JP5744827B2 - Method for producing secondary battery positive electrode active material - Google Patents

Method for producing secondary battery positive electrode active material Download PDF

Info

Publication number
JP5744827B2
JP5744827B2 JP2012274530A JP2012274530A JP5744827B2 JP 5744827 B2 JP5744827 B2 JP 5744827B2 JP 2012274530 A JP2012274530 A JP 2012274530A JP 2012274530 A JP2012274530 A JP 2012274530A JP 5744827 B2 JP5744827 B2 JP 5744827B2
Authority
JP
Japan
Prior art keywords
compound
olivine
silicate compound
mol
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274530A
Other languages
Japanese (ja)
Other versions
JP2014118321A (en
Inventor
晶子 西城
晶子 西城
大神 剛章
剛章 大神
鈴木 務
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012274530A priority Critical patent/JP5744827B2/en
Publication of JP2014118321A publication Critical patent/JP2014118321A/en
Application granted granted Critical
Publication of JP5744827B2 publication Critical patent/JP5744827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、優れた電池物性を有する二次電池を実現することのできる二次電池正極活物質を得るためのオリビン型シリケート化合物の製造方法に関する。   The present invention relates to a method for producing an olivine-type silicate compound for obtaining a secondary battery positive electrode active material capable of realizing a secondary battery having excellent battery properties.

リチウムイオン電池等の二次電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   A secondary battery such as a lithium ion battery is a kind of non-aqueous electrolyte battery, and is used in a wide range of fields such as a mobile phone, a digital camera, a notebook PC, a hybrid vehicle, and an electric vehicle. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(
LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeS
iO4)、ホウ酸鉄リチウム(LiFeBO3)等、種々のものが知られている。このうち、LiFePO4やLi2FeSiO4、LiFeBO3等は、オリビン構造を有する、いわゆるオリビン型リチウム化合物であり、特にオリビン型シリケート化合物は、高容量の二次電池用正極材料として極めて有用である(特許文献1、2及び非特許文献1、2)。
Examples of the positive electrode material include lithium cobalt oxide (LiCoO 2 ), lithium manganate (
LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeS)
Various materials such as iO 4 ) and lithium iron borate (LiFeBO 3 ) are known. Among these, LiFePO 4 , Li 2 FeSiO 4 , LiFeBO 3 and the like are so-called olivine type lithium compounds having an olivine structure, and in particular, the olivine type silicate compound is extremely useful as a positive electrode material for a high capacity secondary battery. (Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

特開2001−266882号公報JP 2001-266882 A 特開2008−186807号公報JP 2008-186807 A

Electrochemical and Solid-State Letters 19, 12, A542-A544(2006)Electrochemical and Solid-State Letters 19, 12, A542-A544 (2006) GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26 R. Dominiko et al. Journal of Power Sources 184(2008), P462-468R. Dominiko et al. Journal of Power Sources 184 (2008), P462-468

水熱反応によるオリビン型シリケート化合物の製造法は、リチウム化合物、金属(M)化合物及びケイ酸化合物の混合物を水熱反応させる方法であり、そのリチウム化合物としては水酸化リチウムが用いられている。しかし、水酸化リチウムは高価であり、工業用の安価な製品が無いため、安価で入手が容易な炭酸リチウムを用いるのが望ましい。ところが、リチウム源として炭酸リチウムを用いて前記水熱反応を行うことにより得られたオリビン型シリケート化合物を正極材として採用した二次電池は、水酸化リチウムを用いて得られたオリビン型シリケート化合物を正極材として採用した二次電池に比べて放電容量が低下してしまうことが判明した。
従って、本発明の課題は、リチウム源として炭酸リチウムを用いた場合であっても、二次電池とした場合に高い放電容量を示す正極活物質の製造方法を提供することにある。
A method for producing an olivine-type silicate compound by hydrothermal reaction is a method in which a mixture of a lithium compound, a metal (M) compound and a silicate compound is hydrothermally reacted, and lithium hydroxide is used as the lithium compound. However, since lithium hydroxide is expensive and there is no inexpensive product for industrial use, it is desirable to use lithium carbonate that is inexpensive and easily available. However, the secondary battery employing the olivine-type silicate compound obtained by performing the hydrothermal reaction using lithium carbonate as a lithium source as a positive electrode material is obtained by using the olivine-type silicate compound obtained using lithium hydroxide. It has been found that the discharge capacity is reduced as compared with the secondary battery employed as the positive electrode material.
Therefore, even if it is a case where lithium carbonate is used as a lithium source, the subject of this invention is providing the manufacturing method of the positive electrode active material which shows a high discharge capacity when it is set as a secondary battery.

そこで本発明者らは、リチウム源として炭酸リチウムを用いて二次電池とした場合に高い放電容量を示す正極活物質を製造すべく、種々の条件を検討した結果、炭酸リチウムに一定量の酸を反応させ、次いで一定量のアルカリを反応させ、その後に金属(M)化合物及びケイ酸化合物を添加し、次いで水熱反応を行うことにより、得られるオリビン型シリケート化合物粒子が均一となり、これを用いた二次電池の放電容量が顕著に向上することを見出し、本発明を完成した。   Therefore, the present inventors have studied various conditions to produce a positive electrode active material exhibiting a high discharge capacity when using lithium carbonate as a lithium source to form a secondary battery. Then, a certain amount of alkali is reacted, after which a metal (M) compound and a silicate compound are added, and then a hydrothermal reaction is performed, whereby the resulting olivine-type silicate compound particles are made uniform. The present inventors have found that the discharge capacity of the used secondary battery is remarkably improved.

すなわち、本発明は、炭酸リチウムのリチウムイオン1モルに対して水素イオン量が0.9〜1.1モルとなる量の酸を反応させた後、リチウムイオン1モルに対して水酸化物イオン量が0.9〜1.1モルとなる量のアルカリを反応させ、次いで金属(M)化合物及びケイ酸化合物を添加し、得られた混合物を水熱反応させることを特徴とする、金属M(MはFe、Ni、Co、Al、Zn、Mn、V又はZr)を含むオリビン型シリケート化合物の製造方法を提供するものである。
また、本発明は、上記の方法により得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、二次電池正極活物質の製造方法を提供するものである。
また、本発明は、上記の製造方法において、さらに水不溶性炭素含有化合物を添加して水熱反応を行うことを特徴とする二次電池正極活物質の製造方法を提供するものである。
また、本発明は、上記の製造方法により得られる二次電池正極活物質を含む正極を有する二次電池を提供するものである。
That is, in the present invention, after reacting an acid having an amount of hydrogen ions of 0.9 to 1.1 mol with respect to 1 mol of lithium ions of lithium carbonate, hydroxide ions with respect to 1 mol of lithium ions. A metal M, characterized in that an alkali in an amount of 0.9 to 1.1 mol is reacted, then a metal (M) compound and a silicate compound are added, and the resulting mixture is hydrothermally reacted. The present invention provides a method for producing an olivine-type silicate compound containing (M is Fe, Ni, Co, Al, Zn, Mn, V, or Zr).
The present invention also provides a method for producing a positive electrode active material for a secondary battery, characterized in that carbon is supported on the olivine-type silicate compound obtained by the above method and then fired.
The present invention also provides a method for producing a secondary battery positive electrode active material, characterized in that, in the above production method, a water-insoluble carbon-containing compound is further added to carry out a hydrothermal reaction.
Moreover, this invention provides the secondary battery which has a positive electrode containing the secondary battery positive electrode active material obtained by said manufacturing method.

本発明の製造方法により得られる二次電池正極活物質は、高い充放電容量を有しており、二次電池用の正極材料として非常に有用である。   The secondary battery positive electrode active material obtained by the production method of the present invention has a high charge / discharge capacity, and is very useful as a positive electrode material for a secondary battery.

実施例1で得られたオリビン型シリケート化合物のSEM像を示す。The SEM image of the olivine type | mold silicate compound obtained in Example 1 is shown. 比較例1で得られたオリビン型シリケート化合物のSEM像を示す。The SEM image of the olivine type | mold silicate compound obtained by the comparative example 1 is shown. 比較例2で得られたオリビン型シリケート化合物のSEM像を示す。The SEM image of the olivine type | mold silicate compound obtained by the comparative example 2 is shown. 参考例1で得られたオリビン型シリケート化合物のSEM像を示す。The SEM image of the olivine type silicate compound obtained in Reference Example 1 is shown. 実施例1で得られたオリビン型シリケート化合物のX線回折図を示す。The X-ray-diffraction figure of the olivine type | mold silicate compound obtained in Example 1 is shown. 比較例1で得られたオリビン型シリケート化合物のX線回折図を示す。The X-ray diffraction pattern of the olivine type silicate compound obtained in Comparative Example 1 is shown. 比較例2で得られたオリビン型シリケート化合物のX線回折図を示す。The X-ray diffraction pattern of the olivine type silicate compound obtained in Comparative Example 2 is shown. 参考例1で得られたオリビン型シリケート化合物のX線回折図を示す。The X-ray diffraction pattern of the olivine type silicate compound obtained in Reference Example 1 is shown. 実施例1、比較例1、比較例2及び参考例1で得られたオリビン型シリケート化合物を用いた二次電池の放電曲線を示す。The discharge curve of the secondary battery using the olivine type silicate compound obtained in Example 1, Comparative Example 1, Comparative Example 2, and Reference Example 1 is shown.

以下、本発明について詳細に説明する。
本発明のオリビン型シリケート化合物の製造方法は、リチウム源として炭酸リチウムを用い、炭酸リチウムのリチウムイオン1モルに対して水素イオン量が0.9〜1.1モルとなる量の酸を反応させた後、リチウムイオン1モルに対して水酸化物イオン量が0.9〜1.1モルとなる量のアルカリを反応させ、次いで金属(M)化合物及びケイ酸化合物を添加し、得られた混合物を水熱反応させることを特徴とする。
Hereinafter, the present invention will be described in detail.
In the method for producing an olivine-type silicate compound of the present invention, lithium carbonate is used as a lithium source, and an acid having an amount of hydrogen ions of 0.9 to 1.1 mol is reacted with 1 mol of lithium ions of lithium carbonate. After that, an alkali having an amount of 0.9 to 1.1 mol of hydroxide ion was reacted with 1 mol of lithium ion, and then a metal (M) compound and a silicate compound were added. The mixture is hydrothermally reacted.

まず、炭酸リチウムに酸を反応させるが、添加する酸の量を、炭酸リチウムのリチウムイオン1モルに対して水素イオン量が0.9〜1.1モルとなる量とする。酸量が0.9モル未満の場合には、炭酸リチウム中の炭酸の除去が不十分となり、得られるオリビン型シリケート化合物、以下、(合成物ともいう)の性能に悪影響をもたらす。一方、酸の量が1.1モルを超えると、炭酸リチウム中の炭酸の除去は十分に行われるが、混合物のpHが低下し、合成物の性能に悪影響をもたらす。好ましい酸の量は、水素イオン量が0.91〜1.09モルとなる量であり、より好ましくは0.92〜1.08モルとなる量であり、さらに好ましくは0.95〜1.05モルとなる量である。   First, an acid is reacted with lithium carbonate. The amount of acid to be added is set such that the amount of hydrogen ions is 0.9 to 1.1 mol with respect to 1 mol of lithium ions of lithium carbonate. When the acid amount is less than 0.9 mol, the removal of carbonic acid in the lithium carbonate becomes insufficient, which adversely affects the performance of the resulting olivine-type silicate compound (hereinafter also referred to as a synthesized product). On the other hand, when the amount of the acid exceeds 1.1 mol, the carbonic acid in the lithium carbonate is sufficiently removed, but the pH of the mixture is lowered, which adversely affects the performance of the composite. The amount of the acid is preferably such that the amount of hydrogen ions is 0.91 to 1.09 mol, more preferably 0.92 to 1.08 mol, and even more preferably 0.95 to 1.09 mol. The amount is 05 mol.

炭酸リチウムの使用量は、水熱反応時の水分散液中の濃度で0.30〜3.00mol/lが好ましく、0.50〜2.00mol/lがより好ましく、1.00〜1.50mol/lがさらに好ましい。   The amount of lithium carbonate used is preferably 0.30 to 3.00 mol / l, more preferably 0.50 to 2.00 mol / l in terms of the concentration in the aqueous dispersion during the hydrothermal reaction, and 1.00 to 1. 50 mol / l is more preferable.

用いられる酸としては、硫酸、硝酸、塩酸、ホウ酸、アスコルビン酸、及び酢酸、クエン酸、乳酸等のカルボキシル基を有する有機酸が挙げられ、このうち硫酸、硝酸、塩酸がより好ましい。   Examples of the acid used include sulfuric acid, nitric acid, hydrochloric acid, boric acid, ascorbic acid, and organic acids having a carboxyl group such as acetic acid, citric acid, and lactic acid. Among these, sulfuric acid, nitric acid, and hydrochloric acid are more preferable.

炭酸リチウムと酸の反応は、水溶液中で行うのが好ましい。反応は、0℃〜60℃、より好ましくは常温で、10分〜2時間、より好ましくは20分〜1時間行うのが好ましい。   The reaction between lithium carbonate and acid is preferably carried out in an aqueous solution. The reaction is preferably performed at 0 ° C. to 60 ° C., more preferably at room temperature, for 10 minutes to 2 hours, and more preferably for 20 minutes to 1 hour.

次にリチウムイオン1モルに対して水酸化物イオン量が0.9〜1.1モルとなる量のアルカリを反応させる。アルカリの量が0.9モル未満の場合には、混合物のpHが低下し、合成物の性能に悪影響をもたらす。アルカリの量が1.1モルを超えると、混合物のpHが上昇し、合成物の性能に悪影響をもたらす。好ましいアルカリの量は、水酸化物イオン量が0.91〜1.09モルとなる量であり、より好ましくは0.92〜1.08モルとなる量であり、さらに好ましくは0.95〜1.05モルとなる量である。   Next, an alkali with an amount of 0.9 to 1.1 mol of hydroxide ions is reacted with 1 mol of lithium ions. If the amount of alkali is less than 0.9 mole, the pH of the mixture will drop, adversely affecting the performance of the composite. If the amount of alkali exceeds 1.1 moles, the pH of the mixture will increase, adversely affecting the performance of the composite. A preferable amount of alkali is an amount such that the amount of hydroxide ions is 0.91 to 1.09 mol, more preferably 0.92 to 1.08 mol, and still more preferably 0.95 to 1.05 mol. The amount is 1.05 mol.

用いられるアルカリとしては、水酸化ナトリウム、水酸化カリウムが挙げられ、このうち水酸化ナトリウムがより好ましい。   Examples of the alkali used include sodium hydroxide and potassium hydroxide, and among these, sodium hydroxide is more preferable.

アルカリ添加後は、次の反応を行うことができるが、1分以上攪拌するのがより好ましい。   After the alkali addition, the following reaction can be performed, but it is more preferable to stir for 1 minute or more.

次に金属(M)化合物及びケイ酸化合物を添加し、得られた混合物を水熱反応させる。ここでMはFe、Ni、Co、Al、Zn、Mn、V又はZrである。   Next, a metal (M) compound and a silicate compound are added, and the resulting mixture is hydrothermally reacted. Here, M is Fe, Ni, Co, Al, Zn, Mn, V, or Zr.

金属(M)化合物としては、鉄化合物、マンガン化合物、コバルト化合物、ニッケル化合物、アルミニウム化合物、亜鉛化合物、バナジウム化合物又はジルコニウム化合物を用いればよい。   As the metal (M) compound, an iron compound, a manganese compound, a cobalt compound, a nickel compound, an aluminum compound, a zinc compound, a vanadium compound, or a zirconium compound may be used.

鉄化合物、マンガン化合物、コバルト化合物、ニッケル化合物、亜鉛化合物としては、2価の鉄化合物、2価のマンガン化合物、2価のコバルト化合物、2価のニッケル化合物、2価の亜鉛化合物であればよく、例えば、ハロゲン化鉄、ハロゲン化マンガン、ハロゲン化コバルト、ハロゲン化ニッケル、ハロゲン化亜鉛等のハロゲン化物、硫酸鉄、硫酸マンガン、硫酸コバルト、硫酸ニッケル、硫酸亜鉛等の硫酸塩、シュウ酸鉄、酢酸鉄、酢酸マンガン、酢酸コバルト、酢酸ニッケル、酢酸亜鉛等の有機酸塩が挙げられる。   The iron compound, manganese compound, cobalt compound, nickel compound, and zinc compound may be any divalent iron compound, divalent manganese compound, divalent cobalt compound, divalent nickel compound, or divalent zinc compound. , For example, halides such as iron halide, manganese halide, cobalt halide, nickel halide and zinc halide, sulfates such as iron sulfate, manganese sulfate, cobalt sulfate, nickel sulfate and zinc sulfate, iron oxalate, Examples thereof include organic acid salts such as iron acetate, manganese acetate, cobalt acetate, nickel acetate, and zinc acetate.

アルミニウム化合物としては、3価の化合物であればよく、例えば、ハロゲン化アルミニウム等のハロゲン化物、硫酸アルミニウム等の金属硫酸塩、酢酸アルミニウム、乳酸アルミニウム等の金属有機酸塩が挙げられる。バナジウム化合物としては、ハロゲン化バナジウム等が挙げられる。   The aluminum compound may be a trivalent compound, and examples thereof include halides such as aluminum halide, metal sulfates such as aluminum sulfate, and metal organic acid salts such as aluminum acetate and aluminum lactate. Examples of vanadium compounds include vanadium halides.

ジルコニウム化合物としては、4価の化合物であればよく、例えば、ハロゲン化ジルコニウム、硫酸ジルコニウム、二酢酸酸化ジルコニウム、オクタン酸ジルコニウム、ラウリン酸酸化ジルコニウム等の有機酸塩が挙げられる。   The zirconium compound may be a tetravalent compound, and examples thereof include organic acid salts such as zirconium halide, zirconium sulfate, zirconium diacetate oxide, zirconium octoate, and zirconium laurate oxide.

反応混合液中の金属(M)化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。   The concentration of the metal (M) compound in the reaction mixture is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4やNa4SiO4・nH2O(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、反応混合液が塩基性になるので、より好ましい。
ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。
The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica, Na 4 SiO 4 and Na 4 SiO 4 .nH 2 O (for example, Na 4 SiO 4 .H 2 O) can be used. preferable. Of these, the use of Na 4 SiO 4 is more preferable because the reaction mixture becomes basic.
The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

得られた混合物は、副反応を防止し、ケイ酸化合物の溶解性の点から、水を用い、塩基性の水分散液とするのがよい。具体的には、該水分散液のpHは、12.0〜14.5であるのが好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが好ましい。 The obtained mixture is preferably made into a basic aqueous dispersion using water from the viewpoint of the solubility of the silicic acid compound to prevent side reactions. Specifically, the pH of the aqueous dispersion is preferably 12.0 to 14.5. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is preferable to use Na 4 SiO 4 as the silicate compound.

水分散液を作製するにあたり、金属(M)化合物として、例えば、金属硫酸塩を用いる場合、副反応を抑制する点から、かかる金属硫酸塩とは別に、ケイ酸化合物と、酸化防止剤とを含有する塩基性水分散液を予め調製しておくのが好ましい。この場合、該水分散液と金属硫酸塩とを混合し、水熱反応に付す。   In producing an aqueous dispersion, as a metal (M) compound, for example, when using a metal sulfate, a silicate compound and an antioxidant are added separately from the metal sulfate in terms of suppressing side reactions. It is preferable to prepare in advance a basic aqueous dispersion. In this case, the aqueous dispersion and the metal sulfate are mixed and subjected to a hydrothermal reaction.

また、金属(M)化合物として、例えば、有機酸塩を用いる場合、ケイ酸化合物と、酸化防止剤とを含有し、さらに有機酸塩を含有する塩基性水分散液を調製するのが好ましい。通常、有機酸塩は固相法に用いられる原料であるが、水熱反応に用いることにより副反応を抑制することができる。   For example, when an organic acid salt is used as the metal (M) compound, it is preferable to prepare a basic aqueous dispersion containing a silicic acid compound and an antioxidant and further containing an organic acid salt. Usually, an organic acid salt is a raw material used in a solid phase method, but side reactions can be suppressed by using it in a hydrothermal reaction.

酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が挙げられる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビン型シリケート化合物の生成を抑制してしまうため、金属(M)に対して等モル量以下が好ましく、金属(M)に対してモル比で0.5以下がさらに好ましい。 Examples of the antioxidant include sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the metal (M), since the formation of the olivine-type silicate compound is suppressed when added in a large amount. More preferably, the molar ratio is 0.5 or less.

本発明では、上記混合物を水熱反応させる前に、水不溶性炭素含有化合物を添加してもよい。これにより、炭素源となる水不溶性炭素含有化合物が微細なオリビン型シリケート化合物の一次粒子間に均一に分散され、その後、一次粒子が凝集して二次粒子を形成した際にも、十分な電子伝導性を確保することができ、直接二次電池正極活物質が得られる。   In the present invention, a water-insoluble carbon-containing compound may be added before the mixture is hydrothermally reacted. As a result, the water-insoluble carbon-containing compound serving as the carbon source is uniformly dispersed between the primary particles of the fine olivine-type silicate compound, and then sufficient electrons are formed when the primary particles aggregate to form secondary particles. Conductivity can be ensured and a secondary battery positive electrode active material can be obtained directly.

水不溶性炭素含有化合物とは、水に不溶(例えば、25℃における水に対する溶解度が0.1g/100g以下)である炭素含有化合物を意味する。具体的には、例えば、セルロース、リグニン、キトサン、キチン、カーボンナノチューブ、グラフェン、カーボンブラック、黒鉛、グラファイト、合成繊維が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、繊維状の形態を有する化合物であるのが好ましく、例えば、セルロース(結晶セルロース)、カーボンナノチューブ、合成繊維が好ましい水不溶性炭素含有化合物として挙げられる。水不溶性炭素含有化合物の添加量は、水熱反応後に得られるオリビン型シリケート化合物の理論生成量中に、水不溶性炭素含有化合物に含まれる炭素原子換算で、0.5〜20質量%となる量で添加するのが好ましく、2〜15質量%となる量で添加するのがより好ましい。   The water-insoluble carbon-containing compound means a carbon-containing compound that is insoluble in water (for example, the solubility in water at 25 ° C. is 0.1 g / 100 g or less). Specific examples include cellulose, lignin, chitosan, chitin, carbon nanotubes, graphene, carbon black, graphite, graphite, and synthetic fibers. These may be used alone or in combination of two or more. Especially, it is preferable that it is a compound which has a fibrous form, for example, a cellulose (crystalline cellulose), a carbon nanotube, and a synthetic fiber are mentioned as a preferable water-insoluble carbon containing compound. The amount of the water-insoluble carbon-containing compound added is 0.5 to 20% by mass in terms of carbon atoms contained in the water-insoluble carbon-containing compound in the theoretical amount of the olivine-type silicate compound obtained after the hydrothermal reaction. Is preferably added in an amount of 2 to 15% by mass.

また、水不溶性炭素含有化合物は、例えばビーズミルやアトライタなどによる微粉砕、又は繊維化処理などの前処理を施して用いてもよい。   Further, the water-insoluble carbon-containing compound may be used after being subjected to pretreatment such as fine pulverization with a bead mill or an attritor, or fiberizing treatment.

水不溶性炭素含有化合物を添加するにあたり、分散性を高める点から、溶媒を用いて溶液とするのがよい。かかる溶液中の水不溶性炭素含有化合物の濃度は、好ましくは40質量%以下であり、より好ましくは20質量%以下である。
溶媒としては、例えば、蒸留水、イオン交換水等が挙げられ、窒素曝気などの脱酸素処理により溶液中のO2濃度を0.5mg/L以下にすることが好ましく、また、カルボン
酸などの分散剤を少量添加してもよい。
なお、水不溶性炭素含有化合物を添加するには、水不溶性炭素含有化合物の溶液に、前記水分散液等の混合物を添加してもよく、かかる混合物に、水不溶性炭素含有化合物の溶液を添加してもよい。これらをすべて混合した後、水熱反応に付す。
In adding the water-insoluble carbon-containing compound, it is preferable to make a solution using a solvent from the viewpoint of improving dispersibility. The concentration of the water-insoluble carbon-containing compound in such a solution is preferably 40% by mass or less, more preferably 20% by mass or less.
Examples of the solvent include distilled water, ion-exchanged water, and the like, and it is preferable that the O 2 concentration in the solution is 0.5 mg / L or less by deoxygenation treatment such as nitrogen aeration. A small amount of a dispersant may be added.
In addition, in order to add the water-insoluble carbon-containing compound, a mixture such as the aqueous dispersion may be added to the solution of the water-insoluble carbon-containing compound, and the solution of the water-insoluble carbon-containing compound is added to the mixture. May be. All of these are mixed and then subjected to a hydrothermal reaction.

水熱反応に付す際の温度は、130〜250℃が好ましく、さらに150〜200℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜250℃で反応を行う場合この時の圧力は0.3〜4.0MPaとなり、150〜200℃で反応を行う場合の圧力は0.5〜1.6MPaとなる。水熱反応時間は0.5〜24時間が好ましく、さらに3〜12時間が好ましい。   130-250 degreeC is preferable and the temperature at the time of attaching | subjecting to a hydrothermal reaction has more preferable 150-200 degreeC. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 250 ° C, the pressure at this time is 0.3 to 4.0 MPa, and the pressure when the reaction is performed at 150 to 200 ° C is 0. 5 to 1.6 MPa. The hydrothermal reaction time is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours.

なお、前記混合液の作製及び水熱反応は、いずれも非酸素条件下、例えば窒素雰囲気下に行うのが好ましい。   The preparation of the mixed solution and the hydrothermal reaction are preferably performed under non-oxygen conditions, for example, in a nitrogen atmosphere.

当該水熱反応により、オリビン型シリケート化合物が高収率で得られ、その結晶度も高い。
水熱反応後、生成したオリビン型シリケート化合物をろ過により採取し、洗浄することによって一次粒子を得る。洗浄は、ケーキ洗浄機能を有した濾過装置を用いて水で行うのが好ましい。
ここで、得られる一次粒子の粒径は、小さい程好ましい。本発明により得られる粒子の一次粒子の平均粒子径は、200nm未満であるのが好ましい。
By the hydrothermal reaction, an olivine-type silicate compound is obtained in high yield, and its crystallinity is also high.
After the hydrothermal reaction, the produced olivine-type silicate compound is collected by filtration and washed to obtain primary particles. Washing is preferably carried out with water using a filtration device having a cake washing function.
Here, the particle size of the obtained primary particles is preferably as small as possible. The average particle size of the primary particles of the particles obtained by the present invention is preferably less than 200 nm.

次いで乾燥を行う。乾燥手段としては、箱型乾燥機、凍結乾燥、真空乾燥、流動床乾燥機、あるいは、噴霧型乾燥機(スプレードライヤー)を用いることができる。
得られる乾燥物については、乳鉢、ピンミル、ロールミル、クラッシャー等を用いて解砕してもよい。
Then, drying is performed. As the drying means, a box-type dryer, freeze-drying, vacuum drying, fluidized bed dryer, or spray-type dryer (spray dryer) can be used.
About the obtained dried material, you may crush using a mortar, a pin mill, a roll mill, a crusher, etc.

得られるオリビン型シリケート化合物としては、例えば、以下のものが挙げられる。
Li2FexMnyCozSiO4 ・・・(1)
(式中、x、y及びzは、0≦x<1、0≦y<1、0<z<1、x+y+z=1、及びx+y≠0を満たす数を示す。)
Lia1FexMnyAlzSiO4 ・・・(2)
(式中、a1、x、y及びzは、1<a1≦2、0≦x<1、0≦y<1、0<z<1、a1+2x+2y+3z=4、及びx+y≠0を満たす数を示す。)
Lia2FexMnyzSiO4 ・・・(3)
(式中、a2、x、y及びzは、1<a2≦2、0≦x<1、0≦y<1、0<z<1、a2+2x+2y+(2〜5)z=4、及びx+y≠0を満たす数を示す。)
Li2FexMnyZnzSiO4 ・・・(4)
(式中、x、y及びzは、0≦x<1、0≦y<1、0<z<1、x+y+z=1、及びx+y≠0を満たす数を示す。)
Li2Fea3NibCocMndZrx1SiO4・・・(5)
(式中、a3、b、c及びdは、a3+b+c+d=1−2x1を満たし、x1は、0<x1<0.5を満たす数を示す)
Examples of the olivine type silicate compound to be obtained include the following.
Li 2 Fe x Mn y Co z SiO 4 (1)
(In the formula, x, y, and z represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, x + y + z = 1, and x + y ≠ 0.)
Li a1 Fe x Mn y Al z SiO 4 ··· (2)
(Where, a1, x, y and z represent numbers satisfying 1 <a1 ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, a1 + 2x + 2y + 3z = 4 and x + y ≠ 0. .)
Li a2 Fe x Mn y V z SiO 4 ··· (3)
(Wherein a2, x, y and z are 1 <a2 ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, a2 + 2x + 2y + (2-5) z = 4, and x + y ≠ Indicates a number satisfying 0.)
Li 2 Fe x Mn y Zn z SiO 4 (4)
(In the formula, x, y, and z represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, x + y + z = 1, and x + y ≠ 0.)
Li 2 Fe a3 Ni b Co c Mn d Zr x1 SiO 4 (5)
(Wherein a3, b, c and d satisfy a3 + b + c + d = 1−2 × 1 and x1 represents a number satisfying 0 <x1 <0.5)

また、上記オリビン型シリケート化合物は、ドープすることによりF等を含有していてもよい。例えば、Fをドープする場合は下記のような化合物となる。
Li21SiO4-x22x2 ・・・(6)
(式中、M1はFe、Mn、Co及びNiから選ばれる1種又は2種以上を示し、x2は0<x2≦4を満たす数を示す。)
The olivine type silicate compound may contain F or the like by doping. For example, when F is doped, the following compounds are obtained.
Li 2 M 1 SiO 4-x2 F 2x2 (6)
(In the formula, M 1 represents one or more selected from Fe, Mn, Co and Ni, and x2 represents a number satisfying 0 <x2 ≦ 4.)

その後、得られたオリビン型シリケート化合物の一次粒子又は二次粒子にカーボン担持する。このようにすることで、オリビン型シリケート化合物の電子伝導面積(電子伝導パス)が増加することとなり、より十分な電子伝導性を確保することができる。   Thereafter, carbon is supported on primary particles or secondary particles of the obtained olivine-type silicate compound. By doing in this way, the electron conduction area (electron conduction path) of an olivine type silicate compound will increase, and more sufficient electronic conductivity can be ensured.

カーボン担持する処理としては、例えば、得られたオリビン型シリケート化合物及び導電性炭素材料を含有するスラリーを調製し、造粒後に焼成する処理が挙げられる。スラリーには、適宜、有機バインダー、無機バインダーを含有させてもよい。かかる処理を施すことにより、一次粒子から形成される二次粒子の表面にカーボン薄膜を形成することができ、より電子伝導性を高めることができる。   Examples of the treatment for supporting carbon include a treatment in which a slurry containing the obtained olivine-type silicate compound and a conductive carbon material is prepared and fired after granulation. The slurry may appropriately contain an organic binder and an inorganic binder. By performing such treatment, a carbon thin film can be formed on the surface of secondary particles formed from primary particles, and electron conductivity can be further enhanced.

導電性炭素材料としては、グルコース、ポリビニルアルコール、カルボキシメチルセルロース、カーボンブラックが挙げられる。   Examples of the conductive carbon material include glucose, polyvinyl alcohol, carboxymethyl cellulose, and carbon black.

バインダーとしては、導電性炭素材料としても用い得るグルコース、ポリビニルアルコール、カルボキシメチルセルロースのほか、フルクトース、ポリエチレングリコール、サッカロース、デンプン、デキストリン、クエン酸等が挙げられる。
なかでも、使用量を調整することによって炭素源としても機能し、導電性炭素材料としても用い得る点から、グルコース、ポリビニルアルコール、カルボキシメチルセルロースが好ましく、グルコースがより好ましい。
Examples of the binder include glucose, polyvinyl alcohol and carboxymethyl cellulose which can also be used as a conductive carbon material, as well as fructose, polyethylene glycol, saccharose, starch, dextrin, citric acid and the like.
Among these, glucose, polyvinyl alcohol, and carboxymethyl cellulose are preferable, and glucose is more preferable because it functions as a carbon source by adjusting the amount used and can also be used as a conductive carbon material.

無機バインダーとしては、鱗片状シリカ(二酸化ケイ素)、シリカ−チタニア、ケイ素ガラス、コロイダルシリカ、シリカゾル、アルミナゾル等が挙げられる。   Examples of the inorganic binder include scaly silica (silicon dioxide), silica-titania, silicon glass, colloidal silica, silica sol, and alumina sol.

スラリーを調製し、造粒後に焼成する処理の際に用いる上記導電性炭素材料の添加量は、良好な充放電容量及び経済性の点から、スラリー中のオリビン型シリケート化合物100質量部に対し、炭素原子換算で0.5〜20質量部の量が好ましく、さらに2〜10質量部の量が好ましい。   The amount of the conductive carbon material used in the process of preparing the slurry and firing after granulation is based on 100 parts by mass of the olivine-type silicate compound in the slurry from the viewpoint of good charge / discharge capacity and economy. An amount of 0.5 to 20 parts by mass in terms of carbon atoms is preferable, and an amount of 2 to 10 parts by mass is more preferable.

また、溶媒として、水又は有機溶媒を用いてもよく、経済性の観点から水が好ましい。スラリー中におけるオリビン型シリケート化合物及び導電性炭素材料の含有量(スラリー濃度)は、30〜60質量%が好ましく、さらに45〜55質量%が好ましい。また、25℃におけるスラリー粘度は、3〜3000m・Paが好ましく、さらに10〜100m・Paが好ましい。さらにスラリーのpHは、好ましくは10.5〜11.2に調整するのがよい。   Moreover, you may use water or an organic solvent as a solvent, and water is preferable from an economical viewpoint. The content (slurry concentration) of the olivine-type silicate compound and the conductive carbon material in the slurry is preferably 30 to 60% by mass, and more preferably 45 to 55% by mass. The slurry viscosity at 25 ° C. is preferably 3 to 3000 m · Pa, more preferably 10 to 100 m · Pa. Furthermore, the pH of the slurry is preferably adjusted to 10.5 to 11.2.

造粒処理は、所望の粒子径を有する二次粒子が得られるものであれば特に制限されないが、噴霧乾燥によるものであるのが好ましく、なかでもスプレードライ法による噴霧乾燥によるものが最適である。造粒処理後に得られる二次粒子の平均粒径としては、1μm〜500μmが好ましく、さらに、20μm〜50μmが好ましい。
得られた二次粒子は、次いで焼成することにより二次電池正極活物質として用いることができる。
The granulation treatment is not particularly limited as long as secondary particles having a desired particle diameter can be obtained, but it is preferably by spray drying, and most preferably by spray drying by a spray drying method. . The average particle size of the secondary particles obtained after the granulation treatment is preferably 1 μm to 500 μm, and more preferably 20 μm to 50 μm.
The obtained secondary particles can then be used as a secondary battery positive electrode active material by firing.

また、上記造粒処理のほか、カーボン担持する処理として、例えば、オリビン型シリケート化合物及び導電性炭素材料を含む混合物を粉砕/複合化/混合処理する方法を用いてもよい。かかる処理を施すことにより、前駆体の一次粒子と導電性炭素材料とが複合した二次粒子を形成することができ、より導電性を高めることができる。   In addition to the above granulation process, as a process for supporting carbon, for example, a method of pulverizing / combining / mixing a mixture containing an olivine-type silicate compound and a conductive carbon material may be used. By performing such treatment, secondary particles in which the primary particles of the precursor and the conductive carbon material are combined can be formed, and the conductivity can be further increased.

粉砕処理の際に用いる導電性炭素材料としては、上記造粒する処理の際に用い得る導電性炭素材料と同様のものが挙げられる。なかでも、カーボンブラックが好ましく、そのうちアセチレンブラック、ケッチェンブラックがより好ましい。粉砕処理における導電性炭素材料の添加量は、良好な放電容量と経済性の点から、オリビン型シリケート化合物の一次粒子100質量部に対し、炭素原子換算量で0.5〜20質量部が好ましく、さらに2〜10質量部が好ましい。   Examples of the conductive carbon material used in the pulverization treatment include the same conductive carbon materials that can be used in the granulation treatment. Of these, carbon black is preferable, and acetylene black and ketjen black are more preferable. The addition amount of the conductive carbon material in the pulverization treatment is preferably 0.5 to 20 parts by mass in terms of carbon atom with respect to 100 parts by mass of the primary particles of the olivine silicate compound from the viewpoint of good discharge capacity and economy. Furthermore, 2-10 mass parts is preferable.

オリビン型シリケート化合物及び導電性炭素材料を含む混合物は、乾式にて、粉砕/複合化/混合処理を行う。この時、ジエチレングリコール、エタノールなどを助剤として少量添加してもよい。   The mixture containing the olivine-type silicate compound and the conductive carbon material is pulverized / composited / mixed in a dry manner. At this time, a small amount of diethylene glycol, ethanol or the like may be added as an auxiliary agent.

粉砕/複合化/混合処理を施す装置としては、通常のボールミルでもよいが、自公転可能な遊星ボールミル(フリッチュ社製)が好ましく、ノビルタ(ホソカワミクロン社製)、マルチパーパスミキサ(日本コークス工業社製)、或いはハイブリタイザー(奈良機械社製)等、被処理物へのメカノケミカル作用/複合化処理を行えるものであれば何れでもよい。   As an apparatus for pulverizing / combining / mixing, a normal ball mill may be used, but a planetary ball mill (manufactured by Fritsch) capable of rotating and revolving is preferred, and nobilta (manufactured by Hosokawa Micron), multipurpose mixer (manufactured by Nippon Coke Kogyo Co., Ltd.). ), Or a hybridizer (manufactured by Nara Machinery Co., Ltd.), etc., as long as it can perform a mechanochemical action / combination treatment on an object to be processed.

遊星ボールミルで用いられる装置の容器としては、鋼、ステンレス、ナイロン製が挙げられ、内壁はアルミナ煉瓦、磁気質、天然ケイ石、ゴム、ウレタン等が挙げられる。ボールとしては、アルミナ球石、天然ケイ石、鉄球、ジルコニアボール等が用いられる。ボールの大きさは、0.1mm〜20mmが好ましく、さらには0.5mm〜5mmボールが好ましい。ボールの充填量は、使用するミルの内容積に対し、ボールの充填体積が5〜50%を占める割合とするのが好ましい。   Examples of the container of the device used in the planetary ball mill include steel, stainless steel, and nylon, and the inner wall includes alumina brick, magnetic material, natural silica, rubber, urethane, and the like. As the ball, alumina sphere, natural silica, iron ball, zirconia ball or the like is used. The size of the ball is preferably 0.1 mm to 20 mm, more preferably 0.5 mm to 5 mm. It is preferable that the filling amount of the ball is a ratio in which the filling volume of the ball occupies 5 to 50% with respect to the internal volume of the mill to be used.

遊星ボールミルを用いる混合は、例えば公転50〜800rpm、自転100〜1,600rpmの条件で、好ましくは5分〜24時間、より好ましくは0.5〜6時間、さらに好ましくは1〜3時間行う。   Mixing using a planetary ball mill is performed, for example, under conditions of revolution of 50 to 800 rpm and rotation of 100 to 1,600 rpm, preferably 5 minutes to 24 hours, more preferably 0.5 to 6 hours, and further preferably 1 to 3 hours.

上記のようにカーボン担持する処理を施した二次粒子の焼成は、不活性ガス雰囲気下又は還元条件下に、好ましくは500〜800℃で10分〜24時間、より好ましくは600〜700℃で0.5〜3時間行うのが好ましい。かかる処理により、オリビン型シリケート化合物の表面にさらにカーボンが堅固に担持された二次粒子である正極活物質を得ることができる。焼成に用いる装置としては、焼成雰囲気及び温度の調整が可能なものであれば特に制限されず、バッチ式、連続式、加熱方式(間接又は直接)のいずれの方式のものも使用することができる。かかる装置としては、例えば、外熱キルンやローラーハース等の管状電気炉が挙げられる。   Firing of the secondary particles subjected to the treatment for supporting carbon as described above is preferably performed at 500 to 800 ° C. for 10 minutes to 24 hours, more preferably at 600 to 700 ° C. in an inert gas atmosphere or under reducing conditions. It is preferable to carry out for 0.5 to 3 hours. By this treatment, a positive electrode active material that is secondary particles in which carbon is further firmly supported on the surface of the olivine-type silicate compound can be obtained. The apparatus used for firing is not particularly limited as long as the firing atmosphere and temperature can be adjusted, and any of a batch system, a continuous system, and a heating system (indirect or direct) can be used. . Examples of such an apparatus include tubular electric furnaces such as an external heat kiln and a roller hearth.

得られる二次粒子の平均粒径は、好ましくは1〜100μmであり、より好ましくは5〜50μmである。また、タップ密度は、好ましくは0.5g/ml以上であり、より好ましくは0.7g/ml以上である。   The average particle diameter of the obtained secondary particles is preferably 1 to 100 μm, more preferably 5 to 50 μm. The tap density is preferably 0.5 g / ml or more, more preferably 0.7 g / ml or more.

得られた二次電池正極活物質は、充放電容量の点で優れており、非常に有用な二次電池を得ることができる。本発明の製造方法により得られる二次電池正極活物質を適用できる二次電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained secondary battery positive electrode active material is excellent in terms of charge / discharge capacity, and a very useful secondary battery can be obtained. The secondary battery to which the secondary battery positive electrode active material obtained by the production method of the present invention can be applied may be a lithium ion secondary battery, as long as it has a positive electrode, a negative electrode, an electrolyte, and a separator as essential components. There is no particular limitation.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 sort of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
炭酸リチウム3.7g(50mmol)、硫酸5.2g(50mmol)及び水80gを室温で30分攪拌した。これに50%水酸化ナトリウム水溶液8.3g(100mmol)を添加した。さらに、2Na2O・SiO2・nH2O 14.0g、FeSO4・7H2O 8.9g、MnSO4・5H2O 3.8g、及びZr(SO42・4H2O 0.4gを添加した。得られた水分散液を150℃、0.5MPaの条件で12時間水熱反応を行った。反応生成物をろ過、洗浄後、凍結乾燥した。次いでH2/Ar=3%の還元条件下、600℃で1時間焼成し、Li2Fe0.643Mn0.317Zr0.02SiO4のオリビン型シリケート化合物を8.4g得た。
得られた一次粒子の平均粒子径は100nmであった。得られた一次粒子のSEM像を図1、X線回折図を図5に示す。
[Example 1]
Lithium carbonate 3.7 g (50 mmol), sulfuric acid 5.2 g (50 mmol) and water 80 g were stirred at room temperature for 30 minutes. To this was added 8.3 g (100 mmol) of a 50% aqueous sodium hydroxide solution. Furthermore, 2Na 2 O.SiO 2 .nH 2 O 14.0 g, FeSO 4 .7H 2 O 8.9 g, MnSO 4 .5H 2 O 3.8 g, and Zr (SO 4 ) 2 .4H 2 O 0.4 g Was added. The obtained aqueous dispersion was subjected to a hydrothermal reaction at 150 ° C. and 0.5 MPa for 12 hours. The reaction product was filtered, washed and lyophilized. Then H 2 / Ar = 3% under reducing conditions, then baked 1 hour at 600 ° C., to give 8.4g of the olivine-type silicate compounds of Li 2 Fe 0.643 Mn 0.317 Zr 0.02 SiO 4.
The average particle diameter of the obtained primary particles was 100 nm. FIG. 1 shows an SEM image of the obtained primary particles, and FIG. 5 shows an X-ray diffraction diagram.

得られた一次粒子100gにグルコース(60%水溶液)22.5g、及び超純水100gを加えホモジナイザーで3分分散し、スラリーを調整した。得られたスラリーの一次粒子の含有量は46質量%、デジタル粘度計を用いた測定による20℃における粘度は100mPa・s、pHは10.70であった。   To 100 g of the obtained primary particles, 22.5 g of glucose (60% aqueous solution) and 100 g of ultrapure water were added and dispersed for 3 minutes with a homogenizer to prepare a slurry. The content of primary particles of the obtained slurry was 46% by mass, the viscosity at 20 ° C. as measured with a digital viscometer was 100 mPa · s, and the pH was 10.70.

次いで、下記条件で噴霧乾燥装置(4流体ノズルを備えたマイクロミストドライヤー:藤崎電気(株)製)を用い、得られたスラリーを造粒した後、還元雰囲気下で600℃で1hr焼成した。
エアー圧:0.6MPa
エアー流量:50LN/min
熱風量:1.0m3/min
入口温度:180℃
排気温度:100℃
スラリー流量:60g/min
Subsequently, the obtained slurry was granulated using a spray drying apparatus (micro mist dryer equipped with a four-fluid nozzle: manufactured by Fujisaki Electric Co., Ltd.) under the following conditions, and then fired at 600 ° C. for 1 hr in a reducing atmosphere.
Air pressure: 0.6 MPa
Air flow rate: 50LN / min
Hot air volume: 1.0 m 3 / min
Inlet temperature: 180 ° C
Exhaust temperature: 100 ° C
Slurry flow rate: 60 g / min

[比較例1]
50%NaOH水溶液の添加量を2.1g(25mmol)とする以外は、実施例1と同様にしてLi2Fe0.64Mn0.32Zr0.02SiO4の一次粒子を得た。また、実施例1と同様にカーボン担持を行い、二次粒子を得た。
得られた一次粒子の平均粒子径は300nmであった。得られた一次粒子のSEM像を図2に、X線回折図を図6に示す。
[Comparative Example 1]
Li 2 Fe 0.64 Mn 0.32 Zr 0.02 SiO 4 primary particles were obtained in the same manner as in Example 1 except that the amount of the 50% NaOH aqueous solution added was 2.1 g (25 mmol). Further, carbon support was performed in the same manner as in Example 1 to obtain secondary particles.
The average particle diameter of the obtained primary particles was 300 nm. The SEM image of the obtained primary particles is shown in FIG. 2, and the X-ray diffraction diagram is shown in FIG.

[比較例2]
硫酸の添加量を1.3g(12.5mmol)とする以外は、実施例1と同様に行い、Li2Fe0.64Mn0.32Zr0.02SiO4の一次粒子を得た。また、実施例1と同様にカーボン担持を行い、二次粒子を得た。
得られた一次粒子の平均粒子径は350nmであった。得られた一次粒子のSEM像を図3、X線回折図を図7に示す。
[Comparative Example 2]
Except that the addition amount of sulfuric acid was 1.3 g (12.5 mmol), the same operation as in Example 1 was performed to obtain primary particles of Li 2 Fe 0.64 Mn 0.32 Zr 0.02 SiO 4 . Further, carbon support was performed in the same manner as in Example 1 to obtain secondary particles.
The average particle diameter of the obtained primary particles was 350 nm. FIG. 3 shows an SEM image of the obtained primary particles, and FIG. 7 shows an X-ray diffraction diagram.

[参考例1]
LiOH・H2O 4.2g、2Na2O・SiO2・nH2O 14.0g及び水60gを混合し、これにFeSO4・7H2O 8.8g、MnSO4・5H2O 3.8g及びZr(SO42・4H2O 0.4gを添加して水分散液を調製した。この水分散液を実施例1と同様の条件で水熱反応させ、その後も同様に処理し、Li2Fe0.64Mn0.32Zr0.02SiO4の一次粒子を得た。また、実施例1と同様にカーボン担持を行い、二次粒子を得た。
得られた一次粒子の平均粒径は100nmであった。得られた一次粒子のSEM像を図4に、X線回折図を図8に示す。
[Reference Example 1]
LiOH.H 2 O 4.2 g, 2Na 2 O.SiO 2 .nH 2 O 14.0 g and 60 g of water were mixed, and this was mixed with FeSO 4 .7H 2 O 8.8 g and MnSO 4 .5H 2 O 3.8 g. Then, 0.4 g of Zr (SO 4 ) 2 .4H 2 O was added to prepare an aqueous dispersion. This aqueous dispersion was subjected to a hydrothermal reaction under the same conditions as in Example 1 and then treated in the same manner to obtain primary particles of Li 2 Fe 0.64 Mn 0.32 Zr 0.02 SiO 4 . Further, carbon support was performed in the same manner as in Example 1 to obtain secondary particles.
The average particle diameter of the obtained primary particles was 100 nm. FIG. 4 shows an SEM image of the obtained primary particles, and FIG. 8 shows an X-ray diffraction pattern.

[試験例1]
実施例1、比較例1〜2及び参考例1で得られた焼成物を用い、リチウムイオン二次電池の正極を作製した。実施例1、比較例1〜2及び参考例1で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
[Test Example 1]
Using the fired products obtained in Example 1, Comparative Examples 1 and 2 and Reference Example 1, a positive electrode of a lithium ion secondary battery was produced. The fired product obtained in Example 1, Comparative Examples 1 and 2 and Reference Example 1, Ketjen Black (conductive agent), and polyvinylidene fluoride (binder) were mixed at a weight ratio of 75:15:10. N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。 Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).

製造したリチウムイオン二次電池を用いて定電流密度での充放電を4サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。実施例1、比較例1〜2及び参考例1で得られた正極材で構築した電池の放電曲線を図9に示す。また、放電容量を表1に示す。   Charging / discharging at a constant current density was performed for 4 cycles using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C. The discharge curve of the battery constructed with the positive electrode material obtained in Example 1, Comparative Examples 1-2 and Reference Example 1 is shown in FIG. The discharge capacity is shown in Table 1.

図1及び表1から明らかなように、炭酸ナトリウムを用いて本発明方法により得られたオリビン型シリケート化合物を採用した二次電池は、水酸化リチウムを用いて得られたオリビン型シリケート化合物と同様の放電容量を有していた。これに対し、水酸化ナトリウムの量が0.9モル未満である比較例1及び硫酸の量が0.9モル未満である比較例2の方法により得られたオリビン型シリケート化合物を用いた二次電池の放電容量は低いものであった。   As is clear from FIG. 1 and Table 1, the secondary battery employing the olivine type silicate compound obtained by the method of the present invention using sodium carbonate is the same as the olivine type silicate compound obtained using lithium hydroxide. Discharge capacity. On the other hand, the secondary using the olivine type silicate compound obtained by the method of Comparative Example 1 in which the amount of sodium hydroxide is less than 0.9 mol and Comparative Example 2 in which the amount of sulfuric acid is less than 0.9 mol. The discharge capacity of the battery was low.

Claims (6)

炭酸リチウムのリチウムイオン1モルに対して水素イオン量が0.9〜1.1モルとなる量の硫酸水溶液中で10分〜2時間撹拌して反応させた後、リチウムイオン1モルに対して水酸化物イオン量が0.9〜1.1モルとなる量の水酸化ナトリウムを反応させ、次いで金属(M)化合物及びケイ酸化合物を添加し、得られた混合物を温度130〜200℃及び圧力0.5〜1.6MPaで水熱反応させることを特徴とする、金属M(MはFe、Ni、Co、Al、Zn、Mn、V又はZr)を含むオリビン型シリケート化合物の製造方法。 After stirring and reacting sulfuric acid in an amount of 0.9 to 1.1 mol of hydrogen ion in an aqueous solution for 10 minutes to 2 hours with respect to 1 mol of lithium ion of lithium carbonate, to 1 mol of lithium ion Then, sodium hydroxide in an amount of 0.9 to 1.1 mol of hydroxide ions is reacted, then a metal (M) compound and a silicate compound are added, and the resulting mixture is heated to a temperature of 130 to 200 ° C. And a hydrothermal reaction at a pressure of 0.5 to 1.6 MPa, and a method for producing an olivine-type silicate compound containing metal M (M is Fe, Ni, Co, Al, Zn, Mn, V, or Zr) . 硫酸を0℃〜60℃で反応させることを特徴とする、請求項1記載のオリビン型シリケート化合物の製造方法。The method for producing an olivine-type silicate compound according to claim 1, wherein sulfuric acid is reacted at 0 ° C to 60 ° C. 金属(M)化合物及びケイ酸化合物を添加して得られた混合物のpHが12.0〜14.5であることを特徴とする、請求項1又は2に記載のオリビン型シリケート化合物の製造方法。The method for producing an olivine-type silicate compound according to claim 1 or 2, wherein the pH of the mixture obtained by adding the metal (M) compound and the silicate compound is 12.0 to 14.5. . オリビン型シリケート化合物が下記式(5):The olivine-type silicate compound has the following formula (5):
LiLi 22 FeFe a3a3 NiNi bb CoCo cc MnMn dd ZrZr x1x1 SiOSiO 4Four ・・・(5)... (5)
(式中、a3、b、c及びdは、a3+b+c+d=1−2x1を満たし、x1は、0<x1<0.5を満たす数を示す)(Wherein a3, b, c and d satisfy a3 + b + c + d = 1−2 × 1 and x1 represents a number satisfying 0 <x1 <0.5)
で表されることを特徴とする、請求項1〜3のいずれか1項に記載のオリビン型シリケート化合物の製造方法。It is represented by these, The manufacturing method of the olivine type | mold silicate compound of any one of Claims 1-3 characterized by the above-mentioned.
請求項1〜のいずれかに記載の方法により得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、二次電池正極活物質の製造方法。 And carbon-supported in olivine-type silicate compounds obtained by the method according to any one of claims 1 to 4 and then and firing method of the secondary battery positive electrode active material. 請求項1〜の製造方法において、さらに水不溶性炭素含有化合物を添加して水熱反応を行うことを特徴とする、二次電池正極活物質の製造方法。 The manufacturing method of claim 1-4, further characterized by performing the addition to hydrothermal reaction of water-insoluble carbon-containing compound, method of manufacturing a secondary battery positive electrode active material.
JP2012274530A 2012-12-17 2012-12-17 Method for producing secondary battery positive electrode active material Active JP5744827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274530A JP5744827B2 (en) 2012-12-17 2012-12-17 Method for producing secondary battery positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274530A JP5744827B2 (en) 2012-12-17 2012-12-17 Method for producing secondary battery positive electrode active material

Publications (2)

Publication Number Publication Date
JP2014118321A JP2014118321A (en) 2014-06-30
JP5744827B2 true JP5744827B2 (en) 2015-07-08

Family

ID=51173489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274530A Active JP5744827B2 (en) 2012-12-17 2012-12-17 Method for producing secondary battery positive electrode active material

Country Status (1)

Country Link
JP (1) JP5744827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886923B1 (en) * 2014-09-29 2016-03-16 太平洋セメント株式会社 Method for producing lithium silicate compound having amorphous structure
CN113097462B (en) * 2021-03-29 2022-10-28 中国科学院广州地球化学研究所 Petal-shaped micro-nano composite structure silicon material and preparation method and application thereof
CN113937275A (en) * 2021-10-18 2022-01-14 浙江长兴中俄新能源材料技术研究院有限公司 Solid-phase synthesis preparation method of doped modified ferrous silicate lithium-carbon composite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235282B2 (en) * 2006-06-16 2013-07-10 国立大学法人九州大学 Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5115697B2 (en) * 2007-05-22 2013-01-09 Necエナジーデバイス株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
EP2394956A1 (en) * 2009-02-04 2011-12-14 National Institute of Advanced Industrial Science and Technology Method for producing lithium silicate compound
JP5403669B2 (en) * 2009-04-21 2014-01-29 Necエナジーデバイス株式会社 Lithium ion secondary battery
JPWO2011162348A1 (en) * 2010-06-25 2013-08-22 旭硝子株式会社 Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP2012193088A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery

Also Published As

Publication number Publication date
JP2014118321A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5804422B2 (en) Method for producing secondary battery positive electrode active material
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804427B2 (en) Method for producing positive electrode active material for secondary battery
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5728515B2 (en) Method for producing positive electrode material for secondary battery
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5927449B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2014051418A (en) Composite material, method for producing the same, cathode active material, cathode and nonaqueous electrolyte secondary battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP5744827B2 (en) Method for producing secondary battery positive electrode active material
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JP6054327B2 (en) Method for producing olivine-type silicate compound
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5557220B2 (en) Method for producing positive electrode material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP2013032252A (en) Positive electrode active material for lithium ion battery and method of manufacturing the same
JP5886923B1 (en) Method for producing lithium silicate compound having amorphous structure
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250