JP2014156397A - Nickel-containing hydroxide, nickel-containing oxide and methods of producing them - Google Patents

Nickel-containing hydroxide, nickel-containing oxide and methods of producing them Download PDF

Info

Publication number
JP2014156397A
JP2014156397A JP2014113559A JP2014113559A JP2014156397A JP 2014156397 A JP2014156397 A JP 2014156397A JP 2014113559 A JP2014113559 A JP 2014113559A JP 2014113559 A JP2014113559 A JP 2014113559A JP 2014156397 A JP2014156397 A JP 2014156397A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
oxide
average particle
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014113559A
Other languages
Japanese (ja)
Other versions
JP5874939B2 (en
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014113559A priority Critical patent/JP5874939B2/en
Publication of JP2014156397A publication Critical patent/JP2014156397A/en
Application granted granted Critical
Publication of JP5874939B2 publication Critical patent/JP5874939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide nickel-containing hydroxide and nickel-containing oxide which is a monodisperse primary particle used for producing lithium composite nickel oxide which is a monodisperse primary particle having an average particle diameter of 3 μm or less used for a cathode active material for a lithium ion secondary battery, and to provide methods of producing the nickel-containing hydroxide and nickel-containing oxide.SOLUTION: There is provided the nickel-containing hydroxide which is a monodisperse primary particle represented by the general formula (1):NiM(OH)( M represents at least one or more elements of Co and Al in the formula), and has an average particle diameter measured by a dynamic light scattering method of 3 μm or less. There is also provided the nickel-containing oxide which is obtained by roasting the nickel-containing hydroxide at 300 to 900°C and is a monodispersed primary particle represented by the general formula (2):NiMO ( M represents at least one or more element of Co and Al in the formula), and has an average particle diameter measured by a dynamic light scattering method of 3 μm or less.

Description

本発明は、リチウムイオン二次電池用正極活物質に用いられる平均粒径が3μm以下の単分散の一次粒子であるリチウム複合ニッケル酸化物を製造するために用いる単分散の一次粒子であるニッケル含有水酸化物、ニッケル含有酸化物、およびこれらの製造方法の提供に関する。   The present invention relates to a nickel-containing primary particle which is monodispersed used for producing a lithium composite nickel oxide which is a monodispersed primary particle having an average particle size of 3 μm or less used for a positive electrode active material for a lithium ion secondary battery. The present invention relates to the provision of hydroxides, nickel-containing oxides, and methods for producing them.

リチウムイオン二次電池は、リチウムコバルト酸化物を主流とし、その市場を大きく伸ばしてきた。しかし近年では、リチウムコバルト酸化物はその物自体の有する限界容量に限りなく近い領域に達しており、今後の映像、音楽、通信等に要求されるよりハイパワーな電子機器への利用が難しいため、正極活物質を従来のリチウムコバルト酸化物からリチウム複合ニッケル酸化物に切替えた新しい高容量リチウムイオン二次電池が市場に出始めている。ただし、この新たな高容量リチウムイオン二次電池は従来のリチウムコバルト酸化物のように成熟した材料でないため、今現在市場に出ている粉体形状はサブミクロンの一次粒子の集合体である球状あるいは楕円状の二次粒子であり、HEVに代表とされるハイレートを要する電池には向いていない。したがって、従来の球状リチウム複合ニッケル酸化物では得られないハイレート特性の更なる向上として全く形状の異なる材料が必要とされてきている。
こうした材料として検討されているものに、平均粒径数μmの一次粒子が凝集して二次粒子を構成しているニッケル水酸化物を用いて作成したリチウム複合ニッケル酸化物がある。
Lithium ion secondary batteries are mainly made of lithium cobalt oxide, and their market has been greatly expanded. However, in recent years, lithium cobalt oxide has reached an area that is almost as close as the capacity limit of the product itself, and it is difficult to use it for higher power electronic devices that will be required for future video, music, communication, etc. A new high-capacity lithium ion secondary battery in which the positive electrode active material is switched from the conventional lithium cobalt oxide to the lithium composite nickel oxide has been put on the market. However, since this new high-capacity lithium-ion secondary battery is not a mature material like the conventional lithium cobalt oxide, the powder shape currently on the market is a spherical shape that is an aggregate of sub-micron primary particles. Or it is an elliptical secondary particle and is not suitable for the battery which requires the high rate represented by HEV. Therefore, a material having a completely different shape has been required as a further improvement in the high rate characteristics that cannot be obtained with the conventional spherical lithium composite nickel oxide.
As a material that has been studied as such a material, there is a lithium composite nickel oxide prepared using nickel hydroxide in which primary particles having an average particle diameter of several μm are aggregated to form secondary particles.

しかし、通常ニッケル塩溶液の加水分解により得られる水酸化ニッケルは、ゲル状であり、含水率が高く、製造時に混入する不純物の除去時の洗浄工程などにおいて脱水が困難となる。また、乾燥時強く凝集しガラス状形態を取り、そのままでは、微細な粒子として得られない。従って、通常、ニッケル水酸化物粉を得るためにはガラス状形態のニッケル水酸化物を、粉砕機を用いて粉砕しなければならず、平均粒径が数μmのニッケル水酸化物の製造は非常に困難となっている。また、このようにして得たニッケル水酸化物を用いて焼成して得たリチウム複合ニッケル酸化物は極めて硬い凝集塊となり、ピンミルやジェットミルなどの機械粉砕をしても機械が傷むだけで凝集塊はそれほど崩れず、効率よく平均粒径数μmのリチウム複合ニッケル酸化物を得られない。   However, nickel hydroxide usually obtained by hydrolysis of a nickel salt solution is gel-like and has a high water content, making it difficult to dehydrate in a cleaning step when removing impurities mixed in during manufacture. Moreover, it strongly aggregates at the time of drying and takes a glassy form, and as it is, it cannot be obtained as fine particles. Therefore, in general, in order to obtain nickel hydroxide powder, nickel hydroxide in a glassy form must be pulverized using a pulverizer, and the production of nickel hydroxide having an average particle diameter of several μm is It has become very difficult. In addition, the lithium composite nickel oxide obtained by firing with the nickel hydroxide obtained in this way becomes extremely hard agglomerates. The lump does not collapse so much, and a lithium composite nickel oxide having an average particle diameter of several μm cannot be obtained efficiently.

こうした中、平均粒径1〜5μmの一次粒子が緻密に連接して、ほぼ球状の二次粒子を構成しているニッケル水酸化物を特定の条件で合成し、これを用いてリチウム複合ニッケル酸化物を得る提案が特許文献1にある。特許文献1では、このような構造を持つニッケル水酸化物をリチウム化合物と混合後、所定温度で焼成することにより、内部に空隙を有するリチウム複合ニッケル酸化物凝集体を得、これを正極活物質とすれば、正極活物質としての比容量が高く、かつ電極プレス性に優れ、正極活物質層への高密度充填が可能なことから、電池の高容量化および高出力化に大いに寄与できるとしている。   Under these circumstances, primary particles having an average particle diameter of 1 to 5 μm are closely connected to synthesize nickel hydroxide constituting almost spherical secondary particles under specific conditions, and using this, lithium composite nickel oxidation There is a proposal in Patent Document 1 for obtaining a product. In Patent Document 1, a nickel hydroxide having such a structure is mixed with a lithium compound and then fired at a predetermined temperature to obtain a lithium composite nickel oxide aggregate having voids therein, which is used as a positive electrode active material. If so, the specific capacity as the positive electrode active material is high, the electrode pressability is excellent, and the positive electrode active material layer can be filled with high density, which can greatly contribute to the increase in capacity and output of the battery. Yes.

そして、前記した平均粒径が1〜5μmの一次粒子が緻密に連接して、ほぼ球状の二次粒子を構成しているニッケル水酸化物を得る具体的な方法として、電気伝導率が80mS/cm〜150mS/cmとなる30〜50℃のニッケル溶液を調整し、軸流型傾斜パドル2段翼付きの反応槽を用いて、攪拌翼の回転数を100rpm〜150rpmとし、水酸化ナトリウム、水酸化カリウムなどを添加して、反応系のpHが11.1〜11.5になるようにすることを提案している(特許文献1段落25〜30参照)。   As a specific method for obtaining nickel hydroxide constituting the substantially spherical secondary particles by densely connecting the primary particles having an average particle diameter of 1 to 5 μm, the electrical conductivity is 80 mS / A nickel solution at 30 to 50 ° C., which is cm to 150 mS / cm, is prepared, and using a reaction tank with an axial flow type inclined paddle two-stage blade, the rotation speed of the stirring blade is 100 rpm to 150 rpm, sodium hydroxide, water It has been proposed to add potassium oxide or the like so that the pH of the reaction system is 11.1-11.5 (see paragraphs 25-30 of Patent Document 1).

より具体的には、撹拌機、軸流型傾斜パドル2段翼およびpH計を備えた反応槽と、アルカリ剤供給ポンプと、濾過装置を備えたタンクと、洗浄機と、乾燥機とを含む製造装置を用いて行われる。反応槽では、上記条件に基づいて、ニッケル水酸化物の合成が行われる。反応槽には、原料になるニッケル塩水溶液およびニッケル以外の金属元素を含有する塩の水溶液が、たとえば、連続的に供給される。反応槽内で生成するニッケル水酸化物は、水と共にオーバーフローし、濾過装置を備えたタンクに供給される。アルカリ剤供給ポンプは、pH計による測定結果に応じて反応槽内にアルカリ剤を供給する。濾過装置を備えたタンクは、ニッケル水酸化物を含む水を濾過により固液分離する。洗浄機は、濾過装置を備えたタンクにおいて分離されたニッケル水酸化物を水洗する。乾燥機は、ニッケル水酸化物を乾燥させるとしている。   More specifically, it includes a reactor equipped with a stirrer, an axial-flow type inclined paddle two-stage blade and a pH meter, an alkaline agent supply pump, a tank equipped with a filtration device, a washing machine, and a dryer. This is performed using a manufacturing apparatus. In the reaction vessel, nickel hydroxide is synthesized based on the above conditions. For example, an aqueous nickel salt solution and an aqueous salt solution containing a metal element other than nickel are continuously supplied to the reaction vessel. Nickel hydroxide generated in the reaction tank overflows with water and is supplied to a tank equipped with a filtration device. The alkaline agent supply pump supplies the alkaline agent into the reaction vessel according to the measurement result by the pH meter. A tank equipped with a filtration device separates liquid containing nickel hydroxide by solid-liquid separation by filtration. The washing machine washes the nickel hydroxide separated in a tank equipped with a filtration device. The dryer is supposed to dry the nickel hydroxide.

しかしながら、前記した方法は、通常の水酸化ニッケルを製造する方法と比較し、極めて限定された装置と条件を必要とするという問題がある。
以上述べたように、未だ従来の球状リチウム複合ニッケル酸化物では得られないハイレート特性の更なる向上として全く形状の異なるリチウム複合ニッケル酸化物は提供されていない。
However, the above-described method has a problem that it requires extremely limited apparatuses and conditions as compared with a method for producing ordinary nickel hydroxide.
As described above, lithium composite nickel oxides having completely different shapes have not yet been provided as a further improvement in the high rate characteristics that cannot be obtained with conventional spherical lithium composite nickel oxides.

特開2008−174444号公報JP 2008-174444 A

本発明は、上記の従来技術の問題点に鑑みなされたものであり、従来と全く構造の異なるリチウムイオン二次電池用正極活物質の提供を目的とし、具体的には、リチウムイオン二次電池用正極活物質に用いられる平均粒径が3μm以下の単分散の一次粒子であるリチウム複合ニッケル酸化物を製造するために用いる単分散の一次粒子であるニッケル含有水酸化物及びニッケル含有酸化物、並びにこれらの製造方法の提供を目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and aims to provide a positive electrode active material for a lithium ion secondary battery having a completely different structure from that of the prior art, specifically, a lithium ion secondary battery. A nickel-containing hydroxide and a nickel-containing oxide which are monodispersed primary particles used for producing a lithium composite nickel oxide which is a monodispersed primary particle having an average particle size of 3 μm or less used for a positive electrode active material for an automobile, An object of the present invention is to provide these production methods.

本発明者は、上記目的を達成するために、リチウムイオン二次電池用正極活物質用リチウム複合ニッケル酸化物について、鋭意研究を重ねた結果、通常に得られているニッケル含有水酸化物をアルカリ金属水酸化物水溶液に懸濁させ、加熱し、溶融状態として所定の時間溶融状態に保持することにより、単分散状態で、平均粒径3μm以下のニッケル含有水酸化物一次粒子を得ることができること。そして、これとリチウム化合物とを混合し、焼成すると、単分散状態で、平均粒子径が3μm以下のリチウム複合ニッケル酸化物一次粒子が得られ、これが高出力なハイレート特性の優れるリチウムイオン二次電池用正極活物質となることを見出し、本発明を完成した。   In order to achieve the above object, the present inventor has conducted extensive research on lithium composite nickel oxides for positive electrode active materials for lithium ion secondary batteries. It is possible to obtain nickel-containing hydroxide primary particles having an average particle size of 3 μm or less in a monodispersed state by suspending in a metal hydroxide aqueous solution, heating, and maintaining the molten state as a molten state for a predetermined time. . When this is mixed with a lithium compound and fired, primary particles of lithium composite nickel oxide having an average particle diameter of 3 μm or less are obtained in a monodispersed state, and this is a lithium ion secondary battery with high output and excellent high-rate characteristics. As a result, the present invention was completed.

すなわち、本発明の第1の発明は、下記一般式(1)に示され、かつ単分散の一次粒子であり、動的光散乱法測定による平均粒径が3μm以下であることを特徴とするニッケル含有水酸化物が提供される。   That is, the first invention of the present invention is represented by the following general formula (1), is a monodispersed primary particle, and has an average particle size of 3 μm or less by dynamic light scattering measurement. A nickel-containing hydroxide is provided.

一般式(1):NiM(OH)
(式中Mは、Co、Alのうち少なくとも1種以上の元素を示す。)
General formula (1): NiM (OH) 2
(In the formula, M represents at least one element of Co and Al.)

また、本発明の第2の発明は、第1の発明におけるニッケル含有水酸化物を300〜900℃で焙焼して得られるものであって、下記一般式(2)に示され、かつ単分散の一次粒子であり、動的光散乱法測定による平均粒径が3μm以下であることを特徴とするニッケル含有酸化物が提供される。   The second invention of the present invention is obtained by roasting the nickel-containing hydroxide in the first invention at 300 to 900 ° C., and is represented by the following general formula (2) and is simple. There is provided a nickel-containing oxide which is a primary particle of dispersion and has an average particle size of 3 μm or less as measured by a dynamic light scattering method.

一般式(2):NiMO
(式中Mは、Co、Alのうち少なくとも1種以上の元素を示す。)
General formula (2): NiMO
(In the formula, M represents at least one element of Co and Al.)

また、本発明の第3の発明は、第1の発明における前記一般式(1)に示される組成の従来のニッケル含有水酸化物をアルカリ金属水酸化物水溶液に懸濁させ、攪拌しつつ、加熱して90〜180℃に30分以上2時間以下保持し、次いで冷却し、水と接触させてアルカリ金属水酸化物を溶解してニッケル含有水酸化物を分離回収することを特徴とするニッケル含有水酸化物の製造方法が提供される。   The third invention of the present invention is a suspension of a conventional nickel-containing hydroxide having the composition represented by the general formula (1) in the first invention in an aqueous alkali metal hydroxide solution, while stirring. Nickel characterized in that it is heated and held at 90 to 180 ° C. for 30 minutes or more and 2 hours or less, then cooled and contacted with water to dissolve the alkali metal hydroxide to separate and recover the nickel-containing hydroxide. A method for producing the containing hydroxide is provided.

また、本発明の第4の発明は、第3の発明におけるアルカリ金属水酸化物水溶液中のアルカリ金属水酸化物の量が、アルカリ金属水酸化物水溶液に添加されるニッケル含有水酸化物1mol当たりアルカリ金属水酸化物1mol以上とすることを特徴とするニッケル含有水酸化物の製造方法が提供される。   Further, the fourth invention of the present invention is such that the amount of the alkali metal hydroxide in the alkali metal hydroxide aqueous solution in the third invention is 1 mol of the nickel-containing hydroxide added to the alkali metal hydroxide aqueous solution. There is provided a method for producing a nickel-containing hydroxide, characterized in that the amount of alkali metal hydroxide is 1 mol or more.

また、本発明の第5の発明は、第3及び第4の発明におけるアルカリ金属水酸化物が水酸化ナトリウム、水酸化カリウム、水酸化リチウムのうち少なくとも1種であることを特徴とするニッケル含有水酸化物の製造方法が提供される。   According to a fifth aspect of the present invention, the alkali metal hydroxide according to the third and fourth aspects is at least one of sodium hydroxide, potassium hydroxide, and lithium hydroxide. A method for producing hydroxide is provided.

また、本発明の第6の発明は、第1の発明におけるニッケル含有水酸化物を300〜900℃で焙焼することを特徴とする第2の発明におけるニッケル含有酸化物の製造方法が提供される。   The sixth invention of the present invention provides the method for producing a nickel-containing oxide according to the second invention, characterized in that the nickel-containing hydroxide according to the first invention is roasted at 300 to 900 ° C. The

また、本発明の第7の発明は、第6の発明における焙焼してニッケル含有酸化物を得るに際して、前記ニッケル含有水酸化物と、所望量の水酸化アルミニウム、酸化アルミニウムの内の少なくとも1つとを混合して焙焼することを特徴とするニッケル含有酸化物の製造方法が提供される。   Further, according to a seventh aspect of the present invention, when the nickel-containing oxide is obtained by roasting in the sixth aspect, at least one of the nickel-containing hydroxide, a desired amount of aluminum hydroxide, and aluminum oxide. There is provided a method for producing a nickel-containing oxide, characterized by mixing and baking.

本発明の方法に従えば、単分散状態で、平均粒子径が3μm以下のニッケル含有水酸化物一次粒子を簡単に得ることができ、これを用いて単分散状態で平均粒径が3μm以下のリチウム複合ニッケル酸化物一次粒子を容易に得ることができる。この単分散状態で、平均粒子径が3μm以下のリチウム複合ニッケル酸化物一次粒子をリチウムイオン二次電池用の正極活物質として用いると、ハイレート特性に優れた高出力のリチウム二次電池を得ることができ、特に自動車分野で利用される充放電可能な二次電池として好適である。従って、本発明の工業的価値は極めて大きい。   According to the method of the present invention, nickel-containing hydroxide primary particles having an average particle diameter of 3 μm or less can be easily obtained in a monodispersed state, and using this, the average particle diameter of 3 μm or less in a monodispersed state can be used. Lithium composite nickel oxide primary particles can be easily obtained. In this monodispersed state, when lithium composite nickel oxide primary particles having an average particle diameter of 3 μm or less are used as a positive electrode active material for a lithium ion secondary battery, a high output lithium secondary battery having excellent high rate characteristics can be obtained. In particular, it is suitable as a chargeable / dischargeable secondary battery used in the automobile field. Therefore, the industrial value of the present invention is extremely large.

以下、本発明を詳細に説明する。
(1)平均粒径が3μm以下の単分散状態のニッケル含有水酸化物一次粒子およびその製造方法
本発明の、ニッケル含有水酸化物は一般式(1):NiM(OH)で表され、式中のMは、Co、Alのうち少なくとも1種以上の元素を示すものであり、動的光散乱法測定による平均粒径が3μm以下、好ましくは1μm以上、2μm以下の単分散の一次粒子である。本発明のニッケル含有水酸化物の粒径を3μm以下とするのは、これを用いて得るリチウム複合ニッケル酸化物の粒径を3μm以下とするためである。
Hereinafter, the present invention will be described in detail.
(1) Nickel-containing hydroxide primary particles in a monodispersed state having an average particle size of 3 μm or less and a production method thereof The nickel-containing hydroxide of the present invention is represented by the general formula (1): NiM (OH) 2 , M in the formula represents at least one element of Co and Al, and is a monodispersed primary particle having an average particle diameter measured by dynamic light scattering method of 3 μm or less, preferably 1 μm or more and 2 μm or less. It is. The reason why the particle size of the nickel-containing hydroxide of the present invention is 3 μm or less is that the particle size of the lithium composite nickel oxide obtained by using this is 3 μm or less.

本発明のニッケル含有水酸化物を300〜900℃で焼成してニッケル含有酸化物を得ても、粒成長はほとんど起きず、また凝集して二次粒子を生成することもない。焼成物を解砕することにより簡単に平均粒径3μm以下の単分散状態のニッケル含有酸化物一次粒子を得ることが可能である。
本発明のニッケル含有水酸化物の表面状態がこのように安定な理由は明確ではないが、下記する製造方法が特別な表面状態の形成に関わっているものと推定している。
Even if the nickel-containing hydroxide of the present invention is baked at 300 to 900 ° C. to obtain a nickel-containing oxide, there is almost no grain growth and no secondary particles are formed by aggregation. By simply crushing the fired product, it is possible to easily obtain monodispersed nickel-containing primary oxide particles having an average particle size of 3 μm or less.
The reason why the surface state of the nickel-containing hydroxide of the present invention is so stable is not clear, but it is presumed that the following production method is related to the formation of a special surface state.

本発明のニッケル含有水酸化物を得るには、通常の方法、例えば加水分解法により得られた従来のニッケル含有水酸化物(以下、単に「ニッケル含有水酸化物原料」と示す。)をアルカリ金属水酸化物水溶液に懸濁させ、加熱して攪拌しつつ100〜180℃に30分以上2時間以下に保持し、次いで冷却し、水と接触させてアルカリ金属水酸化物を溶解して本発明の平均粒径が3μm以下の単分散状態のニッケル含有水酸化物一次粒子を分離回収する。   In order to obtain the nickel-containing hydroxide of the present invention, a conventional nickel-containing hydroxide obtained by a usual method, for example, a hydrolysis method (hereinafter simply referred to as “nickel-containing hydroxide raw material”) is alkali. Suspended in an aqueous metal hydroxide solution, heated and stirred, maintained at 100-180 ° C. for 30 minutes to 2 hours, then cooled and contacted with water to dissolve the alkali metal hydroxide. The monodispersed nickel-containing hydroxide primary particles having an average particle diameter of 3 μm or less are separated and recovered.

用いることができるニッケル含有水酸化物原料は、組成が前記一般式(1)に合致していればよく、粒子形状には拘らない。例えば、背景技術で示したニッケル塩溶液の加水分解により得られるゲル状の水酸化ニッケルを乾燥し、得たガラス状の凝集体を粉砕したもので良い。   The nickel-containing hydroxide raw material that can be used is not limited to the particle shape as long as the composition conforms to the general formula (1). For example, the gelled nickel hydroxide obtained by hydrolysis of the nickel salt solution shown in the background art may be dried, and the obtained glassy aggregate may be pulverized.

本発明の方法においてアルカリ金属水酸化物の水溶液中にニッケル含有水酸化物原料を投入し、加熱し、液中の水分を揮発させ、アルカリ金属水酸化物浴中に溶解させるが、これはニッケル含有水酸化物原料内部にまでアルカリ金属水酸化物を浸入させ、その上で溶融状態とすることによりニッケル含有水酸化物原料を完全に融解させるためである。固形のアルカリ金属水酸化物とニッケル含有水酸化物原料とを混合して溶融しても良いが、この場合、往々にしてニッケル含有水酸化物原料が完全に融解せず、本発明の方法より効率が悪い。   In the method of the present invention, a nickel-containing hydroxide raw material is put into an aqueous solution of an alkali metal hydroxide, heated, the water in the liquid is volatilized, and dissolved in an alkali metal hydroxide bath. This is because the alkali metal hydroxide is infiltrated into the inside of the containing hydroxide raw material, and is then melted to completely melt the nickel containing hydroxide raw material. The solid alkali metal hydroxide and the nickel-containing hydroxide raw material may be mixed and melted, but in this case, the nickel-containing hydroxide raw material often does not melt completely, and the method of the present invention. ineffective.

加熱温度は、アルカリ金属水酸化物とニッケル含有水酸化物とが均一な融液を構成する温度であれば良く、アルカリ金属水酸化物として水酸化ナトリウムを用いた場合には、90〜180℃、好ましくは140〜180℃とすることが望ましい。90℃未満では、アルカリ金属水酸化物によるニッケル含有水酸化物原料二次粒子を一次粒子に崩壊、あるいは溶解させることは可能であるものの、一次粒子を単分散状態で成長させる際に、結晶成長速度が遅く、目的の大きさの結晶に成長させるのに非常に長い時間を要し生産性を欠く。一方、180℃を越えると結晶成長が急激に進み粒径制御が困難になるほか酸化が起こりやすく価数の安定性を損なうためである。   The heating temperature may be a temperature at which the alkali metal hydroxide and the nickel-containing hydroxide form a uniform melt. When sodium hydroxide is used as the alkali metal hydroxide, the heating temperature is 90 to 180 ° C. Preferably, the temperature is 140 to 180 ° C. Below 90 ° C, the nickel-containing hydroxide raw material secondary particles by alkali metal hydroxide can be disintegrated or dissolved into primary particles, but crystal growth occurs when the primary particles are grown in a monodispersed state. The speed is slow, and it takes a very long time to grow a crystal of a desired size, and productivity is lacking. On the other hand, when the temperature exceeds 180 ° C., crystal growth rapidly advances, particle size control becomes difficult, and oxidation is likely to occur and the valence stability is impaired.

本発明では、均一な融液を得た後、その温度で30分以上、2時間以下の範囲で融液を保持する。こうすることにより融液中でニッケル含有水酸化物の粒成長を促す。30分未満では粒の成長が十分ではなく、単分散の微細な一次粒子は得られない。また、2時間以上保持すると粒子が大きくなりすぎ、平均粒子径が3μmを超えるようになるので好ましくない。   In the present invention, after obtaining a uniform melt, the melt is held at that temperature for 30 minutes to 2 hours. This promotes grain growth of nickel-containing hydroxide in the melt. If it is less than 30 minutes, the grain growth is not sufficient, and monodispersed fine primary particles cannot be obtained. Moreover, since it will become large particle | grains and an average particle diameter will exceed 3 micrometers when it hold | maintains for 2 hours or more, it is not preferable.

ニッケル含有水酸化物原料に添加するアルカリ水酸化物量は、ニッケル含有水酸化物原料1mol当たり1mol以上、好ましくは2.5mol以上とする。完全に融解させるためである。
用いうるアルカリ水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を単独、もしくは混合して用いることができるが、取り扱いやすさ、安価であることより水酸化ナトリウムが好ましい。
The amount of alkali hydroxide added to the nickel-containing hydroxide raw material is 1 mol or more, preferably 2.5 mol or more per mol of the nickel-containing hydroxide raw material. This is for complete melting.
As the alkali hydroxide that can be used, sodium hydroxide, potassium hydroxide, lithium hydroxide, or the like can be used alone or in combination, but sodium hydroxide is preferred because it is easy to handle and inexpensive.

(2)平均粒径が3μm以下の単分散状態のニッケル含有酸化物一次粒子およびその製造方法
本発明のニッケル含有酸化物は一般式(2):NiMOで表され、式中のMは、Co、Alのうち少なくとも1種以上の元素を示すものであり、動的光散乱法測定による平均粒径が3μm以下、好ましくは1μm以上、2μm以下の単分散の一次粒子である。本発明のニッケル含有水酸化物の粒径を3μm以下とするのは、これを用いて得るリチウム複合ニッケル酸化物の粒径を3μm以下とするためである。
(2) Monodispersed primary nickel-containing oxide particles having an average particle size of 3 μm or less and a method for producing the same The nickel-containing oxide of the present invention is represented by the general formula (2): NiMO, where M is Co , Represents at least one element of Al, and is a monodispersed primary particle having an average particle diameter of 3 μm or less, preferably 1 μm or more and 2 μm or less, measured by dynamic light scattering. The reason why the particle size of the nickel-containing hydroxide of the present invention is 3 μm or less is that the particle size of the lithium composite nickel oxide obtained by using this is 3 μm or less.

本発明のニッケル含有酸化物を得るに際して、本発明の単分散状態のニッケル含有水酸化物一次粒子を300〜900℃で焙焼する。
焙焼温度が300℃未満では酸化ニッケルのニッケル価数が安定せずその組成も安定していないため、特定の組成比を狙ったリチウムニッケル複合酸化物の合成が難しく、また900℃を越えると酸化ニッケルの結晶性が高くなりすぎて、リチウムニッケル複合酸化物に合成した際異相が発生するもしくは低結晶性の製品となる恐れがあるためである。
In obtaining the nickel-containing oxide of the present invention, the monodispersed nickel-containing hydroxide primary particles of the present invention are roasted at 300 to 900 ° C.
When the roasting temperature is less than 300 ° C., the nickel valence of nickel oxide is not stable and its composition is not stable. Therefore, it is difficult to synthesize lithium nickel composite oxide aiming at a specific composition ratio. This is because the crystallinity of nickel oxide becomes too high, and when it is synthesized into a lithium nickel composite oxide, a different phase may be generated or a product with low crystallinity may be obtained.

また、例えば、単分散のニッケル含有水酸化物一次粒子を作成する際に、アルミニウムを添加しなかったにもかかわらず安全性を確保するためにAlをこの後の工程で入れることによりリチウムニッケルアルミ複合酸化物を得る場合、あるいはアルミニウム含有量を高めたい場合には、本発明の単分散のニッケル含有水酸化物一次粒子に、微粉砕した水酸化アルミニウムもしくは酸化アルミニウムを所望の量加え混合粉とし、これとリチウム化合物とを混合し焙焼しても良い。   Also, for example, when preparing monodispersed nickel-containing hydroxide primary particles, lithium nickel aluminum is added by adding Al in a subsequent process in order to ensure safety even though aluminum is not added. When obtaining a composite oxide or increasing the aluminum content, a desired amount of finely pulverized aluminum hydroxide or aluminum oxide is added to the monodispersed nickel-containing hydroxide primary particles of the present invention to obtain a mixed powder. These and a lithium compound may be mixed and roasted.

この際、ニッケル含有水酸化物を水に懸濁させた後、アルミン酸ナトリウムを所望の組成となるよう加え攪拌溶解させ、このスラリー中に更に硫酸を加え中和させることでニッケル含有水酸化物表面に水酸化アルミニウムを析出・付着させても良く、もしくは振動ミル等を用いて機械的にニッケル含有水酸化物表面に水酸化アルミニウムもしくは酸化アルミニウムを付着させても良い。   At this time, after suspending the nickel-containing hydroxide in water, sodium aluminate is added to a desired composition and dissolved by stirring, and the slurry is further neutralized by adding sulfuric acid to the nickel-containing hydroxide. Aluminum hydroxide may be deposited and adhered to the surface, or aluminum hydroxide or aluminum oxide may be mechanically adhered to the nickel-containing hydroxide surface using a vibration mill or the like.

さて、前記したように焙焼して得た焼成物は、焼成終了時は塊状の固まりとなっている。この固まりは単分散の一次粒子が軽く焼結したものであるため、ピンミルやハンマーミル等の機械粉砕機を用いて3μm以下の一次粒子に簡単に解砕できる。なお、ゴミ等の介在物がある場合には、例えば、超音波式振動篩を用いてゴミ等の介在物を除去することが好ましい。   Now, as described above, the fired product obtained by roasting is in the form of a lump at the end of firing. Since this lump is obtained by lightly sintering monodispersed primary particles, it can be easily crushed to primary particles of 3 μm or less using a mechanical pulverizer such as a pin mill or a hammer mill. In addition, when there are inclusions such as dust, it is preferable to remove the inclusions such as dust using an ultrasonic vibration sieve.

(3)平均粒径が3μm以下の単分散状態のリチウム複合ニッケル酸化物一次粒子および
その製造方法
リチウム複合ニッケル酸化物は一般式:LiNiMOで示され、式中Mは、Co、Alのうち少なくとも1種以上の元素を示す。そして、動的光散乱法測定による平均粒径が3μm以下の単分散の一次粒子である。これをリチウムイオン二次電池に用いると、単分散の一次粒子を充填することになり、間隙を有する二次粒子を充填する場合よりも充填密度を高くでき、かつ一次粒子間に間隙を持たせることができるため、リチウムイオンの移動も妨げられず、ハイレート特性が向上し、出力特性に優れた電池を得ることが出来る。
平均粒径を3μm以下、好ましくは1〜2μmとするのは、平均粒径が3μm以上では、リチウムイオン二次電池とした場合に、粒子が大きすぎて固相内拡散抵抗が高くなり、ハイレート条件下では期待する出力を得ることが出来なくなるためである。
(3) Lithium composite nickel oxide primary particles in a monodispersed state having an average particle diameter of 3 μm or less and a method for producing the same Lithium composite nickel oxide is represented by a general formula: LiNiMO 2, where M is Co or Al At least one element is shown. And it is a monodispersed primary particle whose average particle diameter by a dynamic light-scattering method measurement is 3 micrometers or less. When this is used for a lithium ion secondary battery, it will be filled with monodispersed primary particles, the packing density can be higher than when filling secondary particles with gaps, and there is a gap between the primary particles. Therefore, the movement of lithium ions is not hindered, the high-rate characteristics are improved, and a battery with excellent output characteristics can be obtained.
The average particle size is 3 μm or less, preferably 1 to 2 μm. When the average particle size is 3 μm or more, when a lithium ion secondary battery is used, the particles are too large and the diffusion resistance in the solid phase becomes high, resulting in a high rate. This is because the expected output cannot be obtained under the conditions.

リチウム複合ニッケル酸化物を得るには、前記した本発明の平均粒径が3μm以下の単分散状態のニッケル含有水酸化物一次粒子、または平均粒径が3μm以下の単分散状態のニッケル含有酸化物一次粒子を用いる。これ以外を用いた場合には、単分散状態の平均粒径3μm以下の一次粒子としてリチウム複合ニッケル酸化物は得られがたい。   In order to obtain a lithium composite nickel oxide, the above-described monodispersed nickel-containing hydroxide primary particles having an average particle diameter of 3 μm or less, or a monodispersed nickel-containing oxide having an average particle diameter of 3 μm or less. Use primary particles. When other than this is used, it is difficult to obtain lithium composite nickel oxide as primary particles having an average particle size of 3 μm or less in a monodispersed state.

本発明の単分散状態のニッケル含有水酸化物一次粒子やニッケル含有酸化物一次粒子とリチウム化合物とを混合し、得た混合物を680〜800℃で焙焼し、得られた焼成物を解砕して本発明のリチウム複合酸化物を得るが、この際に、用いるリチウム化合物としては、水酸化物、酸化物、塩化物、炭酸塩、硝酸塩のいずれかが好ましいが、より好ましくは合成の際に焼成で使用する炉や匣鉢を傷めず環境面でも負荷の低い、水酸化物もしくは酸化物が望ましい。   The monodispersed nickel-containing hydroxide primary particles or nickel-containing oxide primary particles of the present invention and a lithium compound are mixed, the obtained mixture is roasted at 680 to 800 ° C., and the obtained fired product is crushed. Thus, the lithium composite oxide of the present invention is obtained. In this case, the lithium compound used is preferably any one of hydroxide, oxide, chloride, carbonate, and nitrate, but more preferably during synthesis. In addition, a hydroxide or an oxide that does not damage the furnace or mortar used in firing and has a low environmental load is desirable.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で作製した微粒リチウム複合ニッケル酸化物については、その平均粒径、含有金属元素の分析、ハイレート放電特性について示す。
平均粒径の測定は日機装株式会社製ナノトラック粒度分布測定装置「型式 UPA−EX150」を用いて測定し、単分散かどうかは、この値とSEM観察結果とを比較して確認した。
ハイレート放電特性については、下記の電池作製により製造したコインセルを用いて0.1C充電、2C放電を行った際の放電容量値と規定し、各例で測定した値(2C電池容量)を、後述する従来例の値を100とした相対値として求めた。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, about the fine lithium composite nickel oxide produced by the Example and the comparative example, it shows about the average particle diameter, the analysis of a contained metal element, and a high-rate discharge characteristic.
The average particle size was measured using a nanotrack particle size distribution measuring device “model UPA-EX150” manufactured by Nikkiso Co., Ltd., and whether or not it was monodispersed was confirmed by comparing this value with the SEM observation result.
The high-rate discharge characteristics are defined as a discharge capacity value when 0.1C charge and 2C discharge are performed using a coin cell manufactured by the following battery production, and a value (2C battery capacity) measured in each example is described later. As a relative value, the value of the conventional example is set to 100.

[電池作成]
活物質粉末90wt%にアセチレンブラック5wt%およびPVDF(ポリ沸化ビニリデン)5wt%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cmになるように塗布し、120℃で真空乾燥を行い、直径1cmの円板状に打ち抜いて正極とした。負極としてリチウム金属を、電解液には1モルのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。ポリエチレンからなるセパレータに電解液を染み込ませ、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作成した。作成した電池は24時間程度放置し、OCVが安定した後カットオフ電圧4.3〜3.0Vで充放電試験を実施した。
[Battery creation]
90 wt% of the active material powder was mixed with 5 wt% of acetylene black and 5 wt% of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to a 20 μm thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a disk shape having a diameter of 1 cm to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol of LiClO 4 as a supporting salt was used as the electrolyte. A separator made of polyethylene was impregnated with an electrolytic solution, and a 2032 type coin battery was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C. The prepared battery was allowed to stand for about 24 hours, and after the OCV was stabilized, a charge / discharge test was performed at a cut-off voltage of 4.3 to 3.0V.

塊状のNi0.82Co0.15Al0.03(OH)の組成からなるニッケル含有水酸化物原料を粉砕して得た粉末1molを原料とし、これを反応槽内の水酸化ナトリウム水溶液(2.5mol/200cc)に懸濁させ十分攪拌させた後、反応槽の温度を140℃に保温し浴温が同温度に到達後30分保持し、その後冷却してニッケル含有水酸化物の粉末を得た。得られた粉末は平均粒子径1.6μmで単分散状態であった。また、組成はニッケル含有水酸化物原料と同じであった。
次に、得られた粉末を水酸化リチウム一水和物とスパルタンリューザーにてLi/(Ni+Co+Al)モル比=1.02となるよう混合し、760℃で炭酸ガス吸着設備と乾燥設備を通した工業用酸素気流中で24時間焼成を行った。得られた焼成物を解砕後、網目50μmの超音波篩で分級して粗大ゴミを除去し、篩下を真空乾燥して製品であるリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.818Co0.149Al0.033で有り、平均粒子径は1.5μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
Using 1 mol of powder obtained by pulverizing a nickel-containing hydroxide raw material having a composition of massive Ni 0.82 Co 0.15 Al 0.03 (OH) 2 as a raw material, this was used as an aqueous sodium hydroxide solution in the reaction vessel (2.5 mol / 200 cc) after suspension and sufficient stirring, the temperature of the reaction vessel is kept at 140 ° C. and held for 30 minutes after the bath temperature reaches the same temperature, and then cooled to cool the nickel-containing hydroxide. A powder was obtained. The obtained powder was monodispersed with an average particle size of 1.6 μm. The composition was the same as that of the nickel-containing hydroxide raw material.
Next, the obtained powder was mixed with lithium hydroxide monohydrate and a Spartan reuser so that the Li / (Ni + Co + Al) molar ratio = 1.02, and passed through a carbon dioxide adsorption facility and a drying facility at 760 ° C. The calcination was carried out in an industrial oxygen stream for 24 hours. The obtained fired product was crushed and classified with an ultrasonic sieve having a mesh of 50 μm to remove coarse dust, and the sieve was vacuum dried to produce a lithium composite nickel oxide product.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.818 Co 0.149 Al 0.033 O 2 , the average particle size was 1.5 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.

水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して1molとし、反応槽の温度を100℃とした以外は実施例1と同様にして平均粒子径0.7μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は0.6μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は126であった。
The amount of sodium hydroxide was 1 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, and the temperature of the reaction vessel was 100 ° C. A hydroxide was obtained.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle diameter was 0.6 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 126.

水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して5molとし、反応槽の温度を180℃とした以外は実施例1と同様にして平均粒子径2.9μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は2.9μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は115であった。
The amount of sodium hydroxide was 5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, and the temperature of the reaction vessel was 180 ° C. A hydroxide was obtained.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle diameter was 2.9 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 115.

水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して1molとし、反応槽の温度を100℃とし、保持時間を120分とした以外は実施例1と同様にして平均粒子径1.3μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は122であった。
The average particle size of 1. is the same as in Example 1 except that the amount of sodium hydroxide is 1 mol per 1 mol of the nickel-containing hydroxide raw material powder, the temperature of the reaction vessel is 100 ° C., and the holding time is 120 minutes. A monodispersed nickel-containing hydroxide at 3 μm was obtained.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle diameter was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was 122.

水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して1.5molとし、反応槽の温度を140℃とし、保持時間を60分とした以外は実施例1と同様にして平均粒子径1.7μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は1.7μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
The average particle size was the same as in Example 1 except that the amount of sodium hydroxide was 1.5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, the reaction vessel temperature was 140 ° C., and the holding time was 60 minutes. A monodispersed nickel-containing hydroxide at 1.7 μm was obtained.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle size was 1.7 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.

水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して5molとし、反応槽の温度を90℃とし、保持時間を120分とした以外は実施例1と同様にして平均粒子径0.9μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は0.9μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は125であった。
The average particle size was set to 0. 5 as in Example 1 except that the amount of sodium hydroxide was 5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, the reaction vessel temperature was 90 ° C., and the holding time was 120 minutes. A monodispersed nickel-containing hydroxide was obtained at 9 μm.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle size was 0.9 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was 125.

(比較例1)
本例は反応温度が高い場合の比較例に相当するものである。
水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して2.5molとし、反応槽の温度を220℃とし、保持時間を60分とした以外は実施例1と同様にして平均粒子径5.2μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.820Co0.151Al0.029で有り、平均粒子径は5.1μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は98と低かった。
(Comparative Example 1)
This example corresponds to a comparative example when the reaction temperature is high.
The average particle size was the same as in Example 1 except that the amount of sodium hydroxide was 2.5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, the reaction vessel temperature was 220 ° C., and the holding time was 60 minutes. A monodispersed nickel-containing hydroxide at 5.2 μm was obtained.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.820 Co 0.151 Al 0.029 O 2 , the average particle size was 5.1 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was as low as 98.

(比較例2)
本例は保持時間が短い場合の比較例に相当するものである。
水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して2.5molとし、反応槽の温度を140℃とし、保持時間を20分とした以外は実施例1と同様にして行ったが単分散とならず原料凝集塊が多く残るニッケル含有水酸化物を得た。
(Comparative Example 2)
This example corresponds to a comparative example when the holding time is short.
The same procedure as in Example 1 was performed except that the amount of sodium hydroxide was 2.5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, the reaction vessel temperature was 140 ° C., and the holding time was 20 minutes. A nickel-containing hydroxide was obtained in which a large amount of raw material agglomerates remained without being monodispersed.

(比較例3)
本例は保持時間が長い場合の比較例に相当するものである。
水酸化ナトリウムの量をニッケル含有水酸化物原料粉末1molに対して2.5molとし、反応槽の温度を140℃とし、保持時間を150分とした以外は実施例1と同様にして長径4μmの単分散の板状ニッケル含有水酸化物を得た。
(Comparative Example 3)
This example corresponds to a comparative example when the holding time is long.
The amount of sodium hydroxide was 2.5 mol with respect to 1 mol of the nickel-containing hydroxide raw material powder, the reaction vessel temperature was 140 ° C., and the holding time was 150 minutes. A monodispersed plate-like nickel-containing hydroxide was obtained.

ニッケル含有水酸化物原料を、Ni0.845Co0.155(OH)の組成のものに変更した以外は実施例1と同様にして平均粒子径1.7μmで単分散のニッケル含有水酸化物を得た。
次に、これを用いて実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.845Co0.155で有り、平均粒子径は1.6μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は128であった。
The nickel hydroxide containing raw material, Ni 0.845 Co 0.155 (OH) monodisperse containing nickel hydroxide was changed to the second composition those in the same manner as in Example 1 with an average particle diameter of 1.7μm I got a thing.
Next, using this, a lithium composite nickel oxide was produced in the same manner as in Example 1. The resulting chemical composition of the lithium nickel composite oxide be Li 1.02 Ni 0.845 Co 0.155 O 2 , the average particle size was monodisperse with 1.6 [mu] m.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 128.

実施例1で得られたニッケル含有水酸化物を、一度スラリー濃度300g/Lとなるよう純水に懸濁させ、これにNi0.82:Co0.15:Al0.03の組成になるようアルミン酸ナトリウムを溶解させ更に硫酸で中和することで得られたAl(OH)が粒子表面に付着したニッケル含有水酸化物にし、水酸化リチウム一水和物と混合した以外は全て実施例7と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.822Co0.149Al0.029で有り、平均粒子径は1.6μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
The nickel-containing hydroxide obtained in Example 1 is once suspended in pure water so as to have a slurry concentration of 300 g / L, and this has a composition of Ni 0.82 : Co 0.15 : Al 0.03. Al (OH) 3 obtained by dissolving sodium aluminate and neutralizing with sulfuric acid was converted to nickel-containing hydroxide attached to the particle surface and mixed with lithium hydroxide monohydrate. A lithium composite nickel oxide was produced in the same manner as in Example 7. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.822 Co 0.149 Al 0.029 O 2 , the average particle size was 1.6 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.

実施例1で得られたニッケル含有水酸化物を、Ni0.82:Co0.15:Al0.03の組成になるようAlをメカノフュージョンにより粒子表面に付着したニッケル含有水酸化物にし、水酸化リチウム一水和物と混合した以外は全て実施例7と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は1.5μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は121であった。
The nickel-containing hydroxide obtained by attaching Al 2 O 3 to the particle surface by mechanofusion so that the nickel-containing hydroxide obtained in Example 1 has a composition of Ni 0.82 : Co 0.15 : Al 0.03. A lithium composite nickel oxide was produced in the same manner as in Example 7 except that the mixture was mixed with lithium hydroxide monohydrate. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle diameter was 1.5 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was 121.

実施例1で得られたニッケル含有水酸化物粉末を水酸化リチウム一水和物と混合する前にサブミクロンまで微粉砕したAl(OH)とNi0.82:Co0.15:Al0.03の組成になるようにしたニッケル含有水酸化物にし、これと水酸化リチウム一水和物と混合した以外は全て実施例7と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.150Al0.029で有り、平均粒子径は1.5μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は119であった。
Al (OH) 3 and Ni 0.82 : Co 0.15 : Al 0 finely ground to submicron before mixing the nickel-containing hydroxide powder obtained in Example 1 with lithium hydroxide monohydrate A lithium composite nickel oxide was produced in the same manner as in Example 7, except that the nickel-containing hydroxide having a composition of 0.03 was mixed with lithium hydroxide monohydrate.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.150 Al 0.029 O 2 , the average particle diameter was 1.5 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 119.

実施例1で得られたニッケル含有水酸化物を水酸化リチウム一水和物と混合する前に一度400℃大気雰囲気にて焙焼しニッケル含有酸化物に変更した以外は実施例1と同様の方法にてリチウムニッケル複合酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.820Co0.150Al0.030で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は119であった。
The nickel-containing hydroxide obtained in Example 1 was the same as in Example 1 except that the nickel-containing hydroxide was roasted once in an air atmosphere at 400 ° C. and mixed with the nickel-containing oxide before mixing with lithium hydroxide monohydrate. The lithium nickel composite oxide was manufactured by the method. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.820 Co 0.150 Al 0.030 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 119.

実施例1で得られたニッケル含有水酸化物を水酸化リチウム一水和物と混合する前に一度900℃大気雰囲気にて焙焼しニッケル含有酸化物に変更した以外は実施例1と同様の方法にてリチウムニッケル複合酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.151Al0.028で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
The nickel-containing hydroxide obtained in Example 1 was the same as Example 1 except that the nickel-containing hydroxide was roasted once in the atmosphere at 900 ° C. and changed to the nickel-containing oxide before mixing with lithium hydroxide monohydrate. The lithium nickel composite oxide was manufactured by the method. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.151 Al 0.028 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.

実施例1で得られたニッケル含有水酸化物を水酸化リチウム一水和物と混合する前に一度650℃大気雰囲気にて焙焼しニッケル含有酸化物に変更した以外は実施例1と同様の方法にてリチウムニッケル複合酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.151Al0.028で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
The nickel-containing hydroxide obtained in Example 1 was the same as Example 1 except that the nickel-containing hydroxide was roasted once at 650 ° C. in the atmosphere before being mixed with lithium hydroxide monohydrate and changed to the nickel-containing oxide. The lithium nickel composite oxide was manufactured by the method. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.821 Co 0.151 Al 0.028 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.

得られたニッケル含有水酸化物を水酸化リチウム一水和物と混合する前に一度300℃大気雰囲気にて焙焼しニッケル含有酸化物に変更した以外は全て実施例1同様の方法にてリチウムニッケル複合酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.03Ni0.821Co0.151Al0.028で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は120であった。
ただし、本実施については合成するにあたり、組成の制御が非常に困難である。
Lithium was obtained in the same manner as in Example 1 except that the nickel-containing hydroxide thus obtained was once baked in an air atmosphere at 300 ° C. and changed to a nickel-containing oxide before mixing with lithium hydroxide monohydrate. Nickel composite oxide was produced.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.03 Ni 0.821 Co 0.151 Al 0.028 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 120.
However, it is very difficult to control the composition in the synthesis of this embodiment.

(比較例4)
得られたニッケル含有水酸化物を水酸化リチウム一水和物と混合する前に一度1000℃大気雰囲気にて焙焼しニッケル含有酸化物に変更した以外は全て実施例1と同様の方法にてリチウムニッケル複合酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.819Co0.149Al0.032で異相が確認でき、電池材料として用いることの出来ないものであった。
(Comparative Example 4)
The obtained nickel-containing hydroxide was the same as in Example 1 except that the nickel-containing hydroxide was once baked at 1000 ° C. in the atmosphere before being mixed with lithium hydroxide monohydrate and changed to a nickel-containing oxide. A lithium nickel composite oxide was produced.
As for the chemical composition of the obtained lithium composite nickel oxide, a heterogeneous phase could be confirmed with Li 1.02 Ni 0.819 Co 0.149 Al 0.032 O 2 and it could not be used as a battery material.

Ni0.845Co0.155(OH)の組成からなるニッケル含有水酸化物原料を用い、得られたニッケル含有水酸化物が平均粒径が1.7μmとなった以外は実施例1と同様にしてリチウム複合ニッケル酸化物を製造した。得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.844Co0.156で有り、平均粒子径は1.7μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は129であった。
Using Ni 0.845 Co 0.155 (OH) nickel hydroxide containing raw material comprising a second composition, except that the resulting nickel hydroxide containing an average particle diameter became 1.7μm Example 1 Similarly, lithium composite nickel oxide was produced. The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.844 Co 0.156 O 2 , the average particle size was 1.7 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was 129.

実施例15で得られたニッケル含有水酸化物を、一度スラリー濃度300g/Lとなるよう純水に懸濁させ、これにNi0.82:Co0.15:Al0.03の組成になるようアルミン酸ナトリウムを溶解させ更に硫酸で中和することで得られたAl(OH)が粒子表面に付着したニッケル含有水酸化物とし、これを用いた以外は実施例15と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.819Co0.149Al0.032で有り、平均粒子径は1.5μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は121であった。
The nickel-containing hydroxide obtained in Example 15 is once suspended in pure water so as to have a slurry concentration of 300 g / L, and this has a composition of Ni 0.82 : Co 0.15 : Al 0.03. A nickel-containing hydroxide in which Al (OH) 3 obtained by dissolving sodium aluminate and neutralizing with sulfuric acid was adhered to the surface of the particles was used in the same manner as in Example 15 except that this was used. A composite nickel oxide was produced.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.819 Co 0.149 Al 0.032 O 2 , the average particle size was 1.5 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide and the battery capacity was determined. The 2C battery capacity (relative ratio) was 121.

得られたニッケル含有水酸化物を、Ni0.82:Co0.15:Al0.03の組成になるようAlをメカノフュージョンにより粒子表面に付着させたニッケル含有水酸化物とし、これを用いた以外は実施例16と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.820Co0.150Al0.030で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は119であった。
The obtained nickel-containing hydroxide is made into a nickel-containing hydroxide in which Al 2 O 3 is adhered to the particle surface by mechanofusion so as to have a composition of Ni 0.82 : Co 0.15 : Al 0.03 . A lithium composite nickel oxide was produced in the same manner as in Example 16 except that this was used.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.820 Co 0.150 Al 0.030 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 119.

得られたニッケル含有水酸化物粉末を水酸化リチウム一水和物と混合する前にサブミクロンまで微粉砕した水酸化アルミニウムとNi0.82:Co0.15:Al0.03の組成になるよう混合した以外は実施例16と同様にしてリチウム複合ニッケル酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.818Co0.151Al0.031で有り、平均粒子径は1.4μmで単分散状態であった。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求めたところ、2C電池容量(相対比)は118であった。
The resulting nickel-containing hydroxide powder is comminuted to submicron before mixing with lithium hydroxide monohydrate and has a composition of Ni 0.82 : Co 0.15 : Al 0.03. A lithium composite nickel oxide was produced in the same manner as in Example 16 except for mixing.
The chemical composition of the obtained lithium composite nickel oxide was Li 1.02 Ni 0.818 Co 0.151 Al 0.031 O 2 , the average particle size was 1.4 μm, and it was in a monodispersed state.
A battery was prepared using this lithium composite nickel oxide, and the battery capacity was determined. The 2C battery capacity (relative ratio) was 118.

(従来例)
Ni0.82Co0.15Al0.03(OH)の組成になるよう硫酸ニッケルと硫酸コバルトを混合した水溶液、アルミン酸ナトリウム水溶液、アンミン錯塩を形成させるアンモニア水、pH調整用に苛性ソーダ等を同時に反応槽中に滴下してニッケル含有水酸化物を得る従来の晶析法にてニッケル含有水酸化物を得た。反応温度は50℃とし、pHは11とし、滞留時間を8時間とした。得られたニッケル含有水酸化物の組成はNi0.82Co0.15Al0.03(OH)で有り、一次粒子が凝集して2次粒子を構成している球状のニッケル含有水酸化物であった。
これを用いた以外は実施例1と同様にしてリチウムニッケル複合酸化物を製造した。
得られたリチウム複合ニッケル酸化物の化学組成はLi1.02Ni0.821Co0.149Al0.030で有り、一次粒子が凝集して二次粒子を構成したものであり、二次粒子の平均粒子径は11.1μmとなっていた。
このリチウム複合ニッケル酸化物を用いて電池を作成し、電池容量を求め、この値を100とし、他実施例の良否判定基準とした。
(Conventional example)
Ni 0.82 Co 0.15 Al 0.03 (OH) 2 mixed aqueous solution of nickel sulfate and cobalt sulfate, sodium aluminate aqueous solution, ammonia water to form ammine complex salt, caustic soda for pH adjustment, etc. Were simultaneously dropped into the reaction vessel to obtain a nickel-containing hydroxide by a conventional crystallization method for obtaining a nickel-containing hydroxide. The reaction temperature was 50 ° C., the pH was 11, and the residence time was 8 hours. The composition of the obtained nickel-containing hydroxide is Ni 0.82 Co 0.15 Al 0.03 (OH) 2 , and the spherical nickel-containing hydroxide in which the primary particles aggregate to form secondary particles It was a thing.
A lithium nickel composite oxide was produced in the same manner as in Example 1 except that this was used.
The obtained lithium composite nickel oxide has a chemical composition of Li 1.02 Ni 0.821 Co 0.149 Al 0.030 O 2 , and primary particles aggregate to form secondary particles. The average particle size of the secondary particles was 11.1 μm.
A battery was prepared using this lithium composite nickel oxide, the battery capacity was determined, and this value was taken as 100, which was used as a quality criterion for other examples.

以上より明らかなように、本発明の方法に従えば、単分散状態で、平均粒子径が3μm以下のニッケル含有水酸化物一次粒子を簡単に得ることができ、これを用いて単分散状態で平均粒径が3μm以下のリチウム複合ニッケル酸化物一次粒子を容易に得ることができ、この単分散状態で、動的光散乱法測定による平均粒子径が3μm以下のリチウム複合ニッケル酸化物一次粒子をリチウムイオン二次電池用の正極活物質として用いると、ハイレート特性に優れた高出力のリチウム二次電池を得ることができ、充放電可能な二次電池、特に自動車分野で利用される二次電池として好適である。   As apparent from the above, according to the method of the present invention, nickel-containing hydroxide primary particles having an average particle diameter of 3 μm or less can be easily obtained in a monodispersed state, and this can be used in a monodispersed state. Lithium composite nickel oxide primary particles having an average particle diameter of 3 μm or less can be easily obtained. In this monodispersed state, lithium composite nickel oxide primary particles having an average particle diameter of 3 μm or less by dynamic light scattering measurement are obtained. When used as a positive electrode active material for a lithium ion secondary battery, it is possible to obtain a high-power lithium secondary battery excellent in high rate characteristics, and a chargeable / dischargeable secondary battery, particularly a secondary battery used in the automotive field. It is suitable as.

Claims (7)

下記一般式(1)に示され、かつ単分散の一次粒子であり、動的光散乱法測定による平均粒径が3μm以下であることを特徴とするニッケル含有水酸化物。
一般式(1):NiM(OH)
(式中MはCo、Alのうち少なくとも1種以上の元素を示す。)
A nickel-containing hydroxide represented by the following general formula (1), monodispersed primary particles, and having an average particle size of 3 μm or less as measured by a dynamic light scattering method.
General formula (1): NiM (OH) 2
(In the formula, M represents at least one element of Co and Al.)
請求項1記載のニッケル含有水酸化物を300〜900℃で焙焼して得られるものであって、下記一般式(2)に示され、かつ単分散の一次粒子であり、動的光散乱法測定による平均粒径が3μm以下であることを特徴とするニッケル含有酸化物。
一般式(2):NiMO
(式中MはCo、Alのうち少なくとも1種以上の元素を示す。)
It is obtained by roasting the nickel-containing hydroxide according to claim 1 at 300 to 900 ° C., which is represented by the following general formula (2) and is a monodispersed primary particle, and dynamic light scattering Nickel-containing oxide characterized by having an average particle size of 3 μm or less by method measurement.
General formula (2): NiMO
(In the formula, M represents at least one element of Co and Al.)
前記一般式(1)に示される組成のニッケル塩溶液の加水分解により得られるニッケル含有水酸化物をアルカリ金属水酸化物水溶液に懸濁させ、攪拌しつつ、加熱して90〜180℃に30分以上2時間以下保持し、次いで冷却し、水と接触させてアルカリ金属水酸化物を溶解してニッケル含有水酸化物を分離回収することを特徴とする請求項1記載のニッケル含有水酸化物の製造方法。   A nickel-containing hydroxide obtained by hydrolysis of a nickel salt solution having the composition represented by the general formula (1) is suspended in an aqueous alkali metal hydroxide solution and heated to 90 to 180 ° C. while stirring. The nickel-containing hydroxide according to claim 1, wherein the nickel-containing hydroxide is separated and recovered by holding the mixture for at least 2 minutes and not more than 2 minutes, then cooling and contacting with water to dissolve the alkali metal hydroxide. Manufacturing method. 前記アルカリ金属水酸化物水溶液中のアルカリ金属水酸化物の量が、アルカリ金属水酸化物水溶液に添加されるニッケル含有水酸化物1mol当たりアルカリ金属水酸化物1mol以上とすることを特徴とする請求項3記載のニッケル含有水酸化物の製造方法。   The amount of the alkali metal hydroxide in the alkali metal hydroxide aqueous solution is 1 mol or more of alkali metal hydroxide per 1 mol of nickel-containing hydroxide added to the alkali metal hydroxide aqueous solution. Item 4. A method for producing a nickel-containing hydroxide according to Item 3. 前記アルカリ金属水酸化物が水酸化ナトリウム、水酸化カリウム、水酸化リチウムのうち少なくとも1種であることを特徴とする請求項3又は4記載のニッケル含有水酸化物の製造方法。   The method for producing a nickel-containing hydroxide according to claim 3 or 4, wherein the alkali metal hydroxide is at least one of sodium hydroxide, potassium hydroxide, and lithium hydroxide. 請求項1記載のニッケル含有水酸化物を300〜900℃で焙焼することを特徴とする請求項2記載のニッケル含有酸化物の製造方法。   The method for producing a nickel-containing oxide according to claim 2, wherein the nickel-containing hydroxide according to claim 1 is roasted at 300 to 900 ° C. 前記焙焼してニッケル含有酸化物を得るに際して、前記ニッケル含有水酸化物と、所望量の水酸化アルミニウム、酸化アルミニウムの内の少なくとも1つとを混合して焙焼することを特徴とする請求項6記載のニッケル含有酸化物の製造方法。   The nickel-containing hydroxide and the desired amount of aluminum hydroxide and aluminum oxide are mixed and roasted when the nickel-containing oxide is obtained by the roasting. 6. A method for producing a nickel-containing oxide according to 6.
JP2014113559A 2014-05-30 2014-05-30 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof Active JP5874939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113559A JP5874939B2 (en) 2014-05-30 2014-05-30 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113559A JP5874939B2 (en) 2014-05-30 2014-05-30 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008241924A Division JP5590283B2 (en) 2008-09-22 2008-09-22 Lithium composite nickel oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014156397A true JP2014156397A (en) 2014-08-28
JP5874939B2 JP5874939B2 (en) 2016-03-02

Family

ID=51577540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113559A Active JP5874939B2 (en) 2014-05-30 2014-05-30 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof

Country Status (1)

Country Link
JP (1) JP5874939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067960A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel composite hydroxide and method for preparing same
JP2016088834A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor
JP2018063951A (en) * 2016-03-31 2018-04-19 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261274A (en) * 1985-09-10 1987-03-17 Sanyo Electric Co Ltd Manufacture of cathode active material for alkaline storage battery
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH09270258A (en) * 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for nonaqueous electrolyte battery active material
JPH111324A (en) * 1997-06-10 1999-01-06 Sakai Chem Ind Co Ltd Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JPH1160243A (en) * 1997-08-13 1999-03-02 Mitsui Mining & Smelting Co Ltd Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002208400A (en) * 2000-11-09 2002-07-26 Toyota Central Res & Dev Lab Inc Nickel hydroxide for positive electrode active material of alkaline secondary battery, alkaline secondary battery using same, its characteristics evaluation method and manufacturing method
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
JP2005193237A (en) * 2005-01-17 2005-07-21 Tohoku Techno Arch Co Ltd Organomodified fine particle
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
US20060211152A1 (en) * 2003-10-14 2006-09-21 Xiaogang Peng Synthetic control of metal oxide nanocrystal sizes and shapes
US20080019901A1 (en) * 2006-07-19 2008-01-24 Wenjie Shen Method of making NiO and Ni nanostructures
JP2008053222A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261274A (en) * 1985-09-10 1987-03-17 Sanyo Electric Co Ltd Manufacture of cathode active material for alkaline storage battery
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH09270258A (en) * 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for nonaqueous electrolyte battery active material
JPH111324A (en) * 1997-06-10 1999-01-06 Sakai Chem Ind Co Ltd Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JPH1160243A (en) * 1997-08-13 1999-03-02 Mitsui Mining & Smelting Co Ltd Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002208400A (en) * 2000-11-09 2002-07-26 Toyota Central Res & Dev Lab Inc Nickel hydroxide for positive electrode active material of alkaline secondary battery, alkaline secondary battery using same, its characteristics evaluation method and manufacturing method
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
US20060211152A1 (en) * 2003-10-14 2006-09-21 Xiaogang Peng Synthetic control of metal oxide nanocrystal sizes and shapes
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
JP2005193237A (en) * 2005-01-17 2005-07-21 Tohoku Techno Arch Co Ltd Organomodified fine particle
US20080019901A1 (en) * 2006-07-19 2008-01-24 Wenjie Shen Method of making NiO and Ni nanostructures
JP2008053222A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067960A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel composite hydroxide and method for preparing same
JP2016088834A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor
US10294120B2 (en) 2014-10-30 2019-05-21 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same
JP2018063951A (en) * 2016-03-31 2018-04-19 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7107666B2 (en) 2016-03-31 2022-07-27 本田技研工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2022132449A (en) * 2016-03-31 2022-09-08 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7400033B2 (en) 2016-03-31 2023-12-18 本田技研工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP5874939B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5590283B2 (en) Lithium composite nickel oxide and method for producing the same
JP7202393B2 (en) Method for preparing cathode material for rechargeable lithium-ion batteries
JP6094591B2 (en) Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2019186221A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6059449B2 (en) Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2019186220A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5499992B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
CN103797623A (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
CN106784795B (en) Single-crystal spherical lithium manganate material, preparation method thereof and positive electrode material
JP6614202B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
KR20110039809A (en) Lithium titanium oxide for anode active material of lithium rechargeable battery, its preparation and lithium battery using same
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
CN105393386A (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP5874939B2 (en) Nickel-containing hydroxide, nickel-containing oxide, and production method thereof
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP7167491B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5744827B2 (en) Method for producing secondary battery positive electrode active material
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5874939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150