG. 1, the fired product had a hexagonal layered structure containing no heterogeneous phase, and chemical analysis methods (ICP emission analyzer for Ni, Co, and Ti). (OPTIMA 3300DV manufactured by PERKINELMER), Li was analyzed by atomic absorption analysis (analyzed by VARIAN, Spectr AA-40 atomic absorption method), and the composition formula (Li 1.05 Ni 0.81 Co 0.15 Ti 0.04 It was found to be a positive electrode active material that becomes O 2 ). D50 of the particle size distribution measured by Microtrac was 6.6 μm, and the tap density was 1.46 g / ml.
Moreover, about the positive electrode active material which consists of this metal complex oxide, the dispersion | variation in a composition was judged by the energy dispersion method using the energy dispersion measuring apparatus (EDX apparatus FALCON by EDAX). The measurement was carried out by placing the composite oxide on a conductive double-sided tape on a sample stage with a thickness of several particles, applying a vacuum, checking the image with an SEM, setting a measurement target, and measuring.
The measurement conditions were a voltage of 15 kV, a current of 10 −9 to 10 −10 A, an electron beam diameter of 3 to 5 nm, and an extraction angle of 20 °. In this measurement, information on a thickness of several μm is picked up by a part of the composite oxide particles. In the above measurement, it is judged by the average value and standard deviation of the intensity ratio I Ti / I Ni where n = 10 when the peak intensity of Ti K-line is I Ti and the peak intensity of Ni L-line is I Ni. did.
As a result of measurement at n = 10, the peak intensity of the Ti K-line is I Ti , and the peak intensity of the Ni L-line is I I regardless of the range of the positive electrode active material made of this metal composite oxide. The average value when Ni is 0.045 and the standard deviation is 0.005, which always satisfies the composition formula Li 1.05 Ni 0.81 Co 0.15 Ti 0.04 O 2 .
The above measurement method was also used in other examples and comparative examples.

得られた正極活物質の初期容量評価は以下のようにして行った。活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン電池を作製した。 The initial capacity evaluation of the obtained positive electrode active material was performed as follows. 70% by mass of the active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE, and 150 mg was taken out from this to produce a pellet to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 1 was produced in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.

作製した電池は24時間程度放置し、開路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。 The produced battery is left for about 24 hours, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to obtain an initial charge capacity. The capacity when the battery was discharged to a cutoff voltage of 3.0 V after a one hour rest was defined as the initial discharge capacity.

正極の安全性の評価は、上記と同様な方法で作製した2032型のコイン電池をカットオフ電圧4.5VまでCCCV充電(定電流−定電圧充電。まず、充電が、定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電方法。)した後、短絡しないように注意しながら解体して正極を取り出した。この電極を3.0mg計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量計(DSC)(Rigaku社製PTC−10A)を用いて昇温速度10℃/minで室温から400℃まで発熱挙動を測定した。
得られたリチウムニッケルコバルトチタン複合酸化物の元素分析値及び電池評価によって得られた初期放電容量及び、DSC測定によって得られた発熱速度を表1に示す。
The safety evaluation of the positive electrode is performed by CCCV charging (constant current-constant voltage charging. First, charging is operated at a constant current) to a cutoff voltage of 4.5V using a 2032 type coin battery manufactured by the same method as described above. Then, the charging method using a charging process of two phases of ending charging at a constant voltage.), And then disassembling with care not to short-circuit, and taking out the positive electrode. 3.0 mg of this electrode was measured, 1.3 mg of the electrolyte was added, sealed in an aluminum measurement container, and a temperature increase rate of 10 ° C./degree using a differential scanning calorimeter (DSC) (PTC-10A manufactured by Rigaku). The heat generation behavior was measured from room temperature to 400 ° C. in min.
Table 1 shows the elemental analysis value of the obtained lithium nickel cobalt titanium composite oxide, the initial discharge capacity obtained by battery evaluation, and the heat generation rate obtained by DSC measurement.

ニッケル:コバルト:チタンのモル比が78:15:7で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.78Co0.15Ti0.07)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は1.56g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.078となり、標準偏差が0.015となり、常に、組成式Li1.05Ni0.78Co0.15Ti0.07を満たすものであった。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 78: 15: 7 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material (Li 1.05 Ni 0.78 Co 0.15 Ti 0.07 having a hexagonal layer structure not containing a heterogeneous phase) was obtained. O 2 ). D50 of the particle size distribution measured by Microtrac was 6.1 μm, and the tap density was 1.56 g / ml.
The positive electrode active material composed of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti , Ni. The average value of the intensity ratio I Ti / I Ni when the peak intensity of the L line is I Ni is 0.078, the standard deviation is 0.015, and the composition formula is always Li 1.05 Ni 0.78 Co 0 .15 Ti 0.07 O 2 was satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.

ニッケル:コバルト:チタンのモル比が81:15:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで800℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.81Co0.15Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は8.04μm、タップ密度は1.76g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.052となり、標準偏差が0.012となり、常に、組成式Li1.05Ni0.81Co0.15Ti0.04を満たすものであった。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 81: 15: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 800 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material (Li 1.05 Ni 0.81 Co 0.15 Ti 0. 04 O 2 ). D50 of the particle size distribution measured by Microtrac was 8.04 μm, and the tap density was 1.76 g / ml.
The positive electrode active material composed of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti , Ni. next average value of the intensity ratio I Ti / I Ni when the peak intensity of the L line was I Ni is 0.052, the standard deviation is 0.012, and the always composition formula Li 1.05 Ni 0.81 Co 0 .15 Ti 0.04 O 2 was satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.

ニッケル:コバルト:チタンのモル比が81:15:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで650℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.81Co0.15Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は4.6μm、タップ密度は1.24g/mlであった。
この金属複合水酸化物は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.063となり、標準偏差が0.025となり、常に、組成式Li1.05Ni0.81Co0.15Ti0.04を満たすものであった。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 81: 15: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. The temperature was raised to 650 ° C., baked for 10 hours, and then cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material (Li 1.05 Ni 0.81 Co 0.15 Ti 0. 04 O 2 ). D50 of the particle size distribution measured by Microtrac was 4.6 μm, and the tap density was 1.24 g / ml.
This metal composite hydroxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti and the peak of the Ni L-line regardless of the range. When the strength is I Ni , the average value of the strength ratio I Ti / I Ni is 0.063 and the standard deviation is 0.025, and the composition formula Li 1.05 Ni 0.81 Co 0.15 Ti 0 is always obtained. .04 O 2 was satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.

ニッケル:コバルト:チタンのモル比が75:21:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中で500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.75Co0.21Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は4.7μm、タップ密度は1.26g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.053となり、標準偏差が0.007となり、常に、組成式Li1.05Ni0.75Co0.21Ti0.04を満たすものであった。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 75: 21: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream at a flow rate of 3 L / min using a sealed electric furnace, and then the temperature rising rate was 5 ° C./min. Was heated to 730 ° C., baked for 10 hours, and then cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material (Li 1.05 Ni 0.75 Co 0.21 Ti 0.04 having a hexagonal layer structure not containing a heterogeneous phase) was obtained. O 2 ). D50 of the particle size distribution measured by Microtrac was 4.7 μm, and the tap density was 1.26 g / ml.
The positive electrode active material composed of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti , Ni. next average value of the intensity ratio I Ti / I Ni when the peak intensity of the L line was I Ni is 0.053, the standard deviation is 0.007, and the always composition formula Li 1.05 Ni 0.75 Co 0 .21 Ti 0.04 O 2 was satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.

ニッケル:コバルト:チタンのモル比が86:10:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.86Co0.10Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は6.6μm、タップ密度は1.46g/mlであった。
この金属複合水酸化物は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.043となり、標準偏差が0.015となり、常に、組成式Li1.05Ni0.86Co0.10Ti0.04を満たすものであった。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
(比較例1)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: titanium is 86: 10: 4 is prepared in the same manner as in Example 1, and this is performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature. When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material (Li 1.05 Ni 0.86 Co 0.10 Ti 0.04 having a hexagonal layer structure not containing a heterogeneous phase) was obtained. O 2 ). D50 of the particle size distribution measured by Microtrac was 6.6 μm, and the tap density was 1.46 g / ml.
This metal composite hydroxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti and the peak of the Ni L-line regardless of the range. When the strength is I Ni , the average value of the strength ratio I Ti / I Ni is 0.043, the standard deviation is 0.015, and the composition formula is always Li 1.05 Ni 0.86 Co 0.10 Ti 0. .04 O 2 was satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
(Comparative Example 1)

ニッケル:コバルト:チタンのモル比が81:15:4となるように硫酸ニッケルと硫酸コバルト、硫酸チタンの混合溶液と12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトチタン複合水酸化物粒子を形成させ金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.16Ti0.04)と二酸化チタンTiOの混合物であった。マイクロトラックで測定した粒度分布のd50は7.2μm、タップ密度は1.54g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、n=10で測定した場合、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.088となり、標準偏差が0.061となり、組成ばらつきの大きなことがわかる。組成式Li1.05Ni0.85Co0.15Ti0.04を満たしていなかった。
この正極活物質の初期容量評価を実施例1と同様に行い、これらにより得られた初期放電容量と、DSC測定から得られた正極の発熱速度を表1に示す。
(比較例2)
A mixed solution of nickel sulfate, cobalt sulfate, and titanium sulfate and a 12.5% sodium hydroxide solution were simultaneously added to the reaction vessel so that the molar ratio of nickel: cobalt: titanium was 81: 15: 4, and the pH was adjusted to 10 to 10. 11, the reaction temperature is kept constant in the range of 60 ° C. to 80 ° C., nickel cobalt titanium composite hydroxide particles are formed by coprecipitation method, and a metal composite hydroxide is produced in the same manner as in Example 1. This was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1. Using a closed electric furnace, this was mixed at 500 ° C. in an oxygen stream with a flow rate of 3 L / min. After calcining for a time, the temperature was raised to 730 ° C. at a rate of temperature rise of 5 ° C./min, baked for 10 hours, and then cooled to room temperature. When the fired product obtained was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.82 Co 0.16 Ti 0.04 O 2 ) and It was a mixture of titanium dioxide TiO 2. D50 of the particle size distribution measured by Microtrac was 7.2 μm, and the tap density was 1.54 g / ml.
The positive electrode active material composed of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, when measured at n = 10, the peak intensity of the Ti K line was that of the I Ti and Ni L lines. It can be seen that the average value of the intensity ratio I Ti / I Ni when the peak intensity is I Ni is 0.088, the standard deviation is 0.061, and the composition variation is large. The composition formula Li 1.05 Ni 0.85 Co 0.15 Ti 0.04 O 2 was not satisfied.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the initial discharge capacity obtained thereby and the heat generation rate of the positive electrode obtained from the DSC measurement.
(Comparative Example 2)

ニッケル:コバルト:チタンのモル比が70:15:15で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.70Co0.15Ti0.15)であった。マイクロトラックで測定した粒度分布のd50は8.7μmであり、タップ密度は1.00g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、どの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.182となり、標準偏差が0.063となった。
この正極活物質の初期容量評価を実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
(比較例3)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: titanium is 70:15:15 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.70 Co 0.15 Ti 0.15 O 2 ) was used. there were. The d50 of the particle size distribution measured by Microtrac was 8.7 μm, and the tap density was 1.00 g / ml.
The positive electrode active material composed of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Ti K-line was measured as I Ti , Ni. The average value of the intensity ratios I Ti / I Ni when the peak intensity of the L line was I Ni was 0.182, and the standard deviation was 0.063.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. The obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement are shown in Table 1.
(Comparative Example 3)

ニッケル:コバルトのモル比が82:18となるように硫酸ニッケルと硫酸コバルトの混合溶液と12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトチタン複合水酸化物粒子を形成させた金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.182)であった。マイクロトラックで測定した粒度分布のd50は9.0μmであり、タップ密度は1.54g/mlであった。
この金属複合酸化物からなる正極活物質についてはチタンが含まれていなかったため、エネルギー分散法による測定は行わなかった。
得られた正極活物質の初期容量評価を実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
(比較例4)
A mixed solution of nickel sulfate and cobalt sulfate and a 12.5% sodium hydroxide solution were simultaneously added to the reaction vessel so that the molar ratio of nickel: cobalt was 82:18, and the pH was in the range of 10-11 and the reaction temperature was A metal composite hydroxide in which nickel cobalt titanium composite hydroxide particles were formed by coprecipitation method while being kept constant in the range of 60 ° C. to 80 ° C. was produced in the same manner as in Example 1, and this was the same as in Example 1. In the same manner as above, the molar ratio of lithium and metal was mixed to 1.05: 1, and calcined at 500 ° C. for 2 hours in an oxygen stream at a flow rate of 3 L / min using a sealed electric furnace. After heating up to 730 degreeC with the temperature increase rate of 5 degree-C / min and baking for 10 hours, the furnace was cooled to room temperature. When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.18 O 2 ) having a hexagonal layered structure. The particle size distribution d50 measured with Microtrac was 9.0 μm, and the tap density was 1.54 g / ml.
Since the positive electrode active material made of this metal composite oxide did not contain titanium, measurement by the energy dispersion method was not performed.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1, and the initial discharge capacity obtained and the heat generation rate of the positive electrode obtained from the DSC measurement are shown in Table 1.
(Comparative Example 4)

ニッケル:コバルト:チタンのモル比が81:15:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで900℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.81Co0.15Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は2.55μmであり、タップ密度は2.63g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.052となり、標準偏差が0.032となり、組成ばらつきの大きなことがわかる。
この正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
(比較例5)
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 81: 15: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 900 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layer structure (Li 1.05 Ni 0.81 Co 0.15 Ti 0.04 O 2 ) was used. there were. The d50 of the particle size distribution measured by Microtrac was 2.55 μm, and the tap density was 2.63 g / ml.
The positive electrode active material made of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, when the Ti K-line peak intensity was I Ti and the Ni L-line peak intensity was I Ni. The average value of the intensity ratios I Ti / I Ni is 0.052 and the standard deviation is 0.032, which indicates that the composition variation is large.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
(Comparative Example 5)

ニッケル:コバルト:チタンのモル比が81:15:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで600℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.83Co0.12Ti0.04)と酸化ニッケルNiOの混合物であった。マイクロトラックで測定した粒度分布のd50は3.21μmであり、タップ密度は1.81g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.093となり、標準偏差が0.062となり、組成ばらつきの大きなことがわかる。
得られた正極活物質の初期容量評価を実施例1と同様に行い、得られた初期放電容量を表1に示した。なお、初期放電容量が低すぎたため、DSC測定は行わなかった。
(比較例6)
A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 81: 15: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 600 ° C. and baking for 10 hours, the furnace was cooled to room temperature. When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.83 Co 0.12 Ti 0.04 O 2 ) and It was a mixture of nickel oxide NiO. D50 of the particle size distribution measured by Microtrac was 3.21 μm, and the tap density was 1.81 g / ml.
The positive electrode active material made of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, when the Ti K-line peak intensity was I Ti and the Ni L-line peak intensity was I Ni. The average value of the intensity ratios I Ti / I Ni is 0.093, the standard deviation is 0.062, and it can be seen that the composition variation is large.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1, and the obtained initial discharge capacity is shown in Table 1. Note that the DSC measurement was not performed because the initial discharge capacity was too low.
(Comparative Example 6)

ニッケル:コバルト:チタンのモル比が74:22:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.74Co0.22Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は4.4μm、タップ密度は1.11g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiのその平均値が0.052となり、標準偏差が0.009となり、組成ばらつきは少なかった。
この正極活物質の初期容量評価を実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
(比較例7)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: titanium is 74: 22: 4 is prepared in the same manner as in Example 1, and this is performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material (Li 1.05 Ni 0.74 Co 0.22 Ti 0.04 O 2 ) having a hexagonal layered structure was used. there were. D50 of the particle size distribution measured by Microtrac was 4.4 μm, and the tap density was 1.11 g / ml.
The positive electrode active material made of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, when the Ti K-line peak intensity was I Ti and the Ni L-line peak intensity was I Ni. The average value of the intensity ratio I Ti / I Ni was 0.052, the standard deviation was 0.009, and the composition variation was small.
The initial capacity evaluation of this positive electrode active material was performed in the same manner as in Example 1. The obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement are shown in Table 1.
(Comparative Example 7)

ニッケル:コバルト:チタンのモル比が87:9:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.87Co0.09Ti0.04)であった。マイクロトラックで測定した粒度分布のd50は7.5μmであり、タップ密度は1.43g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、TiのK線のピーク強度をITi、NiのL線のピーク強度をINi としたときの強度比ITi/INiの平均値が0.035となり、標準偏差が0.008となり、比較的組成ばらつきは小さかった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。

A metal composite hydroxide having a nickel: cobalt: titanium molar ratio of 87: 9: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature. The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.87 Co 0.09 Ti 0.04 O 2 ) was used. there were. The d50 of the particle size distribution measured by Microtrac was 7.5 μm, and the tap density was 1.43 g / ml.
The positive electrode active material made of this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, when the Ti K-line peak intensity was I Ti and the Ni L-line peak intensity was I Ni. The average value of the strength ratio I Ti / I Ni was 0.035, the standard deviation was 0.008, and the composition variation was relatively small.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.

Figure 0004655599
[評価]
Figure 0004655599
[Evaluation]

表1に示すように、実施例1〜6で得られたリチウムニッケルコバルトチタン複合酸化物はチタンが均一に固溶しているため、初期放電容量が180(mAh/g)を超え、リチウムコバルト複合酸化物(LiCoO)に代わる新たな電池材料として使用可能な材料であることがわかる。
DSCを用いた安全性の評価で11.00mJ/sec/g以下の発熱量に抑えられていれば、実電池としての安全性で実用上問題ないことを本発明者らは確認している。
実施例1〜6に示した正極活物質は、11.00mJ/sec/g以下の小さい発熱量となっており、安全性の高い材料であることがわかる。
As shown in Table 1, since the lithium nickel cobalt titanium composite oxides obtained in Examples 1 to 6 were uniformly dissolved in titanium, the initial discharge capacity exceeded 180 (mAh / g), and lithium cobalt It can be seen that this is a material that can be used as a new battery material to replace the composite oxide (LiCoO 2 ).
The present inventors have confirmed that there is no practical problem with safety as an actual battery if the calorific value is suppressed to 11.00 mJ / sec / g or less in the safety evaluation using DSC.
The positive electrode active materials shown in Examples 1 to 6 have a small calorific value of 11.00 mJ / sec / g or less, indicating that the material is highly safe.

一方、比較例1で得られたリチウムニッケルコバルトチタン複合酸化物は、チタン原料として硫酸チタンを用いたため、X線回折で分析したところ、六方晶系の層状構造を有する正極活物質と二酸化チタンの混合物であることがわかり、チタンが偏析していることから初期放電容量が180(mAh/g)以下となり、電池材料として望ましくない材料であることがわかる。また、11.00mJ/sec/gを越える発熱量となっており、安全性についても望ましくない材料であることがわかる。   On the other hand, since the lithium nickel cobalt titanium composite oxide obtained in Comparative Example 1 used titanium sulfate as a titanium raw material, it was analyzed by X-ray diffraction. As a result, the positive electrode active material having a hexagonal layered structure and titanium dioxide were analyzed. It can be seen that it is a mixture, and since titanium is segregated, the initial discharge capacity is 180 (mAh / g) or less, indicating that the battery material is not desirable. In addition, the calorific value exceeds 11.00 mJ / sec / g, indicating that the material is not desirable for safety.

比較例2はニッケル:コバルト:チタンのモル比が70:15:15にした例である。これにより得られたリチウムニッケルコバルトチタン複合酸化物はチタン量が多く、安全性は問題ないが初期放電容量が低く、リチウムコバルト複合酸化物(LiCoO)と比較して電圧が低いためエネルギー密度が低く正極活物質として実用上問題がある。また、比較例3はチタンによる置換を行わなかった例であるが、発熱速度が大きく安全上問題がある。比較例6、7はコバルト量が本発明の範囲を外れた場合であり、初期放電容量が低くなっており、コバルト量が少ない比較例7では、発熱速度も大きくなっており安全性の問題もあることがわかる。 Comparative Example 2 is an example in which the molar ratio of nickel: cobalt: titanium is 70:15:15. The lithium nickel cobalt titanium composite oxide thus obtained has a large amount of titanium, and there is no safety problem, but the initial discharge capacity is low, and the voltage is lower than that of the lithium cobalt composite oxide (LiCoO 2 ), so the energy density is low. There is a practical problem as a low positive electrode active material. Moreover, although the comparative example 3 is an example which did not substitute with titanium, there is a problem on safety because the heat generation rate is large. Comparative Examples 6 and 7 are cases in which the amount of cobalt is out of the range of the present invention, the initial discharge capacity is low, and in Comparative Example 7 where the amount of cobalt is small, the heat generation rate is large and there is also a safety problem. I know that there is.

比較例4は、焼成温度が900℃と高すぎた場合であり、初期放電量が低くなっており、正極活物質の層状構造が乱れ、リチウムイオンの拡散パスが阻害されたものと類推される。一方、比較例5は、焼成温度が600℃と低かったため、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物の他に、酸化ニッケルが存在していることが分析からわかった。このため、得られた正極活物質の初期放電量が低くなっている。   Comparative Example 4 is a case where the firing temperature is too high at 900 ° C., and the initial discharge amount is low, the layered structure of the positive electrode active material is disturbed, and it is estimated that the diffusion path of lithium ions is inhibited. . On the other hand, in Comparative Example 5, since the firing temperature was as low as 600 ° C., the reaction with the lithium compound did not proceed sufficiently, and nickel oxide was present in addition to the lithium nickel composite oxide having the desired layered structure. I understood from the analysis. For this reason, the initial discharge amount of the obtained positive electrode active material is low.

安全性に優れていながら高い初期容量を有しているという本発明の非水系電解質二次電池のメリットを活かすためには、常に高容量を要求される小型携帯電子機器の電源としての用途に好適である。また電気自動車用の電源においては、電池の大型化による安全性の確保の難しさと、より高度な安全性を確保するための高価な保護回路の装着は必要不可欠であるが、本発明のリチウムイオン二次電池は、優れた安全性を有しているために安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできるという点において、電気自動車用電源としても好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源として用い得る。   In order to take advantage of the non-aqueous electrolyte secondary battery of the present invention that has high initial capacity while being excellent in safety, it is suitable for use as a power source for small portable electronic devices that always require high capacity It is. In addition, in the power source for electric vehicles, it is indispensable to ensure safety by increasing the size of the battery and to install an expensive protection circuit for ensuring higher safety. The secondary battery has excellent safety, so that not only is it easy to ensure safety, but it can also be used as a power source for electric vehicles in that it can simplify expensive protection circuits and reduce costs. Is also suitable. The electric vehicle power source can be used not only for an electric vehicle driven purely by electric energy but also for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

実施例1のX線回折図X-ray diffraction diagram of Example 1 電池評価に用いたコイン電池の断面図Cross section of coin battery used for battery evaluation

符号の説明Explanation of symbols

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体

1 Lithium metal negative electrode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (6)

リチウム金属複合酸化物Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)の粉末からなる非水系電解質二次電池用正極活物質の製造方法であって、ニッケル塩とコバルト塩の混合水溶液と硫酸チタニルの硫酸水溶液に、アルカリ溶液を加え、50℃以上80℃以下で、かつ、pH10以上12.5以下の条件で、ニッケルとコバルトとチタンの水酸化物を共沈させることによって得られた複合水酸化物Ni1−x−yCoTi(OH)(但し、0.10≦x≦0.21、0.03≦y≦0.08)と、リチウム化合物とを混合し、該混合物を650℃以上800℃以下の温度で熱処理することを特徴とする非水系電解質二次電池用正極活物質の製造方法。 Lithium metal composite oxide Li 1 + Z Ni 1-xy Co x Ti y O 2 (however, 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0 .10) a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein an alkaline solution is added to a mixed aqueous solution of nickel salt and cobalt salt and a sulfuric acid aqueous solution of titanyl sulfate, and the temperature is 50 ° C. to 80 ° C. Composite hydroxide Ni 1-xy Co x Ti y (OH) obtained by coprecipitation of hydroxides of nickel, cobalt and titanium under the conditions of pH 10 to 12.5 below 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08) and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. to 800 ° C. Cathode active for non-aqueous electrolyte secondary batteries Method of manufacturing quality. 前記硫酸チタニルの硫酸水溶液は、硫酸が10wt%以上入った硫酸チタニル水溶液であることを特徴とする請求項1記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the sulfuric acid aqueous solution of titanyl sulfate is a titanyl sulfate aqueous solution containing 10 wt% or more of sulfuric acid. 前記リチウム化合物は、炭酸リチウム、若しくは水酸化リチウム、又はこれらの水和物であることを特徴とする請求項1又は2に記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium compound is lithium carbonate, lithium hydroxide, or a hydrate thereof. 請求項1〜3のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法によって得られたリチウム金属複合酸化物Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)の粉末からなることを特徴とする非水系電解質二次電池用正極活物質 A lithium metal composite oxide Li 1 + Z Ni 1-xy Co x Ti y O 2 (obtained by the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. However, the positive electrode for a non-aqueous electrolyte secondary battery, characterized by comprising a powder of 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10) Active material 請求項1〜3のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法によって得られた非水系電解質二次電池用正極活物質が、エネルギー分散法により測定した結果、該活物質のどの範囲を測定した場合であっても、TiのK線のピーク強度をITi、NiのL線のピーク強度をINiとしたときの強度比ITi/INiの標準偏差が強度比ITi/INiの平均値の1/2以内であり、常に、組成式Li1+ZNi1−x−yCoTi(但し、0.10≦x≦0.21、0.03≦y≦0.08、−0.05≦z≦0.10)を満たすことを特徴とする非水系電解質二次電池用正極活物質。 As a result of measuring the positive electrode active material for a nonaqueous electrolyte secondary battery obtained by the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, by an energy dispersion method, Regardless of which range of the active material is measured, the standard deviation of the intensity ratio I Ti / I Ni when the peak intensity of the Ti K line is I Ti and the peak intensity of the Ni L line is I Ni Is within 1/2 of the average value of the intensity ratio I Ti / I Ni , and is always represented by the composition formula Li 1 + Z Ni 1-xy Co x Ti y O 2 (where 0.10 ≦ x ≦ 0.21, 0.03 ≦ y ≦ 0.08 and −0.05 ≦ z ≦ 0.10). A positive electrode active material for a non-aqueous electrolyte secondary battery. 請求項4又は5に記載の非水系電解質二次電池用正極活物質を正極に用いたことを特徴とする非水系電解質二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4 for a positive electrode.
JP2004339687A 2004-11-24 2004-11-24 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same Active JP4655599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339687A JP4655599B2 (en) 2004-11-24 2004-11-24 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339687A JP4655599B2 (en) 2004-11-24 2004-11-24 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2006147499A JP2006147499A (en) 2006-06-08
JP4655599B2 true JP4655599B2 (en) 2011-03-23

Family

ID=36626926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339687A Active JP4655599B2 (en) 2004-11-24 2004-11-24 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4655599B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984593B2 (en) * 2006-03-28 2012-07-25 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5007919B2 (en) * 2006-04-05 2012-08-22 日立金属株式会社 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and non-aqueous lithium secondary battery using the same
JP5181455B2 (en) * 2006-10-19 2013-04-10 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5176317B2 (en) * 2006-12-26 2013-04-03 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5045135B2 (en) * 2007-02-08 2012-10-10 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5103923B2 (en) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5109423B2 (en) * 2007-03-19 2012-12-26 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5109447B2 (en) * 2007-04-02 2012-12-26 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
TW200941804A (en) * 2007-12-12 2009-10-01 Umicore Nv Homogeneous nanoparticle core doping of cathode material precursors
JP5515435B2 (en) * 2009-06-04 2014-06-11 住友化学株式会社 Raw material powder for lithium nickel composite metal oxide
JP6777994B2 (en) * 2015-06-30 2020-10-28 住友化学株式会社 Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR102077180B1 (en) * 2017-12-22 2020-02-13 주식회사 포스코 Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
JP6883003B2 (en) * 2018-06-20 2021-06-02 Jx金属株式会社 Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, positive electrode active material for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
WO2021006129A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2021006128A1 (en) 2019-07-08 2021-01-14
JPWO2021006127A1 (en) 2019-07-08 2021-01-14
EP3998234A4 (en) 2019-07-08 2023-08-16 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
US20220367869A1 (en) 2019-07-08 2022-11-17 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027611A (en) * 1996-07-12 1998-01-27 Tanaka Kagaku Kenkyusho:Kk Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery
JP2002170562A (en) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd Positive electrode material for lithium secondary battery and method for manufacturing the same
JP2002289261A (en) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027611A (en) * 1996-07-12 1998-01-27 Tanaka Kagaku Kenkyusho:Kk Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery
JP2002170562A (en) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd Positive electrode material for lithium secondary battery and method for manufacturing the same
JP2002289261A (en) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006147499A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP7176412B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP4997693B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2010064944A (en) Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2010064944A5 (en)
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP4915227B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150