JPH11307094A - Lithium secondary battery positive electrode active material and lithium secondary battery - Google Patents

Lithium secondary battery positive electrode active material and lithium secondary battery

Info

Publication number
JPH11307094A
JPH11307094A JP10109746A JP10974698A JPH11307094A JP H11307094 A JPH11307094 A JP H11307094A JP 10109746 A JP10109746 A JP 10109746A JP 10974698 A JP10974698 A JP 10974698A JP H11307094 A JPH11307094 A JP H11307094A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
group
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10109746A
Other languages
Japanese (ja)
Inventor
Takahiro Miyashita
孝洋 宮下
Hajime Kitamura
元 北村
Koji Yamato
公史 山戸
Satoshi Ota
聰 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP10109746A priority Critical patent/JPH11307094A/en
Publication of JPH11307094A publication Critical patent/JPH11307094A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium secondary battery, high in capacity, long in life, low in price, and excellent in heat stability at the time of delithiuming. SOLUTION: A positive electrode active material for a lithium secondary battery is used having a composition expressed by Li1-a Ni1-b-c-d Mnb Coc Md O2 (M: an additional minor element), where -0.15<=a<=0.10, 0.02<=b<=0.45, 0<=c<=0.50, and 0<=d<=0.20, and having a calorific value (y) of 0<=y<=30% relative to Lix NiO2 at heating temperatures ranging from 175 to 300 deg.C when the quantity (x) of lithium remaining after extraction is assumed to be 0.20<=x<=0.30. In the formula, M is one or more kinds of elements selected from among the group Ia excluding hydrogen and lithium, group IIa, group IIb, group IIIb, and group IVb in the periodic table of elements, and a group comprising transition elements excluding Ni, Co, and Mn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル電子機
器および電気自動車等の電源として用いられる熱安定性
に優れたリチウム二次電池用正極活物質およびリチウム
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery which have excellent thermal stability and are used as a power source for portable electronic devices and electric vehicles.

【0002】[0002]

【従来の技術】近年、携帯用電子機器並びにパソコン分
野等の市場拡大に伴い、駆動用電源の小型軽量化が急速
に進み、更なる小型・軽量・高密度化が求められるよう
になってきた。一方、従来の小型電池の開発にとどまら
ず大型電源を必要とする電気自動車の実用化に向けての
動きも活発になっている。これらは、有害な排気ガスの
削減を中心とした地球環境の改善と連動しており、電源
機能として小型・軽量・高密度化に加えて特に安全性が
重要視される。
2. Description of the Related Art In recent years, with the expansion of the market in the field of portable electronic devices and personal computers, the size and weight of drive power supplies have been rapidly reduced, and further reductions in size, weight and density have been demanded. . On the other hand, not only the development of conventional small batteries, but also the movement toward the practical use of electric vehicles that require a large power supply is becoming active. These are linked to the improvement of the global environment centered on the reduction of harmful exhaust gas, and the safety is particularly important in addition to the small size, light weight and high density as the power supply function.

【0003】現在、携帯用電子機器等の電源としてはニ
ッケルカドミウム電池、ニッケル水素電池等の水溶液系
に加えて非水系のリチウムイオン電池が多く用いられて
いる。しかしながら、これら水溶液系の電池はサイクル
特性および価格的には優れるものの、電池重量やエネル
ギー密度の点で十分に満足できるものとは言えない。他
方、非水系のリチウムイオン電池は近年急速に需要が拡
大したが、主成分に高価なコバルトを使用しているため
価格的には水溶液系に比べて高価であり、体積エネルギ
ー密度および安全性の点で改善の余地が多く残されてい
る。
At present, non-aqueous lithium-ion batteries are widely used as power sources for portable electronic devices in addition to aqueous solutions such as nickel-cadmium batteries and nickel-metal hydride batteries. However, these aqueous batteries are excellent in cycle characteristics and cost, but cannot be said to be sufficiently satisfactory in terms of battery weight and energy density. On the other hand, demand for non-aqueous lithium-ion batteries has increased rapidly in recent years, but since expensive cobalt is used as the main component, they are more expensive than aqueous solutions, and have a higher volumetric energy density and safety. There is much room for improvement in this respect.

【0004】一方、電気自動車用の大型電池としては、
まだまだ開発試作段階であり特に安全性の観点からニッ
ケル水素電池が多く選定されているが、小型電池と同様
に電池重量やエネルギー密度の点で満足できるものとは
言えない。
On the other hand, large batteries for electric vehicles include:
Nickel-metal hydride batteries are still being selected at the stage of development and trial production, especially from the viewpoint of safety. However, they cannot be said to be satisfactory in terms of battery weight and energy density like small batteries.

【0005】また、電気自動車用としてリチウムイオン
電池の搭載も検討されているが、最大の課題は安全性と
価格である。特に、現在検討されているコバルト系(Li
1-xCoO2) 、ニッケル系(Li1-xNiO2) 、マンガン系(Li
1-xMn2O4)正極活物質は何れも充電時の脱リチウムによ
り結晶構造が熱的に不安定である。すなわち、過充電
(脱Li≧0.6)した電池を200 〜270 ℃に加熱すると、急
激な構造変化とそれに続く酸素放出反応が進行する(J.
R.Dahn et al., Solid State Ionics,69,265(1994))。
その発熱挙動は材料系によって異なり、例えば発熱開始
温度はニッケル系<コバルト系<マンガン系の順に低温
域に移る。
[0005] In addition, the installation of lithium ion batteries for electric vehicles has been studied, but the biggest issues are safety and cost. In particular, cobalt-based (Li
1-x CoO 2 ), nickel (Li 1-x NiO 2 ), manganese (Li
1-x Mn 2 O 4 ) All positive electrode active materials have thermally unstable crystal structures due to delithiation during charging. That is, overcharge
(De Li ≧ 0.6) When the battery is heated to 200 to 270 ° C., a rapid structural change and a subsequent oxygen release reaction proceed (J.
R. Dahn et al., Solid State Ionics , 69, 265 (1994)).
The heat generation behavior differs depending on the material system. For example, the heat generation start temperature shifts to a low temperature region in the order of nickel system <cobalt system <manganese system.

【0006】このように注目されるリチウムイオン電池
において、コバルト系正極材は小型電池に多く用いられ
ているが、電気自動車用大型電池としては価格および資
源の点で適用が難しい。
In the lithium-ion batteries that have attracted attention, cobalt-based cathode materials are often used for small batteries, but are difficult to apply as large batteries for electric vehicles in terms of price and resources.

【0007】また、ニッケル系正極材は高容量であるが
サイクル寿命および熱的に最も不安定であり安全性の点
から適用は難しいと言われている。これを改善するため
に、ニッケルの一部を他の元素で置換することなどによ
り、発熱開始温度の僅かな高温側シフトや発熱ピークの
ブロード化等の試み (例えば、T.Ohzuku et al., J.Ele
ctrochem.Soc.,142,4033(1995)、特開平9−237631号公
報) が多くなされてはいるものの、まだまだ満足される
結果は得られていない。マンガン系正極材料について
は、価格的に有望視されているが容量並びにサイクル特
性の点で問題が多い。
It is said that nickel-based cathode materials have a high capacity but are most unstable in terms of cycle life and heat, and are difficult to apply in terms of safety. In order to improve this, trials such as slightly shifting the exothermic onset temperature and broadening the exothermic peak by replacing a part of nickel with other elements (for example, T. Ohzuku et al., J. Ele
ctrochem. Soc., 142, 4033 (1995), Japanese Patent Application Laid-Open No. 9-237631), but satisfactory results have not yet been obtained. Manganese-based positive electrode materials are promising in terms of price, but have many problems in terms of capacity and cycle characteristics.

【0008】前述のように、ニッケル系はそれら3つの
系の中で最も高容量が期待されるものの、サイクル寿命
および熱安定性の観点から問題がある。しかしながら、
この問題は正極活物質としての使用量が比較的少ない小
型民生用電池においては、コバルト系に比べて安価であ
ることからニッケルの一部をコバルトまたはマンガン等
で置換した組成系としてニッケル−コバルト複合系 (例
えば、特開平9−259884号公報) 、ニッケル−マンガン
複合系 (例えば、特開平6−203829号公報、特開平6−
96768 号公報) 、コバルト−マンガン系 (例えば、特開
平3−201368号公報、特開平4−28162 号公報) などが
みられ、その製法として乾式合成手法が検討されてい
る。
[0008] As described above, the nickel system is expected to have the highest capacity among the three systems, but has a problem from the viewpoint of cycle life and thermal stability. However,
This problem is caused by the fact that in small consumer batteries, which use a relatively small amount of positive electrode active material, are inexpensive compared to cobalt-based batteries. System (for example, JP-A-9-259884), a nickel-manganese composite system (for example, JP-A-6-203829, JP-A-6-
No. 96768) and cobalt-manganese (for example, JP-A-3-201368 and JP-A-4-28162), and a dry-synthesis method is being studied as a production method.

【0009】なお、原料合成段階からの湿式複合化手法
としては、ニッケル−コバルト複合系 (例えば、特開平
9−270257号公報、特開平8−236117号公報) 、ニッケ
ル−マンガン複合系 (例えば、特開平8−171910号公
報) 、ニッケル−コバルト−マンガン複合系 (例えば、
特開平9−222220号公報、特開平9−251854号公報) な
どが提案されている。
As the wet complexing method from the raw material synthesis stage, a nickel-cobalt composite system (for example, JP-A-9-270257 and JP-A-8-236117), a nickel-manganese composite system (for example, JP-A-8-171910), a nickel-cobalt-manganese composite system (for example,
JP-A-9-222220 and JP-A-9-251854) have been proposed.

【0010】[0010]

【発明が解決しようとする課題】ニッケル系 (LiNiO2)
はコバルト系 (LiCoO2) に比べて低価格で高エネルギー
密度が期待されるが、前記のニッケル元素の一部をコバ
ルトおよび又はマンガンで置換した組成複合化の試みは
主としてサイクル寿命、容量改善を狙いとしたものであ
り、充電脱リチウム時の熱安定性の大幅な改善は期待で
きないと考えられていた。
[Problems to be Solved by the Invention] Nickel (LiNiO 2 )
Is expected to have a higher energy density at a lower price than the cobalt-based (LiCoO 2 ), but the above-mentioned attempts to compound the composition in which part of the nickel element is replaced with cobalt and / or manganese mainly improve cycle life and capacity. It was thought that it was not possible to expect a significant improvement in thermal stability during charge delithiation.

【0011】したがって、このような問題を解決するた
めに、原料製法の検討およびニッケル元素の一部をマン
ガン、コバルト以外の元素であるアルミニウムで置換す
ることなどが提案されている。
Therefore, in order to solve such a problem, it has been proposed to consider a raw material production method and to replace a part of the nickel element with aluminum which is an element other than manganese and cobalt.

【0012】原料製法の検討としては、例えば第38電池
討論会講演要旨集p.101 には、硝酸ニッケルと硝酸コバ
ルト混合水溶液にアンモニア/( ニッケル+コバルト)
の比が3となるようにアンモニア水を加え、80℃で3時
間攪拌し、pH=6.5 〜7.5 を保つように1モル/l−水酸
化ナトリウム液を滴下、煮沸してアンモニアを除去、水
洗、濾過、乾燥し、得られた複合水酸化物 Ni0.85Co
0.15(OH)2と水酸化リチウムを混合、750 ℃の酸素中で2
0分間焼成する。このようにして得られるLiNi0.85Co
0.15O2の粒径を2μm以上と大きくすることで、充電脱
リチウム後のDTA (Differential Thermal Analysis:
示差熱分析) 発熱ピークが1μm以下の微粒子に比べて
約7℃高温側にシフトすることが記載されている。
[0012] As an examination of the raw material production method, for example, p.101 of the 38th Symposium on Battery Symposium states that ammonia / (nickel + cobalt) is added to a mixed aqueous solution of nickel nitrate and cobalt nitrate.
Add ammonia water so that the ratio becomes 3 and stir at 80 ° C for 3 hours. Drop 1 mol / l sodium hydroxide solution dropwise so as to maintain pH = 6.5 to 7.5, boil to remove ammonia, and wash with water , Filtered, dried and the resulting composite hydroxide Ni 0.85 Co
0.15 (OH) 2 and lithium hydroxide mixed, oxygen at 750 ° C
Bake for 0 minutes. LiNi 0.85 Co obtained in this way
By increasing the particle size of 0.15 O 2 to 2 μm or more, DTA (Differential Thermal Analysis:
(Differential thermal analysis) It is described that the exothermic peak shifts to a higher temperature side by about 7 ° C. as compared with fine particles of 1 μm or less.

【0013】また、特開平9−237631号公報では、LiNi
1-x-y-z Cox Mny Alz O2においてy=0のとき0.15≦x
≦0.25、0<z≦0.15、または0<y≦0.3 のとき、0
≦x≦0.25、0<z≦0.15、x+y≦0.4 とすることを
特徴とするリチウム二次電池用正極活物質を製造するに
際して、共沈合成したβ−Ni1-x-y Cox Mny (OH)2 また
はβ−Ni1-x-y Cox Mny OOH(0≦x≦0.25、0≦y≦0.
3)とLiOH、Li2CO3、LiNO3 等のLi源と、Al(OH)3 、Al2O
3 等のアルミニウム化合物とを混合焼成してLi・Ni・Co
・Mn・Al複合酸化物を得ている。
Japanese Patent Application Laid-Open No. 9-237631 discloses that LiNi
1-xyz Co x Mn y Al z when the O 2 in the y = 0 0.15 ≦ x
≦ 0.25, 0 <z ≦ 0.15, or 0 <y ≦ 0.3, 0
≦ x ≦ 0.25,0 <z ≦ 0.15 , x + y ≦ 0.4 when producing a positive active material for a lithium secondary battery, characterized by a coprecipitation synthesized β-Ni 1-xy Co x Mn y (OH ) 2, or β-Ni 1-xy Co x Mn y OOH (0 ≦ x ≦ 0.25,0 ≦ y ≦ 0.
3) and Li sources such as LiOH, Li 2 CO 3 , LiNO 3 and Al (OH) 3 , Al 2 O
3・ Al ・ Ni ・ Co
-Mn-Al composite oxide is obtained.

【0014】この発明は、コバルトおよびマンガンの添
加による脱リチウム時の正極活物質の結晶層間のズレの
抑制とアルミニウム添加による結晶格子内への不活性点
導入による熱的安定性の改善効果を提案している。アル
ミニウムの添加複合の有無による脱リチウム時の発熱抑
制の効果としては、DSC(Differential Scanning Car
lorimetry:示差走査熱量計) データにおいて発熱ピーク
がブロードであることをその証拠として明細書中に図を
記載している。
The present invention proposes the effect of suppressing the displacement between the crystal layers of the positive electrode active material at the time of delithiation by adding cobalt and manganese, and improving the thermal stability by introducing inert points into the crystal lattice by adding aluminum. doing. The effect of suppressing heat generation during lithium removal by the presence or absence of the addition of aluminum is as follows: DSC (Differential Scanning Car
(Lorimetry: Differential scanning calorimeter) A figure is described in the specification as evidence that the exothermic peak is broad in the data.

【0015】しかしながら、アルミニウムの複合化によ
る鋭いピークがブロードになることはデータ的には認め
られるものの、総発熱量としては同等レベルで改善され
ているとは認めがたい。確かに、鋭い発熱ピークが若干
ブロードになることで、着火の引き金 (トリガー) 的危
険性は多少改善されるが、電池に求められる発熱ピーク
挙動および総発熱量の抑制には不十分である。
However, although a sharp peak due to the compounding of aluminum becomes broad in data, it is hard to recognize that the total calorific value has been improved at the same level. Certainly, the broadening of the sharp exothermic peak slightly improves the risk of ignition, but it is not enough to control the exothermic peak behavior and the total calorific value required for the battery.

【0016】その他の例として、特開平4−22066 号公
報や特開平9−232002号公報において、ニッケルやコバ
ルト等の遷移金属とアルミニウム等の非遷移金属との複
合酸化物をリチウム二次電池の正極活物質として用いる
ことが示されている。しかしながら、遷移金属全量の規
定のみで元素同士の関係は規定されておらず、何れの発
明においても遷移金属量および添加置換元素の量的関係
が、熱安定性、およびそれに関連した安全性、ならびに
サイクル寿命に影響するという重要な課題認識がなされ
ていない。
As another example, JP-A-4-22066 and JP-A-9-232002 disclose a composite oxide of a transition metal such as nickel or cobalt and a non-transition metal such as aluminum for a lithium secondary battery. It is shown to be used as a positive electrode active material. However, the relationship between the elements is not defined only by the provision of the total amount of transition metal, and in any invention, the quantitative relationship between the amount of transition metal and the added replacement element is the thermal stability, and the safety related thereto, and The important issue of affecting the cycle life has not been recognized.

【0017】本発明は、このような課題を解決するため
になされたものであり、高容量・長寿命・低価格でしか
も脱リチウム時の熱安定性に極めて優れたリチウム二次
電池用正極活物質およびリチウム二次電池を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and has a high capacity, a long life, a low price, and an extremely excellent thermal stability during lithium removal from a lithium secondary battery. It is intended to provide a material and a lithium secondary battery.

【0018】さらに別の面からは、本発明は、電気自動
車などの駆動用の大型電池として容量・寿命・熱安定性
に優れたリチウム二次電池用正極活物質およびリチウム
二次電池を提供することを目的とする。
From still another aspect, the present invention provides a positive electrode active material for a lithium secondary battery and a lithium secondary battery which are excellent in capacity, life and thermal stability as a large battery for driving an electric vehicle or the like. The purpose is to:

【0019】[0019]

【課題を解決するための手段】かかる目的を達成するた
めに本発明者らが鋭意検討した結果、所定量配合したニ
ッケル・マンガン・コバルト系原料合成段階から、複数
の元素を所定量だけ均一混合合成する段階を含む新規な
製造手法とリチウム塩類と混合焼成する手法とを巧みに
組み合わせることにより、容量・寿命・熱安定性に優れ
た画期的なリチウム二次電池用正極活物質およびリチウ
ム二次電池が得られることを見出し、本発明を完成させ
た。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve such an object, a predetermined amount of a plurality of elements are uniformly mixed in a predetermined amount from the step of synthesizing a nickel-manganese-cobalt-based raw material. By skillfully combining a novel manufacturing method including a synthesis step with a method of mixing and firing with lithium salts, the groundbreaking positive electrode active material for lithium secondary batteries and lithium secondary battery with excellent capacity, life and thermal stability. The inventors have found that a secondary battery can be obtained, and have completed the present invention.

【0020】また、脱リチウムには電気化学的な手法と
不均化反応を利用した酸処理法が知られており、前者は
充電容量から、後者は化学分析により、それぞれ脱リチ
ウム量を決定することができる。特にニッケル系材料の
場合には、脱リチウム量により発熱ピーク位置は不変で
も発熱量は大きく変化するため、脱リチウム量を一定に
して発熱量を比較しないと意味がないが、上述のように
して調製した組成式:Li1-a Ni1-b-c-d Mn b Coc Md O2
(M:微量添加元素) において、−0.15≦a≦0.10、0.02
≦b≦0.45、0≦c≦0.50、0≦d≦0.20の組成を有す
るニッケル−マンガン系材料の場合、残リチウム量x
が、0.20≦x≦0.30の範囲ではほぼ一定の発熱量を示す
ことが本発明者らの研究により明らかになり、しかも、
その発熱量は175 〜300 ℃の加熱範囲で、Lix NiO2の発
熱量に比較して30%以下であることを知り、本発明に至
ったのである。
In addition, an electrochemical method and an acid treatment method using a disproportionation reaction are known for lithium removal. The former determines the amount of lithium removal by the charge capacity and the latter by the chemical analysis. be able to. In particular, in the case of a nickel-based material, since the heat generation amount greatly changes even if the exothermic peak position does not change due to the amount of lithium removal, it is meaningless unless the amount of heat generation is compared with a fixed amount of lithium removal, but as described above. Prepared composition formula: Li 1-a Ni 1-bcd Mn b Co c M d O 2
(M: trace addition element), -0.15 ≦ a ≦ 0.10, 0.02
In the case of a nickel-manganese-based material having a composition of ≦ b ≦ 0.45, 0 ≦ c ≦ 0.50, and 0 ≦ d ≦ 0.20, the residual lithium amount x
However, it has been clarified by the study of the present inventors that they show a substantially constant calorific value in the range of 0.20 ≦ x ≦ 0.30.
The inventor has found that the calorific value is less than 30% of the calorific value of Li x NiO 2 in the heating range of 175 to 300 ° C, and the present invention has been accomplished.

【0021】ここに、本発明は、Li1-a Ni1-b-c-d Mnb
Coc Md O2 (M:微量添加元素) において、−0.15≦a≦
0.10、0.02≦b≦0.45、0≦c≦0.50、0≦d≦0.20の
組成を有し、残リチウム量xが0.20≦x≦0.30の範囲に
おいて175 〜300 ℃に加熱範囲での発熱量yがLix NiO2
の発熱量に対して0≦y≦30%であることを特徴とする
リチウム二次電池用正極活物質である。
Here, the present invention relates to Li 1-a Ni 1-bcd Mn b
In Co c M d O 2 (M: trace addition element), -0.15 ≦ a ≦
It has a composition of 0.10, 0.02 ≦ b ≦ 0.45, 0 ≦ c ≦ 0.50, 0 ≦ d ≦ 0.20, and has a residual lithium content x in the range of 0.20 ≦ x ≦ 0.30 and a heating value y in the heating range of 175 to 300 ° C. y Is Li x NiO 2
Is a positive electrode active material for a lithium secondary battery, wherein 0 ≦ y ≦ 30% of the calorific value of the positive electrode.

【0022】本発明の好適態様によれば、上記一般式中
のMは、水素、リチウム元素以外の元素周期表の第Ia
族、第IIa 族、第IIb 族、第IIIb族、および第IVb 族、
ならびにNi、Co、Mn以外の遷移元素から成る群から選ば
れた1種または2種以上の元素である。さらに、別の面
からは、本発明は、前記正極活物質を用いたリチウム二
次電池である。
According to a preferred embodiment of the present invention, M in the above general formula is Ia of the periodic table other than hydrogen and lithium.
, IIa, IIb, IIIb, and IVb,
And one or more elements selected from the group consisting of transition elements other than Ni, Co, and Mn. Further, from another aspect, the present invention is a lithium secondary battery using the positive electrode active material.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明するが、本発明は下記実施の形態により何
ら限定されるものではなく、その要旨を変更しない範囲
において適宜変更して実施することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. However, the present invention is not limited to the following embodiments, and the present invention can be implemented by appropriately changing the gist of the present invention. can do.

【0024】まず、本発明において組成を上述のように
限定した理由を説明する。図1は、組成式:Li1-a Ni
1-b-c-d Mnb Coc Md O2をもった正極活物質に対して充
電による脱リチウムを行い、組成式:Li x Ni1-b-c-d Mn
b Co c Md O2 とするときの残リチウム量xと発熱/吸
熱量の関係を示すグラフである。
First, the reason for limiting the composition in the present invention as described above will be described. FIG. 1 shows the composition formula: Li 1-a Ni
The positive electrode active material having 1-bcd Mn b Co c M d O 2 is subjected to delithiation by charging, and the composition formula is: Li x Ni 1-bcd Mn
6 is a graph showing the relationship between the residual lithium amount x and the heat generation / endotherm amount when b Co c M d O 2 is used.

【0025】図1からも分かるように、(i) 残リチウム
量x=0.2 〜0.3 の範囲で発熱量 (構造変化) は一定値
を示し、(ii)残りリチウム量x>0.3 では、発熱量は小
さく現れ (構造変化の対象部分小) 、(iii) 一方、残リ
チウム量x<0.2 では、酸素放出を伴うNiO への分解吸
熱を伴うため発熱量は見かけ上小さくなる (発熱量−吸
熱量差し引きバランスのため) 。
As can be seen from FIG. 1, (i) the calorific value (structural change) shows a constant value in the range of the residual lithium amount x = 0.2 to 0.3, and (ii) the calorific value when the residual lithium amount x> 0.3. Appears small (small part subject to structural change), (iii) On the other hand, when the residual lithium content x <0.2, the calorific value is apparently smaller due to the endothermic decomposition to NiO accompanied by oxygen release (calorific value-endothermic amount) For the balance).

【0026】なお、化学発熱量の単位としては一般にca
l/g が用いられ、本発明では後述する図2に示すよう
に、DTAにおける発熱ピーク面積から容易に求められ
る。例えば、ニッケル酸リチウム(LiNiO2)の発熱量は製
法等により若干異なるが170 〜200cal/gである。
The unit of the chemical calorific value is generally ca
1 / g is used, and in the present invention, as shown in FIG. 2 described later, it can be easily obtained from the exothermic peak area in DTA. For example, the calorific value of lithium nickelate (LiNiO 2 ) is 170 to 200 cal / g, though slightly different depending on the production method and the like.

【0027】図2は、組成式:Li1-a Ni1-b-c-d Mnb Co
c Md O2におけるリチウム量(1-a)と放電容量の関係を、
横軸にaをとって示すグラフである。図2からは次の点
が分かる。
FIG. 2 shows the composition formula: Li 1-a Ni 1-bcd Mn b Co
The relationship between the amount of lithium (1-a) in c M d O 2 and the discharge capacity is
It is a graph shown by setting a to the horizontal axis. The following points can be seen from FIG.

【0028】(1) 組成式におけるリチウム量aが0.10よ
り大きくなると、すなわちLi<0.90未満ではLi不足によ
るLi以外の酸化物単独相 (充放電を阻害、反応・Li移動
拡散抵抗大) の形成により放電容量が小さくなる (≦15
0 mAh/g)。
(1) If the amount of lithium a in the composition formula is larger than 0.10, that is, if Li <0.90, the formation of an oxide single phase other than Li (inhibiting charge / discharge, high reaction / Li transfer diffusion resistance) due to insufficient Li. Reduces the discharge capacity (≦ 15
0 mAh / g).

【0029】ここで、150 mAh/g はLiCoO2の理論容量27
4 mAh/g に対して 4.2Vまでの充放電で計算上得られる
Li1.0 〜0.45相当の容量であり、本発明における実用化
のための指標である。ただし、この放電容量は充放電条
件により変化し、150 mAh/g未満においても空間スペー
ス等の用途を選択すれば使用可能であるが、本発明にお
いては出力エネルギー密度(Wh/kg, Wh/l)の観点から15
0 mAh/g 以上が好ましい。
Here, 150 mAh / g is the theoretical capacity of LiCoO 2
Calculated by charging / discharging up to 4.2 V for 4 mAh / g
The capacity is equivalent to Li 1.0 to 0.45, and is an index for practical use in the present invention. However, this discharge capacity varies depending on the charging / discharging conditions, and can be used even if it is less than 150 mAh / g if an application such as a space is selected. However, in the present invention, the output energy density (Wh / kg, Wh / l 15)
0 mAh / g or more is preferable.

【0030】(2) aが−0.15より小さいと、すなわち、
Li>1.15を越えると過剰なLiによるLi酸化物相の析出に
より、電池反応が阻害され放電容量が小さくなる (≦15
0 mAh/g ) 。
(2) If a is smaller than -0.15, that is,
When Li> 1.15, the Li oxide phase is precipitated by excessive Li, which inhibits the battery reaction and reduces the discharge capacity (≦ 15
0 mAh / g).

【0031】図3は、組成式:Li1-a Ni1-b-c-d Mnb Co
c Md O2において、a=−0.05、0.02≦b≦0.45、c=
0.20、d=0 としたとき、つまり、組成例:Li1.05Ni
(0.08〜0.20)Mn(0〜0.60)Co0.20O2 における、Mn組成
モル比と放電容量、発熱量比の関係を示すグラフであ
る。
FIG. 3 shows the composition formula: Li 1-a Ni 1-bcd Mn b Co
In c M d O 2 , a = −0.05, 0.02 ≦ b ≦ 0.45, c =
0.20, d = 0, ie composition example: Li 1.05 Ni
4 is a graph showing the relationship between the Mn composition molar ratio, the discharge capacity, and the calorific value ratio in (0.08 to 0.20 ) Mn (0 to 0.60) Co 0.20 O 2 .

【0032】図3からは次の点が分かる。 (1) 組成式におけるMn量bが0.45より大きくなると、4
V領域で充放電に寄与しないスピネル系LiNi0.5Mn1.5O4
の生成量が急速に増えて放電容量が低下する。
The following points can be seen from FIG. (1) When the amount of Mn b in the composition formula is larger than 0.45, 4
Spinel LiNi 0.5 Mn 1.5 O 4 that does not contribute to charge and discharge in the V region
Is rapidly increased and the discharge capacity is reduced.

【0033】(2) 一方、本発明のLiNiO2骨格複合材にお
けるMn複合の発熱抑制に及ぼす効果は極めて大きく、Mn
量b≧0.02において発熱量比は目標指標である30%以下
に抑制され、〜0.45と複合量が増えるに従い発熱量はゼ
ロに近づく。
(2) On the other hand, in the LiNiO 2 skeleton composite of the present invention, the effect of the Mn composite on the suppression of heat generation is extremely large.
When the amount b ≧ 0.02, the calorific value ratio is suppressed to 30% or less, which is the target index, and the calorific value approaches zero as the composite amount increases to 0.45.

【0034】これは、骨格Ni3+に比べてイオン半径の小
さい、しかも酸素親和力の強いMn3+による層状構造およ
び骨格安定化作用によるものと考えられる。なお、ここ
に、発熱量比は、本明細書においては、LixNiO2 x=0.
2 〜0.3 の175 〜300 ℃の範囲における発熱量を100 と
した時の発熱量比率を表す。
It is considered that this is due to the layer structure and the skeleton stabilizing action of Mn 3+ having a smaller ionic radius and stronger oxygen affinity than the skeleton Ni 3+ . In this specification, the calorific value ratio is LixNiO 2 x = 0.
The calorific value ratio when the calorific value in the range of 175 to 300 ° C of 2 to 0.3 is set to 100.

【0035】図4は、組成式:Li1-a Ni1-b-c-d Mnb Co
c Md O2において、a=−0.05、b=0.30、0≦c≦0.5
0、d=0 としたとき、つまり、組成例:Li1.05Ni(0.72
〜0.20)Mn0.30Co(0〜0.60)O2 におけるCo組成モル比
と放電容量、発熱量比の関係を示すグラフである。
FIG. 4 shows the composition formula: Li 1-a Ni 1-bcd Mn b Co
In c M d O 2 , a = −0.05, b = 0.30, 0 ≦ c ≦ 0.5
0, d = 0, that is, a composition example: Li 1.05 Ni (0.72
4 is a graph showing a relationship between a Co composition molar ratio, a discharge capacity, and a calorific value ratio in (.about.0.20) Mn 0.30 Co (0 to 0.60) O 2 .

【0036】図4からは次の点が分かる。 (1) 組成式におけるCo量cが0.50より大きくなると、Li
CoO2の単独相が析出し、ニッケル骨格構造による容量が
低下する。また、Coは資源に乏しく且つ高価な材料であ
るためCo配合量が増えることは好ましくない。
The following points can be seen from FIG. (1) When the amount c of Co in the composition formula is larger than 0.50, Li
A single phase of CoO 2 precipitates, and the capacity due to the nickel skeleton structure decreases. In addition, since Co is a resource-poor and expensive material, it is not preferable to increase the Co content.

【0037】(2) 一方、本発明のLiNiO2骨格複合材にお
けるCo複合により発熱ピークが若干高温側にシフトする
ものの、発熱抑制の効果は比較的小さく、Co複合量に対
してほぼ一定の値を示す。これは、Co3+イオンがNi3+
オンに比べて小さいことから固溶しやすく、酸素親和力
がMn3+>Co3+>Ni3+であることにも起因する。
(2) On the other hand, although the exothermic peak slightly shifts to the high temperature side due to the Co composite in the LiNiO 2 skeleton composite of the present invention, the effect of suppressing the exothermic is relatively small, and the value of the Co composite amount is substantially constant. Is shown. This is also because the Co 3+ ion is smaller than the Ni 3+ ion and thus easily forms a solid solution, and the oxygen affinity is Mn 3+ > Co 3+ > Ni 3+ .

【0038】図5は、組成式:Li1-a Ni1-b-c-d Mnb Co
c Md O2において、a=−0.05、b=0.20、c=0.1 、
0≦d≦0.20としたとき、つまり、組成例:Li1.05Ni
(0.70〜0.20)Mn0.20Co0.1M(0〜0.30)O2 におけるM=A
l組成モル比と放電容量、発熱量比の関係を示すグラフ
である。
FIG. 5 shows the composition formula: Li 1-a Ni 1-bcd Mn b Co
In c M d O 2, a = -0.05, b = 0.20, c = 0.1,
When 0 ≦ d ≦ 0.20, ie, composition example: Li 1.05 Ni
(0.70 ~ 0.20 ) Mn 0.20 Co 0.1 M (0 ~ 0.30) M = A in O 2
1 is a graph showing a relationship between a composition molar ratio, a discharge capacity, and a calorific value ratio.

【0039】図5からは次の点が分かる。 (1) 組成式におけるM=Al量dが0.20より大きくなる
と、充放電に寄与しない副生相の析出 (Al→Al2O3 、Li
AlO2等) により放電容量が低下する (≦150 mAh/g)。
The following points can be seen from FIG. (1) When M = Al amount d in the composition formula is larger than 0.20, a by-product phase that does not contribute to charge and discharge is precipitated (Al → Al 2 O 3 , Li
AlO 2 ) reduces the discharge capacity (≦ 150 mAh / g).

【0040】(2) 発熱量抑制はMn複合による効果の方が
大きいが、低Mn配合量での抑制効果元素としては極めて
有効であり、少量複合 (d≦0.2)により発熱量は更に改
善される。
(2) The effect of suppressing the calorific value is greater by the Mn compound, but is extremely effective as a suppressing effect element at a low Mn content. The calorific value is further improved by the small amount of compound (d ≦ 0.2). You.

【0041】本発明において発熱量の比較に用いるLix
NiO2は、例えば市販試薬の水酸化リチウム (LiOH、H2O)
と水酸化ニッケル (Ni(OH)2)をLi/Ni比率=1.01で混合
して20mmφに成型したものを管状炉中に入れ、150 ℃で
4〜6時間酸素通気した後、酸素雰囲気下600 ℃まで15
0 ℃/時で昇温、さらに750 ℃まで50℃/時で昇温後に
24時間保持、室温まで100 〜200 ℃/時で冷却した材料
を粉砕分級 (250 メッシュ以下) して得たLiNiO2を残リ
チウム量x、0.20≦x≦0.30まで脱リチウムして得たも
のであって、これは再現性良く使用することができる。
In the present invention, Li x used for comparison of the calorific value is used.
NiO 2 is a commercially available reagent such as lithium hydroxide (LiOH, H 2 O)
And nickel hydroxide (Ni (OH) 2 ) mixed at a Li / Ni ratio of 1.01 and molded to a diameter of 20 mm were placed in a tube furnace, and oxygen-aerated at 150 ° C. for 4 to 6 hours. 15 ° C
Temperature rise at 0 ° C / hour, and then up to 750 ° C at 50 ° C / hour
A material obtained by pulverizing and classifying a material cooled to 100 to 200 ° C./hour to room temperature at a temperature of 100 to 200 ° C./hour (250 mesh or less) and delithiating LiNiO 2 to a residual lithium amount x, 0.20 ≦ x ≦ 0.30. As such, it can be used with good reproducibility.

【0042】一般的な熱挙動および反応熱量測定手法と
してDTA、DSCの他に断熱型熱量による精密熱容量
測定法が用いられるがそれぞれに長所短所がある。本発
明の効果を確かめる手法としては比較材との相対評価が
重要であることから必ずしもDSC (Differential Sca
nning Calorimetry:示差走査熱量計) を用いる必要はな
く、通常の熱分析装置 (TG・DTA : Thermogravimetry-D
ifferential ThermalAnalysis、熱重量・示差熱分析)
で十分である。
As a general thermal behavior and reaction calorie measurement method, a precise heat capacity measurement method using adiabatic calorie is used in addition to DTA and DSC, but each has advantages and disadvantages. As a method for confirming the effect of the present invention, DSC (Differential Sc
nning Calorimetry: It is not necessary to use a differential scanning calorimeter, and a normal thermal analyzer (TG / DTA: Thermogravimetry-D)
(ifferential ThermalAnalysis, thermogravimetric / differential thermal analysis)
Is enough.

【0043】図8は、海外の電池学会(IBA電池技術検討
会、1997年台湾) で報告されたDTAによる充電(charged)
脱リチウム後のLiNiO2、LiCoO2、LiMn2O4 の発熱挙動
であり、LiNiO2は、他の材料に比べてするどい大きな発
熱を示している。
FIG. 8 is a diagram showing the charged state of DTA reported by the Battery Society of Japan (IBA Battery Technology Study Group, Taiwan, 1997).
This is the exothermic behavior of LiNiO 2 , LiCoO 2 , and LiMn 2 O 4 after delithium removal. LiNiO 2 shows much greater exothermicity than other materials.

【0044】本発明において特記すべきことは、微量添
加元素Mを加える場合、ニッケル・マンガン・コバルト
元素と共に原料段階から原子レベルで均一に混合結晶化
させることと、その添加量を所定範囲に規定することで
ある。
It should be noted that in the present invention, when adding a trace amount of the additive element M, the raw material is uniformly mixed and crystallized from the raw material stage at the atomic level together with the nickel, manganese, and cobalt elements, and the amount of the additive is defined within a predetermined range. It is to be.

【0045】原料段階からの複合化の手法としては、廃
水処理等の基本技術として用いられるpHをアルカリ側に
制御した沈殿法が良く知られているが、元素別の沈殿生
成pHが大きく異なることから最終沈殿物は各元素水酸化
物の物理混合状態となり原子レベルでの元素均一化は難
しい。特にアルミニウムのように高アルカリ (pH≧10.0
付近) 側で錯イオンとして溶解する元素の原料段階から
の複合は困難であり、例えば特開平9−237631号公報に
記載されているように、Ni・Mn・Co複合水酸化物を合成
した後、別原料として酸化アルミニウムもしくは水酸化
アルミニウムをリチウム源と共に混合焼成して複合酸化
物を得る手法が採用されている。
As a method of compounding from the raw material stage, a precipitation method in which the pH is controlled to an alkaline side, which is used as a basic technology such as wastewater treatment, is well known, but the precipitation generation pH for each element differs greatly. Therefore, the final precipitate becomes a physical mixed state of hydroxides of the respective elements, and it is difficult to homogenize the elements at the atomic level. Especially high alkali like aluminum (pH ≧ 10.0
From the raw material stage, it is difficult to combine elements dissolved as complex ions on the (near) side, for example, as described in JP-A-9-237631, after synthesizing a Ni / Mn / Co composite hydroxide. Alternatively, a method of obtaining a composite oxide by mixing and firing aluminum oxide or aluminum hydroxide as a separate raw material together with a lithium source has been adopted.

【0046】これらの問題を解決するために本発明者ら
が鋭意検討の結果、見出した合成法は、各種元素の硫酸
塩水溶液とアンモニアを微量添加した重炭酸アンモニウ
ム塩水溶液を所定の温度、pH条件 (中性領域) で同時も
しくは交互に添加し、ほぼ同心円球状に均一な結晶成長
を行わせる方法である。本方法によりこれまで困難とさ
れてきた各種の元素の原料段階での複合化を容易に行わ
せることができる。
To solve these problems, the inventors of the present invention have conducted intensive studies, and as a result, a synthesis method which has been found is that a sulfate aqueous solution of various elements and an ammonium bicarbonate aqueous solution to which a trace amount of ammonia is added are mixed at a predetermined temperature and pH. This is a method of adding simultaneously or alternately under conditions (neutral region) to grow crystals substantially concentrically and uniformly. According to this method, it is possible to easily perform the complexing of various elements at the raw material stage, which has been considered difficult so far.

【0047】一方、本合成法においてpHをアルカリ側に
設定し、重炭酸アンモニウムの代わりに水酸化リチウム
等のアルカリを添加することにより、緻密な不定形複合
材が得られる。これを先の合成法と同様にリチウム源と
混合焼成し、脱リチウムしても同じ効果が得られること
を見出した。この場合に得られる複合原料組成は、いわ
ゆる純粋な炭酸塩ではなく、例えば2NiCO3・3Ni(OH)2
4H2Oのような複合組成の複塩を形成しているものと思わ
れる。
On the other hand, in the present synthesis method, a dense amorphous composite can be obtained by setting the pH to the alkali side and adding an alkali such as lithium hydroxide instead of ammonium bicarbonate. It has been found that the same effect can be obtained by mixing and firing this with a lithium source and removing lithium as in the previous synthesis method. The composite raw material composition obtained in this case is not a so-called pure carbonate, for example, 2NiCO 3・ 3Ni (OH) 2
It seems that a double salt having a complex composition such as 4H 2 O was formed.

【0048】従って、後者のようにpH領域を高くして、
複塩の水酸化物生成比率を高めたものを本発明において
水酸化物法( 略して水法) と称し、前者の炭酸塩を主体
とした製法を、炭酸塩法( 略して炭法) と区別する。
Therefore, by increasing the pH range as in the latter case,
In the present invention, the method of increasing the hydroxide generation ratio of the double salt is referred to as a hydroxide method (abbreviated as a water method), and the former method mainly using carbonate is referred to as a carbonate method (abbreviated as a charcoal method). Distinguish.

【0049】炭法においては、結晶の成長が定形状であ
り、水法においては不定形であることが特徴であり、い
ずれも原料段階での均一混合による構造の安定化が、本
発明に係る効果発現の主因であると考えられる。
The charcoal method is characterized by the fact that the crystal growth is of a fixed shape and the water method is of an indefinite shape. In any case, the stabilization of the structure by uniform mixing at the raw material stage is a feature of the present invention. This is considered to be the main cause of the effect.

【0050】この点に関する従来技術には、前述の沈殿
法以外に特開平1−294364号公報の開示する方法があ
り、この公報には、Lix (Co1-yNiy )O2 、x=0〜1、
y=0.5 〜0.9 組成の複合材を得る方法としてニッケル
およびコバルト塩化物(NiCl2・6H2O+CoCl2・6H2O) 水溶
液に炭酸ガスを飽和させ、重炭酸ナトリウム水溶液を加
えて放置共沈させ、得られた沈殿物を水洗後にアルゴン
ガス中140 ℃で乾燥、炭酸リチウムと混合焼成する方法
が記載されている。この発明はLiCoO2にNiを固溶させて
開路電圧を下げ、4V以下の低い電圧において大きな充
放電容量を得るためのものであり、本発明とはその目的
および課題認識と共に原料〜製法さらには結晶化プロセ
スが全く異なっている。
In the prior art relating to this point, there is a method disclosed in JP-A-1-294364 other than the above-mentioned precipitation method. This publication discloses Li x (Co 1-y Ni y ) O 2 , x = 0 to 1,
y = 0.5 to 0.9 nickel and cobalt chloride as a method to obtain a composite material having the composition (NiCl 2 · 6H 2 O + CoCl 2 · 6H 2 O) saturated with carbon dioxide gas in the aqueous solution, left for both the addition of sodium bicarbonate solution It describes a method in which the precipitate is precipitated, washed with water, dried in argon gas at 140 ° C., and calcined with lithium carbonate. The present invention is to dissolve Ni in LiCoO 2 to lower the open circuit voltage to obtain a large charge / discharge capacity at a low voltage of 4 V or less. The crystallization process is quite different.

【0051】本発明者らは前記の新しい複合化製法を用
いて、種々の元素複合化と特性評価を試みた。その結
果、Li1-a Ni1-b-c-d Mnb Coc Md O2 ( M: 微量添加元
素) の組成において、−0.15≦a≦0.10、0.02≦b≦0.
45、0≦c≦0.50、0≦d≦0.20であり、好ましくは、
Mを水素、リチウム元素以外の元素周期表の第Ia 族、
第IIa 族、第IIb 族、第IIIb族、および第IVb 族、なら
びにNi、Mn、Coを除く遷移元素から成る群から選んだ少
なくとも1種と規定することにより、残リチウム量0.20
≦x≦0.30としたときの175 〜300 ℃加熱範囲での発熱
量yがLix NiO2に対して0≦y≦30%になることを見出
したのである。換言すればそのような発熱特性と安定構
造とは等価である。
The present inventors have attempted to combine various elements and evaluate characteristics using the above-described new compounding method. As a result, in the composition of Li 1-a Ni 1-bcd Mn b Co c M d O 2 (M: trace addition element), −0.15 ≦ a ≦ 0.10, 0.02 ≦ b ≦ 0.
45, 0 ≦ c ≦ 0.50, 0 ≦ d ≦ 0.20, preferably,
M is hydrogen, group Ia of the periodic table other than the lithium element,
By defining at least one member selected from the group consisting of Group IIa, Group IIb, Group IIIb, and Group IVb, and transition elements other than Ni, Mn, and Co, the residual lithium content is 0.20%.
It was found that the calorific value y in the heating range of 175 to 300 ° C. when ≦ x ≦ 0.30 was 0 ≦ y ≦ 30% with respect to Li x NiO 2 . In other words, such a heat generation characteristic and a stable structure are equivalent.

【0052】本発明の効果発現メカニズムは明確ではな
いが、すでに説明したように、原料段階での原子レベル
の混合と相成って緻密な結晶成長プロセスと構造安定化
が熱安定性改善に大きく寄与しているものと考える。従
って、本発明にかかる正極活物質を製造するに当たって
は、本発明効果の発現メカニズムを満足できる製法であ
れば特に制限されるものではない。
Although the effect manifestation mechanism of the present invention is not clear, as already described, a dense crystal growth process and structural stabilization in combination with atomic level mixing at the raw material stage greatly contribute to improvement in thermal stability. Think that you are. Therefore, in producing the positive electrode active material according to the present invention, there is no particular limitation as long as the production method can satisfy the mechanism of exhibiting the effects of the present invention.

【0053】本発明に係るリチウム二次電池は、Li
1-a-x Ni1-b-c-d Mnb Coc Md O2 (但し、−0.15≦a≦
0.10、0.02≦b≦0.45、0≦c≦0.50、0≦d≦0.20で
ある組成物を主体とした正極活物質からなる正極とリチ
ウム金属または炭素材料からなる負極と非水電解液から
構成される。
The lithium secondary battery according to the present invention comprises Li
1-ax Ni 1-bcd Mn b Co c M d O 2 (However, -0.15 ≦ a ≦
0.10, 0.02 ≤ b ≤ 0.45, 0 ≤ c ≤ 0.50, 0 ≤ d ≤ 0.20, composed of a positive electrode composed of a positive electrode active material mainly composed of a composition, a negative electrode composed of lithium metal or a carbon material, and a non-aqueous electrolyte. You.

【0054】本発明の好適態様によれば、Mは、水素、
リチウム元素以外であって、元素周期表の第Ia 族、第
IIa 族、第IIb 族、第IIIb族、および第IVb 族、ならび
にニッケル、マンガン、コバルトを除く遷移元素から成
る群から選ばれた1種または2種以上の元素である。こ
れらの元素を例示すれば次の通りである。
According to a preferred embodiment of the present invention, M is hydrogen,
Other than lithium element, other than Ia group,
One or more elements selected from the group consisting of Group IIa, Group IIb, Group IIIb, and Group IVb, and transition elements other than nickel, manganese, and cobalt. Examples of these elements are as follows.

【0055】 第Ia 族: Na 、K 、Rb、Cs、Fr 第IIa 族: Be 、Mg、Ca、Sr、Ba、Ra 第IIb 族: Zn 、Cd、Hg、Cf 第IIIb族: B、 Al 、Ga、In、Tl 第IVb 族: C、 Si 、Ge、Sn、Pb なお、本発明に係るリチウム二次電池において用いる負
極は、実施例においてはリチウム金属を用いているが、
そのような負極活物質としては、リチウムをドープおよ
び脱ドープ可能なものであればいずれであってもよく、
熱分解炭素類、コークス類 (ピッチコークス、ニードル
コークス、石油コークスなど) 、グラファイト類、ガラ
ス状炭素類、有機高分子化合物焼成体 (フェノール樹
脂、フラン樹脂などを適当な温度で焼成し炭素化したも
の)、炭素繊維、活性炭などの炭素質材料、あるいは金
属リチウム、リチウム合金 (例えば、リチウム−アルミ
ニウム) の他、ポリアセチレン、ポリピロールなどのポ
リマーが例示される。
Group Ia: Na, K, Rb, Cs, Fr Group IIa: Be, Mg, Ca, Sr, Ba, Ra Group IIb: Zn, Cd, Hg, Cf Group IIIb: B, Al, Ga, In, Tl Group IVb: C, Si, Ge, Sn, PbThe negative electrode used in the lithium secondary battery according to the present invention uses lithium metal in the examples,
Such a negative electrode active material may be any as long as it can dope and undope lithium.
Pyrolyzed carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resin, furan resin, etc.) And carbonaceous materials such as carbon fibers and activated carbon, and polymers such as polyacetylene and polypyrrole in addition to metallic lithium and lithium alloys (for example, lithium-aluminum).

【0056】電解液には、リチウム塩を電解質とし、こ
れを0.5 〜1.5 モル/リッターなる濃度で有機溶媒に溶
解させた非水電解液が用いられる。ここで有機溶媒とし
ては、特に限定されるものではないが、例えば、炭酸プ
ロピレン、炭酸エチレン、炭酸ブチレン、γ−ブチロラ
クトン、炭酸ジメチル、炭酸エチルメチル、酢酸エステ
ル化合物、プロピオン酸エステル化合物、ジ酢酸エステ
ル化合物、ジメトキシエタン、ジエトキシエタン、ジメ
トキシプロパン、ジエトキシプロパン、テトラヒドロフ
ラン、ジオキソランなどの単独もしくは2種以上混合し
た混合溶媒がある。
As the electrolyte, a non-aqueous electrolyte in which a lithium salt is used as an electrolyte and dissolved in an organic solvent at a concentration of 0.5 to 1.5 mol / liter is used. Here, the organic solvent is not particularly limited, for example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, an acetate compound, a propionate compound, a diacetate ester There are compounds, dimethoxyethane, diethoxyethane, dimethoxypropane, diethoxypropane, tetrahydrofuran, dioxolane and the like, alone or in combination of two or more.

【0057】電解質としては、過塩素酸リチウム、トリ
フルオロメタンスルホン酸リチウム、四フッ化硼酸リチ
ウム、六フッ化燐酸リチウム、六フッ化砒酸リチウムな
どがある。
Examples of the electrolyte include lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium hexafluoroarsenate and the like.

【0058】本発明に係る非水リチウム二次電池の形状
は、特に限定されるものではなく、コイン型電池、円筒
状渦巻き式電池、平板状角型電池、インサイドアウト型
円筒型電池等何れの電池にも適用可能である。また、本
発明においては、小型電池に言及しているが発熱抑制に
よる安全性の観点から特に大型電池に好適である。
The shape of the non-aqueous lithium secondary battery according to the present invention is not particularly limited, and may be any of a coin battery, a cylindrical spiral battery, a flat rectangular battery, an inside-out cylindrical battery, and the like. It is also applicable to batteries. Although the present invention refers to a small battery, it is particularly suitable for a large battery from the viewpoint of safety by suppressing heat generation.

【0059】[0059]

【実施例】[実施例1]原料複合材料の製造 まずNi−Mn−Coのモル比が0.65−0.20−0.15となるよう
に硫酸ニッケル26.9kg、硫酸マンガン5.0kg 、硫酸コバ
ルト6.6kg を純水に溶解して100 リッターとした (A
液) 。一方、重炭酸アンモニウム14.7kgを純水に溶解し
更に濃アンモニア水11.8リッターを純水に溶解希釈して
100 リッターとした (B液) 。
[Example 1] Production of raw material composite material First, 26.9 kg of nickel sulfate, 5.0 kg of manganese sulfate, and 6.6 kg of cobalt sulfate were added to pure water so that the molar ratio of Ni-Mn-Co was 0.65-0.20-0.15. To 100 liters (A
Liquid). On the other hand, 14.7 kg of ammonium bicarbonate was dissolved in pure water, and 11.8 liters of concentrated ammonia water was dissolved and diluted in pure water.
100 liters (solution B).

【0060】次に約300 リッターの攪拌反応槽に15リッ
ターの予備水を入れて加熱昇温し、前記のAおよびB反
応液を定量ポンプにより数リッター/分の流量で約12時
間かけて反応槽内へ交互に添加した。反応液の添加終了
後、約1時間攪拌保持して更なる結晶の成長を促した。
その後、反応物を濾過・水洗した後一昼夜乾燥して18.6
kgの複合炭酸塩を得た。
Next, 15 liters of preliminary water was placed in a stirring reaction vessel of about 300 liters, and the temperature was raised by heating, and the above-mentioned reaction solutions A and B were reacted at a flow rate of several liters / minute for about 12 hours by a quantitative pump. It was added alternately into the tank. After the completion of the addition of the reaction solution, the mixture was kept stirred for about 1 hour to promote further crystal growth.
Thereafter, the reaction product was filtered and washed with water, and then dried overnight to obtain 18.6.
kg of complex carbonate was obtained.

【0061】リチウム複合酸化物の製造 前記で得られた複合炭酸塩13.4kgと水酸化リチウム2.85
kgを粉砕混合し、さらに成型して、酸素ガスを流通させ
た電気炉で840 ℃で24時間焼成した。焼成物を室温まで
冷却した後、粉砕分級して所定粒度以下の製品 (リチウ
ム二次電池用正極活物質) 約10kgを得た。なお、粉砕分
級は乾燥雰囲気中で実施した。
Production of lithium composite oxide 13.4 kg of the composite carbonate obtained above and 2.85 of lithium hydroxide
kg was crushed and mixed, further molded, and fired at 840 ° C. for 24 hours in an electric furnace through which oxygen gas was passed. After the fired product was cooled to room temperature, it was pulverized and classified to obtain about 10 kg of a product having a predetermined particle size or less (a positive electrode active material for a lithium secondary battery). The pulverization classification was performed in a dry atmosphere.

【0062】得られたリチウム複合酸化物の電池特性お
よび熱安定性を後述の手法により測定し、得られた結果
を表1に示した。
The battery characteristics and thermal stability of the obtained lithium composite oxide were measured by the methods described below, and the obtained results are shown in Table 1.

【0063】電池作製および試験 上述のようにして得た正極活物質100 重量部に導電材と
してアセチレンブラック15重量部および結着材としてフ
ッ素樹脂粉末10重量部を加え、充分混合した後、有機溶
剤にて混練し、ロールで約400 μmに圧延、150 ℃で乾
燥後、所定の径に打ち抜いて正極を作製した。
Preparation and Test of Battery To 100 parts by weight of the positive electrode active material obtained as described above, 15 parts by weight of acetylene black as a conductive material and 10 parts by weight of a fluororesin powder as a binder were added, and mixed well. And rolled to about 400 μm with a roll, dried at 150 ° C., and punched out to a predetermined diameter to produce a positive electrode.

【0064】一方、所定の寸法に打ち抜いた金属リチウ
ム箔を集電材メッシュに圧延して負極とし、エチレンカ
ーボネート(EC)とジメチルカーボネート(DMC) との混合
溶液(容積比1:2) に6フッ化燐酸リチウム(LiPF6)
を1モル/リッターで溶解したものを電解質として使用
し、図6に示す二次電池を組み立てた。
On the other hand, a metal lithium foil punched to a predetermined size was rolled into a current collector mesh to form a negative electrode, and a 6-foil solution of a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1: 2) was prepared. Lithium phosphide (LiPF 6 )
Was used as an electrolyte, and a secondary battery shown in FIG. 6 was assembled.

【0065】ここで図6において、1は正極、2はステ
ンレススチール製の正極集電体で、正極1と集電体2と
は一体化されており、集電体2は正極間3の内面にスポ
ット溶接されている。4は金属リチウムでできた負極、
さらに7はポリプロピレン不織布よりなるセパレータで
あり、これに前記電解液が含浸されている。なお、8は
絶縁パッキングである。また電池寸法は直径20.0mm、深
さ1.6 mmである。
In FIG. 6, reference numeral 1 denotes a positive electrode, 2 denotes a positive electrode current collector made of stainless steel, and the positive electrode 1 and the current collector 2 are integrated with each other. Spot welded. 4 is a negative electrode made of metallic lithium,
Reference numeral 7 denotes a separator made of a polypropylene nonwoven fabric, which is impregnated with the electrolytic solution. Reference numeral 8 denotes an insulating packing. The battery dimensions are 20.0 mm in diameter and 1.6 mm in depth.

【0066】以上の如く作製した電池を用いて、それぞ
れ充放電電流1mA/cm2において充電終止電圧 4.2V、放
電終止電圧 3.0Vで充放電を繰り返し50サイクルまでの
充放電特性を確認した。
Using the batteries prepared as described above, charge / discharge was repeated at a charge / discharge current of 1 mA / cm 2 at a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V, and charge / discharge characteristics up to 50 cycles were confirmed.

【0067】なお、結果は初期放電容量だけで示すが、
これは、初回サイクルにおける活物質の単位重量換算放
電容量(mAn/g) で表した。放電容量150mAn/g以上を合格
とした。
The results are shown only with the initial discharge capacity.
This was expressed in terms of unit weight-equivalent discharge capacity (mAn / g) of the active material in the first cycle. A discharge capacity of 150 mAn / g or more was judged to be acceptable.

【0068】熱安定性試験 前記構成の電池を用いて、1mA/cm2の電流密度で 4.2V
までの定電流充電を行い、引き続き 4.2V定電圧で合計
15時間の充電を行う定電流+定電圧方式による充電を行
い、正極活物質からリチウムを引き抜いた。リチウムの
引き抜き量は活物質の分子量から計算される理論容量
[(1g活物質/分子量)×(96500 クーロン/3600)×10
00 mAh/g] に対する充電容量の比率もしくは、充電後の
活物質のリチウム分析モル数から求めた。
Thermal stability test Using the battery having the above configuration, 4.2 V at a current density of 1 mA / cm 2
Charge up to constant current up to 4.2V constant voltage
The battery was charged by a constant current + constant voltage method for charging for 15 hours, and lithium was extracted from the positive electrode active material. The amount of lithium extracted is the theoretical capacity calculated from the molecular weight of the active material
[(1g active material / molecular weight) × (96500 coulomb / 3600) × 10
[00 mAh / g] or the number of moles of lithium analyzed for the active material after charging.

【0069】定電流+定電圧充電後の電池を露点約50℃
に湿度調整したグローブボックス中で解体して正極シー
トを取り出し、100 mlのアセトン溶媒中で3回洗浄して
付着電解液を除去後、濾紙上に静置して乾燥した。乾燥
後、集電体を構成するステンレススチールのメッシュか
ら正極を剥がし、熱分析測定用の白金製容器 (容積0.05
ml、寸法5φ×2.5 mm) に正極活物質換算で40mg充填す
る。熱分析測定は理学製TAS200作動形示差熱天秤を用
い、昇温速度5℃/分で室温から600 ℃までの測定を実
施した。なお、測定に際しては示差熱分析(DTA:Differ
ential Thermal Analysis)と同時に熱重量分析 (TG:The
rmogaravimetry) も行った。
After charging the battery with a constant current and a constant voltage, the dew point of the battery is approximately 50 ° C.
The positive electrode sheet was taken out by disassembly in a glove box adjusted to a humidity, and washed three times in 100 ml of an acetone solvent to remove an attached electrolyte, and then left standing on a filter paper and dried. After drying, the positive electrode was peeled off from the stainless steel mesh constituting the current collector, and a platinum container (capacity 0.05
ml, dimensions 5φ × 2.5 mm) are filled with 40 mg in terms of the positive electrode active material. The thermal analysis measurement was performed from room temperature to 600 ° C. at a heating rate of 5 ° C./min using a TAS200 differential thermal balance made by Rigaku. The measurement was carried out by differential thermal analysis (DTA: Differ
TG: Thermal Thermal Analysis)
rmogaravimetry).

【0070】熱安定性データの処理 残リチウム量0.20〜0.30までリチウムを引き抜いた正極
活物質の DTAデータの175 ℃から300 ℃の間で出現する
発熱ピーク面積を同量脱リチウムした標準試料LiNiO2
発熱ピーク面積と比較した。このときの面積は例えば図
7(a) 、(b) に示すように標準試料と同率で拡大コピー
した図の発熱前後ベースラインより上 (発熱側) の部分
を切り取り、小数点以下4桁までの重量を測定する図上
積分方式により求め、標準試料の発熱データと比較し
た。
Processing of Thermal Stability Data Standard sample LiNiO 2 from which the exothermic peak area appearing between 175 ° C. and 300 ° C. of the DTA data of the positive electrode active material from which lithium was extracted from 0.20 to 0.30 of residual lithium was delithiated in the same amount. Was compared with the exothermic peak area. For the area at this time, for example, as shown in FIGS. 7 (a) and 7 (b), the portion above the baseline before and after the heat generation (heat generation side) in the enlarged copy at the same ratio as the standard sample was cut out, and four digits after the decimal point The weight was determined by the integral method on the figure and compared with the heat generation data of the standard sample.

【0071】なお、図7(a) は標準試料LixNiO2 におけ
る残リチウム量x=0.05のTG・DTAデータであり、発熱
直後の酸素放出吸熱を伴うNiO への分解 (重量減少) を
示している。図7(b) は同材料の残リチウム量x=0.25
におけるTG・DTA データの例である。
FIG. 7 (a) is TG • DTA data of the standard sample LixNiO 2 with the remaining lithium amount x = 0.05, and shows the decomposition (weight loss) to NiO accompanied by the endothermic oxygen release immediately after heat generation. . FIG. 7 (b) shows the residual lithium content of the same material x = 0.25
This is an example of TG / DTA data in the above.

【0072】熱安定性標準試料の調製 市販の和光純薬工業 (株) 製の化学用純度96.4%の水酸
化ニッケル試薬Ni(OH)2 (Ni61.0%) 48.09 gとLi/Ni 比
率=1.01換算の試薬特級水酸化リチウム脱水品(120℃で
16時間脱水後、密閉保管) 12.09 gを乳鉢で10分間混合
後、ベッセル粉砕容器 (SUS304製、内径140 φmm深さ49
mm、空間容積340 ml) に入れて3分間振動ベッセル混合
粉砕した。粉砕後、速やかに乳鉢に全量移して1分混合
解砕後、混合物 7.0gを1ペレット分として、20φmmの
SUS 製金型に入れて1トン/cm2でペレットを4個試作
した。
Preparation of Thermal Stability Standard Sample 48.09 g of a nickel hydroxide reagent Ni (OH) 2 (Ni61.0%) having a chemical purity of 96.4% manufactured by Wako Pure Chemical Industries, Ltd. and a Li / Ni ratio = 1.01 equivalent of reagent-grade dehydrated lithium hydroxide (at 120 ° C
After dewatering for 16 hours, keep tightly closed) After mixing 12.09 g in a mortar for 10 minutes, crush the vessel vessel (SUS304, inner diameter 140 φmm depth 49)
(mm, space volume: 340 ml) and mixed and crushed by a vibration vessel for 3 minutes. After crushing, immediately transfer the whole amount to a mortar and mix and disintegrate for 1 minute.
Four pellets were prototyped at 1 ton / cm 2 in a SUS mold.

【0073】試作ペレット4個をSUS310S 製ボートの中
央に設置して、管状電気炉 (60φ×600 mm) を用い酸素
ガス (線速≧1cm/秒) を流通させながら焼成した。初
め、150 ℃で6時間酸素パージした後、600 ℃まで速度
150 ℃/時で昇温、さらに750 ℃まで50℃/時で昇温、
750 ℃で24時間保持した後、室温まで200 ℃/時で降温
し、乾燥デシケータ中に試料を保管した。
Four prototype pellets were placed in the center of a SUS310S boat and fired using a tubular electric furnace (60φ × 600 mm) while flowing oxygen gas (linear velocity ≧ 1 cm / sec). Initially, purge with oxygen at 150 ° C for 6 hours, then speed up to 600 ° C
The temperature rises at 150 ° C / hour, and then rises to 750 ° C at 50 ° C / hour.
After holding at 750 ° C. for 24 hours, the temperature was lowered to room temperature at 200 ° C./hour, and the sample was stored in a desiccator.

【0074】焼成試料の粉砕分級は乳鉢と篩網 (250 メ
ッシュ、74μm以下全量通過) を行い、アルゴンガスを
満たしたグローブボックス中で行い、試料は全て湿気を
遮断したポリ容器に入れデシケータ中に保管した。得ら
れた標準試料LiNiO2の脱リチウム後の熱安定性測定は、
前記の手法 (熱安定性試験法) により実施した。
The baked sample was pulverized and classified using a mortar and a sieve net (250 mesh, all passed through 74 μm or less) and in a glove box filled with argon gas. All the samples were placed in a plastic container protected from moisture and placed in a desiccator. Saved. The thermal stability measurement after delithiation of the obtained standard sample LiNiO 2
The test was performed by the above-mentioned method (thermal stability test method).

【0075】[実施例2]実施例1と同様にNi−Mn−Coの
モル比が0.65−0.20−0.15となるように硫酸ニッケル2
8.5kg、硫酸マンガン5.3kg 、硫酸コバルト7.0kg を純
水に溶解して100リッターとした。これに、濃アンモニ
ア水12.5リッターを入れ、温度を制御しつつ攪拌した。
次に、pH≧8.0 〜10.0となるように所定濃度の水酸化リ
チウム水溶液と重炭酸アンモニウム混合溶液を少しずつ
添加し、約8時間反応させた。得られた固形物を濾過・
水洗した後一昼夜乾燥して14.9kgの複合水酸化物( 複塩
を含む) を得た。
[Example 2] Nickel sulfate 2 was used in the same manner as in Example 1 so that the molar ratio of Ni-Mn-Co was 0.65-0.20-0.15.
8.5 kg, manganese sulfate 5.3 kg and cobalt sulfate 7.0 kg were dissolved in pure water to make 100 liter. 12.5 liters of concentrated ammonia water was added thereto, and the mixture was stirred while controlling the temperature.
Next, an aqueous solution of lithium hydroxide and a mixed solution of ammonium bicarbonate having a predetermined concentration were added little by little so that the pH was 8.0 to 10.0, and the mixture was reacted for about 8 hours. Filtration of the resulting solid
After washing with water, drying was carried out all day and night to obtain 14.9 kg of a composite hydroxide (including a double salt).

【0076】前記で得られた複合水酸化物10.4kgと水酸
化ナトリウム2.85 kg を粉砕混合し、さらに成型して、
酸素ガスを流通させた電気炉で800 ℃で24時間焼成し
た。焼成物を室温まで冷却した後、粉砕分級して所定粒
度以下の製品 (リチウム二次電池用正極活物質) 約10kg
を得た。なお、粉砕分級は乾燥雰囲気中で実施した。
10.4 kg of the composite hydroxide obtained above and 2.85 kg of sodium hydroxide were pulverized and mixed, and further molded,
It was calcined at 800 ° C. for 24 hours in an electric furnace through which oxygen gas was passed. After cooling the fired product to room temperature, it is pulverized and classified and the product is smaller than a specified particle size (Positive electrode active material for lithium secondary battery) Approx. 10 kg
I got The pulverization classification was performed in a dry atmosphere.

【0077】得られたリチウム複合酸化物の電池特性お
よび熱安定性を前述の手法により測定し、得られた結果
を同じく表1に示す。
The battery characteristics and thermal stability of the obtained lithium composite oxide were measured by the above-mentioned method, and the obtained results are also shown in Table 1.

【0078】[実施例3]実施例1および実施例2にした
がってLi1-a Ni1-b-c-d Mnb Coc Md O2 (M:微量添加元
素) の組成をもった各種正極材を作成し、同様の特性試
験を行った。結果は、表2ないし表4にまとめて示す。
Example 3 In accordance with Examples 1 and 2, various cathode materials having a composition of Li 1-a Ni 1-bcd Mn b Co c M d O 2 (M: trace addition element) were prepared. Then, a similar characteristic test was performed. The results are summarized in Tables 2 to 4.

【0079】なお、表中において「分類」の項目におい
て「炭法」とあるのは、実施例1に準じて複合炭酸塩を
製造した場合を、また「水法」とあるのは、実施例2に
準じて複合水酸化物を製造した場合をそれぞれ示す。
In the table, the term “charcoal method” in the item “classification” refers to the case where a composite carbonate was produced in accordance with Example 1, and the term “water method” refers to the method in the example. 2 shows a case where a composite hydroxide was produced according to 2.

【0080】[0080]

【表1】 [Table 1]

【0081】[0081]

【表2】 [Table 2]

【0082】[0082]

【表3】 [Table 3]

【0083】[0083]

【表4】 [Table 4]

【0084】[0084]

【発明の効果】かくして本発明によれば、高容量・長寿
命・低価格でしかも脱リチウム時の熱安定性に極めて優
れたリチウム二次電池用正極活物質が得られ、小型電池
用ばかりでなく、電気自動車用の大型電池用にも用いる
ことができ、リチウムイオン二次電池の用途拡大という
点からも、その実用上の意義は大きい。
As described above, according to the present invention, a positive electrode active material for a lithium secondary battery having a high capacity, a long life, a low price, and extremely excellent thermal stability at the time of lithium removal can be obtained. However, it can also be used for large batteries for electric vehicles, and is of great practical significance in terms of expanding applications of lithium ion secondary batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】残リチウム量xと発熱/吸熱量の関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between a residual lithium amount x and a heat generation / endotherm amount.

【図2】組成式リチウム量と放電容量の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the lithium content and the discharge capacity in the composition formula.

【図3】Mn 組成モル比と放電容量、発熱量比の関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between a composition molar ratio of Mn, a discharge capacity, and a calorific value ratio.

【図4】Co組成モル比と放電容量、発熱量比の関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between a Co composition molar ratio, a discharge capacity, and a calorific value ratio.

【図5】M=Al組成モル比と放電容量、発熱量比の関係
を示すグラフである。
FIG. 5 is a graph showing the relationship between M = Al composition molar ratio, discharge capacity, and calorific value ratio.

【図6】本発明を適用したコイン型リチウム二次電池の
構成を示す断面図である。
FIG. 6 is a cross-sectional view showing a configuration of a coin-type lithium secondary battery to which the present invention is applied.

【図7】熱安定性測定におけるTG・DTA データの例を示
すグラフであり、図7(a) は、標準試料LixNiO2 におけ
る残リチウム量x=0.05のTG・DTA データであり、図7
(b) は、同材料の残リチウム量x=0.25におけるTG・DT
A データの例である。
FIG. 7 is a graph showing an example of TG / DTA data in the thermal stability measurement. FIG. 7 (a) is TG / DTA data of the standard sample LixNiO 2 with the remaining lithium amount x = 0.05.
(b) is the TG · DT when the remaining lithium amount of the same material x = 0.25
This is an example of A data.

【図8】DTA による充電 (脱リチウム) 後のLiNiO2、Li
CoO2、LiMn2O4 の公知測定例を示すグラフである。
FIG. 8 LiNiO 2 and Li after charging (elimination of lithium) by DTA
4 is a graph showing a known measurement example of CoO 2 and LiMn 2 O 4 .

フロントページの続き (72)発明者 山戸 公史 新潟県中頸城郡妙高高原町田口272番地 中央電気工業株式会社内 (72)発明者 太田 聰 新潟県中頸城郡妙高高原町田口272番地 中央電気工業株式会社内Continuing on the front page (72) Inventor Kimifumi Yamato 272 Taguchi, Myokokogen-cho, Nakakubijo-gun, Niigata Chuo Denki Kogyo Co., Ltd. Inside the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Li1-a Ni1-b-c-d Mnb Coc Md O2 (M:微
量添加元素) において、−0.15≦a≦0.10、0.02≦b≦
0.45、0≦c≦0.50、0≦d≦0.20の組成を有し、引き
抜き後の残リチウム量xを0.20≦x≦0.30としたときに
加熱温度範囲175 〜300 ℃での発熱量yが、Lix NiO2
対して0≦y≦30%であることを特徴とするリチウム二
次電池用正極活物質。
(1) In Li 1-a Ni 1-bcd Mn b Co c M d O 2 (M: trace addition element), -0.15 ≦ a ≦ 0.10, 0.02 ≦ b ≦
0.45, 0 ≦ c ≦ 0.50, 0 ≦ d ≦ 0.20, and when the residual lithium amount x after drawing is 0.20 ≦ x ≦ 0.30, the heat value y in the heating temperature range of 175 to 300 ° C. A positive electrode active material for a lithium secondary battery, wherein 0 ≦ y ≦ 30% with respect to Li x NiO 2 .
【請求項2】 一般式中のMが、水素、リチウム元素以
外の元素周期表第Ia 族、第IIa 族、第IIb 族、第IIIb
族、および第IVb 族、ならびにNi、Co、Mn以外の遷移元
素から成る群から選ばれた1種または2種以上の元素で
あることを特徴とする請求項1記載の正極活物質。
2. In the general formula, M is hydrogen, an element other than lithium element, Periodic Table Group Ia, Group IIa, Group IIb, Group IIIb.
The positive electrode active material according to claim 1, wherein the positive electrode active material is one or more elements selected from the group consisting of Group IVb, Group IVb, and transition elements other than Ni, Co, and Mn.
【請求項3】 請求項1または2に記載の非水電解液用
正極活物質を用いたリチウム二次電池。
3. A lithium secondary battery using the positive electrode active material for a non-aqueous electrolyte according to claim 1.
JP10109746A 1998-04-20 1998-04-20 Lithium secondary battery positive electrode active material and lithium secondary battery Pending JPH11307094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10109746A JPH11307094A (en) 1998-04-20 1998-04-20 Lithium secondary battery positive electrode active material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10109746A JPH11307094A (en) 1998-04-20 1998-04-20 Lithium secondary battery positive electrode active material and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11307094A true JPH11307094A (en) 1999-11-05

Family

ID=14518209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10109746A Pending JPH11307094A (en) 1998-04-20 1998-04-20 Lithium secondary battery positive electrode active material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11307094A (en)

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048842A1 (en) * 1999-12-29 2001-07-05 Kimberly-Clark Worldwide, Inc. Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US6350543B2 (en) 1999-12-29 2002-02-26 Kimberly-Clark Worldwide, Inc. Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
WO2002056398A1 (en) * 2001-01-16 2002-07-18 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and method of producing active substance used for anode thereof
EP1255311A2 (en) 2001-04-25 2002-11-06 Sony Corporation Cathode active material and non-aqueous electrolyte cell
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2003031219A (en) * 2001-07-13 2003-01-31 Yuasa Corp Positive active material and nonaqueous electrolyte secondary battery using the same
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
JPWO2002086993A1 (en) * 2001-04-20 2004-08-12 株式会社ユアサコーポレーション Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004528691A (en) * 2001-04-27 2004-09-16 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
WO2004092073A1 (en) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
FR2860922A1 (en) * 2003-10-10 2005-04-15 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR POSITIVE ELECTRODE OF RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LITHIUM
US6893776B2 (en) 2000-11-14 2005-05-17 Japan Storage Battery Co., Ltd. Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP2005255433A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide for lithium battery
EP1587156A1 (en) * 2003-01-08 2005-10-19 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2006107818A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2007503102A (en) * 2003-05-28 2007-02-15 ナショナル・リサーチ・カウンシル・オブ・カナダ Lithium oxide electrodes for lithium cells and batteries
JP2007516583A (en) * 2003-12-23 2007-06-21 トロノックス エルエルシー High voltage thin layer cathode material for lithium rechargeable battery and method for producing the same
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007083457A1 (en) 2006-01-20 2007-07-26 Nippon Mining & Metals Co., Ltd. Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
WO2008012970A1 (en) 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
JP2008115075A (en) * 2001-11-22 2008-05-22 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using the same
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
WO2009048264A3 (en) * 2007-10-13 2009-06-04 Lg Chemical Ltd Cathode active material for lithium secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
WO2009128289A1 (en) 2008-04-17 2009-10-22 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US7939202B2 (en) 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide
JP2011093783A (en) * 2009-10-02 2011-05-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary cell
JP2011100603A (en) * 2009-11-05 2011-05-19 Hitachi Ltd Lithium ion secondary battery
KR101036743B1 (en) * 2001-08-07 2011-05-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Improved cathode compositions for lithium ion batteries
WO2011094126A1 (en) 2010-01-27 2011-08-04 3M Innovative Properties Company High capacity lithium-ion electrochemical cells
WO2011108656A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
WO2011108655A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108657A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108652A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108653A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
WO2011108654A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2012084552A (en) * 2012-02-01 2012-04-26 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8303855B2 (en) 2007-08-10 2012-11-06 Umicore Doped lithium transition metal oxides containing sulfur
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
EP2544273A1 (en) * 2010-03-04 2013-01-09 JX Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
CN104025346A (en) * 2012-01-17 2014-09-03 株式会社Lg化学 Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
JP2014529326A (en) * 2011-07-20 2014-11-06 韓華石油化学株式会社Hanwhachemical Corporation Single-phase lithium-deficient lithium multicomponent transition metal oxide having a layered crystal structure and method for producing the same
US8889297B2 (en) 2012-10-05 2014-11-18 Korea Institute Of Science And Technology Nanocomposite cathode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
WO2015061121A1 (en) 2013-10-24 2015-04-30 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
US9054378B2 (en) * 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it
WO2015094847A1 (en) 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
WO2015183599A1 (en) 2014-05-27 2015-12-03 Dow Global Technologies Llc Lithium battery electrolyte solution containing methyl (2,2,3,3,-tetrafluoropropyl) carbonate
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2843737A4 (en) * 2012-07-09 2015-12-23 Lg Chemical Ltd Anode active material and lithium secondary battery comprising same
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2016077182A1 (en) 2014-11-11 2016-05-19 Dow Global Technologies Llc High volumetric energy density lithium battery with long cycle life
WO2016095177A1 (en) 2014-12-18 2016-06-23 Dow Global Technologies Llc Lithium ion battery having improved thermal stability
JP2016528159A (en) * 2013-08-19 2016-09-15 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide rich cathode materials and methods for their preparation
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US10305095B2 (en) 2013-11-12 2019-05-28 Nichia Corporation Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2019153567A (en) * 2017-07-12 2019-09-12 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
US10490810B2 (en) 2013-12-13 2019-11-26 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP2021509530A (en) * 2017-10-09 2021-03-25 シーエスアイアールCsir Cathode material
US11205776B2 (en) 2014-05-27 2021-12-21 Dow Global Technologies Llc Lithium metal oxide cathode materials and method to make them
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide

Cited By (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528146A1 (en) * 1999-12-29 2012-11-28 Techelios, LLC Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US6623886B2 (en) 1999-12-29 2003-09-23 Kimberly-Clark Worldwide, Inc. Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
EP2530767A1 (en) * 1999-12-29 2012-12-05 Techelios, LLC Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
EP2528147A1 (en) * 1999-12-29 2012-11-28 Techelios, LLC Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US7258821B2 (en) 1999-12-29 2007-08-21 Agere Systems, Inc. Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
WO2001048842A1 (en) * 1999-12-29 2001-07-05 Kimberly-Clark Worldwide, Inc. Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US6350543B2 (en) 1999-12-29 2002-02-26 Kimberly-Clark Worldwide, Inc. Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
EP1189296A3 (en) * 2000-09-14 2005-05-11 Pacific Lithium New Zealand Limited Lithiated oxide materials and methods of manufacture
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
US6893776B2 (en) 2000-11-14 2005-05-17 Japan Storage Battery Co., Ltd. Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
EP1295851A4 (en) * 2000-11-16 2008-08-20 Hitachi Maxell Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
US7351500B2 (en) 2000-11-16 2008-04-01 Hitachi Maxell, Ltd. Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US8801960B2 (en) 2000-11-16 2014-08-12 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
JP2002289261A (en) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO2002056398A1 (en) * 2001-01-16 2002-07-18 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and method of producing active substance used for anode thereof
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
JPWO2002086993A1 (en) * 2001-04-20 2004-08-12 株式会社ユアサコーポレーション Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4556377B2 (en) * 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP1255311A3 (en) * 2001-04-25 2005-06-08 Sony Corporation Cathode active material and non-aqueous electrolyte cell
EP1255311A2 (en) 2001-04-25 2002-11-06 Sony Corporation Cathode active material and non-aqueous electrolyte cell
JP2009187959A (en) * 2001-04-27 2009-08-20 Three M Innovative Properties Co Improved cathode composition for lithium-ion battery
JP2004528691A (en) * 2001-04-27 2004-09-16 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP2014135295A (en) * 2001-04-27 2014-07-24 3M Innovative Properties Co Improved cathode composition for lithium-ion battery
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2003031219A (en) * 2001-07-13 2003-01-31 Yuasa Corp Positive active material and nonaqueous electrolyte secondary battery using the same
JP4635386B2 (en) * 2001-07-13 2011-02-23 株式会社Gsユアサ Positive electrode active material and non-aqueous electrolyte secondary battery using the same
KR101036743B1 (en) * 2001-08-07 2011-05-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Improved cathode compositions for lithium ion batteries
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US9054378B2 (en) * 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it
JP2008115075A (en) * 2001-11-22 2008-05-22 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
EP1587156A4 (en) * 2003-01-08 2008-04-09 Nikko Materials Co Ltd Material for positive electrode of lithium secondary battery and process for producing the same
EP1587156A1 (en) * 2003-01-08 2005-10-19 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2008266136A (en) * 2003-04-17 2008-11-06 Agc Seimi Chemical Co Ltd Lithium-nickel-cobalt-manganese-containing composite oxide, raw material for positive electrode active material for lithium secondary battery, and method for production thereof
WO2004092073A1 (en) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR100694567B1 (en) 2003-04-17 2007-03-13 세이미 케미칼 가부시끼가이샤 Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP2007503102A (en) * 2003-05-28 2007-02-15 ナショナル・リサーチ・カウンシル・オブ・カナダ Lithium oxide electrodes for lithium cells and batteries
EP1523052A3 (en) * 2003-10-10 2009-01-07 Saft Electrochemical active material for positive electrode of lithium rechargeable electrochemical generator
FR2860922A1 (en) * 2003-10-10 2005-04-15 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR POSITIVE ELECTRODE OF RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LITHIUM
JP2007516583A (en) * 2003-12-23 2007-06-21 トロノックス エルエルシー High voltage thin layer cathode material for lithium rechargeable battery and method for producing the same
JP2005255433A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide for lithium battery
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
JP4496150B2 (en) * 2004-09-27 2010-07-07 石原産業株式会社 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2006107818A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7687202B2 (en) 2004-12-24 2010-03-30 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US9136533B2 (en) 2006-01-20 2015-09-15 Jx Nippon Mining & Metals Corporation Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
WO2007083457A1 (en) 2006-01-20 2007-07-26 Nippon Mining & Metals Co., Ltd. Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
JPWO2007083457A1 (en) * 2006-01-20 2009-06-11 日鉱金属株式会社 Lithium nickel manganese cobalt composite oxide and lithium secondary battery
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2008012970A1 (en) 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
US8303855B2 (en) 2007-08-10 2012-11-06 Umicore Doped lithium transition metal oxides containing sulfur
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
KR100927244B1 (en) 2007-10-13 2009-11-16 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
WO2009048264A3 (en) * 2007-10-13 2009-06-04 Lg Chemical Ltd Cathode active material for lithium secondary battery
US7939202B2 (en) 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide
WO2009128289A1 (en) 2008-04-17 2009-10-22 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2011093783A (en) * 2009-10-02 2011-05-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary cell
JP2011100603A (en) * 2009-11-05 2011-05-19 Hitachi Ltd Lithium ion secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
WO2011094126A1 (en) 2010-01-27 2011-08-04 3M Innovative Properties Company High capacity lithium-ion electrochemical cells
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
EP2544273A1 (en) * 2010-03-04 2013-01-09 JX Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108656A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
WO2011108652A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2011108657A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108654A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108652A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108653A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
TWI423505B (en) * 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5934089B2 (en) * 2010-03-04 2016-06-15 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102782910A (en) * 2010-03-04 2012-11-14 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
WO2011108657A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108655A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion battery, and lithium-ion battery
EP2544273A4 (en) * 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5934088B2 (en) * 2010-03-04 2016-06-15 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108653A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2011108655A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2014529326A (en) * 2011-07-20 2014-11-06 韓華石油化学株式会社Hanwhachemical Corporation Single-phase lithium-deficient lithium multicomponent transition metal oxide having a layered crystal structure and method for producing the same
EP2806486A4 (en) * 2012-01-17 2015-07-22 Lg Chemical Ltd Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
US10096831B2 (en) 2012-01-17 2018-10-09 Lg Chem, Ltd. Cathode active material and lithium secondary battery for controlling impurity or swelling including the same and method of preparing cathode active material with enhanced productivity
CN104025346A (en) * 2012-01-17 2014-09-03 株式会社Lg化学 Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2012084552A (en) * 2012-02-01 2012-04-26 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
EP2843737A4 (en) * 2012-07-09 2015-12-23 Lg Chemical Ltd Anode active material and lithium secondary battery comprising same
US10177376B2 (en) 2012-07-09 2019-01-08 Lg Chem, Ltd. Cathode active material and lithium secondary battery including the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US8889297B2 (en) 2012-10-05 2014-11-18 Korea Institute Of Science And Technology Nanocomposite cathode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
JP2016528159A (en) * 2013-08-19 2016-09-15 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide rich cathode materials and methods for their preparation
WO2015061121A1 (en) 2013-10-24 2015-04-30 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
US9882214B2 (en) 2013-10-24 2018-01-30 Dow Global Technologies Llc Lithium metal oxide cathode materials and method to make them
US10305095B2 (en) 2013-11-12 2019-05-28 Nichia Corporation Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10490810B2 (en) 2013-12-13 2019-11-26 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
WO2015094847A1 (en) 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
WO2015183599A1 (en) 2014-05-27 2015-12-03 Dow Global Technologies Llc Lithium battery electrolyte solution containing methyl (2,2,3,3,-tetrafluoropropyl) carbonate
US11205776B2 (en) 2014-05-27 2021-12-21 Dow Global Technologies Llc Lithium metal oxide cathode materials and method to make them
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
WO2016077182A1 (en) 2014-11-11 2016-05-19 Dow Global Technologies Llc High volumetric energy density lithium battery with long cycle life
WO2016095177A1 (en) 2014-12-18 2016-06-23 Dow Global Technologies Llc Lithium ion battery having improved thermal stability
US11251419B2 (en) 2014-12-18 2022-02-15 Dow Global Technologies Llc Lithium ion battery having improved thermal stability
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
US10903492B2 (en) 2016-05-09 2021-01-26 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2019153567A (en) * 2017-07-12 2019-09-12 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2022095969A (en) * 2017-07-12 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2021509530A (en) * 2017-10-09 2021-03-25 シーエスアイアールCsir Cathode material
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide

Similar Documents

Publication Publication Date Title
JPH11307094A (en) Lithium secondary battery positive electrode active material and lithium secondary battery
US10297822B2 (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
US6193946B1 (en) Process for the preparation of a lithium composite metal oxide
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JPH08222220A (en) Manufacture of positive electrode active material for lithium secondary battery
US6589695B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP5019548B2 (en) Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2012127796A1 (en) Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424