JP4867153B2 - Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4867153B2
JP4867153B2 JP2004308562A JP2004308562A JP4867153B2 JP 4867153 B2 JP4867153 B2 JP 4867153B2 JP 2004308562 A JP2004308562 A JP 2004308562A JP 2004308562 A JP2004308562 A JP 2004308562A JP 4867153 B2 JP4867153 B2 JP 4867153B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrode active
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004308562A
Other languages
Japanese (ja)
Other versions
JP2006120529A (en
Inventor
達治 沼田
健宏 野口
大輔 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004308562A priority Critical patent/JP4867153B2/en
Publication of JP2006120529A publication Critical patent/JP2006120529A/en
Application granted granted Critical
Publication of JP4867153B2 publication Critical patent/JP4867153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、低価格で高容量な非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery having a low cost and a high capacity, a positive electrode for a secondary battery, and a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池はNi−Cd電池やNi−MH電池と比較し、一般に動作電圧が高く単位容積あたり、単位重量あたりのエネルギー密度の双方で他の電池系を凌駕している。そのため、特に小型軽量化に適しており携帯電話やデジタルカメラ、ノート型パーソナルコンピュータ(ノートPCと表すことがある)等に広く採用され、今日のモバイル機器の発展に大きく寄与している。   Compared with Ni-Cd batteries and Ni-MH batteries, lithium ion secondary batteries generally have a higher operating voltage and outperform other battery systems in both unit volume and energy density per unit weight. Therefore, it is particularly suitable for reduction in size and weight and is widely used in mobile phones, digital cameras, notebook personal computers (sometimes referred to as notebook PCs) and the like, and greatly contributes to the development of today's mobile devices.

一方、近年では環境問題への意識の高まりからクリーンエネルギー社会への移行、環境技術の確立が注目を集めており、電力貯蔵用途・無停電電源(UPSと表すことがある)用途・移動体向け電源用途などに適した高性能二次電池の早期実現が求められている。リチウムイオン二次電池は前述の高エネルギー密度という特性から、こうした大型電池への展開にも積極的に検討されているものの、該技術あるいは該技術の適用製品の幅広い普及のためには、現有製品に対するライフサイクルコスト上の優位性が必須であり、低価格化が不可欠な要素である。   On the other hand, in recent years, attention has been focused on the shift to a clean energy society and the establishment of environmental technology due to the growing awareness of environmental issues. For power storage, uninterruptible power supply (sometimes referred to as UPS), and mobile There is a need for early realization of high-performance secondary batteries suitable for power supply applications. Although the lithium ion secondary battery has been actively studied for the development of such a large battery due to the above-mentioned characteristic of high energy density, the current product is widely used for widespread use of the technology or products to which the technology is applied. Life cycle cost advantage over is essential, and low price is an indispensable element.

換言すると、動作電圧の高いリチウムイオン二次電池において、低価格な材料を用いて充放電電流値を大きくすることが出来れば、高性能のUPSあるいはハイブリッド自動車(HEVと表すことがある)の実現、ひいては高度情報化社会、クリーネネルギー社会の構築に寄与できる。   In other words, if a charge / discharge current value can be increased using a low-priced material in a lithium ion secondary battery with a high operating voltage, a high-performance UPS or hybrid vehicle (sometimes referred to as HEV) can be realized. As a result, it can contribute to the construction of an advanced information society and a clean energy society.

こうした背景から、リチウムイオン二次電池の低価格化と高容量化は積極的に検討されている。たとえば、従来、小型携帯用途ではLiCoO2の採用が主流であったが、LiCoO2代替材料としてCoを他元素で置き換える試み、あるいはオリビン系材料などの開発が加速されている。 Against this background, the reduction in price and increase in capacity of lithium ion secondary batteries are being actively studied. For example, conventionally, LiCoO 2 has been mainly used for small portable applications, but attempts have been made to replace Co with other elements as LiCoO 2 substitute materials, or development of olivine-based materials has been accelerated.

現在、そのような開発トレンドの中で注目を集めているのは、LiNi0.5Mn0.52、あるいはLiCo1/3Mn1/3Ni1/32である。しかしながら、これらの材料は低価格化のインパクトが弱く、充放電レートの低さなどからHEVやUPS用途への展開に課題を有している。 Currently, LiNi 0.5 Mn 0.5 O 2 or LiCo 1/3 Mn 1/3 Ni 1/3 O 2 is attracting attention among such development trends. However, these materials have a weak impact on cost reduction, and have problems in development for HEV and UPS applications due to the low charge / discharge rate.

そこで、さらに安価な金属への置き換えと充放電特性の向上を目指して、様々な検討が加えられている。例えば特許文献1〜3では、LiNiO2の改良の結果として、Niの一部をMnあるいはFeで置換する技術が開示されている。LiMO2(Mは遷移金属)を非水電解液二次電池の正極材料として用いることは、特許文献4で開示されているものの、同文献にはM=Co、Ni以外で特に有効という具体的な組成は示されていなかった。そこで、特許文献1〜3では、LiNiO2中のNiの一部をFeまたはMnで置換した系が検討されており、特定の格子定数を有する活物質(特許文献1)、特定の粉体特性を有する活物質(特許文献2)、特定の負極との組み合わせ(特許文献3)が有効として開示されている。一方、LiFeO2を端組成としてNiやMnの一部置換で特性改善を試みたのが特許文献5および特許文献6に開示されている発明である。特許文献5にはメジアン径を規定した正極活物質が、特許文献6にはリチウム電池の製造方法が開示されている。さらに特許文献7〜9にもLiMnO2−LiFeO2−LiNiO2の固溶領域組成が開示されている。 Therefore, various studies have been made with the aim of replacing with cheaper metals and improving the charge / discharge characteristics. For example, Patent Documents 1 to 3 disclose techniques for substituting a part of Ni with Mn or Fe as a result of improvement of LiNiO 2 . The use of LiMO 2 (M is a transition metal) as a positive electrode material for a non-aqueous electrolyte secondary battery is disclosed in Patent Document 4, but is specifically effective other than M = Co and Ni. The composition was not shown. Therefore, in Patent Documents 1 to 3, a system in which a part of Ni in LiNiO 2 is substituted with Fe or Mn is studied, and an active material having a specific lattice constant (Patent Document 1), specific powder characteristics A combination with an active material (Patent Document 2) and a specific negative electrode (Patent Document 3) is disclosed as effective. On the other hand, the inventions disclosed in Patent Document 5 and Patent Document 6 attempted to improve characteristics by partially replacing Ni or Mn with LiFeO 2 as an end composition. Patent Document 5 discloses a positive electrode active material having a median diameter defined, and Patent Document 6 discloses a method for producing a lithium battery. Furthermore, Patent Documents 7 to 9 also disclose the solid solution region composition of LiMnO 2 —LiFeO 2 —LiNiO 2 .

また、同様に添加元素としてAlを用いた低価格化あるいは特性改善の報告も特許文献8、10、11、12に見られる。しかしながら、いずれも低価格化のインパクトならびに充放電サイクル特性、レート特性にさらなる改善が必要であった。   Similarly, reports on price reduction or characteristic improvement using Al as an additive element are also found in Patent Documents 8, 10, 11, and 12. However, all of them required further improvement in the impact of cost reduction, charge / discharge cycle characteristics, and rate characteristics.

特許第3064655号公報Japanese Patent No. 3064655 特許第3232984号公報Japanese Patent No. 3232984 特許第3281829号公報Japanese Patent No. 3281829 米国特許第4302518号明細書US Pat. No. 4,302,518 特許第3276451号公報Japanese Patent No. 3276451 特許第3489771号公報Japanese Patent No. 3489771 特開2003−048718号公報JP 2003-048718 A 特開2002−145623号公報JP 2002-145623 A 特開2002−060223号公報JP 2002-060223 A 特開2000−223122号公報JP 2000-223122 A 特開2002−234733号公報JP 2002-234733 A 特許第3561607号公報Japanese Patent No. 3561607

こうした先行技術の事情に鑑み、本発明は、高容量でサイクル寿命にも優れ、かつ低価格な非水電解液二次電池用の正極活物質、二次電池用正極およびこれらを用いた非水電解液二次電池を提供することを目的とする。   In view of the circumstances of such prior art, the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery, a high capacity, excellent cycle life, and low cost, a positive electrode for a secondary battery, and a non-aqueous solution using these. An object is to provide an electrolyte secondary battery.

本発明者らは、従来の技術を精査し、LiMO2中のMの組成領域として、Mn=50〜60mol%かつNi=30〜40mol%かつMe=10〜20mol%(Meは3価のカチオンとなる金属元素を表す。)の領域ならびに、この3成分に更にLiを加えた4成分の組成は、未だ具体的かつ詳細な検討がなされていないことを踏まえ、該組成域において実使用に耐えうる活物質組成が存在するかを徹底的に検討し、本発明を完成するに至った。 The present inventors have scrutinized the conventional technique, and as a composition region of M in LiMO 2 , Mn = 50 to 60 mol%, Ni = 30 to 40 mol%, and Me = 10 to 20 mol% (Me is a trivalent cation). And the composition of the four components obtained by adding Li to the three components has not been studied in detail and has not been studied in detail, and it can withstand actual use in the composition region. The present invention has been completed by thoroughly examining whether there is a composition of active material that can be obtained.

すなわち、上記課題を解決した本発明は、金属元素の含有比率(モル比)が下記式(1)で表され、かつ、下記式(2)で表される条件を満たすリチウムマンガン系複合酸化物を含むことを特徴とする非水電解液二次電池用の正極活物質である。
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)
(上式中、Meは、FeまたはAlを表す。)
また、上記課題を解決した本発明は、金属元素の含有比率(モル比)が下記式(1)で表され、かつ、下記式(2)で表される条件を満たすリチウムマンガン系複合酸化物を含み、下記式(1)の値および下記式(2)の値が、それぞれの値に対して±2.5%の範囲にあることを特徴とする非水電解液二次電池用の正極活物質である。
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)
(上式中、Meは、FeまたはAlを表す。)
前記リチウムマンガン系複合酸化物は、下記式(3)で表されるリチウムマンガン系複合酸化物であることが好ましい。
Li[Mn0.5Ni0.3Me0.1Li0.1]O2 (3)
(上式中、Meは、FeまたはAlを表す。)
That is, the present invention which has solved the above problems, the content ratio of the metal element (molar ratio) is represented by the following formula (1), and satisfies the lithium manganese-based composite oxide represented by the following formula (2) A positive electrode active material for a non-aqueous electrolyte secondary battery.
[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(In the above formula, Me represents Fe or Al .)
Moreover, the present invention that has solved the above problems is a lithium manganese composite oxide in which the content ratio (molar ratio) of the metal element is represented by the following formula (1) and satisfies the condition represented by the following formula (2). And the value of the following formula (1) and the value of the following formula (2) are in the range of ± 2.5% with respect to the respective values. It is an active material.
[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(In the above formula, Me represents Fe or Al.)
The lithium manganese-based composite oxide is preferably a lithium manganese-based composite oxide represented by the following following formula (3).
Li [Mn 0.5 Ni 0.3 Me 0.1 Li 0.1 ] O 2 (3)
(In the above formula, Me represents Fe or Al .)

さらに、上記課題を解決した本発明は、少なくとも、リチウムを挿入・脱離可能な負極と、非水電解液を介して該負極と対向配置された、正極活物質を用いた正極を備えた非水電解液二次電池において、該正極活物質が、前記本発明の非水電解液二次電池用の正極活物質であることを特徴とする非水電解液二次電池である。   Furthermore, the present invention that has solved the above problems includes a non-electrode including a negative electrode capable of inserting / extracting lithium, and a positive electrode using a positive electrode active material disposed opposite to the negative electrode via a non-aqueous electrolyte. In the water electrolyte secondary battery, the positive electrode active material is a positive electrode active material for the nonaqueous electrolyte secondary battery of the present invention.

さらに、上記課題を解決した本発明は、前記本発明の非水電解液二次電池用の正極活物質を用いた二次電池用正極であって、該二次電池用正極を構成する、集電体金属箔を除いた、合剤が、2.55〜3.05g/cm3の密度を有するものであることを特徴とする二次電池用正極である。
さらに、上記課題を解決した本発明は、前記本発明の二次電池用正極を用いた非水電解液二次電池である。
Furthermore, the present invention that has solved the above problems is a positive electrode for a secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, wherein the positive electrode for the secondary battery is constituted. A positive electrode for a secondary battery, wherein the mixture, excluding the electric metal foil, has a density of 2.55 to 3.05 g / cm 3 .
Furthermore, this invention which solved the said subject is a nonaqueous electrolyte secondary battery using the positive electrode for secondary batteries of the said this invention.

本発明の非水電解液二次電池用の正極活物質は、金属元素の含有比率(モル比)が下記式(1)で表され、かつ、下記式(2)
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)
(上式中、Meは、FeまたはAlを表す。)
で表される条件を満たすリチウムマンガン系複合酸化物を含むものとすることにより、充電前の初期状態において、前記リチウムマンガン系複合酸化物中の、マンガン(Mn)は4価近傍の、ニッケル(Ni)は2価の、金属元素Meは3価の安定な酸化度を有し、構造の安定化が図られている。換言すれば、リチウム(Li)、Mn、Ni、Meの各元素の比率を、任意の組成範囲での固溶ではなく、実質的に[Li]:[Mn]:[Ni]:[Me]=1.1:0.5:0.3:0.1のごく近傍の金属元素含有比率とすることにより構造の安定化を図ったものである。
Positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention, the content ratio of the metal element (molar ratio) is represented by the following formula (1), and, under following formula (2)
[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(In the above formula, Me represents Fe or Al .)
In the initial state before charging, manganese (Mn) in the lithium manganese composite oxide is in the vicinity of tetravalent nickel (Ni). Is a divalent metal element, Me has a trivalent stable oxidation degree, and the structure is stabilized. In other words, the ratio of each element of lithium (Li), Mn, Ni, and Me is not a solid solution in an arbitrary composition range, but is substantially [Li]: [Mn]: [Ni]: [Me]. = Stabilization of the structure by setting the metal element content ratio very close to 1.1: 0.5: 0.3: 0.1.

本発明における前記リチウムマンガン系複合酸化物は、ABO2と表記した場合の層状結晶構造において、AサイトとBサイトの両方にLiが必須であり、また、本発明における前記リチウムマンガン系複合酸化物は、構成元素の初期価数ならびに、その比率が限定されていることにより、充放電反応メカニズムにおいて、Liの挿入脱離の際、価数変化を示すカチオンの比率は20%以下となる。 In the lithium manganese composite oxide in the present invention, Li is essential at both the A site and the B site in the layered crystal structure expressed as ABO 2, and the lithium manganese composite oxide in the present invention Since the initial valence of the constituent elements and the ratio thereof are limited, in the charge / discharge reaction mechanism, the ratio of the cation exhibiting a valence change at the time of insertion / extraction of Li is 20% or less.

つまり、本発明における前記リチウムマンガン系複合酸化物は、カチオン間の価数バランスが取れており、かつ充放電に伴って酸化還元するカチオンの比率が全カチオンに対して20%以下であるため、充放電に伴う体積増減も少なく信頼性が高い。また、高価なコバルト(Co)を含んでおらず、Niの比率も比較的小さいため、正極活物質の価格も低く抑えることが可能である。加えて軽元素であるLiの比率が高いことから、重量あたりの容量密度も高い値が得られるというメリットも有している。
すなわち、上述した金属元素の含有比率を有するリチウムマンガン系複合酸化物を用いることにより、本発明は、高容量かつ低価格な二次電池を実現したものであり、HEVやUPS等の用途において、電池パック/モジュールの小型軽量化ならびに低コスト化を実現したものである。
That is, the lithium manganese composite oxide in the present invention has a valence balance between cations, and the ratio of cations that are oxidized / reduced with charge / discharge is 20% or less with respect to all cations, There is little increase or decrease in volume due to charge / discharge, and reliability is high. Moreover, since expensive cobalt (Co) is not included and the ratio of Ni is relatively small, the price of the positive electrode active material can be kept low. In addition, since the ratio of Li, which is a light element, is high, there is also an advantage that a high capacity density per weight can be obtained.
That is, by using a lithium manganese composite oxide having the above-described metal element content ratio, the present invention realizes a high-capacity and low-priced secondary battery. In applications such as HEV and UPS, The battery pack / module is reduced in size, weight and cost.

本発明に係る非水電解液二次電池用の正極活物質は、金属元素の含有比率(モル比)が実質下記式(1)で表され、かつ、下記式(2)で表される条件を満たすリチウムマンガン系複合酸化物を含むことを特徴とする。
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)
(上式中、Meは、3価のカチオンとなる金属元素を表す。)
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a metal element content ratio (molar ratio) substantially represented by the following formula (1) and a condition represented by the following formula (2). It contains lithium manganese complex oxide satisfying the above.
[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(In the above formula, Me represents a metal element that becomes a trivalent cation.)

上記リチウムマンガン系複合酸化物は、金属元素の含有比率(モル比)が、実質上記式(1)で表されるが、各々の金属元素のモル比における値は、これらの値に対し±2.5%の許容範囲に入るものであればよく、かつ、実質上記式(2)で表される[Li]と、[Mn]、[Ni]、[Me]の各々の金属元素の含有比率の合算値([Mn+Ni+Me]と表すことがある)の比(モル比)の値1.22に対し±2.5%の許容範囲に入るものであればよい。   In the lithium manganese based composite oxide, the content ratio (molar ratio) of the metal elements is substantially represented by the above formula (1), but the value in the molar ratio of each metal element is ± 2 with respect to these values. The content ratio of each of the metal elements of [Li] and [Mn], [Ni], and [Me] substantially represented by the above formula (2) is acceptable as long as it is within the allowable range of 5%. As long as it is within the allowable range of ± 2.5% with respect to the ratio (molar ratio) value 1.22 of the total value (which may be expressed as [Mn + Ni + Me]).

また上記リチウムマンガン系複合酸化物は、実質下記式(3)で表されるリチウムマンガン系複合酸化物であることが好ましい。
Li[Mn0.5Ni0.3Me0.1Li0.1]O2 (3)
(上式中、Meは、3価のカチオンとなる金属元素を表す。)
The lithium manganese composite oxide is preferably a lithium manganese composite oxide substantially represented by the following formula (3).
Li [Mn 0.5 Ni 0.3 Me 0.1 Li 0.1 ] O 2 (3)
(In the above formula, Me represents a metal element that becomes a trivalent cation.)

3価のカチオンとなる金属元素Me(Meと表すことがある)としては、例えば、鉄(Fe)、アルミニウム(Al)、その他スカンジウム(Sc)、クロム(Cr)、ガリウム(Ga)、イットリウム(Y)、インジウム(In)等を挙げることができる。このうち、Fe、Alが特に好ましい。その理由は、容量増加を効果的に、しかも低コストで達成できるからである。   Examples of the metal element Me (sometimes referred to as Me) that becomes a trivalent cation include iron (Fe), aluminum (Al), other scandium (Sc), chromium (Cr), gallium (Ga), yttrium ( Y), indium (In), and the like. Of these, Fe and Al are particularly preferable. The reason is that an increase in capacity can be achieved effectively and at a low cost.

リチウムマンガン系複合酸化物中におけるMnの原子価は、4価近傍、具体的には、好ましくは3.8以上、より好ましくは3.9以上とする。こうすることにより、動作電位をより安定的に高く維持することができ、また、Mnの電解液への溶出をより効果的に防止し、繰り返し使用時における容量低下を抑制することができる。なお、Mnの原子価は、Mn以外の各構成元素の原子価および組成比に基づいて算出することができる。   The valence of Mn in the lithium manganese composite oxide is around tetravalent, specifically, preferably 3.8 or more, more preferably 3.9 or more. By doing so, the operating potential can be maintained more stably and high, the elution of Mn into the electrolytic solution can be more effectively prevented, and the decrease in capacity during repeated use can be suppressed. The valence of Mn can be calculated based on the valence and composition ratio of each constituent element other than Mn.

本発明におけるリチウムマンガン系複合酸化物においは、上述したように、Mnの原子価は、好ましくは3.8以上、より好ましくは3.9以上であり、Niは2価であることが好ましく、Meは3価であることが好ましい。このような関係が保たれた状態では、カチオン間の価数バランスが取れており、かつ充放電に伴って酸化還元するカチオンの比率が全カチオンに対して20%以下であるため、充放電に伴う体積増減も少なく信頼性が高く、高容量化が可能となる。また、上記式(2)で表される条件を満たすことによりLiの比率を高く保ち、電池重量も減少し、重量当たりの容量密度を高く保つことが容易となる。   In the lithium manganese composite oxide in the present invention, as described above, the valence of Mn is preferably 3.8 or more, more preferably 3.9 or more, and Ni is preferably divalent, Me is preferably trivalent. In a state in which such a relationship is maintained, the valence balance between cations is balanced, and the ratio of cations that are oxidized / reduced with charge / discharge is 20% or less with respect to all cations. There is little increase or decrease in volume, and the reliability is high and the capacity can be increased. Further, by satisfying the condition expressed by the above formula (2), the ratio of Li can be kept high, the battery weight can be reduced, and the capacity density per weight can be easily kept high.

本発明の非水電解液二次電池は、上記リチウムマンガン系複合酸化物を含む正極活物質を用いた正極と、リチウムを吸蔵放出可能な負極活物質を持つ負極を主要成分とし、正極と負極の間に電気的接続を起こさないようなセパレータが挟まれ、正極と負極はリチウムイオン伝導性の非水電解液に浸った状態で、非水電解液を介して対向配置され、これらが電池ケースの中に密閉された状態となっている。正極と負極に電圧を印加することにより正極活物質からリチウムイオンが脱離し、負極(活物質)にリチウムイオンが吸蔵され、充電状態となる。また、正極と負極の電気的接触を電池外部で起こすことにより、充電時と逆に、負極活物質からリチウムイオンが放出され、正極活物質にリチウムイオンが吸蔵されることにより、放電が起こる。   The non-aqueous electrolyte secondary battery according to the present invention includes, as main components, a positive electrode using a positive electrode active material containing the above lithium manganese composite oxide, and a negative electrode having a negative electrode active material capable of occluding and releasing lithium. A separator which does not cause an electrical connection is sandwiched between the positive electrode and the negative electrode so that they are immersed in a lithium ion conductive nonaqueous electrolyte solution, facing each other through the nonaqueous electrolyte solution. It is in a state of being sealed inside. When a voltage is applied to the positive electrode and the negative electrode, lithium ions are desorbed from the positive electrode active material, and the lithium ions are occluded in the negative electrode (active material), resulting in a charged state. In addition, by causing electrical contact between the positive electrode and the negative electrode outside the battery, lithium ions are released from the negative electrode active material, and lithium ions are occluded in the positive electrode active material, which is opposite to that during charging.

次に非水電解液二次電池用の正極活物質の作製方法について説明する。非水電解液二次電池用の正極活物質の作製原料として、Li原料には、Li2CO3、LiOH、Li2O、Li2SO4などを用いることができるが、Li2CO3、LiOHなどが適している。Mn原料としては、電解二酸化マンガン(EMD)・Mn23、Mn34、CMD等の種々のMn酸化物、MnCO3、MnSO4などを用いることができる。Ni原料としては、NiO、Ni(OH)2、NiSO4、Ni(NO32などが使用可能である。また3価のカチオンとなる金属元素Meの原料としてMeの酸化物、炭酸塩、水酸化物、硫化物、硝酸塩などが用いられる。Ni原料や、Mn原料、3価のカチオンとなる金属元素原料は、焼成時に元素拡散が起こり難くい場合があり、原料焼成後、Ni酸化物、Mn酸化物、Me酸化物が異相として残留してしまうことがある。このため、Ni原料とMn原料、Me原料を水溶液中に溶解混合させた後、水酸化物、硫酸塩、炭酸塩、硝酸塩などの形で析出させたNi、Mn複合前駆体やMeを含むNi、Mn複合前駆体を原料として用いることが可能である。また、このような複合前駆体を焼成させたNi、Mn複合酸化物やNi、Mn、Me複合酸化物を用いることも可能である。このような複合前駆体や複合酸化物を原料として用いた場合、Mn、Ni、Meが原子レベルで良く拡散しており好ましい。 Next, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery will be described. As a raw material for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, Li 2 CO 3 , LiOH, Li 2 O, Li 2 SO 4 and the like can be used as the Li raw material, but Li 2 CO 3 , LiOH or the like is suitable. As the Mn raw material, various manganese oxides such as electrolytic manganese dioxide (EMD) / Mn 2 O 3 , Mn 3 O 4 , CMD, MnCO 3 , MnSO 4 and the like can be used. NiO, Ni (OH) 2 , NiSO 4 , Ni (NO 3 ) 2, etc. can be used as the Ni raw material. In addition, an oxide, carbonate, hydroxide, sulfide, nitrate, or the like of Me is used as a raw material for the metal element Me that becomes a trivalent cation. Ni raw materials, Mn raw materials, and metal element raw materials that become trivalent cations may be difficult to cause element diffusion during firing. After firing the raw materials, Ni oxide, Mn oxide, and Me oxide remain as different phases. May end up. For this reason, Ni raw material, Mn raw material, Me raw material are dissolved and mixed in an aqueous solution, and then precipitated in the form of hydroxide, sulfate, carbonate, nitrate, etc., Ni containing Ni, Mn composite precursor and Me It is possible to use a Mn composite precursor as a raw material. It is also possible to use Ni, Mn composite oxide or Ni, Mn, Me composite oxide obtained by firing such composite precursor. When such a complex precursor or complex oxide is used as a raw material, Mn, Ni and Me are preferably diffused well at the atomic level.

これらの原料を目的の金属組成比となるように秤量して混合する。混合は、ボールミル、ジェットミルなどにより粉砕混合する。混合粉を600℃から950℃の温度で、空気中または酸素中で焼成することによってリチウムマンガン系複合酸化物を含む正極活物質を得る。焼成温度は、それぞれの元素を拡散させるためには高温である方が望ましいが、焼成温度が高すぎると酸素欠損を生じ、電池特性に悪影響を及ぼす虞がある。このため、焼成温度は、700℃から850℃程度とするのが好ましい。またゾル−ゲルのプロセスや水熱合成など液系の手法によって合成した正極活物質も、最終的な組成を所定のものとすれば、同様に用いることができる。   These raw materials are weighed and mixed so as to have a target metal composition ratio. The mixing is performed by pulverizing and mixing with a ball mill, a jet mill or the like. The mixed powder is fired in air or oxygen at a temperature of 600 ° C. to 950 ° C. to obtain a positive electrode active material containing a lithium manganese composite oxide. The firing temperature is preferably a high temperature for diffusing each element, but if the firing temperature is too high, oxygen deficiency may occur, which may adversely affect battery characteristics. For this reason, it is preferable that a calcination temperature shall be about 700 to 850 degreeC. A positive electrode active material synthesized by a liquid system method such as a sol-gel process or hydrothermal synthesis can also be used in the same manner if the final composition is a predetermined one.

得られたリチウムマンガン系複合酸化物の比表面積は1.5m2/g以下であることが好ましく、さらに好ましくは0.8m2/g以下である。比表面積が大きいほど、結着剤が多く必要であり、正極活物質の容量密度の点で不利になる傾向がみられるからである。 The specific surface area of the obtained lithium manganese composite oxide is preferably 1.5 m 2 / g or less, more preferably 0.8 m 2 / g or less. This is because the larger the specific surface area, the more binders are required, which tends to be disadvantageous in terms of the capacity density of the positive electrode active material.

得られた正極活物質、導電性付与剤、結着剤等の合剤原料を有機溶剤に分散して、これを集電体上に塗布し乾燥して、または、正極活物質、導電性付与剤、結着剤等の合剤原料を混合して合剤を調製しこれを集電体に加圧接着して二次電池用正極を形成する。導電性付与剤の例としては、炭素材料の他、Alなどの金属物質、導電性酸化物の粉末などを使用することができる。結着剤としてはポリフッ化ビニリデンなどが用いられる。集電体としてはAlなどの金属を主体とする金属薄膜を用いることができる。   The obtained positive electrode active material, conductivity imparting agent, binder and other mixture raw materials are dispersed in an organic solvent and applied on a current collector and dried, or the positive electrode active material and conductivity imparted A mixture material such as a binder and a binder is mixed to prepare a mixture, which is pressure-bonded to a current collector to form a positive electrode for a secondary battery. Examples of the conductivity-imparting agent include carbon materials, metal substances such as Al, and conductive oxide powders. As the binder, polyvinylidene fluoride or the like is used. As the current collector, a metal thin film mainly composed of metal such as Al can be used.

好ましくは導電性付与剤の添加量は合剤の質量に対し1〜10質量%程度であり、結着剤の添加量も合剤の質量に対し1〜10質量%程度である。これは、非水電解液二次電池用の正極活物質の割合が大きい方が重量当たりの容量が大きくなるためである。導電性付与剤と結着剤の割合が小さすぎると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。また、形成された二次電池正極を構成する、集電体を除いた、合剤の密度は、2.55〜3.05g/cm3とするのが好ましい。合剤の密度を上記値とすると、高放電レートでの使用時における放電容量が向上し好ましい。 Preferably, the addition amount of the conductivity imparting agent is about 1 to 10% by mass with respect to the mass of the mixture, and the addition amount of the binder is also about 1 to 10% by mass with respect to the mass of the mixture. This is because the capacity per unit weight increases as the proportion of the positive electrode active material for the non-aqueous electrolyte secondary battery increases. If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained, or a problem of electrode peeling may occur. Moreover, it is preferable that the density of the mixture which comprises the formed secondary battery positive electrode except the electrical power collector shall be 2.55-3.05 g / cm < 3 >. When the density of the mixture is the above value, the discharge capacity at the time of use at a high discharge rate is preferably improved.

本発明における電解液としては、プロピレンカーボネート(PCと表すことがある)、エチレンカーボネート(ECと表すことがある)、ブチレンカーボネート(BCと表すことがある)、ビニレンカーボネート(VCと表すことがある)等の環状カーボネート類、ジメチルカーボネート(DMCと表すことがある)、ジエチルカーボネート(DECと表すことがある)、エチルメチルカーボネート(EMCと表すことがある)、ジプロピルカーボネート(DPCと表すことがある)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1、2−エトキシエタン(DEEと表すことがある)、エトキシメトキシエタン(EMEと表すことがある)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用できる。このうち、プロピレンカーボネート、エチレンカーボネート、γ−ブチルラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを単独もしくは混合して用いることが好ましい。   As an electrolytic solution in the present invention, propylene carbonate (may be represented as PC), ethylene carbonate (may be represented as EC), butylene carbonate (may be represented as BC), and vinylene carbonate (may be represented as VC). ), Etc., dimethyl carbonate (sometimes represented as DMC), diethyl carbonate (sometimes represented as DEC), ethyl methyl carbonate (sometimes represented as EMC), dipropyl carbonate (sometimes represented as DPC). Linear carbonates such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, and 1,2-ethoxyethane (DEE). ), Ethoxymethoxyethane (sometimes referred to as EME) Chain ethers such as tetrahydrofuran, cyclic ethers such as 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid Triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane Aprotic organic solvents such as sultone, anisole, N-methylpyrrolidone and fluorinated carboxylic acid esters can be used singly or in combination. Of these, propylene carbonate, ethylene carbonate, γ-butyl lactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used alone or in combination.

これらの有機溶媒にはリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC49CO3、LiC(CF3SO22、LiN(CF3SO22、LiN(C25SO22、LiB10Cl10、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質を用いてもよい。電解質濃度は、たとえば0.5mol/lから1.5mol/lとする。濃度が高すぎると密度と粘度が増加する。濃度が低すぎると電気電導率が低下することがある。 Lithium salts are dissolved in these organic solvents. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic carboxylic acid lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides, etc. can give. Further, a polymer electrolyte may be used instead of the electrolytic solution. The electrolyte concentration is, for example, 0.5 mol / l to 1.5 mol / l. If the concentration is too high, density and viscosity increase. If the concentration is too low, the electrical conductivity may decrease.

負極活物質としてはリチウムを吸蔵放出可能な材料として、炭素材料、Li金属、Si、Sn、Al、SiO、SnOなどを単独または混合して用いることができる。   As the negative electrode active material, as a material capable of inserting and extracting lithium, a carbon material, Li metal, Si, Sn, Al, SiO, SnO, or the like can be used alone or in combination.

負極活物質、導電性付与剤、結着剤等の合剤原料を有機溶剤に分散し、これを集電体上に塗布し乾燥して、または、負極活物質、導電性付与剤、結着剤等の合剤原料を混合して合剤を調製しこれを集電体に加圧接着して負極を形成する。導電性付与剤の例としては、炭素材料の他、導電性酸化物の粉末などを使用することができる。結着剤としてはポリフッ化ビニリデンなどが用いられる。集電体としてはAl、Cuなどを主体とする金属薄膜を用いることができる。   Disperse raw materials for the negative electrode active material, conductivity imparting agent, binder and the like in an organic solvent, apply this on a current collector and dry it, or negative electrode active material, conductivity imparting agent, binder A mixture material such as an agent is mixed to prepare a mixture, which is pressure-bonded to a current collector to form a negative electrode. As an example of the conductivity imparting agent, a conductive oxide powder or the like can be used in addition to the carbon material. As the binder, polyvinylidene fluoride or the like is used. As the current collector, a metal thin film mainly composed of Al, Cu or the like can be used.

本発明に係る非水電解液二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、セパレータを介して積層、あるいは積層したものを捲回した後に、電池缶、例えば、正極外装缶および負極外装缶からなる電池缶等に収容したり、合成樹脂と金属箔との積層体からなる可とう性フィルム等によって封口することによって製造することができる。   A non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode and a positive electrode laminated in a dry air or inert gas atmosphere via a separator, or after being rolled up, a battery can, for example, a positive electrode exterior It can be manufactured by being housed in a battery can made of a can and a negative electrode outer can, or by sealing with a flexible film made of a laminate of a synthetic resin and a metal foil.

電池形状には制限がなく、セパレータを挟んで対向した正極、負極を巻回型、積層型などの形態を取ることが可能であり、セルにも、コイン型、ラミネートパック、角型セル、円筒型セルを用いることができる。図3に本発明の一実施形態のコインタイプの非水電解液二次電池の断面構造を示す。   There are no restrictions on the battery shape, and it can take the form of a positive electrode and negative electrode facing each other with a separator in between, a wound type, a laminated type, etc., and the cell can also be a coin type, laminate pack, square cell, cylinder Type cells can be used. FIG. 3 shows a cross-sectional structure of a coin-type non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

以下、本発明について実施例を用いて詳細に説明する。
<実施例1〜2、比較例1〜18>
(正極活物質f−1の合成例:Me=Feの場合)
正極活物質を次のような手順で合成した。
まず平均粒径3μm以下に粉砕・調整した炭酸リチウムと、同じく平均粒径5μm以下に粉砕・調整したMn/Ni/Fe=5/3/1(モル比)の金属元素含有比率(含有比率記号A)を有する複合酸化物を[Li]/[Mn+Ni+Fe]=1.13/0.9(モル比)の仕込み組成で秤量・混合した後、それをエタノールを用いた湿式ボールミルで120時間湿式混合した。得られた混合粉を100℃で24時間真空乾燥した後、空気中900℃で48時間加熱し一次焼成した。続いて、その一次焼成粉を解砕・再混合し、酸素中700℃で72時間加熱し二次焼成し粉末状の正極活物質f−1を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
<Examples 1-2 and Comparative Examples 1-18>
(Synthesis example of positive electrode active material f-1: Me = Fe)
The positive electrode active material was synthesized by the following procedure.
First, lithium carbonate ground and adjusted to an average particle size of 3 μm or less, and metal element content ratio (content ratio symbol) of Mn / Ni / Fe = 5/3/1 (molar ratio), similarly ground and adjusted to an average particle size of 5 μm or less The composite oxide having A) was weighed and mixed at a charge composition of [Li] / [Mn + Ni + Fe] = 1.13 / 0.9 (molar ratio), and then wet mixed in a wet ball mill using ethanol for 120 hours. The obtained mixed powder was vacuum-dried at 100 ° C. for 24 hours and then heated in air at 900 ° C. for 48 hours to perform primary firing. Subsequently, the primary fired powder was crushed and remixed, heated in oxygen at 700 ° C. for 72 hours, and then secondary fired to obtain a powdered positive electrode active material f-1.

得られた粉末状の正極活物質f−1についてCu Kα線を用いてX線回折パターンを測定し図1に示す結果を得た。図1に示されているように、大まかには空間群R-3mで指数付けが可能な回折パターンが得られた。X線回折ピークが全体的にブロードであること、Li2MnO3類似の小ピークがあることなどから、詳細に検証した場合、もう少し対称性が低い空間群に指数付けされる可能性もあるが、基本的には層状構造のリチウムマンガン系複合酸化物が得られたと考えられる。 The X-ray diffraction pattern of the obtained powdered positive electrode active material f-1 was measured using Cu Kα rays, and the results shown in FIG. 1 were obtained. As shown in FIG. 1, a diffraction pattern that can be roughly indexed in the space group R-3m was obtained. When the X-ray diffraction peak is broad overall and there is a small peak similar to Li 2 MnO 3 , there is a possibility that it will be indexed into a space group with slightly lower symmetry when examined in detail. Basically, it is considered that a layered lithium manganese composite oxide was obtained.

さらに、得られた正極活物質f−1の組成を誘導結合プラズマ発光分析法(IPC発光分析法と表すことがある)で金属元素について分析を行ったところ、仕込み時の金属元素の含有率比はLi/Mn/Ni/Fe=1.13/0.5/0.3/0.1(モル比)としたものの、得られた正極活物質f−1の金属元素の含有比率は、分析結果からLi/Mn/Ni/Fe=1.10/0.5/0.3/0.1(モル比)と見積もられ、狙いどおりの組成を有する、正極活物質f−1(Li[Mn0.5Ni0.3Fe0.1Li0.1]O2)が得られた。得られた正極活物質f−1の組成等を纏め表1に示す。 Further, when the composition of the obtained positive electrode active material f-1 was analyzed for a metal element by inductively coupled plasma emission spectrometry (sometimes referred to as IPC emission analysis), the content ratio of the metal element at the time of preparation Is Li / Mn / Ni / Fe = 1.13 / 0.5 / 0.3 / 0.1 (molar ratio), but the content ratio of the metal element of the obtained positive electrode active material f-1 is Li / Mn / Ni / It was estimated that Fe = 1.10 / 0.5 / 0.3 / 0.1 (molar ratio), and a positive electrode active material f-1 (Li [Mn 0.5 Ni 0.3 Fe 0.1 Li 0.1 ] O 2 ) having a desired composition was obtained. . Table 1 summarizes the composition and the like of the obtained positive electrode active material f-1.

(正極活物質f−2〜f−4の合成例:Me=Feの場合)
表1に示す[Li]/[Mn+Ni+Fe] (モル比)の仕込み組成で秤量・混合した以外は上記正極活物質f−1の合成例と同様にして、正極活物質f−2〜f−4を調製した。得られた正極活物質f−2〜f−4の組成等を纏め表1に示す。
(Synthesis example of positive electrode active materials f-2 to f-4: Me = Fe)
The positive electrode active materials f-2 to f-4 are the same as the synthesis example of the positive electrode active material f-1 except that they are weighed and mixed with the charged composition of [Li] / [Mn + Ni + Fe] (molar ratio) shown in Table 1. Was prepared. Table 1 summarizes the compositions and the like of the obtained positive electrode active materials f-2 to f-4.

(正極活物質f−5〜f−10の合成例:Me=Feの場合)
表1に示す含有比率記号B〜GのMn/Ni/Fe含有比率(モル比)を有する複合酸化物を各々用い、炭酸リチウムと、上記複合酸化物の各々を表1に示す[Li]/[Mn+Ni+Fe](モル比)の仕込み組成で各々秤量・混合した以外は上記正極活物質f−1の合成例と同様にして、正極活物質f−5〜f−10を調製した。得られた正極活物質f−5〜f−10の組成等を纏め表1に示す。
(Synthesis example of positive electrode active materials f-5 to f-10: Me = Fe)
Each composite oxide having a Mn / Ni / Fe content ratio (molar ratio) of content ratio symbols B to G shown in Table 1 was used, and lithium carbonate and each of the composite oxides shown in [Li] / Positive electrode active materials f-5 to f-10 were prepared in the same manner as in the synthesis example of the positive electrode active material f-1 except that each was weighed and mixed in a charged composition of [Mn + Ni + Fe] (molar ratio). Table 1 summarizes the compositions and the like of the obtained positive electrode active materials f-5 to f-10.

(正極活物質a−1の合成例:Me=Alの場合)
正極活物質a−1は次のような手順で合成した。まず平均粒径3μm以下に粉砕・調整した炭酸リチウムと、同じく平均粒径5μm以下に粉砕・調整したMn/Ni/Al=5/3/1(モル比)の金属元素の含有比率(含有比率記号A)を有する複合酸化物をLi/[Mn+Ni+Al]=1.11/0.9(モル比)の仕込み組成で秤量・混合した後、それをエタノールを用いた湿式ボールミルで72時間湿式混合した。得られた混合粉を100℃で24時間真空乾燥した後、空気中750℃で48時間加熱し一次焼成した。続いて、その一次焼成粉を解砕・再混合し、酸素中700℃で72時間加熱し二次焼成し粉末状の正極活物質a−1を得た。
(Synthesis example of positive electrode active material a-1: Me = Al)
The positive electrode active material a-1 was synthesized by the following procedure. First, lithium carbonate ground and adjusted to an average particle size of 3 μm or less, and metal element content ratio (content ratio) of Mn / Ni / Al = 5/3/1 (molar ratio), similarly ground and adjusted to an average particle size of 5 μm or less The composite oxide having the symbol A) was weighed and mixed at a charging composition of Li / [Mn + Ni + Al] = 1.11 / 0.9 (molar ratio), and then wet mixed in a wet ball mill using ethanol for 72 hours. The obtained mixed powder was vacuum-dried at 100 ° C. for 24 hours, and then heated in air at 750 ° C. for 48 hours to perform primary firing. Subsequently, the primary fired powder was crushed and remixed, heated in oxygen at 700 ° C. for 72 hours, and then secondary fired to obtain a powdered positive electrode active material a-1.

得られた粉末状の正極活物質a−1についてCu Kα線を用いてX線回折パターンを測定したところ、僅かにピークが高角度側にシフトしているものの、図1と同様の回折パターンが得られた。   When the X-ray diffraction pattern of the obtained powdered positive electrode active material a-1 was measured using Cu Kα rays, the same diffraction pattern as in FIG. 1 was obtained although the peak was slightly shifted to the high angle side. Obtained.

さらに、得られた正極活物質a−1の組成を実施例1と同様にして分析を行ったところ、仕込み時の金属元素の含有比率はLi/Mn/Ni/Al=1.11/0.5/0.3/0.1(モル比)としたものの、得られた正極活物質a−1の金属元素の含有比率はLi/Mn/Ni/Al=1.10/0.5/0.3/0.1(モル比)と見積もられ、ほぼ狙いの組成を有する、正極活物質a−1(Li[Mn0.5Ni0.3Al0.1Li0.1]O2)が得られた。得られた正極活物質a−1の組成等を纏め表1に示す。 Further, the composition of the obtained positive electrode active material a-1 was analyzed in the same manner as in Example 1. As a result, the content ratio of the metal element at the time of preparation was Li / Mn / Ni / Al = 1.11 / 0.5 / 0.3 / Although the ratio was 0.1 (molar ratio), the metal element content ratio of the obtained positive electrode active material a-1 was estimated to be Li / Mn / Ni / Al = 1.10 / 0.5 / 0.3 / 0.1 (molar ratio). A positive electrode active material a-1 (Li [Mn 0.5 Ni 0.3 Al 0.1 Li 0.1 ] O 2 ) having a target composition was obtained. Table 1 summarizes the composition and the like of the obtained positive electrode active material a-1.

(正極活物質a−2〜a−4の合成例:Me=Alの場合)
表1に示す[Li]/[Mn+Ni+Al](モル比)の仕込み組成で秤量・混合した以外は上記正極活物質a−1の合成例と同様にして、正極物質a−2〜a−4を調製した。得られた正極活物質a−2〜a−4の組成等を纏め表1に示す。
(Synthesis example of positive electrode active materials a-2 to a-4: Me = Al)
The positive electrode materials a-2 to a-4 were prepared in the same manner as in the synthesis example of the positive electrode active material a-1 except that they were weighed and mixed with the charge composition of [Li] / [Mn + Ni + Al] (molar ratio) shown in Table 1. Prepared. Table 1 summarizes the compositions and the like of the obtained positive electrode active materials a-2 to a-4.

(正極活物質a−5〜a−10の合成:Me=Alの場合)
表1に示す含有比率記号B〜GのMn/Ni/Alの金属元素の含有比率(モル比)を有する複合酸化物を各々用い、炭酸リチウムと、上記複合酸化物の各々を表1に示す[Li]/[Mn+Ni+Al](モル比)の仕込み組成で各々秤量・混合した以外は上記正極活物質a−1の合成例と同様にして、正極物質a−5〜a−10を調製した。得られた正極活物質a−5〜a−10の組成等を纏め表1に示す。
(Synthesis of positive electrode active materials a-5 to a-10: Me = Al)
Each composite oxide having a content ratio (molar ratio) of metal elements of Mn / Ni / Al with content ratio symbols B to G shown in Table 1 is used, and lithium carbonate and each of the composite oxides are shown in Table 1. Positive electrode materials a-5 to a-10 were prepared in the same manner as in the synthesis example of the positive electrode active material a-1, except that each was prepared and weighed and mixed in a charged composition of [Li] / [Mn + Ni + Al] (molar ratio). Table 1 summarizes the compositions and the like of the obtained positive electrode active materials a-5 to a-10.

(正極電極の作製)
上記合成例で得られた正極活物質f−1〜f-10ならびにa-1〜a−10のいずれかの正極活物質、導電性付与材としてアセチレンブラック(ABと表すことがある)と気相成長炭素繊維(VGCFと表すことがある)、結着剤としてポリフッ化ビニリデン(PVDFと表すことがある)を用い、正極活物質:AB:VGCF:PVDF=87:5:2:6(質量比)でN-メチル-2-ピロリドン(NMPと表すことがある)に分散させ合剤塗工液を調製した。この塗工液をAl金属箔集電体上に塗布し、NMPを加熱蒸発させ正極電極を作製した。
(Preparation of positive electrode)
Positive electrode active materials f-1 to f-10 obtained in the above synthesis examples and any one of a-1 to a-10 positive electrode active materials, acetylene black (sometimes referred to as AB) and air as a conductivity-imparting material. Phase-grown carbon fiber (sometimes referred to as VGCF), polyvinylidene fluoride (sometimes referred to as PVDF) as a binder, positive electrode active material: AB: VGCF: PVDF = 87: 5: 2: 6 (mass) Ratio) was dispersed in N-methyl-2-pyrrolidone (sometimes referred to as NMP) to prepare a mixture coating solution. This coating solution was applied onto an Al metal foil current collector, and NMP was heated and evaporated to produce a positive electrode.

(二次電池の作製)
2320タイプのコインセルを次のようにして作製した。二次電池正極として上記の電池正極を用いた。負極電極として厚さ1.4mmの金属Liディスクを、セパレータには多孔性ポリプロピレン膜を用い、正極電極と負極電極をセパレータを介して対向配置させ、コインセル内に配置し、電解液を満たして密封し電池を作製した。電解液としては、エチレンカーボネート(ECと表すことがある)とジエチルカーボネート(DECと表すことがある)の混合溶媒(体積比「30:70」)にLiPF6を溶解し1M/Lの濃度としたものを用いた。
(Production of secondary battery)
A 2320 type coin cell was produced as follows. The battery positive electrode was used as a secondary battery positive electrode. A metal Li disk with a thickness of 1.4 mm is used as the negative electrode, a porous polypropylene film is used as the separator, the positive electrode and the negative electrode are placed opposite to each other with the separator interposed therebetween, placed in a coin cell, filled with the electrolyte, and sealed A battery was produced. As an electrolytic solution, LiPF 6 is dissolved in a mixed solvent (volume ratio “30:70”) of ethylene carbonate (sometimes referred to as EC) and diethyl carbonate (sometimes referred to as DEC) to obtain a concentration of 1 M / L. What was done was used.

(充放電特性の評価)
以上のようにして作製したコインセルについて充放電特性を評価した。作製したコインセルは、20℃の温度環境下で、0.2mAの電流値で4.6Vまで充電を行い、0.2mAの電流値で2.5Vまで放電を行い初回放電用量を評価した。得られた結果を表1に示す。
(Evaluation of charge / discharge characteristics)
The charge / discharge characteristics of the coin cell produced as described above were evaluated. The produced coin cell was charged to 4.6 V at a current value of 0.2 mA and discharged to 2.5 V at a current value of 0.2 mA in a temperature environment of 20 ° C., and the initial discharge dose was evaluated. The obtained results are shown in Table 1.

Figure 0004867153
Figure 0004867153

表1の結果から明らかなように、3価のカチオンとなる金属元素MeがFeの場合、実施例1の正極活物質f−1のLi/Mn/Ni/Fe=1.1/0.5/0.3/0.1の金属元素の含有比率(モル比)が最も高容量であることが分かる。また3価のカチオンとなる金属元素MeがAlの場合も、同様に、Li/Mn/Ni/Al=1.1/0.5/0.3/0.1の金属元素の含有比率(モル比)の実施例2の正極活物質a-1が最も高容量となった。
比較例1〜18の正極活物質は、Ni酸化物の異相が生じたり、抵抗が高い等の問題が生じ、実施例1および2の正極活物質f-1、a−1を正極に用いた非水二次電池と比較しこれら比較例の正極活物質を正極に用いた二次電池は明らかに低い初回放電容量に留まった。
As is apparent from the results in Table 1, when the metal element Me serving as a trivalent cation is Fe, Li / Mn / Ni / Fe of the positive electrode active material f-1 of Example 1 = 1.1 / 0.5 / 0.3 / 0.1 It can be seen that the content ratio (molar ratio) of the metal element is the highest. Similarly, when the metal element Me serving as a trivalent cation is Al, the positive electrode of Example 2 having the same metal element content ratio (molar ratio) of Li / Mn / Ni / Al = 1.1 / 0.5 / 0.3 / 0.1 The active material a-1 has the highest capacity.
The positive electrode active materials of Comparative Examples 1 to 18 had problems such as the occurrence of a different phase of Ni oxide and high resistance, and the positive electrode active materials f-1 and a-1 of Examples 1 and 2 were used for the positive electrode. Compared with the non-aqueous secondary battery, the secondary battery using the positive electrode active material of these comparative examples as the positive electrode clearly had a low initial discharge capacity.

なお、上記実施例、比較例の正極活物質のMn、Ni、Me各金属元素の含有比率(モル%)の合計を100%と設定した場合の上記正極活性物質の金属元素の含有比率を図示すると図2のようになる。   In addition, the metal element content ratio of the positive electrode active material when the total content ratio (mol%) of the Mn, Ni, and Me metal elements of the positive electrode active material of the examples and comparative examples is set to 100% is illustrated. Then, it becomes like FIG.

<実施例3〜4、比較例19〜36>
(正極電極の作製)
上記実施例1〜2および比較例1〜18で合成したいずれかの正極活物質、導電性付与材としてアセチレンブラック(AB)と気相成長炭素繊維(VGCF)、結着剤としてPVDFを用い、正極活物質:AB:VGCF:PVDF=87:5:2:6(質量比)でN-メチル-2-ピロリドン(NMP)に分散させ各々の合剤塗工液を調製した。この合剤塗工液の各々をAl金属箔集電体上に塗布し、NMPを加熱蒸発させ後、ロールプレスを通して前記正極活物質、導電性付与材および結着剤からなる合剤部分(集電体を除く)の密度を2.85g/cm3として、二次電池正極を作製した。なお、合剤の密度は調製した正極電極を所定のサイズに切断し、その重量と寸法を測定し、Al金属箔の分の重量、厚みを差し引いて合剤の体積、重量を求め、この合剤の体積、重量の値から密度を求めた。
<Examples 3-4, Comparative Examples 19-36>
(Preparation of positive electrode)
Any positive electrode active material synthesized in Examples 1-2 and Comparative Examples 1-18, acetylene black (AB) and vapor-grown carbon fiber (VGCF) as a conductivity imparting material, PVDF as a binder, Cathode active material: AB: VGCF: PVDF = 87: 5: 2: 6 (mass ratio) was dispersed in N-methyl-2-pyrrolidone (NMP) to prepare each mixture coating solution. Each of the mixture coating liquids is applied onto an Al metal foil current collector, NMP is heated and evaporated, and then a mixture portion (collector) composed of the positive electrode active material, the conductivity-imparting material and the binder is passed through a roll press. The positive electrode of the secondary battery was manufactured at a density of 2.85 g / cm 3 excluding the electric body. The density of the mixture was determined by cutting the prepared positive electrode into a predetermined size, measuring its weight and dimensions, and subtracting the weight and thickness of the Al metal foil to obtain the volume and weight of the mixture. The density was determined from the volume and weight values of the agent.

(負極電極の作製)
負極活物質として非晶質炭素を用い、非晶質炭素:AB:PVDF=92:3:5(質量比)でNMPに分散させ塗工液を調製し、この塗工液をCu金属箔集電体に塗布し、NMPを加熱蒸発させて負極電極を得た。
(Preparation of negative electrode)
Amorphous carbon is used as the negative electrode active material. Amorphous carbon: AB: PVDF = 92: 3: 5 (mass ratio) is dispersed in NMP to prepare a coating solution. It was applied to an electric body, and NMP was evaporated by heating to obtain a negative electrode.

(電池の作製)
前述の正極電極および負極電極をセパレータを介して捲回し、18650円筒電池を作製した。電解液として、1MのLiPF6を溶解させたエチレンカーボネート(EC)およびジエチルカーボネート(DEC)の混合溶液(体積比50:50)を用いた。円筒電池を封止後、0.2Cの充電レートで4.5Vまで充電し、続いて0.5Cの放電レートで2.5Vまで放電し電池を作製した。
(Production of battery)
The above positive electrode and negative electrode were wound through a separator to produce an 18650 cylindrical battery. As the electrolytic solution, a mixed solution (volume ratio 50:50) of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1M LiPF 6 was dissolved was used. After sealing the cylindrical battery, it was charged to 4.5 V at a charge rate of 0.2 C, and then discharged to 2.5 V at a discharge rate of 0.5 C to produce a battery.

(高温保存試験による回復容量率の評価)
上記のようにして作製した18650円筒電池を用いて、高温保存試験を行った。具体的には次のような一連の操作を行った。各円筒電池を室温において、0.1Cの充電レートで4.5Vまで充電し、その後、0.2Cの放電レートで2.5Vまで放電を行い、この時の放電容量を保存前容量Dpとした。
続いて、0.1Cの充電レートで4.5Vまで充電し、充電した電池を50℃の恒温槽内に1週間保存した。恒温槽から取り出した後、室温下で0.2Cの放電レートで2.5Vまで放電し、もう1度、0.1C充電レートで4.5Vまでの充電し0.2Cの放電レートで2.5Vまでの放電を行い、最後の放電の際の放電容量を保存後容量Dfとし、回復容量率Drを下記式(4)により求めた。得られた結果を表2に示す。
r=(Dp/Df)×100 (4)
(Evaluation of recovery capacity ratio by high temperature storage test)
A high temperature storage test was conducted using the 18650 cylindrical battery produced as described above. Specifically, the following series of operations were performed. Each cylindrical battery was charged to 4.5 V at a charge rate of 0.1 C at room temperature, and then discharged to 2.5 V at a discharge rate of 0.2 C. The discharge capacity at this time was defined as a pre-storage capacity D p .
Subsequently, the battery was charged to 4.5 V at a charging rate of 0.1 C, and the charged battery was stored in a thermostat at 50 ° C. for 1 week. After taking out from the thermostat, discharge to 2.5V at a discharge rate of 0.2C at room temperature, and again charge to 4.5V at a 0.1C charge rate and discharge to 2.5V at a 0.2C discharge rate. The discharge capacity at the time of the last discharge was taken as the post-storage capacity D f , and the recovery capacity ratio D r was obtained by the following formula (4). The obtained results are shown in Table 2.
D r = (D p / D f ) × 100 (4)

Figure 0004867153
Figure 0004867153

表2の結果から明らかなように、実施例3および実施例4の正極活物質f-1および正極活物質a-1を用いた円筒電池が非常に優れた保存特性を示している。   As is apparent from the results in Table 2, the cylindrical battery using the positive electrode active material f-1 and the positive electrode active material a-1 of Example 3 and Example 4 shows very excellent storage characteristics.

<実施例5〜25>
(正極電極、負極電極および電池の作製)
ロールプレスの線圧を変えることにより正極電極における合剤の密度を表3記載の通りとした以外は上記実施例3または4と同様にして正極電極を作製し、上記実施例3または4と同様にして負極電極および電池を作製した。
<Examples 5 to 25>
(Preparation of positive electrode, negative electrode and battery)
A positive electrode was produced in the same manner as in Example 3 or 4 except that the density of the mixture in the positive electrode was changed as shown in Table 3 by changing the linear pressure of the roll press, and the same as in Example 3 or 4 above. Thus, a negative electrode and a battery were produced.

(充放電レート特性の評価)
上記のようにして作製した各円筒電池の充放電時のレート特性を評価した。まず0.1Cの充電レートで4.5Vまで充電した後、0.2Cの放電レートで2.5Vまで放電させ、そのときの放電容量を0.2C容量とした。続いて、0.1Cの充電レートで4.5Vまで充電した後、5Cの放電レートで2.5Vまで放電させ、そのときの放電容量を5C容量とした。これらの値から各円筒電池における[5C容量]/[0.2C容量](%)を求め表3に示した。
(Evaluation of charge / discharge rate characteristics)
The rate characteristic at the time of charging / discharging of each cylindrical battery produced as mentioned above was evaluated. First, it was charged to 4.5 V at a charging rate of 0.1 C, and then discharged to 2.5 V at a discharging rate of 0.2 C, and the discharging capacity at that time was 0.2 C capacity. Subsequently, the battery was charged to 4.5 V at a charging rate of 0.1 C, and then discharged to 2.5 V at a discharging rate of 5 C, and the discharging capacity at that time was set to 5 C capacity. From these values, [5C capacity] / [0.2C capacity] (%) in each cylindrical battery was determined and shown in Table 3.

Figure 0004867153
Figure 0004867153

電極の合剤密度が2.41g/cm3以下、あるいは3.11g/cm3以上では充放電レート特性が急激に低くなっており、合剤密度が2.55〜3.05g/cm3の範囲とすると好ましいことが分かる。 When the electrode mixture density is 2.41 g / cm 3 or less, or 3.11 g / cm 3 or more, the charge / discharge rate characteristics are drastically lowered, and the mixture density is preferably in the range of 2.55 to 3.05 g / cm 3. I understand.

以上のように、金属元素の含有比率が[Mn]:[Ni]:[Fe]=5:3:1(モル比)で、かつ[Li]/[Mn+Ni+Me]=1.22(モル比)の条件を満たすリチウムマンガン系複合酸化物を含む正極活物質を用いることにより、高容量かつ安価な非水電解液二次電池が実現出来る。また、そのときの正極の合剤の密度を2.55〜3.05cm3とすることで、良好なレート特性が得られる。 As described above, the metal element content ratio is [Mn]: [Ni]: [Fe] = 5: 3: 1 (molar ratio) and [Li] / [Mn + Ni + Me] = 1.22 (molar ratio). By using a positive electrode active material containing a lithium manganese composite oxide that satisfies the above condition, a high-capacity and inexpensive non-aqueous electrolyte secondary battery can be realized. Further, by setting the density of the positive electrode mixture at that time to 2.55 to 3.05 cm 3 , good rate characteristics can be obtained.

本実施例においては、[Mn、Ni、Me]複合酸化物を前駆体として用いたが、複合水酸化物を前駆体として用いたり、またゾル−ゲルのプロセスや水熱合成など液系の手法によって合成した正極活物質も、最終的な組成が同一の場合、同様の効果を有することが確認された。   In this example, [Mn, Ni, Me] composite oxide was used as a precursor, but a composite hydroxide was used as a precursor, or a liquid system method such as a sol-gel process or hydrothermal synthesis. It was confirmed that the positive electrode active material synthesized by the above has the same effect when the final composition is the same.

本発明の正極活物質およびこれを用いた二次電池用正極は、非水電解液二次電池の製造に好適に用いられる。また、本発明に係る非水電解液二次電池は、HEVやUPS等の用途において好ましく用いることができる。   The positive electrode active material of the present invention and the positive electrode for a secondary battery using the same are suitably used for the production of a non-aqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery according to the present invention can be preferably used in applications such as HEV and UPS.

実施例1で合成した正極活物質のX線回折パターンである。2 is an X-ray diffraction pattern of a positive electrode active material synthesized in Example 1. FIG. 本実施例および比較例で合成した正極活物質の金属元素の含有比率を示す図である。It is a figure which shows the content rate of the metal element of the positive electrode active material synthesize | combined by the present Example and the comparative example. 本発明に係る一実施形態の非水電解液二次電池の断面構造を示す図である。It is a figure which shows the cross-section of the nonaqueous electrolyte secondary battery of one Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 正極合剤
2 負極合剤
3 正極集電体
4 負極集電体
5 セパレータ
6 正極外装缶
7 負極外装缶
8 絶縁パッキング
DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode mixture 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Positive electrode outer can 7 Negative electrode outer can 8 Insulation packing

Claims (6)

金属元素の含有比率(モル比)が下記式(1)で表され、かつ、下記式(2)で表される条件を満たすリチウムマンガン系複合酸化物を含むことを特徴とする非水電解液二次電池用の正極活物質。
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)
(上式中、Meは、FeまたはAlを表す。)
The content ratio of the metal element (molar ratio) is represented by the following formula (1), and a non-aqueous electrolyte characterized in that it comprises a satisfying lithium manganese composite oxide represented by the following formula (2) Positive electrode active material for liquid secondary battery.
[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(In the above formula, Me represents Fe or Al .)
金属元素の含有比率(モル比)が下記式(1)で表され、かつ、下記式(2)で表される条件を満たすリチウムマンガン系複合酸化物を含み、下記式(1)の値および下記式(2)の値が、それぞれの値に対して±2.5%の範囲にあることを特徴とする非水電解液二次電池用の正極活物質。A lithium manganese based composite oxide in which the content ratio (molar ratio) of the metal element is represented by the following formula (1) and satisfies the condition represented by the following formula (2), the value of the following formula (1) and A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the value of the following formula (2) is in a range of ± 2.5% with respect to each value.
[Mn]:[Ni]:[Me]=5:3:1(モル比) (1)[Mn]: [Ni]: [Me] = 5: 3: 1 (molar ratio) (1)
[Li]/[Mn+Ni+Me]=1.22(モル比) (2)[Li] / [Mn + Ni + Me] = 1.22 (molar ratio) (2)
(上式中、Meは、FeまたはAlを表す。)(In the above formula, Me represents Fe or Al.)
前記リチウムマンガン系複合酸化物が、下記式(3)で表されるリチウムマンガン系複合酸化物であることを特徴とする請求項記載の非水電解液二次電池用の正極活物質。
Li[Mn0.5Ni0.3Me0.1Li0.1]O2 (3)
(上式中、Meは、FeまたはAlを表す。)
The lithium manganese-based composite oxide, the positive electrode active material for non-aqueous electrolyte secondary battery according to claim 2, wherein the lithium manganese-based composite oxide represented by the following following formula (3).
Li [Mn 0.5 Ni 0.3 Me 0.1 Li 0.1 ] O 2 (3)
(In the above formula, Me represents Fe or Al .)
少なくとも、リチウムを挿入・脱離可能な負極と、非水電解液を介して該負極と対向配置された、正極活物質を用いた正極を備えた非水電解液二次電池において、該正極活物質が、請求項1〜のいずれかに記載の非水電解液二次電池用の正極活物質であることを特徴とする非水電解液二次電池。 In a non-aqueous electrolyte secondary battery comprising at least a negative electrode capable of inserting / extracting lithium and a positive electrode using a positive electrode active material disposed opposite to the negative electrode via a non-aqueous electrolyte, the positive electrode active A nonaqueous electrolyte secondary battery, wherein the substance is a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3 . 請求項1〜のいずれかに記載の非水電解液二次電池用の正極活物質を用いた二次電池用正極であって、該二次電池用正極を構成する、集電体を除いた、合剤が、2.55〜3.05g/cm3の密度を有するものであることを特徴とする二次電池用正極。 It is a positive electrode for secondary batteries using the positive electrode active material for non-aqueous-electrolyte secondary batteries in any one of Claims 1-3 , Comprising: The collector which comprises this positive electrode for secondary batteries is remove | excluded The positive electrode for a secondary battery, wherein the mixture has a density of 2.55 to 3.05 g / cm 3 . 請求項記載の二次電池用正極を用いた非水電解液二次電池。 A non-aqueous electrolyte secondary battery using the positive electrode for a secondary battery according to claim 5 .
JP2004308562A 2004-10-22 2004-10-22 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery Expired - Fee Related JP4867153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308562A JP4867153B2 (en) 2004-10-22 2004-10-22 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308562A JP4867153B2 (en) 2004-10-22 2004-10-22 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006120529A JP2006120529A (en) 2006-05-11
JP4867153B2 true JP4867153B2 (en) 2012-02-01

Family

ID=36538214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308562A Expired - Fee Related JP4867153B2 (en) 2004-10-22 2004-10-22 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4867153B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640311B2 (en) * 2007-09-28 2014-12-17 住友化学株式会社 Lithium composite metal oxide and non-aqueous electrolyte secondary battery
JP5279362B2 (en) * 2008-06-25 2013-09-04 三星エスディアイ株式会社 Nonaqueous electrolyte secondary battery
JP2010092845A (en) * 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary cell
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653409B2 (en) * 1999-01-29 2005-05-25 三洋電機株式会社 Positive electrode active material for lithium secondary battery and manufacturing method thereof, positive electrode for lithium secondary battery using the positive electrode active material and manufacturing method thereof, lithium secondary battery using the positive electrode and manufacturing method thereof
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2002234733A (en) * 2001-02-06 2002-08-23 Tosoh Corp Manganese-containing lithium compound oxide of lamellar rock-salt structure, producing method thereof and secondary battery using the same
JP3870846B2 (en) * 2001-06-13 2007-01-24 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP2003346806A (en) * 2002-05-30 2003-12-05 Sony Corp Positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004165156A (en) * 2002-10-25 2004-06-10 Hitachi Metals Ltd Method for preparing cathode active material for secondary lithium battery, the cathode active material using method thereof, and aqueous secondary lithium battery
KR100485091B1 (en) * 2002-10-25 2005-04-22 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP4403447B2 (en) * 2003-03-27 2010-01-27 大阪瓦斯株式会社 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2006120529A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP4325167B2 (en) Non-aqueous electrolyte secondary battery electrode material
JP5068459B2 (en) Lithium secondary battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP5641560B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP5169850B2 (en) Non-aqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
JP5278994B2 (en) Lithium secondary battery
JP5999090B2 (en) Active material for secondary battery
JP6007904B2 (en) Secondary battery active material and secondary battery using the same
JP4192477B2 (en) Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same
JP6607188B2 (en) Positive electrode and secondary battery using the same
JP5046602B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP5459757B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP5958343B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP4458232B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6036811B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP5942852B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP5376640B2 (en) Lithium ion secondary battery
JP5447615B2 (en) Electrolyte and non-aqueous electrolyte secondary battery
JP4867153B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery
JP2010092608A (en) Cathode for lithium-ion secondary battery and lithium-ion secondary battery using it
JP4991225B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees