JP4813450B2 - Lithium-containing composite oxide and non-aqueous secondary battery using the same - Google Patents

Lithium-containing composite oxide and non-aqueous secondary battery using the same Download PDF

Info

Publication number
JP4813450B2
JP4813450B2 JP2007312520A JP2007312520A JP4813450B2 JP 4813450 B2 JP4813450 B2 JP 4813450B2 JP 2007312520 A JP2007312520 A JP 2007312520A JP 2007312520 A JP2007312520 A JP 2007312520A JP 4813450 B2 JP4813450 B2 JP 4813450B2
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
positive electrode
active material
containing composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007312520A
Other languages
Japanese (ja)
Other versions
JP2008115075A (en
JP2008115075A5 (en
Inventor
内冨  和孝
上田  篤司
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2007312520A priority Critical patent/JP4813450B2/en
Publication of JP2008115075A publication Critical patent/JP2008115075A/en
Publication of JP2008115075A5 publication Critical patent/JP2008115075A5/ja
Application granted granted Critical
Publication of JP4813450B2 publication Critical patent/JP4813450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水二次電池の正極活物質などに利用可能なリチウム含有複合酸化物と、それを正極に用いることにより、高温でのサイクル特性や保存特性を改善した非水二次電池に関する。   The present invention relates to a lithium-containing composite oxide that can be used as a positive electrode active material of a non-aqueous secondary battery, and a non-aqueous secondary battery that improves cycle characteristics and storage characteristics at high temperatures by using the lithium-containing composite oxide. .

近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池としては、正極材料としてLiCoO2を用い、負極活物質として炭素系材料を用いた非水二次電池が商品化されている。上記非水二次電池はエネルギー密度が高く、小型、軽量化が図れることから、ポータブル電子機器の電源として注目されている。この非水二次電池の正極材料として使用されているLiCoO2は、製造が容易でありかつ取り扱いが容易なことから、好適な活物質として多用されている。しかしながら、LiCoO2は希少金属であるCoを原料として製造されるために、今後資源不足が深刻化すると予想される。さらに、Coは高価であり、価格変動も大きいため、安価で供給の安定している正極材料の開発が望まれている。 In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity have been required. Currently, non-aqueous secondary batteries using LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material are commercialized as high-capacity secondary batteries that meet this requirement. The non-aqueous secondary battery is attracting attention as a power source for portable electronic devices because it has a high energy density and can be reduced in size and weight. LiCoO 2 used as a positive electrode material for this non-aqueous secondary battery is frequently used as a suitable active material because it is easy to manufacture and easy to handle. However, since LiCoO 2 is manufactured using Co, which is a rare metal, as a raw material, it is expected that resource shortages will become serious in the future. Furthermore, since Co is expensive and has a large price fluctuation, development of a positive electrode material that is inexpensive and stable in supply is desired.

上記理由に鑑み、構成元素の価格が安価で、供給が安定しているMnを構成元素としたリチウムマンガン酸化物系の複合酸化物材料が有望視されている。その中でも、Liに対して4V付近の電圧領域で充放電が可能であるスピネル型構造のLiMn24や、層状のLiMnO2に関する研究が盛んに行われており、特に、上記LiMnO2のMnの一部をNiやCo、Alなどで置換したリチウム含有複合酸化物が、LiCoO2に代わる材料として期待されている(特許文献1〜3参照)。 In view of the above reasons, a lithium manganese oxide-based composite oxide material containing Mn as a constituent element, for which the price of the constituent element is low and supply is stable, is considered promising. Among them, the spinel structure is can be charged and discharged in the voltage range of the or LiMn 2 O 4 in the vicinity of 4V, studies on LiMnO 2 layered are actively conducted against Li, in particular, of the LiMnO 2 Mn Lithium-containing composite oxides in which a part of these is substituted with Ni, Co, Al, or the like is expected as a material to replace LiCoO 2 (see Patent Documents 1 to 3).

特開平8−37007号公報(段落番号0027−0029)JP-A-8-37007 (paragraph numbers 0027-0029) 特開平11−25957号公報(段落番号0003−0008)Japanese Patent Laid-Open No. 11-25957 (paragraph numbers 0003-0008) 特開2000−223122号公報(段落番号0002−0009)JP 2000-223122 A (paragraph number 0002-0009)

ところが、本発明者らが上記LiMnO2のMnの一部をNiやCoなどで置換した複合酸化物について詳細な検討を行った結果、化合物の組成、特に、Liとその他金属元素との量比や、置換元素の種類や量比、および複合酸化物が形成されるまでの合成過程などにより、その構造や特性などの物性が顕著に変化することをつきとめた。 However, as a result of detailed studies on the composite oxide in which a part of Mn of LiMnO 2 is substituted by Ni, Co, or the like, the present inventors have found that the composition of the compound, particularly, the quantitative ratio between Li and other metal elements. In addition, it was found that the physical properties such as the structure and characteristics of the substituting element change significantly depending on the kind and amount ratio of the substituting elements and the synthesis process until the composite oxide is formed.

特に、Niによる置換を行った場合は、MnとNiとの量比、およびこれら元素とそれ以外の置換元素との量比により、合成される複合酸化物の物性が大きく変化し、MnとNiとの量比をほぼ1:1とし、MnおよびNiとそれ以外の置換元素との量比を一定範囲とし、Mnの平均価数を4価近傍の値としなければ均質で特性の優れた化合物が得られないこと、Mnおよびその他置換元素とLiとの量比により複合酸化物の真密度が大きく変動することなどが明らかとなった。 In particular, when substitution with Ni is performed, the physical properties of the composite oxide to be synthesized vary greatly depending on the quantitative ratio of Mn to Ni and the quantitative ratio of these elements to other substituted elements. If the amount ratio of Mn and Ni to other substitutional elements is within a certain range, and the average valence of Mn is not a value close to tetravalent, the compound is homogeneous and has excellent characteristics. It was clarified that the true density of the composite oxide greatly fluctuated depending on the amount ratio of Mn and other substituted elements to Li.

さらに、上記リチウム含有複合酸化物の粒子形態によって、電池の特性が大きく影響されることもわかった。   Furthermore, it was also found that the characteristics of the battery are greatly influenced by the particle form of the lithium-containing composite oxide.

本発明は、上記課題を解決すべく鋭意研究を重ねた結果なされたものであり、限られた組成範囲の層状構造を有する複合酸化物で、かつ、特定の粒子形態を有するリチウム含有複合酸化物を正極の活物質として用いることにより、高容量で充放電サイクルに対する耐久性に優れ、高温下での貯蔵性が優れた非水二次電池を提供するものである。   The present invention has been made as a result of intensive studies to solve the above problems, and is a complex oxide having a layered structure in a limited composition range and a lithium-containing complex oxide having a specific particle form. Is used as an active material for the positive electrode to provide a non-aqueous secondary battery having high capacity, excellent durability against charge / discharge cycles, and excellent storage at high temperatures.

本発明のリチウム含有複合酸化物は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであり、BET比表面積が0.3〜2m 2 /gであり、Mnの平均価数が3.3〜4価であることを特徴とする。 Lithium-containing composite oxide of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or − 0.24 ≦ δ ≦ 0.24 (when 0.2 <y ≦ 0.4), and M is made of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn 1 or more elements selected from the group], and is a composite oxide in which primary particles aggregate to form secondary particles, and the average particle diameter of the primary particles is 0.3 to 3 μm. The average particle diameter of the secondary particles is 5 to 20 μm , the BET specific surface area is 0.3 to 2 m 2 / g, and the average valence of Mn is 3.3 to 4.

また本発明の非水二次電池は、上記リチウム含有複合酸化物を活物質とする正極および負極と非水電解質を備えたことを特徴とする。   The non-aqueous secondary battery of the present invention includes a positive electrode and a negative electrode using the lithium-containing composite oxide as an active material, and a non-aqueous electrolyte.

また、本発明の正極活物質の好ましい態様は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その二次粒子の平均粒子径が5〜20μmであり、Mnの平均価数が3.3〜4価であるリチウム含有複合酸化物Aと、前記リチウム含有複合酸化物Aと同一の組成を有し前記複合酸化物Aの二次粒子の平均粒子径よりも小さい平均粒子径を有するリチウム含有複合酸化物Bとを含む混合体であり、前記複合酸化物Bの平均粒子径が、前記複合酸化物Aの二次粒子の平均粒子径の3/5以下であり、前記複合酸化物Bの割合が、正極活物質全体の10〜40重量%であることを特徴とする
らに、本発明の非水二次電池の好ましい態様は、上記正極活物質を有する正極および負極と非水電解質を備えたことを特徴とする。
Further, preferred embodiments of the positive electrode active material of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, and −0.1 ≦ δ ≦ 0.1 (provided that 0 ≦ y ≦ 0.2) ) Or −0.24 ≦ δ ≦ 0.24 (when 0.2 <y ≦ 0.4), and M is Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, 1 or more elements selected from the group consisting of Sn], which is a composite oxide in which primary particles aggregate to form secondary particles, and the average particle size of the secondary particles is 5 to 20 μm. The average particle diameter of the secondary particles of the composite oxide A having the same composition as the lithium-containing composite oxide A having an average valence of Mn of 3.3 to 4 and the lithium-containing composite oxide A Less than average A lithium-containing composite oxide B having a particle size, wherein the average particle size of the composite oxide B is 3/5 or less of the average particle size of the secondary particles of the composite oxide A, The ratio of the composite oxide B is 10 to 40% by weight of the whole positive electrode active material .
Et al is the preferred embodiment of the nonaqueous secondary battery of the present invention is characterized by comprising a positive electrode and a negative electrode and a non-aqueous electrolyte having the positive electrode active material.

以下、発明の実施の形態により、本発明をより具体的に説明する。本発明のリチウム含有複合酸化物は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであり、BET比表面積が0.3〜2m 2 /gであり、Mnの平均価数が3.3〜4価であることを特徴とする。 Hereinafter, the present invention will be described in more detail with reference to embodiments of the invention. Lithium-containing composite oxide of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or − 0.24 ≦ δ ≦ 0.24 (when 0.2 <y ≦ 0.4), and M is made of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn 1 or more elements selected from the group], and is a composite oxide in which primary particles aggregate to form secondary particles, and the average particle diameter of the primary particles is 0.3 to 3 μm. The average particle diameter of the secondary particles is 5 to 20 μm , the BET specific surface area is 0.3 to 2 m 2 / g, and the average valence of Mn is 3.3 to 4.

すなわち、本発明のリチウム含有複合酸化物は、少なくともNiとMnを構成元素として含有し、かつ、NiとMnの量比が1:1となる組成を中心とした、ごく限られた組成範囲の複合酸化物である。   That is, the lithium-containing composite oxide of the present invention contains at least Ni and Mn as constituent elements and has a very limited composition range centering on a composition in which the quantity ratio of Ni and Mn is 1: 1. It is a complex oxide.

本発明において、上記のような限られた組成範囲のみが選択されるのは以下の理由による。すなわち、NiおよびMnを有する層状のリチウム含有複合酸化物においては、NiとMnの量比が1:1となる一般式LiNi1/2Mn1/22で表される組成を基本として、NiおよびMnがそれぞれx/2ずつLiで置換され、NiとMnの量比が1/2からそれぞれδ/2および−δ/2だけずれ、Liの量比がαだけ幅を有し、かつ、NiおよびMnが、それぞれy/2ずつ元素M(ただしMはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snより選択される1種以上の元素)で置換された組成、すなわち、一般Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表される組成範囲において、その結晶構造が安定化され、4V付近の電位領域での充放電の可逆性や充放電サイクルに対する耐久性に優れた複合酸化物が得られることによる。 In the present invention, only the limited composition range as described above is selected for the following reason. That is, in the layered lithium-containing composite oxide having Ni and Mn, based on the composition represented by the general formula LiNi 1/2 Mn 1/2 O 2 in which the quantity ratio of Ni and Mn is 1: 1, Ni and Mn are each replaced by x / 2 with Li, the quantity ratio of Ni and Mn is shifted from ½ by δ / 2 and −δ / 2 respectively, the quantity ratio of Li has a width by α, and , Ni, and Mn are each replaced by y / 2 elements M (where M is one or more elements selected from Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn) composition, i.e., the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, - 0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or −0. 4 ≦ δ ≦ 0.24 (when 0.2 <y ≦ 0.4), and M is selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn. In the composition range represented by the selected one or more elements], the crystal structure is stabilized, and the composite oxide is excellent in reversibility of charge / discharge in a potential region near 4 V and durability in charge / discharge cycles. Is obtained.

上記組成範囲において、複合酸化物中のMnの平均価数が4価近傍の値(およそ3.3〜4価)をとることにより、充放電でのLiのドープおよび脱ドープの際に、結晶中のMnの移動が抑制され、高温での耐久性が優れたものになると思われる。 In the above composition range, by an average valence of Mn in the composite oxide takes a tetravalent near the value (approximately 3.3 to 4-valent), during doping and dedoping of Li in the charge and discharge, the crystal It is considered that the movement of Mn therein is suppressed and the durability at high temperature is excellent .

また、y>0で、元素Mとして少なくともCoを含有する場合は、化合物の導電性が向上し、大電流放電時の負荷特性が向上することがわかった。   Further, it was found that when y> 0 and at least Co is contained as the element M, the conductivity of the compound is improved and the load characteristics during large current discharge are improved.

さらに詳細な組成検討によれば、Ni、MnおよびMの量比が1:1:1となる組成、すなわち一般式LiNi1/3Mn1/31/32で表される組成の近傍において、化合物の安定性が向上することもわかった。 According to further detailed compositional examination, the composition in which the quantity ratio of Ni, Mn and M is 1: 1: 1, that is, the composition represented by the general formula LiNi 1/3 Mn 1/3 M 1/3 O 2 It was also found that the stability of the compound was improved in the vicinity.

本発明の複合酸化物は、真密度が4.55〜4.95g/cm3と大きな値となり、高い体積エネルギー密度を有する材料となる。Mnを一定範囲で含む複合酸化物の真密度は、その組成により大きく変化するが、上記の狭い組成範囲において構造が安定化され、単一相が形成されやすくなるため、LiCoO2の真密度に近い値となるものと考えられる。特に、化学量論比に近い組成のときにその値は大きくなり、−0.015≦x+α≦0.015において、およそ4.7g/cm3以上の高密度複合酸化物が得られる。 The composite oxide of the present invention has a large true density of 4.55 to 4.95 g / cm 3 , and becomes a material having a high volume energy density. The true density of the composite oxide containing Mn in a certain range varies greatly depending on its composition. However, since the structure is stabilized and a single phase is easily formed in the above narrow composition range, the true density of LiCoO 2 is increased. It is thought that it becomes a close value. In particular, the value increases when the composition is close to the stoichiometric ratio, and a high-density composite oxide of approximately 4.7 g / cm 3 or more is obtained when −0.015 ≦ x + α ≦ 0.015.

上記一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]において、NiとMnの量比は基本的には1:1であることを必要とし、中央値からのずれ(δ/2)は、−0.1≦δ≦0.1と小さい値しか許容されない。ただし、0.2<y≦0.4の組成範囲では、結晶構造の安定性がより高くなり、単一相が形成されやすくなるため、上記ずれが大きくなっても目的とする複合酸化物を得ることができる。このため、上記一般式において、δのとり得る範囲は、基本的には−0.1≦δ≦0.1と狭いのであるが、0.2<y≦0.4の組成範囲では、δの値を−0.24≦δ≦0.24の範囲まで拡張してもよい。 The general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, -0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or −0.24 ≦ δ ≦ 0.24 (Where 0.2 <y ≦ 0.4), and M is one or more selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn. Element], the amount ratio of Ni and Mn basically needs to be 1: 1, and the deviation from the median (δ / 2) is as small as −0.1 ≦ δ ≦ 0.1. Only allowed. However, in the composition range of 0.2 <y ≦ 0.4, the crystal structure becomes more stable and a single phase is easily formed. Obtainable. Therefore, in the above general formula, the possible range of δ is basically as narrow as −0.1 ≦ δ ≦ 0.1, but in the composition range of 0.2 <y ≦ 0.4, δ May be extended to a range of −0.24 ≦ δ ≦ 0.24.

ここで、yの上限値を0.4としたのは、y>0.4の組成、すなわち元素Mでの置換量が0.4より多くなると、目的とする複合酸化物中に異相が形成され、化合物の安定性が損なわれるなどの問題を生じやすくなるからである。   Here, the upper limit value of y was set to 0.4 because the composition of y> 0.4, that is, when the amount of substitution with the element M exceeds 0.4, a heterogeneous phase is formed in the target composite oxide. This is because problems such as deterioration of the stability of the compound are likely to occur.

また、上記組成を有する複合酸化物の形態として、一次粒子が凝集して二次粒子を形成したもので、二次粒子の平均粒子径が5〜20μmである複合酸化物が選択される。これは、一次粒子が凝集して二次粒子を形成したものにおいて、充放電における反応性や複合酸化物の充填性を高めることができるからであり、二次粒子の平均粒子径を5〜20μmとすることにより、複合酸化物の充填性を高めて電極を高容量化することができる。また、一次粒子の平均粒子径を0.3〜3μmとすることにより、充放電における反応性を高めて電池の負荷特性を向上させることもできる。 Further, as a form of a complex oxide having the above composition, in which primary particles are aggregated to form secondary particles, the composite oxide is selected average particle size of the secondary particles is 5 to 20 [mu] m. This is because the primary particles are aggregated to form secondary particles, so that the reactivity in charge and discharge and the filling property of the composite oxide can be improved. The average particle size of the secondary particles is 5 to 20 μm. As a result, it is possible to increase the capacity of the electrode by increasing the filling property of the composite oxide. Moreover, the reactivity in charging / discharging can be improved and the load characteristic of a battery can be improved by making the average particle diameter of a primary particle into 0.3-3 micrometers.

さらに、上記複合酸化物のBET比表面積は、0.3〜2m2/gの範囲にあることが望ましい。これは、BET比表面積が0.3m2/g以上であるものは反応性に優れており、2m2/g以下であるものは粒子自体の密度が大きいため、電極を形成したときの電極合剤密度を大きくすることができるからである。 Furthermore, the BET specific surface area of the composite oxide is desirably in the range of 0.3 to 2 m 2 / g. This is because the BET specific surface area of 0.3 m 2 / g or more in which one is excellent in reactivity, 2m 2 / g or less is that a large density of the particles themselves, the electrode mixture when forming the electrode This is because the agent density can be increased.

上述した粒子形態のリチウム含有複合酸化物は、例えば、NiおよびMn、またはNi、Mnおよび元素Mの塩を溶解した水溶液アルカリ水溶液中投入し、NiおよびMnまたはNi、Mnおよび元素Mの共沈水酸化物を合成し、これをリチウム化合物とともに焼成し、さらに必要に応じて合成された複合酸化物を機械的に粉砕およびふるい分けすることにより得ることができる。焼成は、空気中あるいは酸素ガス中など酸素を10体積%以上含む雰囲気中で行うことが望ましく、焼成温度はおよそ700℃〜1100℃で、焼成時間は1〜24時間とするのが一般的である。また、上記焼成処理の前に、焼成温度よりも低い温度(およそ250〜850℃)で0.5〜30時間程度予備加熱を行い、さらに上記焼成処理を行うようにすれば、複合酸化物の均質化が促進されるので好ましい。ここで、複合酸化物の一次粒子径は、予備加熱あるいは焼成の温度およびその処理時間を調整することにより制御することができ、二次粒子径は、機械的な粉砕の程度およびふるい分けにより制御することができる。 In the lithium-containing composite oxide in the form of particles described above, for example, an aqueous solution in which Ni and Mn, or a salt of Ni, Mn, and element M are dissolved is introduced into an alkaline aqueous solution, and Ni and Mn or Ni, Mn, and element M It can be obtained by synthesizing a coprecipitated hydroxide, calcining it with a lithium compound, and mechanically grinding and sieving the synthesized composite oxide as necessary. Firing is preferably performed in an atmosphere containing 10% by volume or more of oxygen, such as in air or oxygen gas. The firing temperature is approximately 700 ° C. to 1100 ° C., and the firing time is generally 1 to 24 hours. is there. Further, prior to the firing treatment, preheating is performed at a temperature lower than the firing temperature (approximately 250 to 850 ° C.) for about 0.5 to 30 hours, and further the firing treatment is performed. This is preferable because homogenization is promoted. Here, the primary particle size of the composite oxide can be controlled by adjusting the preheating or firing temperature and the treatment time, and the secondary particle size is controlled by the degree of mechanical grinding and sieving. be able to.

以上述べたリチウム含有複合酸化物を正極活物質として用いることにより、例えば以下のようにして非水二次電池が作製される。   By using the lithium-containing composite oxide described above as the positive electrode active material, for example, a non-aqueous secondary battery is produced as follows.

正極は、上記複合酸化物に、要すれば、例えば鱗片状黒鉛、アセチレンブラックなどのような導電助剤と、たとえばポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのバインダーを加えて混合し、得られた正極合剤を成形体として用いるか、あるいは集電体としての作用を兼ねる基体に塗布し、基体と一体化したものが用いられる。ここで基体としては、例えば、アルミニウム、ステンレス鋼、チタン、銅などの金属の網、パンチングメタル、エキスパンドメタル、フォームメタル、金属箔などを用いることができる。   The positive electrode was obtained by adding the above mixed oxide, if necessary, with a conductive additive such as flaky graphite and acetylene black and a binder such as polytetrafluoroethylene and polyvinylidene fluoride. The positive electrode material mixture is used as a molded body, or applied to a substrate that also functions as a current collector and integrated with the substrate. Here, as the substrate, for example, a metal net such as aluminum, stainless steel, titanium, or copper, a punching metal, an expanded metal, a foam metal, or a metal foil can be used.

なお、上記リチウム含有複合酸化物は、単独で正極活物質として用いることができるが、この場合は、一次粒子の平均粒子径を0.3〜3μmとする。また、上記リチウム含有複合酸化物(以下、リチウム含有複合酸化物Aとする。)と、これよりも平均粒子径の小さいリチウム含有複合酸化物(以下、リチウム含有複合酸化物Bとする。)とを混合して用いることにより、活物質の充填性が一層向上し、電極の容量を高めることができる。これは、平均粒子径の小さいリチウム含有複合酸化物、リチウム含有複合酸化物の粒子間の空隙に入りこむことにより、正極合剤の密度が3.0g/cm 3 より大きくなるからである。 In addition, although the said lithium containing complex oxide can be used independently as a positive electrode active material, the average particle diameter of a primary particle shall be 0.3-3 micrometers in this case. Further, the lithium-containing composite oxide (hereinafter, to. The lithium-containing complex oxide A), the average particle size smaller lithium-containing composite oxide than this (hereinafter referred to as lithium-containing complex oxide B.) And By mixing and using, the filling property of the active material is further improved, and the capacity of the electrode can be increased. In this, the average small lithium-containing composite oxide particle diameter B is by entering the voids between the particles of Lithium-containing composite oxide A, because the density of the positive electrode mixture is greater than 3.0 g / cm 3 is there.

本発明のリチウム含有複合酸化物をAとし、混合して用いる平均粒子径の小さいリチウム含有複合酸化物をBとした場合、リチウム含有複合酸化物Bの平均粒子径を、リチウム含有複合酸化物Aの二次粒子の平均粒子径の3/5以下とすることが望ましい。Bの平均粒子径が前記値より大きい場合、すなわちAとBの平均粒子径の差が小さい場合は、前述した効果が小さくなり、Aを単独で使用する場合との違いが少なくなる。また、Bの平均粒子径の下限値は、0.1μm程度と考えられ、これより小さくなると、活物質としての特性が低下し、混合使用する効果が生じにくくなる。なお、上記Bの平均粒子径とは、Bが一次粒子の場合はその粒子径の平均を、一次粒子が凝集して二次粒子を形成したものである場合は二次粒子の粒子径の平均を意味する。また、Aと同様の理由から、Bも一次粒子が凝集して二次粒子を形成した複合酸化物であることが望ましい。   When the lithium-containing composite oxide of the present invention is A and the lithium-containing composite oxide having a small average particle size used by mixing is B, the average particle size of the lithium-containing composite oxide B is the lithium-containing composite oxide A. The average particle diameter of the secondary particles is preferably 3/5 or less. When the average particle diameter of B is larger than the above value, that is, when the difference between the average particle diameters of A and B is small, the above-described effect is reduced, and the difference from the case where A is used alone is reduced. Further, the lower limit value of the average particle diameter of B is considered to be about 0.1 μm, and if it is smaller than this, the characteristics as an active material are lowered, and the effect of using the mixture becomes difficult to occur. The average particle size of B is the average particle size when B is a primary particle, and the average particle size of secondary particles when the primary particles are aggregated to form secondary particles. Means. For the same reason as A, B is also preferably a composite oxide in which primary particles are aggregated to form secondary particles.

リチウム含有複合酸化物Bは、リチウム含有複合酸化物Aと同一組成であってもよいし、異なる組成であってもよい。組成がAと異なる場合は、一般式Li1+a+b1-a2[ただし、0≦a≦0.05、−0.05≦a+b≦0.05であって、RはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表される複合酸化物を好ましく用いることができる。中でも、Rが少なくともCoを含む場合は、LiCoO2に比べて導電性に劣るリチウム含有複合酸化物Aを用いた電極の導電性を向上させることができる。 The lithium-containing composite oxide B may have the same composition as the lithium-containing composite oxide A or a different composition. When the composition is different from A, the general formula Li 1 + a + b R 1-a O 2 [where 0 ≦ a ≦ 0.05, −0.05 ≦ a + b ≦ 0.05, and R is Mg , Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn]. In particular, when R contains at least Co, the conductivity of the electrode using the lithium-containing composite oxide A, which is inferior to LiCoO 2 , can be improved.

リチウム含有複合酸化物Bの割合は、正極活物質中で10〜40重量%とすることが望ましい。これより少ない場合は、リチウム含有複合酸化物Aを単独で使用する場合との違いが少なくなり、これより多い場合は、リチウム含有複合酸化物Aの割合が少なくって、その効果が減少するためである。   The ratio of the lithium-containing composite oxide B is desirably 10 to 40% by weight in the positive electrode active material. If the amount is less than this, the difference from the case where the lithium-containing composite oxide A is used alone is reduced. If the amount is more than this, the proportion of the lithium-containing composite oxide A is small, and the effect is reduced. is there.

上記正極と対向させる負極の活物質としては、通常は、リチウムまたはLi−Al合金、Li−Pb合金、Li−In合金、Li−Ga合金などのリチウム合金や、Si、Sn、Mg−Si合金など、リチウムとの合金化が可能な元素あるいはそれら元素の合金が挙げられる。さらに、Sn酸化物、Si酸化物、Li4Ti512などの酸化物系材料のほか、黒鉛や繊維状炭素などの炭素質材料、リチウム含有複合窒化物などを用いることができる。また、上記の複数の材料を複合化したものを活物質とすることもできる。なお、負極についても、上記正極の場合と同様の方法により作製される。 The active material of the negative electrode facing the positive electrode is usually lithium or a lithium alloy such as Li—Al alloy, Li—Pb alloy, Li—In alloy, Li—Ga alloy, Si, Sn, Mg—Si alloy. Or an element that can be alloyed with lithium or an alloy of these elements. Furthermore, in addition to oxide materials such as Sn oxide, Si oxide, Li 4 Ti 5 O 12 , carbonaceous materials such as graphite and fibrous carbon, lithium-containing composite nitride, and the like can be used. Moreover, what compounded said some material can also be made into an active material. The negative electrode is also produced by the same method as that for the positive electrode.

上記正極と負極における活物質の量比としては、負極活物質の種類によっても異なるが、一般的には、正極活物質/負極活物質=1.5〜3.5(質量比)にすることにより、正極活物質の特性をうまく利用することができる。   The amount ratio of the active material in the positive electrode and the negative electrode varies depending on the type of the negative electrode active material, but in general, the positive electrode active material / negative electrode active material = 1.5 to 3.5 (mass ratio). Thus, the characteristics of the positive electrode active material can be utilized well.

本発明の非水二次電池における非水電解質としては、有機溶媒に電解質を溶解させた有機溶媒系の液状電解質すなわち電解液や、前記電解液をポリマー中に保持させたポリマー電解質などを用いることができる。その電解液あるいはポリマー電解質に含まれる有機溶媒は特に限定されるものではないが、負荷特性の点からは鎖状エステルを含んでいることが好ましい。そのような鎖状エステルとしては、たとえば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートに代表される鎖状のカーボネートや、酢酸エチル、プロピロン酸メチルなどの有機溶媒が挙げられる。これらの鎖状エステルは、単独でもあるいは2種以上を混合して用いてもよく、特に、低温特性の改善のためには、上記鎖状エステルが全有機溶媒中の50体積%以上を占めることが好ましく、特に鎖状エステルが全有機溶媒中の65体積%以上を占めることが好ましい。   As the non-aqueous electrolyte in the non-aqueous secondary battery of the present invention, an organic solvent-based liquid electrolyte in which an electrolyte is dissolved in an organic solvent, that is, an electrolytic solution, a polymer electrolyte in which the electrolytic solution is held in a polymer, or the like is used. Can do. The organic solvent contained in the electrolytic solution or polymer electrolyte is not particularly limited, but it preferably contains a chain ester from the viewpoint of load characteristics. Examples of such chain esters include chain carbonates typified by dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and organic solvents such as ethyl acetate and methyl propionate. These chain esters may be used alone or in admixture of two or more. Particularly, for improving low-temperature characteristics, the above-mentioned chain esters occupy 50% by volume or more in the total organic solvent. In particular, it is preferable that the chain ester occupies 65% by volume or more of the total organic solvent.

ただし、有機溶媒としては、上記鎖状エステルのみで構成するよりも、放電容量の向上をはかるために、上記鎖状エステルに誘電率の高い(誘電率:30以上)エステルを混合して用いることが好ましい。このようなエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートに代表される環状のカーボネートや、γ−ブチロラクトン、エチレングリコールサルファイトなどが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のエステルが好ましい。 However, as the organic solvent, in order to improve the discharge capacity, compared with the chain ester alone, an ester having a high dielectric constant ( dielectric constant : 30 or more) is mixed with the chain ester. Is preferred. Specific examples of such esters include, for example, cyclic carbonates represented by ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, ethylene glycol sulfite, and the like. A cyclic ester such as carbonate is preferred.

そのような誘電率の高いエステルは、放電容量の点から、全有機溶媒中10体積%以上、特に20体積%以上含有されることが好ましい。また、負荷特性の点からは、40体積%以下が好ましく、30体積%以下がより好ましい。   Such an ester having a high dielectric constant is preferably contained in an amount of 10% by volume or more, particularly 20% by volume or more in the total organic solvent from the viewpoint of discharge capacity. Moreover, from the point of load characteristics, 40 volume% or less is preferable and 30 volume% or less is more preferable.

また、上記誘電率の高いエステル以外に併用可能な溶媒としては、たとえば、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどが挙げられる。そのほか、アミンイミド系有機溶媒や、含イオウまたは含フッ素系有機溶媒なども用いることができる。   Examples of the solvent that can be used together with the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, and diethyl ether. In addition, amine imide organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.

有機溶媒に溶解させる電解質としては、たとえば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(n≧2)などが単独でまたは2種以上混合して用いられる。中でも、良好な充放電特性が得られるLiPF6やLiC49SO3などが好ましく用いられる。電解液中における電解質の濃度は、特に限定されるものではないが、0.3〜1.7mol/dm3、特に0.4〜1.5mol/dm3程度が好ましい。 As an electrolyte to be dissolved in an organic solvent, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 ( SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2) are used alone or in combination of two or more. Among these, LiPF 6 and LiC 4 F 9 SO 3 that can obtain good charge / discharge characteristics are preferably used. The concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably about 0.3 to 1.7 mol / dm 3 , particularly about 0.4 to 1.5 mol / dm 3 .

また、電池の安全性や貯蔵特性を向上させるために、非水電解液に芳香族化合物を含有させてもよい。芳香族化合物としては、シクロヘキシルベンゼンやt−ブチルベンゼンなどのアルキル基を有するベンゼン類、ビフェニル、あるいはフルオロベンゼン類が好ましく用いられる。   Moreover, in order to improve the safety | security and storage characteristic of a battery, you may make an non-aqueous electrolyte contain an aromatic compound. As the aromatic compound, benzenes having an alkyl group such as cyclohexylbenzene or t-butylbenzene, biphenyl, or fluorobenzenes are preferably used.

セパレータとしては、強度が充分でしかも電解液を多く保持できるものがよく、そのような観点から、5〜50μmの厚さで、ポリプロピレン製、ポリエチレン製、プロピレンとエチレンとの共重合体などポリオレフィン製の微孔性フィルムや不織布などが好ましく用いられる。特に、5〜20μmと薄いセパレータを用いた場合には、充放電サイクルや高温貯蔵などにおいて電池の特性が劣化しやすく、安全性も低下するが、本発明の複合酸化物正極を用いた電池は安定性と安全性に優れているため、このような薄いセパレータを用いても安定して電池を機能させることができる。   As the separator, a separator having sufficient strength and capable of holding a large amount of electrolyte solution is preferable. From such a viewpoint, the separator is made of polyolefin such as polypropylene, polyethylene, a copolymer of propylene and ethylene, with a thickness of 5 to 50 μm. A microporous film or non-woven fabric is preferably used. In particular, when a thin separator of 5 to 20 μm is used, the characteristics of the battery are likely to deteriorate during charge / discharge cycles, high-temperature storage, etc., and the safety is also lowered, but the battery using the composite oxide positive electrode of the present invention is Since it is excellent in stability and safety, the battery can function stably even if such a thin separator is used.

以下に本発明の実施例に関して説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。なお、以下の実施例においては、一次粒子の粒子径は1万倍の走査電子顕微鏡写真をもとに測定し、二次粒子の粒子径は、マイクロトラック社製MICROTRAC HRA(Model:9320−X100)を用いてレーザー回折式粒度分布測定法により測定した。また、BET比表面積は、マイクロメリティクス社製BET法式比表面積計ASAP2000を用いて測定した。   Examples of the present invention will be described below. However, this invention is not limited only to those Examples. In the following examples, the primary particle size was measured based on a scanning electron micrograph of 10,000 times, and the secondary particle size was MICROTRAC HRA (Model: 9320-X100) manufactured by Microtrack. ) Using a laser diffraction particle size distribution measurement method. The BET specific surface area was measured using a BET specific surface area meter ASAP2000 manufactured by Micromeritics.

(実施例1)
硫酸ニッケルおよび硫酸マンガンをモル比1:1で含有する水溶液に水酸化ナトリウム水溶液およびアンモニア水を添加し、強攪拌しながらNiとMnを1:1で含有する共沈水酸化物を合成した。これを乾燥させた後、上記共沈水酸化物0.2molと、0.198molのLiOH・H2Oを秤量して混合し、その混合物をエタノールで分散させてスラリー状にした後、遊星ボールミルを用いて40分間混合し、さらに室温で乾燥させて均一に混合された混合体を調製した。次いでこの混合体をアルミナ製のるつぼに入れ、1dm3/分の流量の空気気流中で700℃まで加熱し、その温度で2時間保持することにより予備加熱を行い、さらに900℃に昇温して12時間焼成することにより混合体を反応させて複合酸化物とした。合成した複合酸化物を粉砕しさらにふるい分けすることにより、一般式LiNi0.5Mn0.52で表され、一次粒子の平均粒子径:1μm、二次粒子の平均粒子径:10μm、BET比表面積:0.9m2/gのリチウム含有複合酸化物を得た。
(Example 1)
A sodium hydroxide aqueous solution and aqueous ammonia were added to an aqueous solution containing nickel sulfate and manganese sulfate at a molar ratio of 1: 1, and a coprecipitated hydroxide containing Ni and Mn at 1: 1 was synthesized with vigorous stirring. After drying this, 0.2 mol of the coprecipitated hydroxide and 0.198 mol of LiOH.H 2 O were weighed and mixed, and the mixture was dispersed in ethanol to form a slurry. And mixed for 40 minutes, and further dried at room temperature to prepare a uniformly mixed mixture. Next, this mixture is put in an alumina crucible, heated to 700 ° C. in an air stream at a flow rate of 1 dm 3 / min, preheated by holding at that temperature for 2 hours, and further heated to 900 ° C. The mixture was reacted for 12 hours to obtain a composite oxide. By pulverizing and further sieving the synthesized composite oxide, it is represented by the general formula LiNi 0.5 Mn 0.5 O 2. The average primary particle size is 1 μm, the average secondary particle size is 10 μm, and the BET specific surface area is 0. A lithium-containing composite oxide of .9 m 2 / g was obtained.

(実施例2)
焼成温度を1000℃とし、焼成時間を20時間とした以外は実施例1と同様にして、一般式LiNi0.5Mn0.52で表され、一次粒子の平均粒子径:3μm、二次粒子の平均粒子径:10μm、BET比表面積:0.7m2/gのリチウム含有複合酸化物を得た。
(Example 2)
Represented by the general formula LiNi 0.5 Mn 0.5 O 2 in the same manner as in Example 1 except that the firing temperature was 1000 ° C. and the firing time was 20 hours, the average particle diameter of primary particles: 3 μm, the average of secondary particles A lithium-containing composite oxide having a particle size of 10 μm and a BET specific surface area of 0.7 m 2 / g was obtained.

(実施例3〜6および比較例1〜3)
焼成温度および焼成時間を変えて複合酸化物の合成を行い、合成した複合酸化物を粉砕しさらにふるい分けすることにより、表1に示すリチウム含有複合酸化物を得た。なお、実施例5では、共沈水酸化物としてNi、MnおよびCoを5:5:2の割合で含有する水酸化物を用い、実施例6では、Ni、MnおよびCoを1:1:1の割合で含有する水酸化物を用いた。
(Examples 3-6 and Comparative Examples 1-3)
The composite oxide was synthesized by changing the firing temperature and firing time, and the composite oxide thus synthesized was pulverized and further sieved to obtain lithium-containing composite oxides shown in Table 1. In Example 5, a hydroxide containing Ni, Mn and Co at a ratio of 5: 5: 2 was used as the coprecipitated hydroxide. In Example 6, Ni, Mn and Co were 1: 1: 1. The hydroxide contained at a ratio of

(比較例4)
従来法により、一次粒子の平均粒子径:0.7μm、二次粒子の平均粒子径:7μm、BET比表面積:0.6m2/gのLiCoO2を得た。
(Comparative Example 4)
By a conventional method, LiCoO 2 having an average primary particle size of 0.7 μm, an average secondary particle size of 7 μm, and a BET specific surface area of 0.6 m 2 / g was obtained.

(比較例5)
従来法により、一次粒子の平均粒子径:1μm、二次粒子の平均粒子径:12μm、BET比表面積:1.8m2/gのLiMn24を得た。
(Comparative Example 5)
According to a conventional method, LiMn 2 O 4 having an average primary particle size of 1 μm, an average secondary particle size of 12 μm, and a BET specific surface area of 1.8 m 2 / g was obtained.

Figure 0004813450
Figure 0004813450

上記実施例1〜6および比較例1〜5のリチウム含有複合酸化物を正極活物質として用い、非水二次電池を作製した。リチウム含有複合酸化物を94重量部とカーボンブラック3重量部を乾式混合し、これにポリフッ化ビニリデンをN−メチル−2−ピロリドンに溶解したバインダー溶液を、ポリフッ化ビニリデンが3重量部となるように加え、さらにN−メチル−2−ピロリドンを加えて充分に混合してペーストを調製した。この塗料を厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥した後、ローラープレス機により加圧成形し、280mm×38mmの大きさに裁断して厚みが約170μmの帯状正極を作製した。また、作製した各正極の合剤層の重量を測定し、この値から求めた合剤の密度を表1に併せて示した。   Using the lithium-containing composite oxides of Examples 1 to 6 and Comparative Examples 1 to 5 as the positive electrode active material, non-aqueous secondary batteries were produced. 94 parts by weight of a lithium-containing composite oxide and 3 parts by weight of carbon black are dry-mixed, and a binder solution in which polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone is mixed with 3 parts by weight of polyvinylidene fluoride. In addition, N-methyl-2-pyrrolidone was further added and mixed well to prepare a paste. This paint was uniformly applied to both sides of an aluminum foil having a thickness of 20 μm, dried, and then pressure-formed by a roller press, and cut into a size of 280 mm × 38 mm to produce a strip-shaped positive electrode having a thickness of about 170 μm. . Moreover, the weight of the mixture layer of each produced positive electrode was measured, and the density of the mixture obtained from this value is also shown in Table 1.

表1より明らかなように、実施例1〜6のリチウム含有複合酸化物は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表される組成範囲にあり、一次粒子が凝集して二次粒子を形成した複合酸化物であって、一次粒子および二次粒子の平均粒子径がそれぞれ本発明の請求範囲である0.3〜3μmおよび5〜20μmの範囲内であることにより、正極を構成したときの合剤密度が、従来より汎用されている比較例4のLiCoO2とほぼ同程度の密度となり、充填性を高めることができた。一方、上記組成を有していても、一次粒子および二次粒子の平均粒子径のいずれかが本発明の請求範囲を逸脱した比較例1〜3のリチウム含有複合酸化物は、合剤の密度が低く、比較例5のLiMn24と同程度の充填性しか得られなかった。 As is clear from Table 1, the lithium-containing composite oxides of Examples 1 to 6 have the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [however, 0 ≦ x ≦ 0.05, a -0.05 ≦ x + α ≦ 0.05,0 ≦ y ≦ 0.4, -0.1 ≦ δ ≦ 0.1 ( where 0 ≦ y ≦ 0.2) or −0.24 ≦ δ ≦ 0.24 (provided that 0.2 <y ≦ 0.4), and M is Mg, Ti, Cr, Fe, Co, 1 or more elements selected from the group consisting of Cu, Zn, Al, Ge, Sn], a composite oxide in which primary particles aggregate to form secondary particles, The average particle size of the primary particles and secondary particles is within the range of 0.3 to 3 μm and 5 to 20 μm, respectively, which is the claim of the present invention, so that the mixture density when the positive electrode is configured is more versatile than before. Is nearly the same level of density and LiCoO 2 in the Comparative Example 4 has, it was possible to improve the filling property. On the other hand, even if it has the above composition, the lithium-containing composite oxides of Comparative Examples 1 to 3 in which any of the average particle diameters of the primary particles and the secondary particles deviate from the claims of the present invention are the density of the mixture. As a result, only a filling property comparable to that of LiMn 2 O 4 of Comparative Example 5 was obtained.

次に、天然黒鉛92重量部、低結晶性カーボン3重量部、ポリフッ化ビニリデン5重量部を混合したペーストを厚さ10μmの銅箔の両面に均一に塗布し、乾燥した後、ローラープレス機により加圧成形し、310mm×41mmの大きさに裁断して厚みが約165μmの帯状負極を作製した。   Next, a paste prepared by mixing 92 parts by weight of natural graphite, 3 parts by weight of low crystalline carbon, and 5 parts by weight of polyvinylidene fluoride was uniformly applied to both sides of a copper foil having a thickness of 10 μm, dried, and then a roller press machine. The strip-shaped negative electrode having a thickness of about 165 μm was manufactured by pressure molding and cutting into a size of 310 mm × 41 mm.

上記帯状正極と帯状負極との間に厚さ20μmの微孔性ポリエチレンフィルムからなるセパレータを配置し、渦巻状に巻回して電極体とした後、外径14mm、高さ51.5mmの有底円筒状の電池ケース内に挿入し、正極リード体および負極リード体の溶接を行った。その後、電池ケース内にエチレンカーボネートとエチルメチルカーボネートとの体積比1:2の混合溶媒にLiPF6を1.2mol/l溶解させてなる非水電解液を1.7cm3注入した。上記正極と負極の活物質の質量比(正極活物質/負極活物質)は、実施例1のリチウム含有複合酸化物を用いた電極体では1.9とした。 A separator made of a microporous polyethylene film having a thickness of 20 μm is disposed between the belt-like positive electrode and the belt-like negative electrode, wound into a spiral shape to form an electrode body, and then has a bottom with an outer diameter of 14 mm and a height of 51.5 mm. It inserted in the cylindrical battery case, and the positive electrode lead body and the negative electrode lead body were welded. Thereafter, 1.7 cm 3 of a non-aqueous electrolyte solution in which LiPF 6 was dissolved at 1.2 mol / l in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2 was injected into the battery case. The mass ratio of the positive electrode to the negative electrode active material (positive electrode active material / negative electrode active material) was 1.9 in the electrode body using the lithium-containing composite oxide of Example 1.

上記電池ケースの開口部を常法に従って封口して筒形の非水二次電池を作製し、放電容量の測定を行った。20℃の環境下で、600mAの定電流で4.2Vまで充電した後、定電圧方式で充電して、充電の合計時間が2.5時間となるように充電を行い、120mAの定電流で3.0Vまで放電したときの放電容量を測定した。この結果を表2に示した。   The opening of the battery case was sealed according to a conventional method to produce a cylindrical non-aqueous secondary battery, and the discharge capacity was measured. After charging to 4.2V at a constant current of 600 mA under an environment of 20 ° C., charging is performed by a constant voltage method so that the total charging time is 2.5 hours, and at a constant current of 120 mA. The discharge capacity when discharged to 3.0 V was measured. The results are shown in Table 2.

Figure 0004813450
Figure 0004813450

実施例1〜6のリチウム含有複合酸化物を用いた電池は、正極合剤の充填密度が高いことにより、LiCoO2を用いた比較例4の電池と同様に大きな放電容量を示した。一方、比較例1〜3のリチウム含有複合酸化物を用いた電池は、活物質の充填性が低いため、LiMn24を用いた比較例5の電池と同様、低い放電容量しか得られなかった。 The batteries using the lithium-containing composite oxides of Examples 1 to 6 showed a large discharge capacity as in the battery of Comparative Example 4 using LiCoO 2 due to the high packing density of the positive electrode mixture. On the other hand, since the batteries using the lithium-containing composite oxides of Comparative Examples 1 to 3 have low active material filling properties, only a low discharge capacity can be obtained as in the battery of Comparative Example 5 using LiMn 2 O 4. It was.

また、実施例1、実施例6、比較例4および比較例5のリチウム含有複合酸化物を用いた電池について、20℃の温度下で、上記と同様の条件での充電と600mAの定電流で3.0Vまでの放電による充放電サイクルを行い、100サイクル後の放電容量の割合〔容量維持(%)〕で室温のサイクル特性を評価した。さらに、高温でのサイクル特性を調べるため、上記のサイクル試験を60℃の温度下でも行って、20サイクル後の放電容量の割合〔容量維持(%)〕で高温のサイクル特性を評価した。   Further, for the batteries using the lithium-containing composite oxides of Example 1, Example 6, Comparative Example 4 and Comparative Example 5, at a temperature of 20 ° C., charging under the same conditions as above and a constant current of 600 mA. A charge / discharge cycle by discharging up to 3.0 V was performed, and the cycle characteristics at room temperature were evaluated by the ratio of the discharge capacity after 100 cycles [capacity maintenance (%)]. Furthermore, in order to investigate the cycle characteristics at high temperature, the above-described cycle test was also performed at a temperature of 60 ° C., and the cycle characteristics at high temperature were evaluated by the ratio of the discharge capacity after 20 cycles [capacity maintenance (%)].

さらに、貯蔵特性を以下のようにして評価した。上記サイクル特性の測定と同じ充放電条件で充放電サイクルを5回行った後に、上記充電条件で電池を充電し、60℃の温度下で20日間貯蔵した。この貯蔵後、上記条件で放電し、貯蔵前の容量に対する貯蔵後に残存している容量の割合〔容量維持(%)〕を測定した。測定後に、充放電サイクルを1サイクル行い、貯蔵前の容量に対する貯蔵後の容量の割合〔容量回復(%)〕を測定した。上記容量維持および容量回復の割合により高温での貯蔵特性を評価した。これらの結果を表3に示した。   Furthermore, the storage characteristics were evaluated as follows. After the charge / discharge cycle was performed 5 times under the same charge / discharge conditions as the measurement of the cycle characteristics, the battery was charged under the charge conditions and stored at a temperature of 60 ° C. for 20 days. After this storage, the battery was discharged under the above conditions, and the ratio of the capacity remaining after storage to the capacity before storage [capacity maintenance (%)] was measured. After the measurement, one charge / discharge cycle was performed, and the ratio of the capacity after storage to the capacity before storage [capacity recovery (%)] was measured. The storage characteristics at high temperature were evaluated based on the ratio of capacity maintenance and capacity recovery. These results are shown in Table 3.

Figure 0004813450
Figure 0004813450

表3より明らかなように、実施例1および実施例6のリチウム含有複合酸化物を正極に用いることにより、サイクル特性および貯蔵特性に優れた電池が構成できたが、LiCoO2やLiMn24を用いた場合は、本発明のリチウム含有複合酸化物よりもサイクル特性や貯蔵特性が劣っていた。この原因を調べるため、以下の実験を行った。実施例1、比較例4および比較例5のリチウム含有複合酸化物を用いた正極をアルゴン雰囲気中で直径15mmに切り取り、5mlの電解液に浸漬して、60℃で5日間保持した。こうして得られた電解液にICP分光分析を行い、電解液中に溶出したMnおよびCoの濃度を定量した。溶出量を複合酸化物1gあたりに換算した値を表4に示した。 As is clear from Table 3, by using the lithium-containing composite oxides of Example 1 and Example 6 for the positive electrode, batteries having excellent cycle characteristics and storage characteristics could be constructed. However, LiCoO 2 and LiMn 2 O 4 In the case of using, the cycle characteristics and storage characteristics were inferior to the lithium-containing composite oxide of the present invention. In order to investigate this cause, the following experiment was conducted. The positive electrode using the lithium-containing composite oxides of Example 1, Comparative Example 4 and Comparative Example 5 was cut to a diameter of 15 mm in an argon atmosphere, immersed in 5 ml of an electrolytic solution, and held at 60 ° C. for 5 days. The electrolytic solution thus obtained was subjected to ICP spectroscopic analysis, and the concentrations of Mn and Co eluted in the electrolytic solution were quantified. Table 4 shows values obtained by converting the elution amount per 1 g of the composite oxide.

Figure 0004813450
Figure 0004813450

実施例1のリチウム含有複合酸化物は、比較例5のLiMn24よりもMnの溶出量が1桁小さく、高温で貯蔵した場合でも、電解液へのMnの溶解が充分に抑制されていることがわかった。実施例1のMn溶出量は、比較例4のLiCoO2のCo溶出量よりも少なく、高温での耐久性に優れた材料であることがわかる。LiMn24は、高温になるとMnの溶解が起こり、高温で充放電サイクルをした場合や、高温で貯蔵した場合に容量の劣化が著しいことが知られているが、表4の結果はそれを裏付けている。一方、LiCoO2は、そのような問題が生じにくい材料であるが、本発明のリチウム含有複合酸化物が、このLiCoO2よりもさらに優れた材料であることは明らかである。 In the lithium-containing composite oxide of Example 1, the elution amount of Mn is one order of magnitude smaller than that of LiMn 2 O 4 of Comparative Example 5, and even when stored at a high temperature, dissolution of Mn in the electrolyte is sufficiently suppressed. I found out. The elution amount of Mn in Example 1 is smaller than the Co elution amount of LiCoO 2 in Comparative Example 4, and it can be seen that the material is excellent in durability at high temperatures. It is known that LiMn 2 O 4 dissolves Mn at a high temperature, and the capacity deterioration is significant when it is charged and discharged at a high temperature or stored at a high temperature. Is backed up. On the other hand, LiCoO 2 is a material that does not easily cause such a problem, but it is clear that the lithium-containing composite oxide of the present invention is a material further superior to this LiCoO 2 .

(実施例7)
実施例1で合成したリチウム含有複合酸化物を二次粒子径の平均値が5μmになるまで粉砕、ふるい分けし、リチウム含有複合酸化物Bを得た。次いで、一般式LiNi0.5Mn0.52で表され、一次粒子の平均粒子径:1μm、二次粒子の平均粒子径:10μm、BET比表面積:0.9m2/gである実施例1のリチウム含有複合酸化物Aと上記リチウム含有複合酸化物Bとを60:40の重量比率で混合し、これを正極活物質として用いることにより前記と同様の非水二次電池を作製した。
(Example 7)
The lithium-containing composite oxide synthesized in Example 1 was pulverized and sieved until the average secondary particle size reached 5 μm, and lithium-containing composite oxide B was obtained. Next, the lithium of Example 1 represented by the general formula LiNi 0.5 Mn 0.5 O 2 and having an average primary particle diameter of 1 μm, an average secondary particle diameter of 10 μm, and a BET specific surface area of 0.9 m 2 / g. The non-aqueous secondary battery similar to the above was produced by mixing the containing composite oxide A and the lithium containing composite oxide B at a weight ratio of 60:40 and using this as a positive electrode active material.

(実施例8)
リチウム含有複合酸化物Bの二次粒子の平均粒子径を3μmとした以外は実施例7と同様にして非水二次電池を作製した。
(Example 8)
A nonaqueous secondary battery was produced in the same manner as in Example 7 except that the average particle size of the secondary particles of the lithium-containing composite oxide B was 3 μm.

(実施例9)
リチウム含有複合酸化物Aとリチウム含有複合酸化物Bとの重量比率を80:20とした以外は実施例8と同様にして非水二次電池を作製した。
Example 9
A nonaqueous secondary battery was produced in the same manner as in Example 8, except that the weight ratio of the lithium-containing composite oxide A and the lithium-containing composite oxide B was 80:20.

(実施例10)
リチウム含有複合酸化物Aとリチウム含有複合酸化物Bとの重量比率を95:5とした以外は実施例8と同様にして非水二次電池を作製した。
(Example 10)
A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the weight ratio of the lithium-containing composite oxide A and the lithium-containing composite oxide B was 95: 5.

(実施例11)
リチウム含有複合酸化物Bの二次粒子の平均粒子径を7μmとした以外は実施例7と同様にして非水二次電池を作製した。
(Example 11)
A nonaqueous secondary battery was produced in the same manner as in Example 7 except that the average particle size of the secondary particles of the lithium-containing composite oxide B was 7 μm.

上記実施例7〜11についても、前述と同様にして、電池組み立て前の正極合剤の密度と、非水二次電池の放電容量の測定を行った。その結果を実施例1の結果と併せて表5に示した。これより明らかなように、本発明のリチウム含有複合酸化物Aを、その二次粒子の平均粒子径の3/5以下の平均粒子径を有するリチウム含有複合酸化物Bと混合して用いた実施例7〜9の非水二次電池では、正極合剤の密度が大きくなり、活物質の充填性が向上して電池の放電容量を増加させることができた。一方、リチウム含有複合酸化物Bの平均粒子径は充分小さいが、その混合割合が少ない実施例10や、リチウム含有複合酸化物Bの平均粒子径がリチウム含有複合酸化物Aとさほど変わらない実施例11の非水二次電池では、リチウム含有複合酸化物Aを単独で使用した実施例1と同程度の正極合剤密度および放電容量となり、活物質の混合による効果は明確とならなかった。   Also in Examples 7 to 11, the density of the positive electrode mixture before battery assembly and the discharge capacity of the nonaqueous secondary battery were measured in the same manner as described above. The results are shown in Table 5 together with the results of Example 1. As is clear from this, the lithium-containing composite oxide A of the present invention was used by mixing with the lithium-containing composite oxide B having an average particle size of 3/5 or less of the average particle size of the secondary particles. In the nonaqueous secondary batteries of Examples 7 to 9, the density of the positive electrode mixture was increased, the active material filling property was improved, and the discharge capacity of the battery could be increased. On the other hand, Example 10 in which the average particle size of lithium-containing composite oxide B is sufficiently small but the mixing ratio thereof is small, and Example in which the average particle size of lithium-containing composite oxide B is not so different from lithium-containing composite oxide A In the non-aqueous secondary battery of No. 11, the density of the positive electrode mixture and the discharge capacity were about the same as in Example 1 in which the lithium-containing composite oxide A was used alone, and the effect of mixing the active material was not clear.

Figure 0004813450
Figure 0004813450

以上説明したように、本発明では、充填性が高く、高温下でのサイクル耐久性や高温貯蔵時の安定性に優れたリチウム含有複合酸化物を用いることにより、高容量で、サイクル耐久性および高温下での貯蔵性に優れた非水二次電池を提供することができる。さらに、本発明で用いるリチウム複合酸化物は、Coに比べて資源的に豊富で安価なMnやNiを主要な構成元素としているので、大量生産にも適しており、また電池のコスト低減にも貢献できるものである。   As described above, in the present invention, by using a lithium-containing composite oxide that has high filling properties and excellent cycle durability at high temperatures and stability at high temperature storage, high capacity, cycle durability and It is possible to provide a non-aqueous secondary battery that is excellent in storability at high temperatures. Furthermore, the lithium composite oxide used in the present invention is suitable for mass production because it uses Mn and Ni, which are more abundant and cheaper than Co, as the main constituent elements, and also reduces the cost of the battery. It can contribute.

Claims (16)

一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであり、BET比表面積が0.3〜2m2/gであり、Mnの平均価数が3.3〜4価であることを特徴とするリチウム含有複合酸化物。 Formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, -0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or −0.24 ≦ δ ≦ 0.24 ( Where 0.2 <y ≦ 0.4), and M is one or more elements selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn The primary particles have a mean particle size of 0.3 to 3 μm, and the secondary particles have a mean particle size of 5 to 20 μm. A lithium-containing composite oxide characterized by having a BET specific surface area of 0.3-2 m 2 / g and an average valence of Mn of 3.3-4. 前記一般式において、y>0であり、Mが少なくともCoを含む1種以上の元素であることを特徴とする請求項1に記載のリチウム含有複合酸化物。   2. The lithium-containing composite oxide according to claim 1, wherein in the general formula, y> 0, and M is one or more elements including at least Co. 前記一般式において、0.2<y≦0.4かつ−0.1≦δ≦0.1であることを特徴とする請求項1または2に記載のリチウム含有複合酸化物。   3. The lithium-containing composite oxide according to claim 1, wherein 0.2 <y ≦ 0.4 and −0.1 ≦ δ ≦ 0.1 in the general formula. 前記一般式において、NiとMnの量比が1:1である請求項1〜3のいずれかに記載のリチウム含有複合酸化物。   The lithium-containing composite oxide according to any one of claims 1 to 3, wherein in the general formula, the amount ratio of Ni and Mn is 1: 1. 前記一般式において、NiとMnとMの量比が1:1:1である請求項3に記載のリチウム含有複合酸化物。   4. The lithium-containing composite oxide according to claim 3, wherein in the general formula, the quantitative ratio of Ni, Mn, and M is 1: 1: 1. 前記一般式において、MがCoである請求項1〜5のいずれかに記載のリチウム含有複合酸化物。   In the said general formula, M is Co, The lithium containing complex oxide in any one of Claims 1-5. 請求項1〜6のいずれかに記載のリチウム含有複合酸化物を活物質とする正極および負極と非水電解質を備えた非水二次電池。   The nonaqueous secondary battery provided with the positive electrode and negative electrode which use the lithium containing complex oxide in any one of Claims 1-6 as an active material, and the nonaqueous electrolyte. 一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1(ただし0≦y≦0.2のとき)または−0.24≦δ≦0.24(ただし0.2<y≦0.4のとき)であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その二次粒子の平均粒子径が5〜20μmであり、Mnの平均価数が3.3〜4価であるリチウム含有複合酸化物Aと、前記リチウム含有複合酸化物Aと同一の組成を有し前記複合酸化物Aの二次粒子の平均粒子径よりも小さい平均粒子径を有するリチウム含有複合酸化物Bとを含む混合体であり、
前記複合酸化物Bの平均粒子径が、前記複合酸化物Aの二次粒子の平均粒子径の3/5以下であり、
前記複合酸化物Bの割合が、正極活物質全体の10〜40重量%である正極活物質。
Formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, -0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 (when 0 ≦ y ≦ 0.2) or −0.24 ≦ δ ≦ 0.24 ( Where 0.2 <y ≦ 0.4), and M is one or more elements selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn The secondary particles have a mean particle size of 5 to 20 μm, and the average valence of Mn is 3.3 to 4. A lithium-containing composite oxide A, and a lithium-containing composite oxide having the same composition as the lithium-containing composite oxide A and having an average particle size smaller than the average particle size of secondary particles of the composite oxide A B and A mixture containing
The average particle diameter of the composite oxide B is 3/5 or less of the average particle diameter of the secondary particles of the composite oxide A;
The positive electrode active material whose ratio of the said complex oxide B is 10 to 40 weight% of the whole positive electrode active material.
前記複合酸化物Bが、一次粒子が凝集して二次粒子を形成した複合酸化物である請求項8に記載の正極活物質。 The positive electrode active material according to claim 8, wherein the composite oxide B is a composite oxide in which primary particles aggregate to form secondary particles. 前記複合酸化物Aを表す一般式において、y>0であり、Mが少なくともCoを含む1種以上の元素である請求項8または9に記載の正極活物質。 In the general formula representing the composite oxide A, a y> 0, the positive active material of claim 8 or 9 M is one or more elements including at least Co. 前記複合酸化物Aを表す一般式において、0.2<y≦0.4かつ−0.1≦δ≦0.1である請求項8〜10のいずれかに記載の正極活物質。 The positive electrode active material according to any one of the above general formula representing the composite oxide A, 0.2 <y ≦ 0.4 and claims 8-10 is -0.1 ≦ δ ≦ 0.1. 前記複合酸化物Aを表す一般式において、NiとMnの量比が1:1である請求項8〜11のいずれかに記載の正極活物質。 In formula representing the composite oxide A, the amount ratio between Ni and Mn is 1: 1 positive active material according to any one of claims 8-11 is. 前記複合酸化物Aを表す一般式において、NiとMnとMの量比が1:1:1である請求項11に記載の正極活物質。 The positive electrode active material according to claim 11 , wherein in the general formula representing the composite oxide A, the quantitative ratio of Ni, Mn, and M is 1: 1: 1. 前記複合酸化物Aの一次粒子の平均粒子径が、0.3〜3μmである請求項8〜13のいずれかに記載の正極活物質。 The average particle diameter of primary particles of the composite oxide A is, the positive electrode active material according to any one of claims 8-13 is 0.3 to 3 m. 請求項8〜14のいずれかに記載の正極活物質を有する正極および負極と非水電解質を備えた非水二次電池。 Nonaqueous secondary battery comprising a positive electrode and a negative electrode and a non-aqueous electrolyte having a positive electrode active material according to any of claims 8-14. 前記正極が、前記正極活物質と、導電助剤と、バインダーとを含む正極合剤を有し、前記正極合剤の密度が、3.0g/cm3より大きいことを特徴とする請求項15に記載の非水二次電池。 Said positive electrode, said has a positive electrode active material, conductive additive and a positive electrode mixture comprising a binder, according to claim 15 in which the density of the positive electrode mixture, being greater than 3.0 g / cm 3 A non-aqueous secondary battery according to 1.
JP2007312520A 2001-11-22 2007-12-03 Lithium-containing composite oxide and non-aqueous secondary battery using the same Expired - Lifetime JP4813450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312520A JP4813450B2 (en) 2001-11-22 2007-12-03 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001357729 2001-11-22
JP2001357729 2001-11-22
JP2007312520A JP4813450B2 (en) 2001-11-22 2007-12-03 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002338430A Division JP4070585B2 (en) 2001-11-22 2002-11-21 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2008115075A JP2008115075A (en) 2008-05-22
JP2008115075A5 JP2008115075A5 (en) 2009-01-22
JP4813450B2 true JP4813450B2 (en) 2011-11-09

Family

ID=39501327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312520A Expired - Lifetime JP4813450B2 (en) 2001-11-22 2007-12-03 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4813450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122566A1 (en) * 2013-02-11 2014-08-14 Basf Se Active cathode material and its use in rechargeable electrochemical cells

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737513B2 (en) * 2011-07-07 2015-06-17 戸田工業株式会社 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US10161057B2 (en) 2011-03-31 2018-12-25 Toda Kogyo Corporation Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
JP2013191381A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Planar stacked battery and manufacturing method therefor
US20150380723A1 (en) * 2013-02-11 2015-12-31 Basf Se Active cathode material and its use in rechargeable electrochemical cells
CN109052494A (en) * 2013-02-28 2018-12-21 日产自动车株式会社 Positive active material, positive electrode, anode and non-aqueous electrolyte secondary battery
US9306212B2 (en) 2013-07-19 2016-04-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same
WO2017046858A1 (en) * 2015-09-14 2017-03-23 株式会社 東芝 Non-aqueous electrolyte cell and cell pack
CN109075310B (en) 2016-04-04 2022-04-29 株式会社杰士汤浅国际 Electric storage element
JP2018006346A (en) * 2017-08-16 2018-01-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
EP4138157A1 (en) * 2020-04-16 2023-02-22 SANYO Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550783B2 (en) * 1994-05-16 2004-08-04 東ソー株式会社 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP3008793B2 (en) * 1994-12-16 2000-02-14 松下電器産業株式会社 Manufacturing method of positive electrode active material for lithium secondary battery
JP3130813B2 (en) * 1995-11-24 2001-01-31 富士化学工業株式会社 Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery
JP3897387B2 (en) * 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション Method for producing positive electrode active material for lithium secondary battery
JP3561607B2 (en) * 1997-05-08 2004-09-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode material
JP3524762B2 (en) * 1998-03-19 2004-05-10 三洋電機株式会社 Lithium secondary battery
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JP3653409B2 (en) * 1999-01-29 2005-05-25 三洋電機株式会社 Positive electrode active material for lithium secondary battery and manufacturing method thereof, positive electrode for lithium secondary battery using the positive electrode active material and manufacturing method thereof, lithium secondary battery using the positive electrode and manufacturing method thereof
JP2000260432A (en) * 1999-03-09 2000-09-22 Mitsubishi Electric Corp Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it
JP4086654B2 (en) * 2000-11-16 2008-05-14 日立マクセル株式会社 Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP2002298843A (en) * 2001-03-29 2002-10-11 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP4649801B2 (en) * 2001-08-24 2011-03-16 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3675439B2 (en) * 2001-11-27 2005-07-27 日本電気株式会社 Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122566A1 (en) * 2013-02-11 2014-08-14 Basf Se Active cathode material and its use in rechargeable electrochemical cells
US9698421B2 (en) 2013-02-11 2017-07-04 Basf Se Active cathode material and its use in rechargeable electrochemical cells

Also Published As

Publication number Publication date
JP2008115075A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP4813450B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP6549565B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
US7981546B2 (en) Non-aqueous electrolyte secondary battery
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2008115075A5 (en)
JP4853608B2 (en) Lithium secondary battery
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
JP5999090B2 (en) Active material for secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JPH09153360A (en) Lithium secondary battery positive electrode and its manufacture, and lithium secondary battery
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP2008120679A5 (en)
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
CN112424976A (en) Positive electrode active material and secondary battery
WO2009116841A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery having the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
JP5617792B2 (en) Lithium ion secondary battery
JP5594241B2 (en) Electrolyte and lithium ion secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4867153B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term