JP5720899B2 - Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5720899B2
JP5720899B2 JP2012082400A JP2012082400A JP5720899B2 JP 5720899 B2 JP5720899 B2 JP 5720899B2 JP 2012082400 A JP2012082400 A JP 2012082400A JP 2012082400 A JP2012082400 A JP 2012082400A JP 5720899 B2 JP5720899 B2 JP 5720899B2
Authority
JP
Japan
Prior art keywords
particle powder
manganese
composite oxide
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012082400A
Other languages
Japanese (ja)
Other versions
JP2012216547A (en
Inventor
渡邊 浩康
浩康 渡邊
大輔 森田
大輔 森田
学武 山本
学武 山本
一路 古賀
一路 古賀
亮尚 梶山
亮尚 梶山
広明 升國
広明 升國
貞村 英昭
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2012082400A priority Critical patent/JP5720899B2/en
Publication of JP2012216547A publication Critical patent/JP2012216547A/en
Application granted granted Critical
Publication of JP5720899B2 publication Critical patent/JP5720899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

高い放電電圧を持ち、放電容量が高く、且つ、サイクル特性に優れた非水電解質二次電池用正極活物質粒子粉末の前駆体となるマンガンニッケル複合酸化物粒子粉末及びその製造方法を提供する。   Disclosed are a manganese nickel composite oxide particle powder that has a high discharge voltage, a high discharge capacity, and excellent cycle characteristics, and that serves as a precursor of a positive electrode active material particle powder for a nonaqueous electrolyte secondary battery, and a method for producing the same.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、放電電圧が高い、または放電容量が大きいという長所を有する高いエネルギーを持ったリチウムイオン二次電池が注目されており、特にリチウムイオン二次電池を、素早い充放電が求められる電動工具や電気自動車に用いるには優れたレート特性が求められている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, lithium ion secondary batteries having high energy having the advantage of high discharge voltage or large discharge capacity have attracted attention. Particularly, lithium ion secondary batteries are required to be charged and discharged quickly. Therefore, excellent rate characteristics are required for use in electric tools and electric vehicles.

従来、4V級の電圧をもつリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られており、なかでもLiNiOを用いたリチウムイオン二次電池は高い放電容量を有する電池として注目されてきた。 Conventionally, as a positive electrode active material useful for a lithium ion secondary battery having a voltage of 4 V class, spinel type LiMn 2 O 4 , zigzag layered structure LiMnO 2 , layered rock salt type structure LiCoO 2 , LiNiO 2, etc. In general, lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high discharge capacity.

しかし、LiNiOは、放電電圧が低く、充電時の熱安定性及びサイクル特性、レート特性にも劣るため、更なる特性改善が求められている。また、高い容量を得ようと高電圧充電を行うと構造が破壊されてしまうという問題もある。 However, since LiNiO 2 has a low discharge voltage and is inferior in thermal stability, cycle characteristics, and rate characteristics during charging, further improvement in characteristics is required. There is also a problem that the structure is destroyed when high voltage charging is performed to obtain a high capacity.

また、LiMnは、レート特性及びサイクル特性には優れるものの、放電電圧及び放電容量が低く、高エネルギー正極活物質とは言い難いものである。 In addition, LiMn 2 O 4 is excellent in rate characteristics and cycle characteristics, but has a low discharge voltage and discharge capacity, and is hardly a high-energy positive electrode active material.

そこで近年、放電電圧の高い正極活物質が注目されている。代表的な例として、LiNi0.5Mn1.5、LiCoMnO、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiCoPO、LiFeMnO、LiNiVO等が知られている。 Therefore, in recent years, a positive electrode active material having a high discharge voltage has attracted attention. Representative examples include LiNi 0.5 Mn 1.5 O 4 , LiCoMnO 4 , Li 1.2 Cr 0.4 Mn 0.4 O 4 , Li 1.2 Cr 0.4 Ti 0.4 O 4 , LiCoPO 4 , LiFeMnO 4 , LiNiVO 4 and the like are known.

中でも、LiNi0.5Mn1.5は、4.5V以上に放電プラトー領域が存在する高い放電電圧を持ち、且つレート特性及びサイクル特性にも優れているので次世代正極活物質として特に注目されている。 Among them, LiNi 0.5 Mn 1.5 O 4 has a high discharge voltage in which a discharge plateau region is present at 4.5 V or more, and is excellent in rate characteristics and cycle characteristics. Attention has been paid.

エネルギー密度の観点から、高電圧でより高い容量を持ち、且つ、サイクル特性をも満足させる正極活物質は、過去から続く尽きない要求となっている。   From the viewpoint of energy density, a positive electrode active material having a higher capacity at a high voltage and satisfying cycle characteristics has been a continuous requirement from the past.

従来、組成:LiNi0.5Mn1.5を有する正極活物質粒子粉末に対して、種々の改良が行われている(特許文献1〜7、非特許文献1、2)。 Conventionally, the composition: LiNi 0.5 Mn 1.5 O 4 with respect to the positive electrode active material particles having, various improvements have been made (Patent Document 1 to 7 and Non-Patent Documents 1 and 2).

特表2000−515672号公報JP 2000-515672 A 特開平9−147867号公報JP-A-9-147867 特開2001−110421号公報JP 2001-110421 A 特開2001−185145号公報JP 2001-185145 A 特開2002−158007号公報JP 2002-158007 A 特開2003−81637号公報JP 2003-81637 A 特開2004−349109号公報JP 2004-349109 A

第48回電池討論会予稿(2007)2A1648th Battery Discussion Meeting (2007) 2A16 J.Electrochem.Society,148(7)A723−A729(2001)J. et al. Electrochem. Society, 148 (7) A723-A729 (2001) Chem.Mater.,16,906−914(2004)Chem. Mater. 16,906-914 (2004)

放電電圧が高く、放電容量に優れ且つ、サイクル特性が良好である非水電解質二次電池用の高エネルギー正極活物質は、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料は得られていない。   High energy positive electrode active materials for non-aqueous electrolyte secondary batteries with high discharge voltage, excellent discharge capacity, and good cycle characteristics are currently the most demanded, but still satisfy the necessary and sufficient requirements. Is not obtained.

即ち、前記特許文献1〜7、非特許文献1の技術をもってしても高電圧による作動であり放電容量に優れ、さらにサイクル特性といった長期安定性に対する改善は十分ではなかった。   In other words, even with the techniques of Patent Documents 1 to 7 and Non-Patent Document 1, the operation is performed at a high voltage, the discharge capacity is excellent, and the long-term stability such as cycle characteristics is not sufficiently improved.

特許文献1では、硝酸マンガン、硝酸ニッケル、硝酸リチウムをエタノール溶媒しカーボンブラックを添加してアンモニア溶液と混合するゾルゲル法でNiが均一に固溶したニッケル含有マンガン酸リチウム粒子粉末を得たとの報告があるが、工業的な観点から製造法上多数量を製造することが難しい上に、放電容量が100mAh/gを下回っていて実用的ではない。   Patent Document 1 reports that nickel-containing lithium manganate particles in which Ni is uniformly solid-solved are obtained by a sol-gel method in which manganese nitrate, nickel nitrate, and lithium nitrate are mixed with an ethanol solution using ethanol solvent and mixed with an ammonia solution. However, it is difficult to manufacture a large amount from an industrial viewpoint, and the discharge capacity is less than 100 mAh / g, which is not practical.

特許文献2では、電解二酸化マンガンと硝酸ニッケルと水酸化リチウムを混合し固層法により高電圧作動可能で、サイクル特性に優れた正極活物質が得られたことを報告しているが、電池の放電カーブにおいて、4V付近にMn3+由来であると考えられるプラトーが確認でき、そのプラトーによる容量も10mAh/gを超えていることから、高電圧用正極材料としては不安定であり実用的ではない。 Patent Document 2 reports that a positive electrode active material that can be operated at a high voltage by a solid layer method by mixing electrolytic manganese dioxide, nickel nitrate, and lithium hydroxide and has excellent cycle characteristics is obtained. In the discharge curve, a plateau considered to be derived from Mn 3+ can be confirmed in the vicinity of 4 V, and the capacity due to the plateau exceeds 10 mAh / g. Therefore, it is unstable and not practical as a positive electrode material for high voltage. .

特許文献3では、炭酸リチウムとMnOと硝酸ニッケルをエタノール溶媒によりボールミル混合することでゲル状前駆体生成し、焼成することにより正極活物質を作製したのちに、同様の手法で前記正極活物質に対してF,Cl,Si,Sといった化合物を表面処理し焼成することで正極活物質粒子に対してF,Cl,Si,Sといった元素が粒子外部に向けて濃度勾配を持った正極活物質を提案し、前記元素の効果により高電圧作動における電池内の電解液との反応を抑えることで電池特性を維持できるといった報告があるが、この手法ではF,Cl,Si,Sが16dサイトに置換されるため、該サイトにおけるMnとNiのモル濃度が相対的に減ってしまい、結果として正極活物質粒子そのものが充放電に対してもろくなってしまうため、高電圧用正極材料としては不安定であり実用的ではない。 In Patent Document 3, a positive electrode active material is produced by producing a gel precursor by ball mill mixing lithium carbonate, MnO 2 and nickel nitrate with an ethanol solvent, followed by firing. A positive electrode active material in which elements such as F, Cl, Si, and S have a concentration gradient toward the outside of the positive electrode active material particles by subjecting a compound such as F, Cl, Si, and S to surface treatment and firing. There is a report that the battery characteristics can be maintained by suppressing the reaction with the electrolyte in the battery at high voltage operation due to the effect of the element, but in this method, F, Cl, Si, and S are brought to the 16d site. Because of the substitution, the molar concentration of Mn and Ni at the site is relatively reduced, and as a result, the positive electrode active material particles themselves become brittle with respect to charge and discharge. Therefore, it is unstable and not practical as a positive electrode material for high voltage.

特許文献4では、マンガン化合物とニッケル化合物及び、アンモニウム化合物を用いて共沈させることで一次粒子が針状である球状の前駆体を得ることでLi化合物と混合して焼成する際にNiとMnが反応し易くなり、不純物層になりうる残留Ni(NiO)を減らすことができると報告があるが、高電圧作動で且つ大きい放電容量は得られているが、初期放電容量に関する議論のみでサイクル特性といった安定性については言及されていない。また、該発明による正極活物質は前駆体生成の際に不純物を多量に含んでしまう可能性があり、その不純物により電池作動において不安定となりうる可能性がでてしまう。   In patent document 4, when co-precipitating with a manganese compound, a nickel compound, and an ammonium compound to obtain a spherical precursor whose primary particles are acicular, Ni and Mn are mixed with a Li compound and fired. Although it has been reported that the residual Ni (NiO) that can become an impurity layer can be reduced, it has been reported that a high discharge capacity and a high discharge capacity have been obtained, but only a discussion on the initial discharge capacity has led to a cycle. No mention is made of stability such as properties. In addition, the positive electrode active material according to the present invention may contain a large amount of impurities when the precursor is generated, and the impurities may cause instability in battery operation.

特許文献5では、水酸化ナトリウム溶液中に、硫酸マンガンと硫酸ニッケルと錯化材としてアンモニアを混合した溶液を徐滴下することで前駆体である球状のマンガンニッケル前駆体を得た後、Li化合物との混合物を950℃以上の温度範囲で本焼成を行い、次いで、アニール工程を行うことで高電圧用正極活物質を得ているが、前駆体の結晶性が低いためにLi化合物との混合後の本焼成にて1000℃近い温度で焼成する必要があり、その結果、充放電カーブの形状から酸素欠損による価数補償のためにMn3+が生成している。また、この製造法では球状粒子内にナトリウム分も硫黄分も多く残留してしまい、電池としたときに不安定となりうる可能性がある。 In patent document 5, after obtaining the spherical manganese nickel precursor which is a precursor by slowly dripping the solution which mixed ammonia as manganese sulfate, nickel sulfate, and a complexing agent in sodium hydroxide solution, Li compound Is subjected to main firing in a temperature range of 950 ° C. or higher, and then an annealing process is performed to obtain a high-voltage positive electrode active material. However, since the precursor has low crystallinity, it is mixed with a Li compound. In the subsequent main firing, it is necessary to perform firing at a temperature close to 1000 ° C., and as a result, Mn 3+ is generated from the shape of the charge / discharge curve for valence compensation due to oxygen deficiency. In addition, in this production method, a large amount of sodium and sulfur remain in the spherical particles, which may make the battery unstable.

特許文献6では、硝酸リチウムと硝酸マンガンと硝酸ニッケルを混合後、PVAを滴下して造粒してから最大でも500℃で焼成を行うことで高容量の正極材料を得たと報告があるが、焼成温度が低いので結晶性を上げることが困難であり、結晶性の低さからサイクル特性といった長期特性が得られない可能性がある。   Patent Document 6 reports that after mixing lithium nitrate, manganese nitrate, and nickel nitrate, PVA was dropped and granulated, and then a high-capacity positive electrode material was obtained by firing at a maximum of 500 ° C. Since the firing temperature is low, it is difficult to increase the crystallinity, and long-term characteristics such as cycle characteristics may not be obtained due to the low crystallinity.

特許文献7では、水酸化ナトリウム水溶液中に硫酸マンガンと硫酸ニッケルの混合物をpHコントロールし徐滴下することで錯化材を使用することなく、一次粒子が小さい球状のマンガンニッケル水酸化物を生成し、該水酸化物を900℃で熱処理を行うことでNiが均一に粒子内に固溶し、且つタップ密度が高いニッケルマンガン複合酸化物を得、Li化合物と反応した正極活物質について報告しているが、該発明による前駆体は錯化材を使用しないため凝集二次粒子の形状がいびつになってしまい(SEM像より)、前駆体を高温で熱処理しても十分なタップ密度は得られていない。   In Patent Document 7, a mixture of manganese sulfate and nickel sulfate in a sodium hydroxide aqueous solution is pH-controlled and slowly dropped to produce spherical manganese nickel hydroxide with small primary particles without using a complexing material. In addition, by conducting a heat treatment of the hydroxide at 900 ° C., Ni was uniformly dissolved in the particles, and a nickel-manganese composite oxide having a high tap density was obtained, and a positive electrode active material reacted with a Li compound was reported. However, since the precursor according to the present invention does not use a complexing material, the shape of the aggregated secondary particles becomes distorted (from the SEM image), and a sufficient tap density can be obtained even if the precursor is heat-treated at a high temperature. Not.

非特許文献1では、本明細書に記載してある結晶構造を有していることを記載しているが、具体的な製造方法やその形状といった記載がされていない。   Non-Patent Document 1 describes that it has the crystal structure described in this specification, but does not describe a specific manufacturing method or its shape.

また、非特許文献2では、マンガン酸リチウムの酸素欠損による低温時の相転移に伴う発熱/吸熱について論じているが、ニッケル含有マンガン酸リチウムの酸素欠損やMnサイトにNiが置換したことによる影響等が加わったときの低温時の挙動については論じられていない。   Further, Non-Patent Document 2 discusses heat generation / endotherm associated with low-temperature phase transition due to oxygen deficiency of lithium manganate, but influence of oxygen deficiency of nickel-containing lithium manganate and substitution of Mn sites with Ni. There is no discussion of the behavior at low temperatures when such factors are added.

非特許文献3では、良好な結果をもたらすニッケル含有マンガン酸リチウムは空間群はFd−3mであることが記載されているが、本発明に係るよるマンガンニッケル複合複合酸化物粒子粉末を用いた場合のニッケル含有マンガン酸リチウム粒子粉末は非特許文献3に記載の材料となるのに好適である。なお、非特許文献3には、ニッケル含有マンガン酸リチウムの前駆体となるマンガンニッケル複合酸化物粒子粉末の特性を制御することは、一切、考慮されていない。   Non-Patent Document 3 describes that the nickel-containing lithium manganate that gives good results is that the space group is Fd-3m, but when the manganese nickel composite composite oxide particle powder according to the present invention is used The nickel-containing lithium manganate particle powder is suitable for the material described in Non-Patent Document 3. Note that Non-Patent Document 3 does not consider at all the control of the characteristics of the manganese-nickel composite oxide particles used as the precursor of the nickel-containing lithium manganate.

そこで、本発明では、放電電圧が高く、充放電容量に優れ、且つサイクル特性が良好である非水電解質二次電池のニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末の製造に好適な前駆体であるマンガンニッケル複合酸化物粒子粉末及びその製造方法、並びに該前駆体を用いて製造する正極活物質粒子粉末の製造方法、及び該正極活物質粒子粉末を含有する正極からなる非水電解質二次電池を提供する。   Therefore, in the present invention, a precursor suitable for the production of positive electrode active material particle powder comprising nickel-containing lithium manganate for a nonaqueous electrolyte secondary battery having a high discharge voltage, excellent charge / discharge capacity, and good cycle characteristics. Manganese nickel composite oxide particle powder, method for producing the same, method for producing positive electrode active material particle powder produced using the precursor, and non-aqueous electrolyte secondary comprising the positive electrode containing the positive electrode active material particle powder Provide batteries.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、Fd−3mの空間群を有する立方晶スピネルであるMnとNiが主成分の複合酸化物において、実質的に単相であり、平均一次粒子径が1.0〜8.0μmの範囲であることを特徴とするマンガンニッケル複合酸化物粒子粉末である(本発明1)。   That is, the present invention is substantially a single phase in a composite oxide mainly composed of Mn and Ni, which is a cubic spinel having a space group of Fd-3m, and has an average primary particle size of 1.0 to 8. It is a manganese nickel composite oxide particle powder characterized by being in the range of 0 μm (Invention 1).

また、本発明は、本発明1記載の複合酸化物粒子粉末において、タップ密度が1.8g/ml以上であり、X線回折による最強ピークの半価幅が0.15〜0.25の範囲であり、下記化学式(1)で表される組成式を有するマンガンニッケル複合酸化物粒子粉末である(本発明2)。
化学式(1)
(Mn1−y−z Ni
0.2≦y≦0.3、 0≦z≦0.10
M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biより1種または1種以上
Further, the present invention provides the composite oxide particle powder according to the present invention 1, wherein the tap density is 1.8 g / ml or more, and the half-value width of the strongest peak by X-ray diffraction is in the range of 0.15 to 0.25. It is a manganese nickel composite oxide particle powder having a composition formula represented by the following chemical formula (1) (Invention 2).
Chemical formula (1)
(Mn 1-yz Ni y M z ) 3 O 4
0.2 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.10
M: One or more than Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi

また、本発明は、本発明1又は2に記載の複合酸化物粒子粉末において、ナトリウム含有量が100〜2000ppmであり、硫黄含有量が10〜1000ppmであって、不純物の総和が4000ppm以下であるマンガンニッケル複合酸化物粒子粉末である(本発明3)。   In the composite oxide particle powder according to the first or second aspect of the present invention, the sodium content is 100 to 2000 ppm, the sulfur content is 10 to 1000 ppm, and the total amount of impurities is 4000 ppm or less. Manganese nickel composite oxide particle powder (Invention 3).

また、本発明は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対してマンガン原料とニッケル原料を添加した後、酸化反応を行う二次反応によって、四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を得、次いで、当該四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を酸化性雰囲気で900〜1000℃の温度範囲で焼成する本発明1〜3のいずれかに記載のマンガンニッケル複合酸化物粒子粉末の製造方法である(本発明3)。   In addition, the present invention neutralizes the manganese salt aqueous solution with an excess amount of an alkaline aqueous solution with respect to the equivalent of manganese to obtain an aqueous suspension containing manganese hydroxide. By performing a primary reaction to obtain trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range, adding a manganese raw material and a nickel raw material to the reaction solution after the primary reaction, and then performing a secondary reaction in which an oxidation reaction is performed, A manganese nickel composite compound having trimanganese tetraoxide particles as core particles is obtained, and then the manganese nickel composite compound having trimanganese tetroxide particles as core particles is fired in an oxidizing atmosphere at a temperature range of 900 to 1000 ° C. It is a manufacturing method of the manganese nickel complex oxide particle powder in any one of invention 1-3 (this invention 3).

また、本発明は、本発明4記載のマンガンニッケル複合酸化物粒子粉末の製造法において、過剰量のアルカリ水溶液のアルカリ濃度が0.1〜5.0mol/Lであるマンガンニッケル複合酸化物粒子粉末の製造方法である(本発明5)。   Further, the present invention provides the method for producing manganese nickel composite oxide particles according to the present invention 4, wherein the manganese concentration of the excess alkaline aqueous solution is 0.1 to 5.0 mol / L. (Invention 5).

また、本発明は、本発明4又は5記載のマンガンニッケル複合酸化物粒子粉末の製造法において、一次反応後の反応溶液を非酸化雰囲気に切り替えた後に、該非酸化雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液を添加するマンガンニッケル複合酸化物粒子粉末の製造方法である(本発明6)。   Further, the present invention provides the method for producing manganese nickel composite oxide particles according to the present invention 4 or 5, wherein the reaction solution after the primary reaction is switched to a non-oxidizing atmosphere and then the non-oxidizing atmosphere is maintained. It is a manufacturing method of the manganese nickel compound oxide particle powder which adds the manganese raw material and nickel raw material aqueous solution in a next reaction (this invention 6).

また、本発明は、本発明1〜3のいずれかに記載のマンガンニッケル複合酸化物粒子粉末とリチウム化合物とを混合し、酸化性雰囲気中で680〜1050℃で焼成し、引き続き500〜700℃で焼成する立方晶スピネル構造を有する非水電解質二次電池用正極活物質粒子粉末の製造方法である(本発明7)。   The present invention also includes mixing the manganese nickel composite oxide particle powder according to any one of the first to third aspects of the present invention and a lithium compound, firing at 680 to 1050 ° C. in an oxidizing atmosphere, and subsequently continuing to 500 to 700 ° C. It is a manufacturing method of the positive electrode active material particle powder for non-aqueous electrolyte secondary batteries which has the cubic spinel structure baked by (Invention 7).

また、本発明は、本発明7記載の正極活物質粒子粉末の製造方法によって得られた正極活物質粒子粉末を用いた非水電解質二次電池である(本発明8)。   Further, the present invention is a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder obtained by the method for producing positive electrode active material particle powder according to the present invention 7 (Invention 8).

本発明に係るマンガンニッケル複合酸化物粒子粉末は、Li化合物と合成させることで得られる正極活物質粒子粉末としたときに、放電電圧が高く放電容量が大きく、且つ、サイクル特性が良好である非水電解質二次電池が得られるので、非水電解質二次電池用の正極活物質粒子粉末の前駆体として好適である。   When the manganese nickel composite oxide particle powder according to the present invention is a positive electrode active material particle powder obtained by synthesizing with a Li compound, the discharge voltage is high, the discharge capacity is large, and the cycle characteristics are good. Since a water electrolyte secondary battery is obtained, it is suitable as a precursor of positive electrode active material particle powder for non-aqueous electrolyte secondary batteries.

また、本発明に係るマンガンニッケル複合酸化物粒子粉末を用いてLi化合物と合成させることで得られる正極活物質粒子粉末は、非特許文献3に記載されているような電池特性で良好であると言われている空間群がFd−3mであるニッケル含有マンガン酸リチウム粒子粉末が得られるので、本発明に係るマンガンニッケル複合酸化物粒子粉末は前駆体として好適である。   Further, the positive electrode active material particle powder obtained by synthesizing with the Li compound using the manganese nickel composite oxide particle powder according to the present invention has good battery characteristics as described in Non-Patent Document 3. Since the nickel-containing lithium manganate particles having a space group of Fd-3m are obtained, the manganese-nickel composite oxide particles according to the present invention are suitable as a precursor.

実施例1で得られたマンガンニッケル複合酸化物粒子粉末のX線回折図である。2 is an X-ray diffraction pattern of the manganese nickel composite oxide particle powder obtained in Example 1. FIG. 比較例1で得られたニッケル含有炭酸マンガン粒子粉末のX線回折図である。2 is an X-ray diffraction pattern of nickel-containing manganese carbonate particle powder obtained in Comparative Example 1. FIG. 実施例1で得られたマンガンニッケル複合酸化物粒子粉末のSEM像である。2 is a SEM image of manganese nickel composite oxide particle powder obtained in Example 1. FIG. 比較例1で得られたニッケル含有炭酸マンガン粒子粉末のSEM像である。4 is a SEM image of nickel-containing manganese carbonate particle powder obtained in Comparative Example 1.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、非水電解質二次電池用正極活物質粒子粉末の前駆体として、最適化されたものである。   The manganese nickel composite oxide particle powder according to the present invention is optimized as a precursor of the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、Fd−3mの空間群を有する立方晶スピネルの結晶構造を有する。他の結晶構造が主成分となる場合には、当該マンガンニッケル複合酸化物粒子粉末を用いて製造した正極活物質が所望の結晶構造を有することが困難となる。   The manganese nickel composite oxide particle powder according to the present invention has a cubic spinel crystal structure having a space group of Fd-3m. When the other crystal structure is the main component, it becomes difficult for the positive electrode active material produced using the manganese nickel composite oxide particle powder to have a desired crystal structure.

本発明に係るマンガンニッケル複合酸化物粒子粉末としては、(Mn1−y−zNi(yの範囲が0.2≦y≦0.3,zの範囲が0≦z≦0.1)が好ましく、M元素としては、B,Mg,Al,Si,Ca,Ti,Co,Zn,Y,Zr,Sb,Ba,W,Bi等の一般的に知られる添加元素を導入させてもよく、より好ましい添加元素はMg,Al,Si,Ti,Co,Zn,Y,Zr,Sb,Wである。前記添加元素の含有量は、該複合酸化物に対して10mol%以下が好ましい。 As the manganese nickel composite oxide particle powder according to the present invention, (Mn 1-yz Ni y M z ) 3 O 4 (y range is 0.2 ≦ y ≦ 0.3, z range is 0 ≦ z ≦ 0.1), and as the M element, generally known additive elements such as B, Mg, Al, Si, Ca, Ti, Co, Zn, Y, Zr, Sb, Ba, W, Bi, etc. More preferable additive elements are Mg, Al, Si, Ti, Co, Zn, Y, Zr, Sb, and W. The content of the additive element is preferably 10 mol% or less with respect to the composite oxide.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、Ni含有量がMe分総量(Mn、Ni及び置換元素Mの総量)に対して20〜30mol%が好ましい。Ni含有量が20mol%未満の場合、当該前駆体を用いて得られた正極活物質粒子粉末において4.5V以上の放電プラトー領域が少なくなり過ぎ高い放電容量が得られず、また構造が不安定となる。Ni含有量が30mol%を超える場合、当該前駆体を用いて得られた正極活物質粒子粉末においてスピネル型構造以外に酸化ニッケルなどの不純物相が大量に生成し、放電容量が低下する。Ni含有量について、より好ましくは22〜28mol%であり、さらにより好ましくは23〜27mol%である。   In the manganese nickel composite oxide particle powder according to the present invention, the Ni content is preferably 20 to 30 mol% with respect to the total amount of Me (total amount of Mn, Ni, and substitution element M). When the Ni content is less than 20 mol%, the positive electrode active material particle powder obtained using the precursor has a discharge plateau region of 4.5 V or more that is too low to obtain a high discharge capacity, and the structure is unstable. It becomes. When the Ni content exceeds 30 mol%, a large amount of impurity phase such as nickel oxide is generated in addition to the spinel structure in the positive electrode active material particle powder obtained using the precursor, and the discharge capacity is reduced. About Ni content, More preferably, it is 22-28 mol%, More preferably, it is 23-27 mol%.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、X線回折により、立方晶マンガンニッケル複合酸化物に帰属されるものである。そのためには、ニッケルが母材である四酸化三マンガン内に均一に分散していることが好ましい。本発明に係るマンガンニッケル複合酸化物粒子粉末は、X線回折における最強ピーク((311)面)の半価幅が0.15〜0.25の範囲であることが好ましい。前記ピークの半価幅が0.15より小さいとき不純物相が存在する場合がある。また、ピークの半価幅が0.25を超える場合、ニッケルがマンガン酸化物粒子内に均一分散できていないことがある。最強ピークの半価幅はより好ましくは、0.15〜0.22の範囲である。   The manganese nickel composite oxide particle powder according to the present invention is attributed to the cubic manganese nickel composite oxide by X-ray diffraction. For that purpose, it is preferable that nickel is uniformly dispersed in trimanganese tetroxide which is a base material. The manganese nickel composite oxide particle powder according to the present invention preferably has a half width of the strongest peak ((311) plane) in X-ray diffraction in the range of 0.15 to 0.25. An impurity phase may be present when the half width of the peak is smaller than 0.15. Moreover, when the half width of the peak exceeds 0.25, nickel may not be uniformly dispersed in the manganese oxide particles. More preferably, the half width of the strongest peak is in the range of 0.15 to 0.22.

本発明に係るマンガンニッケル複合酸化物粒子粉末の平均一次粒子径は1.0〜8.0μmの範囲であり、且つ、一次粒子が凝集した二次粒子体であることが好ましい。平均一次粒子径が1.0μm未満の場合には、電池にしたときNiやMnといった含有金属分が電解液に溶出し易くなり、結晶構造が不安定となってしまう恐れがある。また、平均一次粒子径が8.0μmを超える場合には、Li化合物と混合焼成において該前駆体中へのLiの拡散が不十分となってしまい、結果として構造が不安定となってしまう。
好ましい平均一次粒子径は1.5〜7.5μmであり、より好ましくは1.5〜7.0μmである。
The average primary particle diameter of the manganese nickel composite oxide particle powder according to the present invention is in the range of 1.0 to 8.0 μm, and is preferably a secondary particle body in which primary particles are aggregated. When the average primary particle size is less than 1.0 μm, the metal content such as Ni and Mn tends to elute into the electrolyte when the battery is made, and the crystal structure may become unstable. On the other hand, when the average primary particle diameter exceeds 8.0 μm, the diffusion of Li into the precursor becomes insufficient in the mixed firing with the Li compound, resulting in an unstable structure.
A preferable average primary particle diameter is 1.5 to 7.5 μm, and more preferably 1.5 to 7.0 μm.

また、本発明に係るマンガンニッケル複合酸化物粒子粉末のタップ密度(500回タッピング)が1.8g/ml以上が好ましく、より好ましくは、1.9g/ml以上である。   Further, the tap density (500 times tapping) of the manganese nickel composite oxide particle powder according to the present invention is preferably 1.8 g / ml or more, more preferably 1.9 g / ml or more.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、Na含有量が100〜2000ppmであることが好ましい。Na含有量が100ppm未満の場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてスピネル型構造を保持する力が弱くなる傾向にあり、2000ppmを超える場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてリチウムの移動が阻害され、放電容量が低下する傾向にある。当該酸化物粒子粉末におけるより好ましいNa含有量は100〜1800ppmであり、更により好ましくは100〜1700ppmである。   The manganese nickel composite oxide particle powder according to the present invention preferably has a Na content of 100 to 2000 ppm. When the Na content is less than 100 ppm, the positive electrode active material particle powder obtained by using the oxide particle powder tends to have a weak force to retain the spinel structure. When the content exceeds 2000 ppm, the oxide particle powder In the positive electrode active material particle powder obtained by using lithium, lithium migration is hindered and the discharge capacity tends to decrease. The more preferable Na content in the oxide particle powder is 100 to 1800 ppm, and even more preferably 100 to 1700 ppm.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、S含有量が10〜1000ppmであることが好ましい。S含有量が10ppm未満の場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末においてSがリチウムの移動に与える電気的な作用が得られない傾向にあり、1000ppmを超える場合、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末において電池としたときに、原料に由来して存在するFeと化合物を形成して局部的にFeSOなどが生成しマイクロショートの原因となってしまう。より好ましいS含有量は10〜800ppmであり、更により好ましくは10〜700ppmである。 The manganese nickel composite oxide particle powder according to the present invention preferably has an S content of 10 to 1000 ppm. When the S content is less than 10 ppm, in the positive electrode active material particle powder obtained using the oxide particle powder, there is a tendency that S does not have an electrical effect on the movement of lithium, and when it exceeds 1000 ppm, Causes of micro short-circuits when a positive electrode active material particle powder obtained using the oxide particle powder is used as a battery to form FeSO 4 and a compound locally and form FeSO 4 and the like locally. End up. A more preferable S content is 10 to 800 ppm, and even more preferably 10 to 700 ppm.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、不純物の総和が4000ppm以下である。不純物の総和が4000ppmより大きいとき、当該酸化物粒子粉末を用いて得られた正極活物質粒子粉末は仕込み組成に対して最終物の組成がずれてしまい、結果として放電容量が低下する。不純物の総和は、好ましくは3500ppm以下であり、より好ましくは3000ppm以下である。   The manganese nickel composite oxide particle powder according to the present invention has a total impurity content of 4000 ppm or less. When the total amount of impurities is greater than 4000 ppm, the composition of the final product of the positive electrode active material particle powder obtained using the oxide particle powder is deviated from the charged composition, resulting in a decrease in discharge capacity. The total amount of impurities is preferably 3500 ppm or less, and more preferably 3000 ppm or less.

次に、本発明に係るマンガンニッケル複合酸化物粒子粉末の製造方法について述べる。   Next, a method for producing manganese nickel composite oxide particle powder according to the present invention will be described.

即ち、本発明に係るマンガンニッケル複合酸化物粒子粉末は、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対して、所定量のマンガン原料とニッケル原料と必要によってM元素原料を溶解した水溶液を添加して酸化反応を行う二次反応を行った後、常法によって、洗浄、乾燥して、本発明に係るマンガンニッケル複合酸化物の中間生成物となる四酸化三マンガン粒子を母材としたマンガンニッケル複合化合物を得、当該マンガンニッケル複合化合物を酸化性雰囲気で900〜1100の温度範囲で焼成して得ることができる。   That is, the manganese nickel composite oxide particle powder according to the present invention is an aqueous suspension containing manganese hydroxide by neutralizing an aqueous manganese salt solution with an excess of an aqueous alkaline solution relative to the equivalent of manganese. Then, a primary reaction is performed to obtain trimanganese tetroxide core particles by performing an oxidation reaction in a temperature range of 60 to 100 ° C., and a predetermined amount of manganese raw material and nickel raw material are added to the reaction solution after the primary reaction After performing a secondary reaction that performs an oxidation reaction by adding an aqueous solution in which an M element material is dissolved as necessary, it is washed and dried by an ordinary method to become an intermediate product of the manganese nickel composite oxide according to the present invention. A manganese nickel composite compound using trimanganese tetraoxide particles as a base material can be obtained, and the manganese nickel composite compound can be obtained by firing in an oxidizing atmosphere in a temperature range of 900 to 1100. That.

マンガンニッケル複合酸化物粒子粉末の合成時に用いるマンガン化合物、ニッケル化合物としては特に限定されることなく、各種の酸化物、水酸化物、塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩などを用いることが出来るが、特に、硫酸塩を使用することが好ましい。   The manganese compound and nickel compound used in the synthesis of the manganese nickel composite oxide particle powder are not particularly limited, and various oxides, hydroxides, chlorides, sulfates, nitrates, carbonates, acetates, etc. are used. In particular, it is preferable to use a sulfate.

マンガンニッケル複合酸化物粒子粉末の中間生成物を得る湿式工程における一次反応において、マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得ることができる。本核粒子の合成方法については、特許第4305629号に記載の製造方法に準じて得ることができる。   In the primary reaction in the wet process to obtain the intermediate product of manganese nickel composite oxide particles, the manganese salt aqueous solution is neutralized with an alkaline aqueous solution in excess of the equivalent of manganese and contains manganese hydroxide Then, an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to obtain trimanganese tetroxide core particles. The method for synthesizing the core particles can be obtained according to the production method described in Japanese Patent No. 4305629.

一次反応により四酸化三マンガン核粒子を合成後に、反応溶液を非酸化性雰囲気に切り替えた後に、該非酸化性雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液、必要により、M元素原料水溶液を添加する。非酸化雰囲気は、Ar、CO、CO、N、Hなどがあるが、Nであることが好ましい。 After synthesizing the trimanganese tetroxide core particles by the primary reaction, after switching the reaction solution to the non-oxidizing atmosphere, the manganese raw material and the nickel raw material aqueous solution in the secondary reaction with the non-oxidizing atmosphere maintained. Add elemental raw material aqueous solution. The non-oxidizing atmosphere includes Ar, CO, CO 2 , N 2 , H 2, etc., but N 2 is preferable.

また、非酸化性雰囲気でマンガン原料及びニッケル原料水溶液、必要により、M元素原料水溶液を反応溶液に添加することで、反応槽中に母材である四酸化三マンガン核粒子のほかに、マンガン、ニッケル、M元素の水酸化物又は含水酸化物の微細な粒子が生成され、次いで、反応溶液を酸化性雰囲気に切り替えることで前記水酸化物又は含水酸化物が酸化物となるとともに四酸化三マンガン核粒子に対して何らかの反応をすることで、核粒子の結晶性を損なうことなく、中間生成物の沈殿物を得ることができる。   In addition, in addition to the trimanganese tetroxide core particles that are the base material in the reaction vessel, manganese, a manganese raw material aqueous solution and a nickel raw material aqueous solution, and if necessary, an M element raw material aqueous solution added to the reaction solution in a non-oxidizing atmosphere. Fine particles of nickel, M-element hydroxide or hydrated oxide are produced, and then the reaction solution is switched to an oxidizing atmosphere, whereby the hydroxide or hydrated oxide becomes an oxide and trimanganese tetraoxide. By performing some kind of reaction on the core particles, an intermediate product precipitate can be obtained without impairing the crystallinity of the core particles.

ニッケル原料については、酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩などであるが、硫酸塩を使用することが好ましい。   Nickel raw materials include oxides, nitrates, sulfates, chlorides, carbonates, acetates, etc., but it is preferable to use sulfates.

M元素原料については、Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biの酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩などであるが、硫酸塩を使用することが好ましい。   M element raw materials include Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi oxides, nitrates, sulfates, chlorides, carbonates, acetates, etc. It is preferred to use a salt.

また、一次反応、二次反応において、過剰量のアルカリ水溶液を添加することが好ましい。その濃度は、0.1〜5.0mol/Lである。過剰量のアルカリ溶液と反応させることで、酸性物質の塩が反応後に取り込まれ難くなり、結果として不純物量を少なくすることが出来る。アルカリ水溶液の濃度は好ましくは、0.5〜4.0mol/Lである。   Moreover, it is preferable to add an excessive amount of aqueous alkali solution in the primary reaction and the secondary reaction. The concentration is 0.1 to 5.0 mol / L. By reacting with an excessive amount of alkaline solution, the salt of the acidic substance is hardly taken in after the reaction, and as a result, the amount of impurities can be reduced. The concentration of the alkaline aqueous solution is preferably 0.5 to 4.0 mol / L.

アルカリ水溶液は特に限定されることなく各種の塩基性原料を用いることができる。例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、水酸化カリウムなどがあるが、水酸化ナトリウムを使用することが好ましい。   The alkaline aqueous solution is not particularly limited, and various basic materials can be used. For example, sodium carbonate, sodium hydroxide, lithium hydroxide, potassium carbonate, potassium hydroxide and the like are used, but it is preferable to use sodium hydroxide.

上記反応後に得られる中間生成物を含有するスラリーは常法に従って、中間体を洗浄し乾燥を行う。本発明における製造方法における洗浄工程では、二次反応により析出したニッケル化合物やM元素化合物を流失することなく、中間生成物に付着した過剰のナトリウム分や硫黄分などの不純物質を洗い流すことができる。   The slurry containing the intermediate product obtained after the reaction is washed and dried according to a conventional method. In the cleaning step in the production method of the present invention, it is possible to wash away impurities such as excess sodium and sulfur adhering to the intermediate product without losing the nickel compound and M element compound deposited by the secondary reaction. .

得られた中間生成物は、酸化性雰囲気下で900〜1100℃の温度範囲で焼成することによって、本発明に係るマンガンニッケル複合酸化物粒子粉末を得ることができる。焼成温度が900℃より低いときは、NiがMn酸化物内に均一に取り込まれないだけでなく、立方晶であるスピネル構造のマンガンニッケル複合酸化物が得られない。焼成温度が1100℃を超える場合、NiはNiOといった不純物として析出してしまう。好ましい焼成温度は900〜1000℃、より好ましい焼成温度は900〜980℃で、更により好ましくは900〜960℃である。   The obtained intermediate product can be baked in a temperature range of 900 to 1100 ° C. in an oxidizing atmosphere to obtain the manganese nickel composite oxide particle powder according to the present invention. When the firing temperature is lower than 900 ° C., not only Ni is not uniformly incorporated into the Mn oxide, but also a cubic nickel-nickel composite oxide having a spinel structure cannot be obtained. When the firing temperature exceeds 1100 ° C., Ni is deposited as an impurity such as NiO. The preferred firing temperature is 900 to 1000 ° C, the more preferred firing temperature is 900 to 980 ° C, and still more preferably 900 to 960 ° C.

該マンガンニッケル複合酸化物粒子粉末において焼成工程の後に、粉砕することで粒径を調整することもできる。その際は、二次粒子径(D50)の調整を行うのみで、平均一次粒子径には影響がない範囲で行う必要がある。   In the manganese nickel composite oxide particle powder, the particle size can be adjusted by pulverization after the firing step. In that case, it is necessary only to adjust the secondary particle diameter (D50) and to have an effect on the average primary particle diameter.

次に、本発明におけるマンガンニッケル複合酸化物粒子粉末を前駆体として製造した正極活物質粒子粉末について説明する。   Next, the positive electrode active material particle powder produced using the manganese nickel composite oxide particle powder in the present invention as a precursor will be described.

本発明に係るマンガンニッケル複合酸化物粒子粉末を前駆体として用いた正極活物質粒子粉末は、少なくともLi及びNi、Mnを含有するスピネル型構造を有するニッケル含有マンガン酸リチウム粒子粉末であり、非水電解質二次電池の正極活物質粒子粉末として好適である。該ニッケル含有正極活物質粒子粉末は、結晶性が高く5Vという高い電圧で充電を行っても構造が崩壊することなく、高い放電容量と安定した充放電サイクルが行える。   The positive electrode active material particle powder using the manganese nickel composite oxide particle powder according to the present invention as a precursor is a nickel-containing lithium manganate particle powder having a spinel structure containing at least Li, Ni, and Mn, and is non-aqueous. It is suitable as a positive electrode active material particle powder of an electrolyte secondary battery. The nickel-containing positive electrode active material particle powder has high crystallinity and can be charged at a high voltage of 5 V without causing the structure to collapse, and can perform a high discharge capacity and a stable charge / discharge cycle.

本発明における正極活物質粒子粉末は、本発明に係るマンガンニッケル複合酸化物粒子粉末を前駆体とし、リチウム化合物と所定のモル比で混合後、酸化性雰囲気で680℃〜1050℃で焼成し、引き続き500〜700℃で焼成することで得られる。   The positive electrode active material particle powder in the present invention is prepared by using the manganese nickel composite oxide particle powder according to the present invention as a precursor, mixed with a lithium compound at a predetermined molar ratio, and then fired at 680 ° C. to 1050 ° C. in an oxidizing atmosphere. Subsequently, it is obtained by firing at 500 to 700 ° C.

本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられるが、特に炭酸リチウムが好ましい。   The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride Examples thereof include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being particularly preferable.

本発明に用いるリチウム化合物は平均粒子径が50μm以下であることが好ましい。より好ましくは30μm以下である。リチウム化合物の平均粒子径が50μmを超える場合には、前駆体との混合が不均一となり、結晶性の良い複合酸化物粒子を得るのが困難となる。   The lithium compound used in the present invention preferably has an average particle size of 50 μm or less. More preferably, it is 30 μm or less. When the average particle diameter of the lithium compound exceeds 50 μm, mixing with the precursor becomes non-uniform and it becomes difficult to obtain composite oxide particles having good crystallinity.

また、本発明における正極活物質粒子粉末の合成時において、前記前駆体とリチウム化合物と共にMg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biの硝酸塩、酸化物、水酸化物、炭酸塩等を混合して、正極活物質粒子粉末に添加元素を導入させてもよい。   In addition, during the synthesis of the positive electrode active material particles in the present invention, together with the precursor and the lithium compound, Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi nitrates, oxides, water An additive element may be introduced into the positive electrode active material particle powder by mixing an oxide, carbonate, or the like.

マンガンニッケル複合酸化物粒子粉末及びリチウム化合物の混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   The mixing treatment of the manganese nickel composite oxide particle powder and the lithium compound may be either dry or wet as long as it can be uniformly mixed.

マンガンニッケル複合酸化物粒子粉末及びリチウム化合物の混合物の焼成工程において、酸化性雰囲気で本焼成として680℃〜1050℃の焼成を行うことが好ましい。本焼成によりマンガンニッケル複合化合物とリチウム化合物が反応して酸素欠損状態のニッケル含有マンガン酸リチウムが得られる。680℃未満の場合にはLiとNi、Mnの反応が十分に進まず、十分に複合化されない。1050℃を超える場合には焼結が進みすぎ、またNiが格子から出てNi酸化物として析出してしまう。好ましい本焼成温度は700〜1000℃であり、更により好ましくは730〜950℃である。また、焼成時間は2〜50時間が好ましい。   In the firing step of the mixture of the manganese nickel composite oxide particle powder and the lithium compound, firing at 680 ° C. to 1050 ° C. is preferably performed as the main firing in an oxidizing atmosphere. By this firing, the manganese-nickel composite compound and the lithium compound react to obtain nickel-containing lithium manganate in an oxygen deficient state. When the temperature is lower than 680 ° C., the reaction between Li, Ni, and Mn does not proceed sufficiently and is not sufficiently combined. When it exceeds 1050 ° C., the sintering proceeds too much, and Ni comes out of the lattice and precipitates as Ni oxide. The preferred firing temperature is 700 to 1000 ° C, and even more preferably 730 to 950 ° C. The firing time is preferably 2 to 50 hours.

本焼成に続き同酸化性雰囲気で500℃〜700℃で熱処理を行ってもよい。本熱処理により酸素欠損を補い、結晶構造が安定したニッケル含有正極活物質粒子粉末を容易に得ることができる   You may heat-process at 500 degreeC-700 degreeC in the same oxidizing atmosphere following this baking. This heat treatment makes it possible to easily obtain a nickel-containing positive electrode active material particle powder that compensates for oxygen deficiency and has a stable crystal structure.

本発明における正極活物質粒子粉末はニッケル含有マンガン酸リチウム粒子粉末でありスピネル型構造を有し、Li1+xMn2−y−zNi(xの範囲が−0.05≦x≦0.10,yの範囲が0.4≦y≦0.6,zの範囲が0≦z≦0.20)が好ましく、M元素として、Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Bi等の1種または1種以上をMnに対して置換させてもよい。また、公知な範囲において本発明においても酸素欠損若しくは酸素過剰があってもよい。 Positive electrode active material particles used in the present invention have have spinel structure nickel-containing lithium manganate particles, Li 1 + x Mn 2- y-z Ni y M z O 4 ( range of x is -0.05 ≦ x ≦ 0.10, the range of y is 0.4 ≦ y ≦ 0.6, and the range of z is 0 ≦ z ≦ 0.20). As the M element, Mg, Al, Si, Ca, Ti, Co, One or more of Zn, Sb, Ba, W, Bi, etc. may be substituted for Mn. Further, in the present invention, oxygen deficiency or oxygen excess may exist within a known range.

本発明における正極活物質粒子粉末の平均二次粒子径(D50)は4〜30μmが好ましく、また、BET法による比表面積は0.05〜1.00m/gが好ましく、タップ密度(500回)は1.7g/ml以上が好ましい。 The average secondary particle diameter (D50) of the positive electrode active material particles in the present invention is preferably 4 to 30 μm, the specific surface area by the BET method is preferably 0.05 to 1.00 m 2 / g, and the tap density (500 times) ) Is preferably 1.7 g / ml or more.

本発明における正極活物質粒子粉末のナトリウム分含有量は30〜2000ppmが好ましく、硫黄分の含有量は10〜600ppmが好ましく、不純物の総和は5000ppm以下が好ましい。   The sodium content of the positive electrode active material particles in the present invention is preferably 30 to 2000 ppm, the sulfur content is preferably 10 to 600 ppm, and the total of impurities is preferably 5000 ppm or less.

次に、本発明における正極活物質粒子粉末を用いた正極について述べる。   Next, the positive electrode using the positive electrode active material particle powder in the present invention will be described.

本発明における正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing the positive electrode containing the positive electrode active material particle powder in the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明における正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder in this invention is comprised from the said positive electrode, a negative electrode, and electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明における正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で3.0V以上の容量が130mAh/g以上かつ4.5V以上の容量が120mAh/g以上であり、且つ、サイクル維持率は55%以上であり、好ましくは60%以上である。また、10C/0.1Cの比をとったレート維持率は80%以上である。   The non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder in the present invention has a capacity of 3.0 V or more of 130 mAh / g and a capacity of 4.5 V or more of 120 mAh according to an evaluation method described later. / G and the cycle retention ratio is 55% or more, preferably 60% or more. Moreover, the rate maintenance rate which took the ratio of 10C / 0.1C is 80% or more.

本発明における正極活物質粒子粉末を使用したとき、前駆体由来の特性である、結晶性が高いことから、本発明における正極活物質粒子粉末の製造方法による手法をとることにより、該正極活物質粒子粉末のスピネル構造における結晶性も高くなり、その結果MnやNi及びM元素が配位されている16dサイトが充放電による膨張収縮が小さくなることによりLiが8aサイトから16cサイトを通り界面に移動するイオン拡散抵抗要素が減ると考えられる。その結果、Niが構造から出てNiO成分となることや、酸素欠損が小さくなるためにMn3+/Mn4+によるプラトーが見られる3.0V〜4.5Vの容量が小さくなり、サイクル特性が向上すると考えられる。 When the positive electrode active material particle powder in the present invention is used, since the crystallinity, which is a characteristic derived from the precursor, is high, the positive electrode active material is obtained by taking a method according to the method for producing the positive electrode active material particle powder in the present invention. The crystallinity in the spinel structure of the particle powder is also increased. As a result, the 16d site where Mn, Ni and M elements are coordinated is less expanded and contracted by charge and discharge, so that Li passes from the 8a site to the interface through the 16c site. It is thought that the ion diffusion resistance element which moves is reduced. As a result, Ni is removed from the structure and becomes a NiO component, and since oxygen deficiency is reduced, the capacity of 3.0 V to 4.5 V where a plateau due to Mn 3+ / Mn 4+ is seen is reduced, and cycle characteristics are improved. I think that.

<作用と考察>
本発明に係るマンガンニッケル複合酸化物粒子粉末は、スピネル構造で立方晶であり、且つ結晶性が高いという特徴がある。本発明においては、あらかじめ、結晶性の高い四酸化三マンガンの核粒子(種粒子)を生成した後に、窒素流通下で過剰のアルカリ分が残る反応溶液に、マンガン原料溶液とニッケル原料溶液及びM元素原料溶液を投入することで、前記添加金属の水酸化物微粒子を生成させることができ、反応溶液の雰囲気を酸化性雰囲気とし酸化反応を開始したときに、この水酸化物が核粒子である四酸化三マンガン粒子界面に析出すると考えられる。この析出に関しても微粒子のMn、Ni、M元素の水酸化物が均等に絡まりあった酸化物として析出するために、反応溶液内に局部的に新しい粒子が発生せず、且つ、核粒子である四酸化三マンガン粒子の界面近傍にNi等の置換元素を配置することができる。
<Action and discussion>
The manganese nickel composite oxide particle powder according to the present invention is characterized by a spinel structure, cubic crystals, and high crystallinity. In the present invention, a manganese raw material solution, a nickel raw material solution, and M are added to a reaction solution in which excess alkali content remains under nitrogen flow after generating highly crystalline trimanganese tetroxide core particles (seed particles) in advance. By adding the elemental raw material solution, hydroxide fine particles of the added metal can be generated. When the oxidation reaction is started with the atmosphere of the reaction solution being an oxidizing atmosphere, the hydroxide is a core particle. It is thought that it precipitates at the interface of trimanganese tetroxide particles. Also regarding this precipitation, fine particles of Mn, Ni, and M element hydroxides are precipitated as uniformly entangled oxides, so that no new particles are locally generated in the reaction solution, and they are core particles. A substitution element such as Ni can be disposed in the vicinity of the interface of the trimanganese tetroxide particles.

また、本発明では一次反応の条件を種々変えることにより、二次反応後の平均一次粒子径を制御することができ、結果として本発明に係るマンガンニッケル複合酸化物粒子粉末の平均一次粒子径のサイズを自由に設計することができる。加えて、本発明に係るマンガンニッケル複合酸化物粒子粉末は、湿式で簡易な手法での合成であるため、pHを制御することで、不純物であるNa分やS分を低減させることが可能であり、また水洗工程にて更に原料等に含まれている不純物も洗い落とすことが出来る。   Further, in the present invention, the average primary particle diameter after the secondary reaction can be controlled by variously changing the conditions of the primary reaction. As a result, the average primary particle diameter of the manganese nickel composite oxide particle powder according to the present invention can be controlled. The size can be designed freely. In addition, since the manganese nickel composite oxide particle powder according to the present invention is a wet and simple synthesis, it is possible to reduce impurities Na and S by controlling pH. In addition, impurities contained in the raw material and the like can be further washed away in the water washing step.

次に、反応後の中間生成物を水洗することによって、不純物となるボウショウを洗い流し、当該中間生成物を900〜1100℃で焼成することで、ニッケル酸化物、M元素酸化物を核粒子である四酸化三マンガン中に均一に固溶させることができる。また、焼成温度が高いことによる効果としては一次粒子の表面性状を滑らかにするとともに、強固な二次粒子を形成させることができ、且つ、該粒子粉末の結晶度を高めることができるものと考えている。   Next, the intermediate product after the reaction is washed with water to wash out the impurities, and the intermediate product is baked at 900 to 1100 ° C., whereby nickel oxide and M element oxide are core particles. It can be uniformly dissolved in trimanganese tetroxide. In addition, as an effect due to the high firing temperature, it is considered that the surface properties of the primary particles can be smoothed, strong secondary particles can be formed, and the crystallinity of the particle powder can be increased. ing.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、焼成によりニッケル酸化物と必要により添加したM元素酸化物とが均一固溶することができ、立方晶であるスピネル構造の複合酸化物を得ることができる。   The manganese nickel composite oxide particle powder according to the present invention is capable of uniformly solid-dissolving nickel oxide and optionally added M element oxide by firing, and obtaining a composite oxide having a cubic spinel structure. Can do.

本発明に係るマンガンニッケル複合酸化物粒子粉末は結晶性が高く、Li化合物と混合した後、マンガンニッケル複合酸化物を得るときに焼成する温度よりも同等以下の温度で焼成できるため、前駆体であるマンガンニッケル複合酸化物粒子粉末の高結晶性に起因する粉体物性をひき継ぐことができるとともに、スピネル構造の結晶の骨格が強いニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末が得られると考えられる。   The manganese nickel composite oxide particle powder according to the present invention has high crystallinity, and after mixing with the Li compound, it can be fired at a temperature equal to or lower than the firing temperature when obtaining the manganese nickel composite oxide. When the positive electrode active material particle powder comprising nickel-containing lithium manganate having a strong spinel crystal skeleton can be obtained while maintaining the powder physical properties due to the high crystallinity of a certain manganese nickel composite oxide particle powder. Conceivable.

また、該ニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末の製造において、焼成温度を900℃前後とすることで大きくなる酸素欠損やNiO複合酸化物の析出を抑えることができ、そのためにMn3+の発生を抑制することができると考えられるので、サイクル特性を向上させることが出来ると考えられる。 Further, in the production of the positive electrode active material particle powder made of the nickel-containing lithium manganate, the oxygen deficiency and the precipitation of the NiO composite oxide, which are increased by setting the firing temperature to around 900 ° C., can be suppressed, and therefore Mn 3+ Therefore, it is considered that the cycle characteristics can be improved.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

平均一次粒子径は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、そのSEM像から平均値を読み取った。   The average primary particle diameter was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation], and the average value was read from the SEM image.

平均二次粒子径(D50)はレーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒子径である。   The average secondary particle diameter (D50) is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring device Microtrac HRA [manufactured by Nikkiso Co., Ltd.].

BET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いて測定した。   The BET specific surface area was measured using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.

組成や不純物量は、0.2gの試料を20%塩酸溶液25mlの溶液で加熱溶解させ、冷却後100mlメスフラスコに純水を入れ調整液を作製し、測定にはICAP[SPS−4000 セイコー電子工業(株)製]を用いて各元素を定量して決定した。   The composition and the amount of impurities were as follows: 0.2 g sample was heated and dissolved in 25 ml of a 20% hydrochloric acid solution, and after cooling, pure water was added to a 100 ml volumetric flask to prepare an adjustment solution. For measurement, ICAP [SPS-4000 Seiko Electronics Each element was quantified and determined using Kogyo Co., Ltd.].

正極活物質粒子粉末の充填密度は、40g秤量し、50mlのメスシリンダーに投入し、タップデンサー((株)セイシン企業製)で500回タッピングした時の体積を読み取り充填密度を計算した。   The packing density of the positive electrode active material particle powder was weighed 40 g, put into a 50 ml measuring cylinder, and the volume when tapped 500 times with a tap denser (manufactured by Seishin Enterprise Co., Ltd.) was read to calculate the packing density.

試料のX線回折は、株式会社リガク製 RAD−IIAを用いて測定した。   The X-ray diffraction of the sample was measured using RAD-IIA manufactured by Rigaku Corporation.

S含有量は、「HORIBA CARBON/SULFUR ANALYZER EMIA−320V(HORIBA Scientific)」を用いて測定した。   S content was measured using "HORIBA CARBON / SULFUR ANALYZER EMIA-320V (HORIBA Scientific)".

本発明に係る正極活物質粒子粉末については、CR2032型コインセルを用いて電池評価を行った。   About the positive electrode active material particle powder which concerns on this invention, battery evaluation was performed using CR2032-type coin cell.

電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を85重量%、導電材としてアセチレンブラックを5重量%、グラファイトを5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン5重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着した物を正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比で1:2で混合した溶液を用いてCR2032型コインセルを作製した。 For coin cells related to battery evaluation, 85% by weight of composite oxide as positive electrode active material particle powder, 5% by weight of acetylene black as a conductive material, 5% by weight of graphite, and polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder After mixing 5% by weight, it was applied to an Al metal foil and dried at 120 ° C. The sheet was punched out to 14 mmΦ, and then pressure-bonded at 1.5 t / cm 2 was used as the positive electrode. A CR2032 type coin cell was manufactured using a solution in which EC and DMC in which 1 mol / L LiPF 6 was dissolved was mixed at a volume ratio of 1: 2 with a negative electrode made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ. .

また、サイクル維持率評価には、負極に人造黒鉛を使用し、該人造黒鉛を94重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン6重量%とを混合した後、Cu金属箔に塗布し120℃にて乾燥し、16mmΦに打ち抜き使用した以外は、コインセルは対極がLi金属箔のときと同様の方法で作製した。   In addition, for the cycle maintenance rate evaluation, artificial graphite was used for the negative electrode, 94% by weight of the artificial graphite was mixed with 6% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder, and then the Cu metal foil was mixed. The coin cell was produced in the same manner as when the counter electrode was a Li metal foil, except that it was applied, dried at 120 ° C., and punched to 16 mmΦ.

充放電特性は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC操作)後、放電を3.0Vまで0.1Cの電流密度にて行ったCC操作)。測定の信憑性を高めるために、1サイクル目はエージングとして、本操作の2回目(2サイクル目)の充電容量(2nd−CH)、放電容量(2nd−DCH)を測定した。 Charging / discharging characteristics were as follows: In a thermostatic chamber at 25 ° C., charging was performed at a current density of 0.1 C up to 5.0 V ( CC operation ), and then discharging was performed at a current density of 0.1 C up to 3.0 V. and it went (CC operation). In order to improve the reliability of the measurement, the charge capacity (2nd-CH) and the discharge capacity (2nd-DCH) of the second operation (second cycle) of this operation were measured as aging in the first cycle.

レート維持率は、恒温槽で25℃とした環境下で充電は5.0Vまで0.1Cの電流密度にて行った(CC操作)後、放電を3.0Vまで0.1Cの電流密度にて行った(CC操作)。測定の信憑性を高めるために、1サイクル目はエージングとして、本操作の2回目(2サイクル目)の充電容量(2nd−CH)、放電容量(2nd−DCH)を測定した。このとき2回目の放電容量をaとする。次に、充電は5.0Vまで0.1Cの電流密度にて行った(CC操作)後、放電を3.0Vまで10Cの電流密度にて行った(CC操作)。このときの放電容量をbとするとき、レート維持率を(b/a×100(%))とした。 The rate maintenance rate was 25 ° C. in a thermostatic chamber. Charging was performed at a current density of 0.1 C up to 5.0 V ( CC operation ), and then discharging was performed at a current density of 0.1 C up to 3.0 V. ( CC operation ). In order to improve the reliability of the measurement, the charge capacity (2nd-CH) and the discharge capacity (2nd-DCH) of the second operation (second cycle) of this operation were measured as aging in the first cycle. At this time, the second discharge capacity is a. Next, charging was performed at a current density of 0.1 C up to 5.0 V ( CC operation ), and then discharging was performed at a current density of 10 C up to 3.0 V ( CC operation ). When the discharge capacity at this time is b, the rate maintenance rate is (b / a × 100 (%)).

CR2032型コインセルを用いて、対極に人造黒鉛を使用したサイクル特性の評価を行った。サイクル特性試験では、25℃の環境で、1Cの電流密度で3.0Vから4.8V(CC操作)とした充放電を200サイクル行った。このとき、1サイクル目の放電容量c、200サイクル目の放電容量dとしたとき、サイクル維持率を(d/c×100(%))とした。
Evaluation of cycle characteristics using artificial graphite as a counter electrode was performed using a CR2032-type coin cell. In the cycle characteristics test, 200 cycles of charge and discharge were performed at a current density of 1 C and from 3.0 V to 4.8 V ( CC operation ) in an environment of 25 ° C. At this time, assuming that the discharge capacity c of the first cycle and the discharge capacity d of the 200th cycle, the cycle retention rate was (d / c × 100 (%)).

実施例1
窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
一次反応終了後、窒素通気に切替え、反応溶液に0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lとを添加し、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケルなど)とを含有する水懸濁液を得た。得られた反応溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。
Example 1
A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L. An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).
After completion of the primary reaction, the system was switched to nitrogen aeration, and 117.3 L of a 0.3 mol / L manganese sulfate solution and 39.4 L of a 1.5 mol / L nickel sulfate solution were added to the reaction solution. An aqueous suspension containing manganese oxide and an additive metal compound (manganese hydroxide, nickel hydroxide, etc.) was obtained. The obtained reaction solution was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 60 ° C. (secondary reaction). After completion of the secondary reaction, the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material. The intermediate product was fired at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder.

得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた(図1)。その組成は、(Mn0.75Ni0.25であった。平均一次粒子径は2.6μmで、タップ密度(500回)は2.12g/mlで、X線回折における最強ピークの半価幅は0.20度であり、また、Na含有量は252ppm、S含有量は88ppmで不純物の総量は1589ppmであった。得られたマンガンニッケル複合酸化物粒子粉末の電子顕微鏡写真(SEM)を図3に示す。 It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder was a cubic type (spinel structure) (FIG. 1). Its composition was (Mn 0.75 Ni 0.25 ) 3 O 4 . The average primary particle size is 2.6 μm, the tap density (500 times) is 2.12 g / ml, the half-width of the strongest peak in X-ray diffraction is 0.20 degrees, and the Na content is 252 ppm, The S content was 88 ppm and the total amount of impurities was 1589 ppm. An electron micrograph (SEM) of the obtained manganese nickel composite oxide particle powder is shown in FIG.

実施例2
窒素通気のもと反応後の過剰アルカリ濃度が2.5mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
Example 2
A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.5 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L. An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).

一次反応終了後、窒素通気に切替え同反応溶液に、0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液10.0Lと1.5mol/Lの硫酸マグネシウム溶液10.0Lを添加して、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケル、水酸化マグネシウム及び水酸化チタンなど)を含有する水懸濁液を得た。得られた反応溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。 After the completion of the primary reaction, the system was switched to nitrogen aeration, and 0.37.3 mol / L manganese sulfate solution, 117.3 L, 1.5 mol / L nickel sulfate solution, 39.4 L, and 1.5 mol / L titanyl sulfate solution, 10 were added to the reaction solution. 0.0 L and 10.0 mol of a 1.5 mol / L magnesium sulfate solution are added, and the compound of manganese oxide and added metal produced in the primary reaction (manganese hydroxide, nickel hydroxide, magnesium hydroxide and hydroxide) An aqueous suspension containing titanium etc.) was obtained. The obtained reaction solution was switched from nitrogen aeration to air aeration, and an oxidation reaction was performed at 60 ° C. (secondary reaction). After completion of the secondary reaction, the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material.

該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた。   The intermediate product was fired at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder. It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder was a cubic type (spinel structure).

得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表1に示す。   Table 1 shows various characteristics of the obtained manganese nickel composite oxide particle powder.

実施例3
窒素通気のもと反応後の過剰アルカリ濃度が2.0mol/Lとなるように水酸化ナトリウム水溶液を調整し、マンガン濃度が0.6mol/Lとなるように硫酸マンガン水溶液を調整し、両水酸化物を反応槽に投入して全量を600Lとし、中和させることで水酸化マンガン粒子を含む水縣濁液を得た。得られた水酸化マンガン粒子を含む水縣濁液に対して、窒素通気から空気通気に切り替え、90℃で酸化反応を行った(一次反応)。
Example 3
A sodium hydroxide aqueous solution was adjusted so that the excess alkali concentration after the reaction was 2.0 mol / L under nitrogen flow, and the manganese sulfate aqueous solution was adjusted so that the manganese concentration was 0.6 mol / L. An aqueous suspension containing manganese hydroxide particles was obtained by charging the total amount of oxide to 600 L and neutralizing the oxide. The resulting aqueous suspension containing manganese hydroxide particles was switched from nitrogen ventilation to air ventilation, and an oxidation reaction was performed at 90 ° C. (primary reaction).

一次反応終了後、窒素通気に切替え同反応溶液にて0.3mol/Lの硫酸マンガン溶液117.3Lと1.5mol/Lの硫酸ニッケル溶液39.4Lと1.5mol/Lの硫酸チタニル溶液50.2Lを加えることで、一次反応にて生成されたマンガン酸化物と添加金属の化合物(水酸化マンガン、水酸化ニッケル及び水酸化チタンなど)の水懸濁液を得た。得られた溶液に対して、窒素通気から空気通気に切替え、60℃で酸化反応を行った(二次反応)。   After the completion of the primary reaction, the system was switched to nitrogen aeration. In the same reaction solution, 117.3 L of a 0.3 mol / L manganese sulfate solution, 39.4 L of a 1.5 mol / L nickel sulfate solution, and a 1.5 mol / L titanyl sulfate solution 50 were added. By adding 2 L, an aqueous suspension of a compound of manganese oxide generated in the primary reaction and an added metal (such as manganese hydroxide, nickel hydroxide and titanium hydroxide) was obtained. The resulting solution was switched from nitrogen aeration to air aeration and an oxidation reaction was performed at 60 ° C. (secondary reaction).

二次反応終了後、水洗、乾燥することで、スピネル構造のMn粒子を母材としたマンガンニッケル複合化合物(中間生成物)を得た。 After completion of the secondary reaction, the resultant was washed with water and dried to obtain a manganese nickel composite compound (intermediate product) using Mn 3 O 4 particles having a spinel structure as a base material.

該中間生成物を950℃で20hr大気中にて焼成することでマンガンニッケル複合酸化物粒子粉末を得た。得られたマンガンニッケル複合酸化物粒子粉末はX線回折より立方晶型(スピネル構造)であることが確認できた。   The intermediate product was fired at 950 ° C. in the air for 20 hours to obtain manganese nickel composite oxide particle powder. It was confirmed by X-ray diffraction that the obtained manganese nickel composite oxide particle powder was a cubic type (spinel structure).

得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表1に示す。   Table 1 shows various characteristics of the obtained manganese nickel composite oxide particle powder.

実施例4、5
実施例1に基づいて製造条件を変化させて、マンガンニッケル複合酸化物粒子粉末を製造した。
得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表1に示す。
Examples 4 and 5
Manganese nickel composite oxide particle powders were produced by changing the production conditions based on Example 1.
Table 1 shows various characteristics of the obtained manganese nickel composite oxide particle powder.

比較例1
密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらに、pH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L炭酸ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、炭酸塩を主成分としていた(図2)。得られた前駆体粒子粉末の電子顕微鏡写真(SEM)を図4に示す。
Comparative Example 1
14 L of water was put into the sealed reaction tank, and kept at 50 ° C. while circulating nitrogen gas. Furthermore, 1.5 mol / L Ni, Mn mixed sulfate aqueous solution, 0.8 mol / L sodium carbonate aqueous solution, and 2 mol / L continuously with vigorous stirring so that pH = 8.2 (± 0.2). L Ammonia aqueous solution was added. During the reaction, only the filtrate was discharged out of the system by a concentrating device, and the solid content was retained in the reaction tank. After reacting for 40 hours, a slurry of the coprecipitation product was collected. The collected slurry was filtered and washed with pure water. Thereafter, it was dried at 105 ° C. overnight to obtain precursor particle powder. As a result of the X-ray diffraction measurement, the obtained precursor particle powder was mainly composed of carbonate (FIG. 2). An electron micrograph (SEM) of the obtained precursor particle powder is shown in FIG.

比較例2
実施例1と同様にしてマンガンニッケル複合化合物(中間生成物)を得、乾燥後の乾燥粉を880℃で20hr大気中にて焼成し、マンガンニッケル複合酸化物粒子粉末を得た。X線回折の結果、主構造であるスピネル構造のマンガンニッケル複合酸化物のピーク以外に、Mnのピークが見られた。
Comparative Example 2
In the same manner as in Example 1, a manganese nickel composite compound (intermediate product) was obtained, and the dried powder after drying was fired in the atmosphere at 880 ° C. for 20 hours to obtain manganese nickel composite oxide particle powder. As a result of X-ray diffraction, a peak of Mn 2 O 3 was observed in addition to the peak of the manganese nickel composite oxide having a spinel structure as the main structure.

得られたマンガンニッケル複合酸化物粒子粉末の諸特性を表1に示す。   Table 1 shows various characteristics of the obtained manganese nickel composite oxide particle powder.

比較例3
密閉型反応槽に水を14L入れ、窒素ガスを流通させながら50℃に保持した。さらにpH=8.2(±0.2)となるよう、強攪拌しながら連続的に1.5mol/LのNi、Mnの混合硫酸塩水溶液と0.8mol/L水酸化ナトリウム水溶液と2mol/Lアンモニア水溶液を加えた。反応中は濃縮装置により濾液のみを系外に排出して固形分は反応槽に滞留させながら、40時間反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過した後、純水で水洗を行った。その後105℃で一晩乾燥させ、前駆体粒子粉末を得た。X線回折測定の結果、得られた前駆体粒子粉末は、水酸化物(乾燥により酸化物に一部変化)を主成分としていた。
Comparative Example 3
14 L of water was put into the sealed reaction tank, and kept at 50 ° C. while circulating nitrogen gas. Furthermore, 1.5 mol / L Ni, Mn mixed sulfate aqueous solution, 0.8 mol / L sodium hydroxide aqueous solution and 2 mol / L are continuously added while vigorously stirring so that pH = 8.2 (± 0.2). L Ammonia aqueous solution was added. During the reaction, only the filtrate was discharged out of the system by a concentrating device, and the solid content was retained in the reaction tank. After reacting for 40 hours, a slurry of the coprecipitation product was collected. The collected slurry was filtered and washed with pure water. Thereafter, it was dried at 105 ° C. overnight to obtain precursor particle powder. As a result of the X-ray diffraction measurement, the obtained precursor particle powder was mainly composed of hydroxide (partially changed to oxide by drying).

得られたマンガンニッケル化合物の諸特性を表1に示す。   Various characteristics of the obtained manganese nickel compound are shown in Table 1.

実施例6
実施例1で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムをLi:(Mn+Ni)=0.50:1.00となるように秤量し、ボールミルで1時間乾式混合することで均一な混合物を得た。その後、電気炉を用いて、酸素流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。
Example 6
The manganese nickel composite oxide particles obtained in Example 1 and lithium carbonate were weighed so that Li: (Mn + Ni) = 0.50: 1.00, and dry-mixed with a ball mill for 1 hour to obtain a uniform mixture. Got. Thereafter, using an electric furnace, firing was performed at 750 ° C. for 15 hours under oxygen flow, followed by firing at 600 ° C. for 10 hours to obtain positive electrode active material particle powder.

該正極活物質粒子粉末はX線回折(リガク製 RAD−IIA)により立方晶であるスピネル構造を有することを確認した。BET比表面積は0.43m/g、D50は15.1μm、タップ密度は1.95g/mlであった。また、S含有量は18ppmで、Na含有量は95ppmで、不純物の総量は513ppmであった。 The positive electrode active material particle powder was confirmed by X-ray diffraction (Rigaku RAD-IIA) to have a cubic spinel structure. The BET specific surface area was 0.43 m 2 / g, D50 was 15.1 μm, and the tap density was 1.95 g / ml. The S content was 18 ppm, the Na content was 95 ppm, and the total amount of impurities was 513 ppm.

また、該正極活物質粒子粉末を用いて作製したコイン型電池は、3.0Vまでの放電容量が140mAh/gであり、4.5Vまでの放電容量は132mAh/gであり、レート維持率は88%で、サイクル維持率は63%であった。   In addition, the coin-type battery produced using the positive electrode active material particle powder has a discharge capacity of up to 3.0 V of 140 mAh / g, a discharge capacity of up to 4.5 V is 132 mAh / g, and the rate maintenance rate is At 88%, the cycle retention was 63%.

実施例7、8
マンガンニッケル複合酸化物粒子粉末の種類、炭酸リチウムとの混合割合、焼成温度を種々変化させた以外は、実施例6と同様にして正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
Examples 7 and 8
Positive electrode active material particle powder was obtained in the same manner as in Example 6 except that the type of manganese nickel composite oxide particle powder, the mixing ratio with lithium carbonate, and the firing temperature were variously changed. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

実施例9
実施例4で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとの混合物を、空気流通下900℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
Example 9
The mixture of the manganese nickel composite oxide particle powder obtained in Example 4 and lithium carbonate was fired at 900 ° C. for 15 hours under air flow, and then fired at 600 ° C. for 10 hours to obtain positive electrode active material particle powder. It was. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

実施例10
実施例5で得られたマンガンニッケル複合酸化物粒子粉末と炭酸リチウムとの混合物を、空気流通下750℃で15hr焼成し、続けて600℃で10hr焼成することで、正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折の結果、いずれも、立方晶であるスピネル構造を有することを確認した。
Example 10
The mixture of the manganese nickel composite oxide particle powder and lithium carbonate obtained in Example 5 was fired at 750 ° C. for 15 hours under air flow, and then fired at 600 ° C. for 10 hours to obtain positive electrode active material particle powder. It was. As a result of X-ray diffraction, the obtained positive electrode active material particle powder was confirmed to have a spinel structure that is a cubic crystal.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

比較例4
比較例1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.48:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
Comparative Example 4
The precursor particle powder and lithium hydroxide obtained in Comparative Example 1 were weighed, weighed so that Li: Me = 0.48: 1.00, and mixed well. The mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

比較例5
比較例1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.50:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
Comparative Example 5
The precursor particle powder and lithium hydroxide obtained in Comparative Example 1 were weighed and weighed so that Li: Me = 0.50: 1.00 and mixed well. The mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

比較例6
比較例1で得られた前駆体粒子粉末と水酸化リチウムを秤量し、Li:Me=0.51:1.00となるように秤量し、十分に混合した。混合物を電気炉にて、大気中1000℃で8hr焼成し、続けて600℃で6hr焼成し正極活物質粒子粉末を得た。
Comparative Example 6
The precursor particle powder and lithium hydroxide obtained in Comparative Example 1 were weighed and weighed so that Li: Me = 0.51: 1.00 and mixed well. The mixture was baked in an electric furnace at 1000 ° C. for 8 hours in the atmosphere, and then baked at 600 ° C. for 6 hours to obtain positive electrode active material particle powder.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

比較例7
比較例2で得られた複合酸化物を前駆体とし実施例1と同様にしてLi化合物と混合、焼成して正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折より、ニッケル含有マンガン酸リチウムと酸化ニッケルとMn由来のマンガン酸リチウム粒子粉末のピークが確認できた。これは、異相の発生によりマンガンニッケル複合酸化物中のMn量が減るために相対的にNi量が増えたためだと考えられる。
Comparative Example 7
The composite oxide obtained in Comparative Example 2 was used as a precursor and mixed with a Li compound and fired in the same manner as in Example 1 to obtain positive electrode active material particle powder. The obtained positive electrode active material particle powder confirmed the peak of nickel-containing lithium manganate, nickel oxide, and Mn 2 O 3 -derived lithium manganate particles by X-ray diffraction. This is presumably because the amount of Ni was relatively increased due to the decrease in the amount of Mn in the manganese nickel composite oxide due to the occurrence of heterogeneous phases.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

比較例8
比較例3で得られた複合酸化物を前駆体とした以外は、実施例7と同様にしてLi化合物と混合、焼成して正極活物質粒子粉末を得た。得られた正極活物質粒子粉末はX線回折より、ニッケル含有マンガン酸リチウムと酸化ニッケルとMn由来のマンガン酸リチウム粒子粉末のピークが確認できた。これは、異相の発生によりマンガンニッケル複合酸化物中のMn量が減るために相対的にNi量が増えたためだと考えられる。
Comparative Example 8
Except that the composite oxide obtained in Comparative Example 3 was used as a precursor, it was mixed with a Li compound and fired in the same manner as in Example 7 to obtain a positive electrode active material particle powder. The obtained positive electrode active material particle powder confirmed the peak of nickel-containing lithium manganate, nickel oxide, and Mn 2 O 3 -derived lithium manganate particles by X-ray diffraction. This is presumably because the amount of Ni was relatively increased due to the decrease in the amount of Mn in the manganese nickel composite oxide due to the occurrence of heterogeneous phases.

得られた正極活物質粒子粉末の分析結果を表2に示す。   Table 2 shows the analysis results of the obtained positive electrode active material particle powder.

以上の結果から本発明に係るマンガンニッケル複合酸化物粒子粉末を使用した場合に得られるニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末は、充放電容量が大きく優れた非水電解質二次電池用正極活物質として有効であることが確認された。   From the above results, the positive electrode active material particle powder made of nickel-containing lithium manganate obtained when the manganese nickel composite oxide particle powder according to the present invention is used is excellent in non-aqueous electrolyte secondary batteries having a large charge / discharge capacity. It was confirmed to be effective as a positive electrode active material.

本発明に係るマンガンニッケル複合酸化物粒子粉末は、該酸化物を前駆体として合成したニッケル含有マンガン酸リチウムからなる正極活物質粒子粉末としたとき、放電容量が高く、且つ、サイクル特性に優れた非水電解質二次電池用正極活物質が得られるので、正極活物質の前駆体として好適である。   The manganese nickel composite oxide particle powder according to the present invention has a high discharge capacity and excellent cycle characteristics when made into a positive electrode active material particle powder comprising nickel-containing lithium manganate synthesized using the oxide as a precursor. Since a positive electrode active material for a non-aqueous electrolyte secondary battery is obtained, it is suitable as a precursor of the positive electrode active material.

Claims (7)

Fd−3mの空間群を有する立方晶スピネルであるMnとNiが主成分の複合酸化物において、実質的に単相であり、平均一次粒子径が1.0〜8.0μmの範囲であり、タップ密度が1.8g/ml以上であり、X線回折による最強ピークの半価幅が0.15〜0.25の範囲であり、下記化学式(1)で表される組成式を有することを特徴とするマンガンニッケル複合酸化物粒子粉末。
化学式(1)
(Mn 1−y−z Ni
0.2≦y≦0.3、 0≦z≦0.10
M:Mg,Al,Si,Ca,Ti,Co,Zn,Sb,Ba,W,Biより1種または1種以上
In cubic Mn and Ni composite oxide of the main component is a spinel having a space group of fd-3m, a substantially single phase, an average primary particle diameter of Ri range der of 1.0~8.0μm The tap density is 1.8 g / ml or more, the half-value width of the strongest peak by X-ray diffraction is in the range of 0.15 to 0.25, and the composition formula is represented by the following chemical formula (1) Manganese nickel composite oxide particle powder.
Chemical formula (1)
(Mn 1-yz Ni y M z ) 3 O 4
0.2 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.10
M: One or more than Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W, Bi
請求項1記載の複合酸化物粒子粉末において、ナトリウム含有量が100〜2000ppmであり、硫黄含有量が10〜1000ppmであって、不純物の総和が4000ppm以下であるマンガンニッケル複合酸化物粒子粉末。 In the composite oxide particles according to claim 1 Symbol placement, a sodium content is 100 to 2000 ppm, a sulfur content of 10-1000 ppm, manganese nickel composite oxide particles sum of impurities is less than 4000 ppm. マンガン塩水溶液に、該マンガンの当量に対して過剰量のアルカリ水溶液を用いて中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液に対してマンガン原料とニッケル原料を添加した後、酸化反応を行う二次反応によって、四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を得、次いで、当該四酸化三マンガン粒子を核粒子としたマンガンニッケル複合化合物を酸化性雰囲気で900〜1100℃の温度範囲で焼成する請求項1又は2に記載のマンガンニッケル複合酸化物粒子粉末の製造方法。 An aqueous manganese salt solution is neutralized with an aqueous alkaline solution in excess of the equivalent of manganese to form an aqueous suspension containing manganese hydroxide, and then subjected to an oxidation reaction at a temperature range of 60 to 100 ° C. To obtain a trimanganese tetroxide core particle, and after adding a manganese raw material and a nickel raw material to the reaction solution after the primary reaction, the trimanganese tetroxide particles are obtained by a secondary reaction in which an oxidation reaction is performed. the resulting manganese-nickel composite compounds with core particles and then, according to the trimanganese tetraoxide particles in claim 1 or 2, fired at a temperature range of 900 to 1100 ° C. the manganese-nickel composite compound as the core particles in an oxidizing atmosphere Manufacturing method for manganese nickel composite oxide particles. 請求項記載のマンガンニッケル複合酸化物粒子粉末の製造法において、過剰量のアルカリ水溶液のアルカリ濃度が0.1〜5.0mol/Lであるマンガンニッケル複合酸化物粒子粉末の製造方法。 4. The method for producing manganese nickel composite oxide particle powder according to claim 3, wherein the alkali concentration of an excessive amount of the alkaline aqueous solution is 0.1 to 5.0 mol / L. 請求項3又は4記載のマンガンニッケル複合酸化物粒子粉末の製造法において、一次反応後の反応溶液を非酸化雰囲気に切り替えた後に、該非酸化雰囲気を保持した状態で、二次反応におけるマンガン原料及びニッケル原料水溶液を添加するマンガンニッケル複合酸化物粒子粉末の製造方法。 In the manufacturing method of the manganese nickel complex oxide particle powder of Claim 3 or 4 , after switching the reaction solution after primary reaction to non-oxidizing atmosphere, in the state which hold | maintained this non-oxidizing atmosphere, the manganese raw material in secondary reaction, The manufacturing method of the manganese nickel compound oxide particle powder which adds nickel raw material aqueous solution. 請求項1又は2に記載のマンガンニッケル複合酸化物粒子粉末とリチウム化合物とを混合し、酸化性雰囲気中で680〜1050℃で焼成し、引き続き500〜700℃で焼成する立方晶スピネル構造を有する非水電解質二次電池用正極活物質粒子粉末の製造方法。 The manganese nickel composite oxide particle powder according to claim 1 or 2 and a lithium compound are mixed, fired at 680 to 1050 ° C. in an oxidizing atmosphere, and subsequently fired at 500 to 700 ° C. The manufacturing method of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries. 請求項記載の正極活物質粒子粉末の製造方法によって得られた正極活物質粒子粉末を用いた非水電解質二次電池。 The nonaqueous electrolyte secondary battery using the positive electrode active material particle powder obtained by the manufacturing method of the positive electrode active material particle powder of Claim 6 .
JP2012082400A 2011-03-31 2012-03-30 Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP5720899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082400A JP5720899B2 (en) 2011-03-31 2012-03-30 Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011080116 2011-03-31
JP2011080116 2011-03-31
JP2012082400A JP5720899B2 (en) 2011-03-31 2012-03-30 Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012216547A JP2012216547A (en) 2012-11-08
JP5720899B2 true JP5720899B2 (en) 2015-05-20

Family

ID=47269103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082400A Active JP5720899B2 (en) 2011-03-31 2012-03-30 Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5720899B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186814B2 (en) * 2012-04-05 2017-08-30 東ソー株式会社 Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same
CN104220378B (en) 2012-04-05 2017-07-18 东曹株式会社 Mangano-manganic oxide Composite particle and its manufacture method containing metal
JP6017978B2 (en) * 2013-01-24 2016-11-02 トヨタ自動車株式会社 Positive electrode active material and lithium secondary battery using the active material
JP6008134B2 (en) * 2013-06-07 2016-10-19 住友金属鉱山株式会社 Lithium secondary battery positive electrode active material and lithium secondary battery using the positive electrode active material
JP2015011969A (en) * 2013-07-02 2015-01-19 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP6347227B2 (en) * 2015-04-28 2018-06-27 住友金属鉱山株式会社 Manganese nickel titanium composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR20180043842A (en) * 2015-09-11 2018-04-30 유미코아 Lithium metal oxide material, its use in an anode of a secondary battery, and a method of producing such a lithium metal oxide material
US11081694B2 (en) 2015-11-30 2021-08-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery comprising the same
WO2018167533A1 (en) * 2017-03-14 2018-09-20 Umicore Precursors for cathode material with improved secondary battery performance and method to prepare the precursors
CN109704411B (en) * 2018-11-22 2022-12-20 银隆新能源股份有限公司 Lithium nickel manganese oxide positive electrode material and preparation method thereof
US20230294084A1 (en) * 2020-06-22 2023-09-21 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst
CN113044892A (en) * 2021-03-10 2021-06-29 福建省云智新材料科技有限公司 Preparation method of nickel manganese oxide
CN115092973B (en) * 2022-06-10 2024-04-02 华友新能源科技(衢州)有限公司 Positive electrode precursor, continuous preparation method thereof, positive electrode material and secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782579B2 (en) * 1994-04-08 1998-08-06 工業技術院長 Method for producing oxide-based semiconductor fine powder
JP4305629B2 (en) * 2003-03-27 2009-07-29 戸田工業株式会社 Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP4851699B2 (en) * 2004-09-30 2012-01-11 株式会社Gsユアサ Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same
KR100639526B1 (en) * 2005-02-02 2006-10-30 한양대학교 산학협력단 3V spinel complex-oxide as cathode material of lithium secondary batteries, the carbonate precipitation method thereof, and the lithium secondary batteries using the same
FR2901640B1 (en) * 2006-05-24 2008-09-12 Accumulateurs Fixes LITHIUM INSERTION COMPOUND FOR USE AS A CATHODE ACTIVE MATERIAL OF A LITHIUM RECHARGEABLE ELECTROCHEMICAL GENERATOR
KR101151931B1 (en) * 2007-03-30 2012-06-04 파나소닉 주식회사 Active material for non-aqueous electrolyte secondary battery and manufacturing method therefor
US8323612B2 (en) * 2007-12-28 2012-12-04 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2012216547A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11072869B2 (en) Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4217712B2 (en) Lithium-nickel-cobalt-manganese-fluorine-containing composite oxide, method for producing the same, and lithium secondary battery using the same
JP5081731B2 (en) The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries.
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JPWO2005106993A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2013146287A1 (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP2021501980A (en) Manufacturing method of positive electrode active material
JP5720900B2 (en) Active material powder for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4578790B2 (en) Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide
JP2008117729A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JP2016100174A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013037879A (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery including the positive electrode active material, and method for producing lithium manganese silver complex oxide
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5720899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250